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Abstract

In the context of door-to-door transportation of people with disabilities, service quality consider-
ations such as maximum ride time and service time consistency are critical requirements. To identify
a good trade-off between these considerations and economic objectives, we define a new variant of
the multi-period dial-a-ride problem called the time consistent dial-a-ride problem. A transportation
planning is supposed to be time consistent if for each passenger, the same service time is used all along
the planning horizon. However, considering the numerous variations in transportation demands over
a week, designing consistent plan for all passengers can be too expensive. It is therefore necessary to
find a compromise solution between costs and time consistency objectives. The time consistent dial-
a-ride problem is solved using an epsilon-constraint approach to illustrate the trade-off between these
two objectives. It computes an approximation of the Pareto front, using a matheuristic framework
that combines a large neighbourhood search with the solution of set partitioning problems. This ap-
proach is benchmarked on time consistent vehicle routing problem literature instances. Experiments
are also conducted in the context of door-to-door transportation for people with disabilities, using
real data. These experiments support managerial insights regarding the inter-relatedness of costs and
quality of service.

Keywords: Vehicle routing, Dial-a-ride problem, Healthcare logistics, Consistency, Set partition-
ing, Large neighborhood search.

1 Introduction
The design of efficient para-transit systems relies both on minimizing operational costs and on providing
passengers with an adequate quality of service. In the operations research literature, the Dial-A-Ride
Problem (DARP) is a well-known optimization problem that consists in designing minimal-cost vehicle
routes to fulfill a set of transportation requests while satisfying a number of service quality requirements.5

Common applications concern door-to-door transportation of elderly people or people with disabilities.
In Medico-Social Institutions (MSI) in France, transportation is considered to be the main expense after
wages [1]. Transportation plans are defined on a yearly basis and partially revised several times a year
whenever necessary. Due to the pressure to cut costs, this is often their main objective, although service
quality criteria are also taken into account to define transportation plans.10

The DARP formulation considers a single period, typically half a day. Passengers are generally subject
to ride-time constraints: they must not be transported longer than a maximum predefined travel duration.
In this paper, we examine the case of para-transit systems for people who need to be transported on a
regular basis, for example handicapped workers or scholars. The DARP formulation is extended over
multiple periods and each period has a known set of transportation requests from passengers.15

We carried out a statistical study on field data which shows that 30% of passengers have a complete
and regular schedule throughout the week. The other passengers may have a regular demand only a
part of the week, or have slight variations in their planning (change of pickup or destination according
to medical appointments, nights spent at the MSI, etc.).

Table 1 shows the percentage of users that have to be transported on five, four,..., one days of the20

week, respectively.
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Number of demands per week 5 4 3 2 1

Percentage of passengers concerned 34.51% 9.33% 11.84% 15.42% 28.90%

Table 1: Frequency of transportation requests

For medical, cognitive or convenience reasons, it is desirable for passengers with regular demand to be
proposed a regular service, i.e. to be picked up at the same time every day in the morning and dropped off
at the same time on every evening. Each passenger’s demand can have an impact on the schedule of other
passengers on the same route. More particularly, the 28.9% of passengers with one weekly demand do25

not have consistency requirement, but these passengers “perturbate” the planning of all other passengers
and make the consistency issue hard to solve.

During the week, the same fleet of vehicles must satisfy all transportation demands. To approach
this objective, it is possible to have different routes and a different number of routes everyday. In the
meanwhile, some practical constraints such as passenger time windows or maximum ride times must be30

respected and the overall transportation cost should be minimized.
This work extends the consistent vehicle routing problem of [9] to a consistent dial-a-ride problem.

This allows to fully integrate real-life considerations such as time windows at pickup and delivery points,
maximum ride times, and routes visiting several delivery points. The objective function to be minimized
in [9] is the maximal number of time classes per passenger, where the time classes represents the number35

of significantly distinct schedules in the week. We reuse this definition of time classes and propose to
lexicographically minimize the number of passengers with each number of time classes. In brief, we
address a multi-period dial-a-ride problem and study the trade-off between service time consistency and
transportation costs. As this problem introduces time consistency within a DARP setting, we call this
new variant the time Consistent DARP (TC-DARP).40

Section 2 presents how the TC-DARP is related to the existing literature in operations research.
In particular, we discuss various definition of time consistency and motivate the use of a lexicographic
objective function. In Section 3, we give a formal definition of the TC-DARP and formulate it as a mixed-
integer linear program (MILP) with two objectives: minimizing transportation costs and lexicographically
minimizing the number of time classes per passenger. Section 4 presents the solution method used to45

solve the TC-DARP. It is a ε–constraint method, called spεc, that repeatedly solves a set-partitioning
(SP) formulation of the TC-DARP. In practice, this set partitioning formulation contains only a small
subset, called pool of routes of all possible routes. This pool of routes is generated by an auxiliary
Large neighborhood Search (LNS) algorithm. When the current pool is not enough to ensure a good
time consistency, new routes are appended to this pool. This requires solving an auxiliary optimization50

problem, which is a DARP with multiple time windows. The generation of these multiple time windows
and the adaption of the LNS method used to solve it are presented in Section 5.

In section 6, we present computational results on consistent VRP instances and results on the case
study that motivated this work. It concerns the transportation of people with disabilities in the area of
Lyon, France. We collected data from the main carrier in the region1, who works for multiple institutions55

and has a fleet of adapted vehicles. We show how using lexicographic minimization of the number of time
classes offers a broader choice to decision makers to achieve a good trade-off between the transportation
cost and the quality of service.

2 Related literature
The research presented in this paper is related to people transportation [6] and more particularly to60

the DARP, recently surveyed in [13, 23]. It also shares some similarities with the School Bus Routing
Problem [25] or integrated vehicle scheduling problems arising in bus network design [3, 21], although
research in this field seldom focus on modelling each passenger specific constraint. The research papers
studying people transportation problems are generally focused on determining the best routes for a set
of vehicles in order to serve the transportation requests of a single period. Some consistency aspects65

are studied in [4] by minimizing the deviation from predefined desired starting time for predefined trips.
An alternative model was presented in [28] where the author minimize the deviation from ideal intervals
between consecutive service trips of the same link. The consistency aspects in these papers aim at evenly
spreading service times at a bus stop over the horizon. Note that we do not allow transfers between

1Synergihp Rhône-Alpes: www.synergihp-ra.fr

2

www.synergihp-ra.fr


vehicles as it is generally done in public transit systems. The mono-period DARP of our application has70

been presented in [36]. In this paper, we focus on the consistency aspects that appear in the multi-period
version of the problem.

The integration of time consistency appeared recently in the vehicle routing problem (VRP) literature.
Applications were first identified in the context of fast parcel delivery [11] and were rapidly extended to
passenger transportation [9]. Readers interested in an extensive review on vehicle routing with consistency75

considerations can refer to Kovacs et al. [16]. Consistency in vehicle routing problems can be divided into
three main categories: service time consistency, driver consistency, and territory consistency. Service time
consistency means that regular customers are scheduled to be served at approximately the same time in
the planning horizon. As the main focus of our paper, the service time consistency will be detailed in the
next section.80

Driver consistency consists in minimizing the number of different drivers assigned to each passenger
during the planning horizon. The aim is to reinforce the relationship between drivers and passengers in
order to improve the quality of service. Braekers and Kovacs [2] computed the average cost of a solution
where each passenger was served by one, two and three drivers, respectively, showing that a solution with
two drivers can be near optimal whereas solutions with one driver are 10% costlier on average. Other85

approaches using soft constraints have yielded similar conclusions [30, 22]. In Feillet et al. [9], drivers are
assigned to routes a posteriori, so that service time consistency and driver consistency are considered as
independent problems in a lexicographical way.

Territory consistency aims at increasing drivers efficiency through their knowledge of the geographical
area in which they operate. A common way of addressing territory consistency is to design independent90

districts in advance, where independent routing problems are solved every day. This approach was studied
in [18, 40, 30, 29].

This paper focuses on service time consistency applied to a Dial-a-Ride Problem (DARP). In contrast
to the VRP, the DARP considers one origin and destination for each user and a maximum ride time.
The main applications of the DARP concern door-to-door transportation of people, particularly elderly95

or disabled people [13, 38, 17].

2.1 Service time consistency models
Service time consistency consists in serving regular needs at approximately the same hour throughout
the whole planning horizon. This is modeled either by hard constraints, that is, imposing an acceptable
level of service time variation, or by soft constraints, that is, penalizing service time variations in the100

objective function.
Groër et al. [11] defined the maximum arrival time variation as the difference between the latest and

earliest service times throughout the whole planning horizon, for each customer. This consistent VRP
(conVRP) is an extension of the multi-period VRP where the maximal arrival time variation is bounded
above by a constant value Lmax. However, this measure, initially proposed for the small package shipping105

industry, has some practical drawbacks in the context of passenger transportation. In the shipping
industry, regular customers are professionals, performing an activity while waiting for a delivery. Their
need for regularity is expressed as the wish to be delivered every day at approximately the same time
of day. In passenger transportation, the pickup or drop-off times are already well delimited with time
windows and maximum ride time constraints. But in this later case, passengers are sensitive to the110

number of significantly different service times proposed in a week. To address this need, Feillet et al. [9]
define a passenger-oriented time consistency model based on the concept of time classes. They assume
that very small variations (e.g. ±5 minutes) in service time are not significant for passengers, especially
considering approximations and variations due to traffic conditions or unexpected events. Similar times
are regrouped in the same time class. Consistency is then improved by minimizing the maximum number115

Cmax of time classes over all passengers. The difference between this measure and Lmax is highlighted in
Figure 1.

Figures 1(a) and 1(b) represent the service time of a passenger in two distinct solutions. Each vertical
line represents the service time from Monday to Friday. In Figure 1(a), as service times are evenly spread
between 7:00 and 8:00, there are 5 time classes. In Figure 1(b), these times can be grouped into two120

intervals of 10 minutes: [7:00-7:10] and [7:50-8:00]. This passenger is said to have 2 time classes. While
both solutions have the same value Lmax = 1 hour, they do not offer the same consistency to passengers
as far as service time is concerned. In our application, a measure based on the number of time classes
offers a better quality of service than a solution measure with Lmax.

There is however one limitation related to objective Cmax. It is the largest number of time classes in125
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(a) Solution with Cmax = 5 time classes
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(b) Solution with Cmax = 2 time classes

Figure 1: Comparison, for one passenger, of two solutions having the same Lmax but different numbers
of time classes. The width of a time class is 10 minutes.

the solution, for all passengers. Hence, a solution with 99% of passengers who have Cmax time classes is
equivalent to another solution where only 1% of passengers are the same situation. In order to overcome
this limitation, we propose a lexicographic optimization. We first minimize the number of passengers
from the highest to the lowest number of time classes: first passengers with Cmax time classes, then
Cmax − 1, Cmax − 2 and so forth.130

To the best of our knowledge, this approach is a new refinement of the Feillet et al. [9] model. Still,
according to the passenger transportation company, many good trade-off solutions can be found between
the cost optimal solution with Cmax = 2 and the cost optimal solution with Cmax = 1. According to the
fair optimization literature [24], the proposed model corresponds to a lexicographic minimax refinement
of the min-max model, using counting functions. We show that this lexicographic objective is easily135

adapted to the context of passenger transportation.

2.2 Solution approaches for time consistent routing problems
In the conVRP model introduced by Groër et al. [11], the objective is to optimize service time consis-
tency (Lmax) without compromising a perfect driver consistency (1 driver per customer). These authors
proposed a record-to-record travel algorithm and developed benchmark instances for up to 100 customers.140

The consistency measure Lmax has been used in several subsequent papers (i.e. [34, 35, 14, 15, 19,
39]). The current best results on the Groër et al. [11] benchmark instance set was obtained by Xu and
Cai [39], who proposed a Variable Neighborhood Search procedure using dedicated local search methods
for quickly finding local optima. This approach is based on improving template solutions generated by 3
different shaking methods. A problem extension, denoted the genConVRP, is proposed by Kovacs et al.145

[15] in which: routes do not necessarily start at the same time, customers are associated with AM/PM
time windows, and a maximum number of drivers per customer is defined. Subramanyam and Gounaris
[33] propose a branch-and-cut framework to solve the consistent traveling salesman problem which is a
particular case of the conVRP using a single vehicle without capacity constraints. They solve instances,
randomly generated, with up to 51 customers.150

The time Consistent VRP (TCVRP) of Feillet et al. [9] is solved with a dedicated Large Neighborhood
Search (LNS) framework. At each iteration, the routes of all periods are destroyed. A VRP with multiple
time windows and no waiting time (VRPmTW-nw) is defined in order to decrease the number of time
classes of one passenger. A branch-and-price heuristic is used to recreate the routes. The minimum cost
solutions for Cmax = 1 to 5 are saved in the process.155

Another related problem is the Time Window Assignment Vehicle Routing Problem (TWAVRP)
introduced by Spliet and Gabor [32]. In the TWAVRP, a single time window of fixed width has to be
assigned to some regular customers before the effective daily demand is known. The assignment is based
on a set of demand scenarios, each of which is associated with a given probability. The objective is
to minimize the expected transportation cost. The TWAVRP is a particular case of the genConVRP160

if scenarios are seen as periods and the number of drivers per customer is set to infinity. However,
the objective differs: genConVRP optimizes the total transportation cost and TWAVRP the average
transportation cost. A branch-price-and-cut algorithm is proposed to optimally solve instances with up
to 25 customers. Spliet and Desaulniers [31] propose a variant, called the discrete time window assignment
vehicle routing problem, where the chosen time windows are selected from a discrete set. Considering its165
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formulation, the TWAVRP corresponds to the case where each user should have exactly one time class
in the TCVRP, with each day in the TCVRP corresponding to a scenario with probability one in the
TWARVP.

Consistency issues are also often related to having stochastic customers in the VRP [27]. For example,
Sungur et al. [34] use a combination of robust optimization in a first phase master problem, and stochastic170

programming with recourse to daily schedules to address the uncertainty in service times and customer
occurrence. Erera et al. [8] investigate the opportunity to give a main fixed route as well as a backup one
to frequent customers in a stochastic context.

Finally, the question of service time consistency presents some similarities with some non-periodic
applications such as the synchronization of multiple vehicles at the same node. In this case, the arrival175

time of multiple vehicles at a given location should be synchronized in order to perform a collective
operation. The vehicles then continue their routes independently. A survey on synchronization in VRP
is given by Drexl [7].

2.3 Contributions with respect to the literature
The literature review shows that there is still some gap between what has been proposed in the literature180

and a practical implementation of time consistency for a DARP application. In this paper, we reuse the
notion of time classes introduced in Feillet et al. [9] and extend this previous work from the time consistent
VRP to the time consistent DARP. In particular, we consider time windows both at pickup and delivery
locations and maximum ride times for all passengers. Another contribution is to better explore solutions
where some passengers accept several time classes. To aggregate of the number of time classes over all185

passengers, we refine the Cmax minimization approach of [9]. Our lexicographic approach minimizes the
number of passengers with the highest to the lowest number of time classes: first passengers with Cmax

time classes, then with Cmax − 1, Cmax − 2 and so forth. As a result, the proposed method finds a more
complete Pareto front, showing more trade-off between cost and consistency.

Due to the time windows at delivery locations, routes might contain waiting times. Similarly to190

Kovacs et al. [15], we consider that the departure time of routes can be changed in order to improve
consistency. To achieve these objectives, we revisit the method of [9], in particular by integrating the
LNS matheuristic of [36] in the method to design the routes of each week day. As in [9], our algorithm
includes a component that recreates the routes of one day, taking account of the times at which users are
served on the other days. For this component, a specific case of the DARP with multiple Time Windows195

is defined. It is solved by adapting the previous LNS algorithm through a new route scheduling algorithm
that integrates the constraints and objectives of our problem. The generated routes are combined in an
ε-constraint method, with routes selection strategies, to exhibit the TC-DARP Pareto front.

3 Modeling the time consistent dial-a-ride-problem (TC-DARP)
In this section, we present the TC-DARP problem settings and give its MILP formulation. Tables 2, 3200

and 4 synthesize the mathematical notations for the sets, data and variables, respectively.

Users

In the remainder of this paper, we refer to the passengers of the transportation system as users. The set
of users is denoted by U . Each user u ∈ U is carried between a pickup node pu ∈ P and a delivery node
du ∈ D, where P and D, denote the set of all pickup and delivery nodes, respectively. Moreover, each205

user has a maximum ride time Tu, and occupies a particular space v ∈ J in vehicles.
Given a planning horizon T (typically one week), each user can be service at most once in any period,

the user’s demand is modeled by a vector of binary values of size |T |. More precisely, we define βt
u ∈ {0, 1}

for all u ∈ U, t ∈ T , where βt
u = 1 if user u requires transportation at period t and 0 otherwise. Note

that if several users have a common origin or destination, nodes are duplicated so that each pickup node210

and each delivery node corresponds to exactly one user. Similarly, we only consider users with stable
demand within the planning horizon (same pickup, same delivery). Actually, it is not expected by users
with several addresses that an overall consistency will be aimed at over all their addresses. Thus, they
are considered as distinct users with separate plannings.
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Vehicles215

We assume a homogeneous and unlimited fleet of vehicles based at a single depot o. In practice, vehicles
are equipped with several spaces (e.g. seats, spaces for wheelchairs) that can receive different categories
of users. We thus consider vehicles’ capacity as a vector indicating the number of available places in
each space. It is denoted by Q = {Q1, . . . , Q|J |}, where J represents the set of passenger spaces (seats,
wheelchairs, etc.)220

Graph representation

The TC-DARP is defined on a directed graph which node set is {P ∪D ∪ o} and the arcs set containing
the following arcs: (o, i) where i ∈ P; (i, j) where i, j ∈ P ∪D, i 6= j; and (i, o) where i ∈ D. Each node i
is associated with a service duration ζi and a time window [ai, bi]. Every arc (i, j) represents the fastest
path from node i to node j and is associated with a travel time tij and a distance dij .225

Routes

We propose a route-based MILP formulation of the TC-DARP. The set of all routes is denoted by Ω.
A route ω ∈ Ω is any feasible sequence of nodes visited by the same vehicle. More precisely, a route is
feasible if it starts and finishes at the depot o, serves a set of users by visiting their pickup node and
their delivery node (in this order), while respecting time windows at all nodes visited, users ride time230

constraints and vehicle capacity constraints. Given a potentially large set of feasible routes, the MILP
model aims at selecting a subset of routes that cover the whole demand. The binary decision variable ytω
is equal to 1 if route ω ∈ Ω is selected at period t ∈ T .

Each selected route is associated with one vehicle. For each route, we consider three types of costs: a
fixed cost λ paid if the route is used at least once in the planning horizon, a cost per kilometer τ related235

the fuel consumption, and a cost per hour α related to the driver’s cost. For a given route ω which length
and duration can be easily calculated, the sum of fuel and driver’s related cost is denoted by πω.

Routes scheduling

The pickup and delivery nodes i ∈ P∪D on a route ω are associated with a time Hi,ω. Hi,ω is the earliest
possible service time of node i in a schedule of ω that minimizes its duration, satisfies time windows at240

each node and users maximum ride time constraints. In order to improve time consistency, the departure
of a route can be postponed provided the route remains feasible. The maximal possible shift for a route
ω ∈ Ω is denoted by ∆+

ω . The shift of route ω ∈ Ω departure time at period t ∈ T is expressed by
continuous variables δtω ∈ [0,∆+

ω ]. Adding waiting time to improve consistency is possible only at the
depot. More precisely, once vehicles have left the depot, waiting times are introduced only when the245

vehicle arrives at some pickup or delivery point before the opening of time windows. Other waiting times
are not authorized, even though they would sometimes improve consistency. This rule is realistic with
respect to drivers practice. Indeed, a driver would not wait at a pickup location within the user’s time
windows, possibly with other users on board, just to improve its consistency. Appendix A.2 details the
scheduling procedure for the calculation of ∆+

ω and the satisfaction of the time windows and ride-time250

constraints.

Time classes

The set of selected routes determines the service times for all users on each day where they have a request.
Given these times, it is possible to assign each service to a time class. The binary variable ztuc is equal
to 1 if user u ∈ U is assigned to time class c ∈ C at period t ∈ T , and 0 otherwise. For example, in255

Figure 1(b), Tuesdays and Fridays belong to class 1. Thus, assuming that the corresponding user is
denoted ū, we have z2

ū1 = z5
ū1 = 1. Similarly, Mondays, Wednesdays and Thursdays belong to class 2,

then z1
ū2 = z3

ū2 = z4
ū2 = 1.

Binary variables µuc indicate which time classes from set C are actually used by user u. In the
preceding example, the user ū has two classes, thus µū1 = µū2 = 1. Without loss of generality, we assume260

that if a user has c̄ time classes (1 ≤ c̄ ≤ 5), these time classes are sequentially numbered from 1 to c̄.

6



U set of users
T set of time periods
Tu set of time periods in which user u ∈ U needs to be transported
J set of user spaces in vehicles
Ω set of all routes
Ωu set of routes serving user u ∈ U
C set of time classes

Table 2: Sets

βt
u equal to 1 if user u ∈ U must be serviced in period t ∈ T , and 0 otherwise
πω cost of route ω ∈ Ω
λ weekly vehicle fixed cost
Huω earliest time service to user u ∈ U by route ω ∈ Ω
∆+

ω maximum time shift of route ω ∈ Ω
Λ time class width

Table 3: Data

Binary Variables

ytω ∈ {0, 1} =1 if route ω ∈ Ω is selected at period t ∈ T , and 0 otherwise
ztuc ∈ {0, 1} =1 if user u ∈ U is assigned to time class c ∈ C at period t ∈ T , and 0 otherwise
µuc ∈ {0, 1} =1 if user u ∈ U uses time class c ∈ C, and 0 otherwise

Other variables

δtω ∈ [0,∆+
ω ] time shift (used margin) of route ω ∈ Ω at period t ∈ T

s−uc, s
+
uc ∈ R+ lower and upper bounds for the time class c ∈ Cu for user u ∈ U

htu ∈ R+ beginning of service for user u ∈ U at period t ∈ T
ν number of vehicles needed for the whole planning horizon
mc number of users having c ∈ C time classes (post-processed variable)

Table 4: Summary of variables
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Objective functions

The TC-DARP is a bi-objective problem which consists in selecting a subset of routes from Ω such that
transportation requests on the planning horizon are satisfied within their time windows and maximum
ride times.265

The first objective is the minimization of transportation costs, that include the fleet fixed cost λν and
the cost of all routes used in the solution.

min f = λν +
∑
ω∈Ω

∑
t∈T

πωy
t
ω. (1)

The second objective minimizes time inconsistency, which is modeled with a lexicographical refinement
of the time class model proposed by Feillet et al. [9]. The expression used in the MILP model is the
following:

lexmin ĝ =

(∑
u∈U

µu|C|, . . . ,
∑
u∈U

µu2

)
. (2)

This expression lexicographically minimizes the number of people having more than c time classes, where
c decreases from |C| to 2. The expression

∑
u∈U

µuc counts the number of users with c or more time classes.

This is equivalent to the lexicographical minimization of the number of users whose number of time classes
is exactly |C|, |C| − 1, down to 1, respectively. In the remainder of the paper, we denote by

lexmin g =
(
m|C|, . . . ,m1

)
(3)

the alternative formulation of this objective, where mc denotes the number of users having c time classes.
It is post-processed from the values of the µuc variables using the following expressions:

m1 = |U| −
∑
u∈U

µu2

mc =
∑
u∈U

µuc −
∑
u∈U

µu,c+1 ∀c ∈ {1, . . . , |C| − 1}

m|C| =
∑
u∈U

µu|C|

(4)

Constraints

The set of TC-DARP feasible solutions is defined by the following constraints:

∑
ω∈Ωu

ytω = βt
u ∀u ∈ U , t ∈ T , (5)

∑
ω∈Ω

ytω ≤ ν ∀t ∈ T , (6)∑
c∈C

ztuc = 1 ∀u ∈ U , t ∈ Tu, (7)

htu =
∑
ω∈Ωu

(Huω y
t
ω + δtω) ∀u ∈ U , t ∈ Tu, (8)

δtω ≤ ∆+
ω y

t
ω ∀ω ∈ Ω, t ∈ T , (9)

s−uc ≤ htu +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (10)

htu ≤ s+
uc +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (11)

s+
uc − s−uc = Λ ∀c ∈ C, u ∈ U , (12)

s+
uc ≤ s−u,c+1 ∀c ∈ C/{|C|}, u ∈ U , (13)∑

ω∈Ωu

ytω =
∑
c∈C

ztuc ∀u ∈ U , t ∈ Tu, (14)

ztuc ≤ µuc ∀c ∈ C, u ∈ U , t ∈ Tu, (15)
µu,c+1 ≤ µuc ∀c ∈ C,∀u ∈ U ,∀t ∈ T , (16)

ytω, z
t
uc, µuc ∈ {0, 1} ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω, (17)

δtω, h
t
us
−
uc, s

+
uc, ν ∈ R+ ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω. (18)
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Constraints (5) are partitioning constraints ensuring the satisfaction of the users demand. Con-270

straints (6) count the number of vehicles needed during the planning horizon. Constraints (7) state that
each user served in period t ∈ T should be given a single time class. Constraints (8) determine the service
time for each user of route ω when its departure is shifted by the value δtω. Constraints (9) state that if
a route ω is selected in period t, then its time shift δtω should not exceed the value ∆+

ω .
Constraints (10) and (11) linearize the following logical expression:275

ztcu = 1⇒ s−uc ≤ htu ≤ s+
uc ∀u ∈ U , t ∈ Tu, c ∈ C. (19)

They state that if a user u is assigned to the time class c at period t, then its service time should be
within the bounds of this time class c. Constraints (12) set the width of a time class. Constraints (13)
avoid overlap between time classes. Constraints (14) link the number of routes that serve one given user
and the number of time class variables. Constraints (15) define variables µuc necessary for counting the
number of time classes of each user. Constraints (16) ensure that time classes are defined in increasing280

order. For example, time class #2 is allocated to a user only if time class #1 already exists and is not
compatible with a given service time. Finally, the definition of variables is given by constraints (17) and
(18).

4 Solution method
This section presents the Set Partitioning-based ε–constraint matheuristic, denoted spεc, that has been285

designed to solve the bi-objective TC-DARP. This method iteratively solves Set Partitioning Problems
(SPPs) in an ε-constraint framework. SPPs correspond to a route-based formulation of the TC-DARP
considering a subset of the whole set of feasible routes. This subset of routes, called pool of routes, contains
routes generated by an auxiliary heuristic solution method to solve the TC-DARP. Here we generate the
pool of routes by using a Large Neighborhood Search algorithm (LNS). This section is structured as290

follows: Section 4.1 presents the general framework of spεc, that traces a Pareto front approximation
between the two objectives of the TC-DARP. Section 4.2 details the optimization procedure for solving
the TC-DARP with a single objective. Next subsections are focus on two more specific topics: the
initialization of the spεcframework (Section 4.3), the selection of the pool of routes from a larger set of
routes (Section 4.4).295

4.1 The spεc matheuristic framework
The general framework, introduced in Algorithm 1, is based on an ε-constraint procedure [12, 5]. It finds
an approximation of the Pareto front between the two objectives of the TC-DARP: the transportation
cost f , and the time inconsistency g. This is illustrated in Figure 2.

In a nutshell, the algorithm starts from the best solution found by lexicographically minimizing cost300

and then inconsistency. Then, the inconsistency objective is progressively improved by allowing an
increase of the transportation cost by ε percent. Every time a new non-dominated solution is found, it is
stored in the Pareto front approximation. The procedure stops when every user has one time class.

Algorithm 1 presents the spεc framework, the ε–constraint matheuristic. In this algorithm, a pool
of routes L is generated together with the initial solution. Two types of solution are used, a temporary305

solution S (line 3) and a best found solution S∗. They are initialized with the procedure described in
Section 4.3 (line 4). This procedure solves a multi-period DARP in which cost f is minimized. The
routes found while solving this multi-period DARP are appended to the pool L. The cost of solution S∗
is taken as the cost upper limit f̄ (line 5).

Lines 7 to 15 describe an iteration of the algorithm. The procedures described in lines 7 and 8 aim at310

finding a new temporary solution S, as detailed in Figure 3. First inconsistency g is minimized subject
to a maximal cost constraint. Given that this procedure starts with a feasible solution S∗, it results in
a solution S such that g(S) ≤lex g(S∗). Then the cost objective f is minimized subject to a maximal
inconsistency level g(S). During these two procedures, pool L is updated with new routes.

If the temporary solution S is strictly better than S∗ for at least one of the objectives (i.e. if315

f(S) < f(S∗) or g(S) <lex g(S∗), line 9) then solution S∗ is updated with S (line 10) and S∗ is added to
the Pareto front approximation (line 11). Otherwise, the value of ε is geometrically increased by a factor
φ (line 13). At the end of an iteration, the cost limit f̄ is updated based on the cost of S∗ (line 15) and
ε value.
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 (inconsistency)

   Pareto front approximation
(set of non dominated solutions)

Non dominated solution with one time-class per user

Non dominated solution with minimal cost

(cost)

Figure 2: Pareto front approximation designed by the spεc algorithm

Algorithm 1: The spεc framework
Parameters ε : initial value of epsilon, φ : increase factor of epsilon,
Result: Pareto front approximation
/* Initialization */

1 ParetoFront← ∅
2 L ← ∅: Pool of routes
3 S ← ∅: temporary solution
4 (S∗,L)← initialize() /* See Section 4.3 */
5 f̄ ← f(S∗): cost upper limit

/* Iterations */
6 while stopping criterion is not met do

/* Optimize inconsistency and cost objectives, see Section 4.2 */
7 (S,L)← solveMonoTCDARP (lexmin g, f ≤ f̄ , S∗,L)

8 (S,L)← solveMonoTCDARP (min f, g ≤lex g(S), S,L)

/* Update solution */
9 if (f(S) < f(S∗)) ∨ (g(S) <lex g(S∗)) then

10 S∗ ← S

11 Update ParetoFront with solution S∗

12 else
13 ε← φ× ε
14 end

/* End of one iteration */
15 Update epsilon constraint: f̄ ← f(S∗)× (1 + ε)

16 Limit the size the L to Nmax

17 end
18 return ParetoFront

10



(cost)

 (inconsistency)

       (temporary)

1) Optimize      subject to 
a maximal cost 

2) Optimize    subject to
a maximal inconsistency 

Figure 3: Pareto front exploration with the two optimization procedures of one iteration (Algorithm 1
lines 7 and 8).

Note that the size of pool L increases at each iteration, which can eventually cause memory issues.320

Thus, the routes in L are ordered in non-decreasing order of the consistency measure among all TC-DARP
solutions found so far that contains these routes, and the first Nmax routes are kept (line 16).

Since the fleet size is not limited, there is an extreme point in the Pareto front such that every user
has only one time class (i.e. g = (0, . . . , |U|)). Therefore the stopping criterion used in line 6 is met when
g = (0, . . . , |U|).325

4.2 Mono-objective optimization procedure
Line 7 of Algorithm 1 concerns the minimization of inconsistency subject to a maximal cost constraint.
Line 8 concerns the minimization of cost subject to a maximal inconsistency constraint. These two
consistent DARP formulations with a single objective are solved with Algorithm 2. The arguments of
Algorithm 2 are the objective function z to be minimized (z is a generic notation representing either f330

or g), an upper bound E on the other objective, a solution S0 and a pool of routes L.
In lines 1 to 5, the main variables are initialized. The current solution S, a restricted pool of routes

L′ ⊂ L and a list of selected routes are initialized as empty sets. The best solution found S∗ is initialized
to S0. The variable itNonImp, initialized with the value 0, counts the number of iterations with no
improvement of the objective function. Finally, the boolean variable genNewRoutes indicates if the pool335

L must be enriched with new routes. It is initialized with the value false.
Each iteration of Algorithm 2 consists of four steps: 1) selecting a subset of routes from L; 2) solving

the mono-objective TC-DARP given the set of selected routes; 3) managing the pool of routes; and 4)
updating the best solution. This process iterates until MaxIter iterations without any improvement of
S∗ having been performed.340

In Step 1, a subset l of N routes is selected from a larger pool of routes, which is either L (line 9) or a
new pool Lnew determined from the set of service times in solution S∗ (lines 11-13). The process followed
to generate these new routes is detailed in Section 5. New routes in Lnew are saved in L (line 12) to enable
their selection in further iterations. The procedure for selecting the N routes is the same regardless of
the pool. It is called selectRoutes and it is detailed in Section 4.3. In this procedure, routes are selected345

based on their performance and whether they were chosen on a previous iteration. Selected routes are
then saved in memory at every iteration (line 16).

Step 2 consists in solving a TC-DARP defined by the objective function z and constraints (5–18),
with epsilon constraint E , where the set of routes Ω is the restricted pool L′. This model is solved with
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Algorithm 2: solveMonoTCDARP( z, E , S0, L)
Arguments: z: objective, E : epsilon constraint, S0: solution, L: pool of routes.
Parameters: MaxIter: maximum number of iterations without improvement, tmax: solver time

limit, N : number of routes selected at each iteration of a TC-DARP problem
Result: best solution found S∗

1 S ← ∅: current solution
2 S∗ ← S0: best solution found
3 L′ ← ∅: restricted pool of routes
4 itNonImp← 0: number of iterations without improving S∗

5 lmemory ← ∅: initialize memory of selected routes
6 genNewRoutes ← false

7 while itNonImp < MaxIter do

/* 1. Select routes */
8 if genNewRoutes = false then
9 l← selectRoutes(L, N, lmemory) /* See Section 4.4 */

10 else
11 Lnew ← generateNewRoutes(S∗) /* See Section 5 */
12 L ← L ∪ Lnew: Save new routes
13 l← selectRoutes(Lnew, N, lmemory) /* See Section 4.4 */
14 end
15 L′ ← L′ ∪ l
16 lmemory ← lmemory ∪ l

/* 2. Solve a TC-DARP on subset l */
17 Compute S by solving the TC-DARP problem with objective z and constraints (5)–(18),

epsilon constraint E , with Ω = L′, time limit tmax, and warm start on S∗

/* 3. Pool management */
18 if TC-DARP is not solved to proven optimality then
19 L′ ← ∅

/* 4. Update best solution and itNonImp */
20 if z(S) < z(S∗) then
21 S∗ ← S

22 itNonImp← 0

23 else
24 itNonImp← itNonImp+ 1

25 genNewRoutes ← ¬ genNewRoutes

26 end
27 end
28 return S∗,L

12



a time limit set at tmax and a warm start on S∗. Depending whether z represents f or g, the objective350

z to be minimized is either the cost or the inconsistency. In Step 3 (lines 18-19), the restricted pool of
routes is cleared if the TC-DARP at Step 2 could not be solved to proven optimality. This mechanism,
inspired by previous research [10, 36], keeps the pool size manageable.

Step 4 updates the current best solution S∗ and the counter itNonImp of iterations without im-
provement. Thanks to the warm start, the value of the objective function z(S) cannot increase from one355

iteration to another. Given this property, when the value of z(S∗) has not been improved for MaxIter
iterations, we suppose that the algorithm has reached a local optimum. The parameter itNonImp is used
as a stopping criterion. When the solution is not improved, the value of the boolean genNewRoutes is
modified in order to diversify the process by switching between pools L and Lnew in step 1.

4.3 Initialization360

The initial solution of Algorithm 1 can be obtained by executing a variant of Algorithm 2 ignoring all
consistency considerations. This amounts to solve a separate dial-a-ride problem for each time period
and the corresponding mathematical model, called MP-DARP (multi-period DARP) is as follows:

min f = λν +
∑
ω∈Ω

∑
t∈T

πωy
t
ω (20)

s.t.∑
ω∈Ωu

ytω ≥ 1 ∀u ∈ U , t ∈ Tu (21)

∑
ω∈Ω

ytω ≤ ν ∀t ∈ T (22)

ytω ∈ {0, 1} ∀ω ∈ Ω, t ∈ T (23)
ν ∈ N (24)

The objective function (20) is the same as Equation (1). Constraints (21) are set covering constraints
for demand satisfaction. Constraints (22) enforce the number of vehicles to be less than or equal to ν at365

each period.
The MP-DARP model is separable with respect to the variables ytω. This set covering formulation is

equivalent to |T | independent DARP route based formulations.
It can be solved to optimality by a solver provided the number of routes |Ω| remains reasonable.

Rather than directly using a solver, we first run the Large Neighborhood Search (LNS) method proposed370

by Tellez et al. [36] in order to quickly generate good solutions with feasible routes of minimal duration.
For the sake of completeness, we summarize the content of this previous contribution: The LNS algorithm
iteratively destroys and repairs parts of the current solution using several operators. It is hybridized with
a set partitioning component. This component solves a set partitioning problem to reassemble routes
that were generated at distinct iterations of the LNS. A reactive mechanism automatically adjusts its375

parameters. On the LNS side, the classical "best insertion" and "k-regret" operators are used to repair
solutions. To destroy a solution, we found that, in combination with the set partitioning component, only
those two destroy operators were needed. These are the random removal and history node-pair removal
operators. The paper investigates the use of reconfigurable vehicles, which facilitates the transportation
of passengers with wheelchairs. An efficient feasibility checking algorithm is proposed to handle this380

feature in repair operators. The route scheduling algorithm minimizes the route duration and checks
time windows and maximal ride time constraints. The method was evaluated on real-life instances as
well as academic instances of the DARP and was shown to be competitive with other state-of-the-art
metaheuristics.

We use the LNS algorithm as a black box that is able to generate a number of good solutions to the385

DARP. These solutions contains routes that we store in a set Ω′ ⊂ Ω. The MP-DARP is then solved
with Ω′ instead of the untractable set Ω. Each time Ω′ is updated, dominated routes (i.e. routes ω ∈ Ω′

which users are included in another route ω′ ∈ Ω′ and which cost is greater than ω′) are filtered out.
Given that the MP-DARP is a set covering formulation, a solution S may contain users’ demands

served by more than one route. In this case, removing one of the duplicated visits reduces the solution390

cost (the triangular inequality is assumed).
A solution S is repaired by updating Ω′ as follows. For each user u visited more than once in S and

for each route ω ∈ Ω′ that visits user u, a new route ω′ identical to route ω but that does not visit user

13



u is added to Ω′. Then, the MP-DARP formulation is solved again on the updated set of routes Ω′ and
a warm-start on S.395

4.4 Selection of routes: function selectRoutes(L, N, lmemory)
When the current pool of routes L or Lnew is too large, the MILP solver cannot improve the given
initial solution. Hence, it becomes necessary to select a subset of routes of reasonable size. The function
selectRoutes, called at lines 9 and 13 of Algorithm 2 is used to randomly select N from a larger set L.
This process uses the set lmemory of the routes previously selected at former calls of this function.400

First, all routes in L are given a score. When the objective function is f , this score of a route
corresponds to the cost of the best TC-DARP solution found so far that uses this route in at least one
period. When the objective function is g, the score of a route is the consistency measure among all
TC-DARP solutions found so far that use this route in at least one period. Then, L is sorted according
to these scores in non-decreasing order.405

The route selection process browses the sorted pool of routes. For each route, we check whether it
was already selected in a previous call. In this case, it is selected again with a probability γ. Otherwise,
it is systematically selected. The process stops when N routes have been selected.

Figure 4 shows an example of the route selection with N = 6. Each line represents the sorted pool
of routes. Each square represents a route in this sorted pool. The first call selects the first six routes.410

In the second call, the grey area represents routes that have been selected at the first call. The second
call randomly selects 1 route in the grey area and completes the selection with the first five routes in the
white area. The third call randomly selects two routes in the grey area and completes the selection with
the first four routes in the white area.

Selected route Available route Route selected in previous calls

1st call

2nd call

3rd call

(...)

Figure 4: Example of 3 successive calls to the sequential route selection with N = 6.

The sequential route selection process increases the probability of selecting together routes that have415

been part of the same solution with the same overall cost-based or consistency-based performance. The
routes must be sorted each time the sequential route selection is called, as performance indicators may
change from one iteration to another.

The practical implementation of the selectRoute function includes an extension of the N selected
routes: the set of selected routes is augmented by projection and complementary routes, defined by420

Definition 4.1.

Definition 4.1. Projection and complementarity A route ω′ is called a projection of a route ω in
period t ∈ T if it contains only the users of ω who have a demand in period t, in the same sequence as
in ω. The route ω′′ = ω \ ω′ is called the complementary route of ω′.

complementary route for period t'

D

D

Dprojection route for period t'

route for period t  p1

p1

p3

p3

p2

p2

D

D

D

d1

d1

d3

d3

d2

d2

Figure 5: Example of projection and complementary routes
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The definition 4.1 is illustrated by Figure 5. At period t, Route ω starts from depot D, serves user425

requests 1, 2 and 3 and returns to the depot. If users 1 and 2 have a transportation request at period t′
and user 3 does not, the route ω′ serving user requests 1 and 2 is the projection of ω and the route ω′′
serving request 3 is the complementary of ω′.

5 Generation of new routes: the DARP with multiple time win-
dows430

In section 4.3, it is explained how the spεc framework is initialized with routes that are generated by
solving independent DARP instances with an LNS algorithm. These routes are combined in order to form
more consistent solutions. In Algorithm 2 (line 11), the time consistency can nevertheless be improved
by generating new routes, denoted Lnew, that are not likely to be generated by the LNS operators.

This section introduces a new optimization problem: the dial-a-ride problem with multiple time win-435

dows (DARPmTW). To the best of our knowledge, this problem has never been treated in the literature.
In order to better explain how the the DARPmTW arises from the TC-DARP, we first explain in Section
5.1 how multiple time windows arise for one particular user. These multiple time windows are defined
when a route visiting a user on a given day is modified. Their goal is to merge time classes by forcing
the new service time on the considered day to fall within already existing time classes corresponding to440

other days. In section 5.2 we explain how times windows are generated for all users and how these time
windows are embedded in DARPmTW instances. Section 5.3 focuses on the solution methods to solve
the DARPmTW.

5.1 Multiple time windows for a given user
Let us consider a user u ∈ U that must be visited with service times apu

≤ htu ≤ bpu
for every day t ∈ Tu.445

The set of service times of user u is denoted Hu and its number of time classes is denoted by µ(Hu).
Figure 6 represents an example of schedule for this user. The horizontal axis represents the time

window [apu , bpu ] and the five service times that can be regrouped in three time classes of width Λ: class
1 includes h1

u, h
2
u and h3

u while isolated values h4
t and h5

t define two time classes on their own. Note that
the service times are regrouped in time classes with the same greedy algorithm as in Feillet et al. [9].450

h1
u h2

u h3
u h4

u h5
u

apu bpu

class 1 class 2 class 3

Figure 6: Initial schedule of user u

Assume that the route visiting user u on day 5 is redesigned. This will modify the value of h5
u and

possibly the number of time classes µ(Hu). Depending on the future value of h5
u, user u will have two or

three time classes. This is illustrated by Figure 7. Any value of h5
u in the interval [h3

u − Λ, h1
u + Λ] can

enter in class 1. Similarly, any value of h5
u in the interval [h4

u − Λ, h4
u + Λ] can enter in class 2. Any

value out of these intervals re-creates a class 3.455

As a consequence, a necessary condition for u to have two time classes is that the value of h5
u lies in

one of the two time windows [h3
u − Λ, h1

u + Λ] and [h4
u − Λ, h4

u + Λ]. Hence, restricting the number of
time classes of user u amounts to restricting the possible times of service by considering multiple time
windows. More formally, given a user u and a partial set Hu of service times, we call genMTW (Hu, u)
the function that returns a set of multiple time windows. The algorithm implementing the construction460

of multiple time windows is detailed in Appendix A.1.

5.2 Multiple time windows for the DARPmTW
Section 5.1 presented an example of multiple time windows definition for some user u given a known set
of service times Hu = {h1

u, h
2
u, h

3
u, h

4
u}. In this section, we define multiple time windows, denoted by Wt

u,
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h1
u h2

u h3
u h4

u

apu bpu

−Λ
+Λ

+Λ−Λ

time window 1 time window 2

Figure 7: Construction of time windows of user u with H = {h1
u, h

2
u, h

3
u, h

4
u}.

for any user u ∈ U and for any set Hu. More precisely, we explain how to define the parameters of the465

function genMTW (Hu, u).
In order to increase consistency and to generate routes that were not in the previous pool L, we propose

a very large neighborhood operator that sequentially removes the value of the variables associated with
each time period and rebuilds a feasible solution. At each time period, the operator focuses on a particular
user, denoted by ū, which is randomly selected among all users with Cmax time classes. The idea is to470

rebuild a solution that decreases the number µ(Hū) of time classes of user ū and controls the number
µ(Hu) of time classes for all other users.

Given one period t ∈ T , the current value of variables htu is “forgotten” (removed) and multiple time
windowsWt

u are set according to the four cases represented in Table 5. These cases are defined according
to the answer to the following questions: i) Is the selected user ū? ii) Is the number of time classes of475

user u decreased by 1 when the service time htu at period t is removed? This question can be answered
by checking if the inequality µ(Hu \ {htu}) < µ(Hu) holds.

The yes/no answers to these questions yield four ways to define multiple time windows, representing
by the four main cells of Table 5.

Is the number of time classes of user u decreased by 1 when the
service time htu at period t is removed?

Yes No

Is
u
th
e
se
le
ct
ed

u
se
r
ū
?

Y
es

Changing the service time htū to any
service time in the time windows Wt

ū

has to decrease the number of time
classes for this user:

Wt
ū = genMTW (Hū \ {htū}, ū).

Let [etū, l
t
ū] ∈ W(Hū, ū) be the time

window satisfied by service time htū
(etū ≤ htū ≤ ltū). Defining

Wt
ū = genMTW (Hū, ū) \ {[etū, ltū]}

will enforce a decrease in the number of
time classes for this user.

N
o

The service time htu defines a time class
on its own and any feasible service time
at period t can be accepted:

Wt
u = {[apu

, bpu
]}.

Wt
ū = genMTW (Hū, ū) \ {[etū, ltū]},

with a probability ν = θ × (Cmax −
µ(Hu)), where θ is a fixed parameter.
Otherwise, Wt

u = {[apu
, bpu

]}.

Table 5: Overview of cases for the definition of multiple time windows Wt
u.

Note that using Wt
u = {[apu

, bpu
]} in the bottom right-hand case may result in an increase in the480

number of time classes for user u. We observed that this temporary relaxation helps decrease the number
of time classes of user ū. The idea of relying on a randomly selected user ū was originally proposed by
[9] to solve a time consistent VRP. The contribution is to extend the approach of [9] from a VRP to a
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DARP. Finding the best routes that satisfy the multiple time windows amounts to solve a Dial-A-Ride
Problem with multiple Time Windows (DARPmTW).485

Algorithm 3 describes the process used to generate new routes. It focuses on a randomly selected
user ū with Cmax time classes (lines 2). For each time period t ∈ T , multiple time windows for user ū
are sought such that its number of time classes will be decreased (line 4). For all other users, multiple
time windows are sought such that their number of time classes will be controlled (line 6), as detailed in
Table 5. These time windows are used to define a new instance of the DARPmTW for each time period.490

Solving these instances yields a set of routes denoted by Lt
new for each time period t (line 8). The sets

Lt
new are finally merged (line 10) and returned. In section 5.3 we detail the solution method used to solve

the DARPmTW instances (line 8).

Algorithm 3: Fonction generateNewRoutes(S)

Arguments: S: a feasible solution of the consistent DARP
Result: list of routes Lnew

1 Initialize Cmax to the maximum number of time classes in S
2 Randomly select a user ū with Cmax time classes
3 for all time periods t ∈ T do
4 Define multiple time windows Wt

ū for user ū as detailed in Table 5
5 for all users u 6= ū do
6 Define multiple time windows Wt

u as detailed in Table 5
7 end
8 Lt

new ← solveDARPmTW(Wt
u) /* See Section 5.3 */

9 end
10 Lnew ← ∪t∈T Lt

new

11 return Lnew

5.3 Solving the DARPmTW
Line 8 of Algorithm 3 consists of solving a DARP with multiple Time Windows (DARPmTW). Addition-495

ally, the duration of routes should be minimized: waiting times caused by time windows are authorized
but waiting times aimed at artificially improving time consistency are forbidden.

To solve this optimization problem, we reuse the LNS-SCP used in Section 4.3 to solve single period
DARPs with one time window at each pickup or delivery point. However, this LNS-SCP requires two
adaptations. First, since the SCP component is somewhat redundant with the set partitioning problems500

solved in spεc, we do not activate it here. The algorithm is therefore called LNS in the following.
Second, a key point of the LNS is to handle the route duration minimization when repairing destroyed
solutions. This amounts to check a set of temporal constraints through a route scheduling algorithm,
called the DARPmTW scheduling algorithm.

More specifically, let us consider the feasibility check of an insertion in a route ω ∈ Ω. For each user505

u visited by the route ω, the DARPmTW scheduling algorithm checks temporal constraints: a maximum
ride time T̄u, a pickup time window [apu , bpu ] and a delivery time window [adu , bdu ]. If these temporal
constraints are satisfied, a service time hi is computed for each node such that: (i) the route duration
is minimized and (ii) service times are scheduled as early as possible at each pickup node, delivery node
or depot. The DARPmTW scheduling algorithm computes a maximum route time shift ∆+

ω . This value510

indicates how much the route schedule can be shifted forward, while preserving both its feasibility and
the route duration. Hence, shifting the starting time of a route by a value 0 ≤ δ ≤ ∆+

ω shifts the service
times of all vertices on the route by the same value without impacting the route duration nor waiting
times. The detailed procedure, proposed in Tellez et al. [36], can be found in Appendix A.2.

Once the pickup time window [apu
, bpu

], the delivery time window [adu
, bdu

] and ride time constraints515

T̄u are satisfied, we check the satisfaction of the multiple time windows Wt
u with a new procedure.

Specifically, this procedure checks if there is a service time for each user u compatible with a time
window in Wt

u. Given a route ω ∈ Ω with a minimal duration and service times scheduled as early as
possible, Algorithm 4 checks if each user u on this route can be picked up within a set of multiple time
windowsWt

u without increasing the duration of the route. Accordingly, the only variable in this algorithm520

is the departure time of the route, which can be postponed by a value 0 ≤ δ ≤ ∆+
ω called route time shift.
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Note that, for morning routes, the service in multiple time windows is only verified at pickups because
time consistency is measured at these nodes. For afternoon routes, time consistency must be checked at
delivery points only.

Algorithm 4: DARPmTW scheduling Algorithm
Parameters: a route ω; Uω: set of users ordered by non-decreasing pickup times; Wt

u: set of
multiple time windows sorted in non-decreasing order of the earliest value; hu: earliest service
time for the pickup of user u given the duration of route ω is minimal; ∆+

ω : maximum route
time shift of route ω.
Output: if route ω is feasible or unfeasible

1 δ ← 0 /* the route time shift */
2 for u ∈ Uω do
3 scheduledUser ← false
4 while ¬scheduledUser and Wt

u 6= ∅ do
5 [a, b]← first time window in Wt

u

6 if hu + δ > b then /* the time window is too early */
7 remove first time window [a, b] from Wt

u

8 else if a ≤ hu + δ ≤ b then /* the time window is satisfied */
9 scheduledUser ← true

10 else if hu + δ < a then /* the departure of ω should be delayed to meet the
time window */

11 δ ← a− hu
12 if δ ≤ ∆+

ω then
13 jump to line 2: the for loop is restarted to the first user u in Uω

14 if ¬scheduledUser then
15 return unfeasible

16 return feasible

Let Uω be the set of users ranked in non-decreasing order of their pickup service time. Algorithm 4525

looks for a route time shift δ ∈ [0,∆+
ω ] such that for all users u ∈ Uω there exists a time window [a, b] ∈ Wt

u

in which the shifted service time hu +δ can be scheduled. Note that all nodes in route are shifted forward
by the same quantity of time. Thus, it is not possible to increase the duration of the route in order to
ensure feasibility.

In line 1, the route time shift δ is initialized to 0. Users are considered sequentially (line 2). For each530

user u ∈ U , its first time window [a, b] is evaluated (lines 4-5). Three cases are considered:

(i) If the shifted service time takes place after the end of the time window (hu +δ > b), the time window
[a, b] can never be satisfied: it is removed from set Wt

u (lines 6-7). The next iteration of the while
loop will directly check the next time window for user u.

(ii) If the shifted service time takes place in time window [a, b], the shifted service time is feasible for535

the pickup of user u (lines 8-9). The algorithm continues with the next user.

(iii) If the shifted service time takes place before the opening of the time window (hu + δ < a, line 10),
the route shift δ has to be increased to a − hu, so that the new shifted service time is exactly a
(line 11). At this point, two cases are possible a) the new value of route time shift δ is feasible (i.e.
δ ≤ ∆+

ω ), and the main loop is restarted from the first user with the new value of δ (jump from540

line 13 to line 2); b) δ is larger than the maximum allowed shift ∆+
ω and the route is infeasible

(line 15).

Finally, if each user has a feasible time window given the same time shift δ, then the route is declared
feasible (line 16).

In the worst case, all time windows are removed (
∑

u∈Uω |W
t
u| operations). For each removal, the545

route time shift is increased and then the procedure is restarted. One iteration of the main loop (2–13)
cannot take more than |Uω| operations. So the worse-case time complexity of Algorithm 4 is O(|Uω| ×∑

u∈Uω |W
t
u|).
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6 Computational experiments
The matheuristic described in Section 4.1 was coded in C++ and the mathematical models were solved550

with CPLEX Concert Technology 12.6 running on a single thread on an Intel Xeon E5-1620 v3 @3.5Ghz
processor.

This section details computational experiments in two families of instances. It is structured as follows:
Section 6.1 presents the value of parameters used by our algorithms. Section 6.2 introduces the instances
used to evaluate our approach. They are built from real data provided by the Synergihp Rhône-Alpes555

Company. In Section 6.3, spεc is assessed on benchmark instances of [11] and [9] for the time consistent
VRP. Finally, Section 6.4 presents managerial insights regarding cost performance and time consistency.

6.1 Parameter settings
After preliminary tests on a representative subset of instances, parameters shown in Table 6 were found
to provide the best average performance.560

Global parameters

ε = 0.01 initial value of epsilon
φ = 1.5 epsilon increase factor
MaxIter = 4 maximum number of iterations without improvement
N = 100 number of routes appended to the pool at each call of the TC-DARP (instances with

less than 250 users).
N = 200 number of routes appended to the pool at each call of the TC-DARP (instances with

more than 250 users)
tmax = 60× d|U|/100es MILP solver time limit for instances with less than 250 users
tmax = 540s MILP solver time limit for instances with 250 users
Nmax = 50000 size of the pool L
Nnew = 5000 maximum number of routes in Lnew

Route selection parameters

θ = 10% relaxation parameter in DARPmTW
γ = 10% percentage of routes that can be re-selected in the sequential route selection
ρ = 6 Random Biased Selection parameter

Table 6: Summary of parameters of the spεc algorithm

The value of parameter ε has a strong impact on the computing time. Higher values of ε help to
reduce the computation time. However, the quality of the Pareto front approximation is considerably
deteriorated. Thus, ε = 0.01 was taken as a good trade-off between computing time and quality of
the solution. spεc is less sensitive to parameter φ but its value needs to be greater than 1.5 to have
significant impact on the value of ε.565

We found that a value of MaxIter greater than 4 does not improve the quality of each point of the
Pareto front approximation. Parameters N and tmax were determined in order to maximize the number
of times when the MILP solver is able to solve the TC-DARPs to proven optimality.

The TC-DARP considers two pools of routes: L and Lnew. In order to keep the number of routes in
memory under control, limits in the maximum size of the pool L and of the Lnew were set toNmax = 50000570

and Nnew = 5000, respectively.
We compared several settings of the algorithm in order to assess its key components. In particular,

we run a variant of the spεc algorithm without the procedure presented in Section 4.4 to generate new
routes. This resulted in a slight cost increase on solutions with two time classes and more, and a 10%
cost increase on solutions with one time class. Moreover, the hypervolume indicator increases by 17% if575

the generation of new routes is disabled.
We also implemented a randomized route selection based on the roulette wheel mechanism inspired by

[26]. This randomization did not bring significant improvement. A detailed evaluation of the algorithm’s
components can be found in [37].

6.2 Description of instances580

The time consistent DARP studied in this paper arises in the context of transportation of people with
disabilities. We collected real data from the Synergihp Rhône-Alpes Company based in Lyon, France.
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This data concerns the transportation of hundreds of users to MSIs.
From Monday to Friday, the users are carried in the morning from their home to a MSI. In the

afternoon, they are driven back home. Without loss of generality, this paper presents the results of our585

research for morning trips.
The data collected from Synergihp includes 575 users from a large geographical area around the

city of Lyon. We partitioned this data in two independent geographical areas (distinct users, distinct
MSIs), yielding two large instances with with 280 to 295 users, respectively. These two large instances
were in turn partitioned into 4 medium-size instances with 120 to 160 users. Finally, the four medium-590

size instances were partitioned into 8 small-size instances with 60 to 80 users. We assume an infinite
homogeneous fleet of vehicles with a capacity of 4 seats and 3 wheelchair spaces. Vehicle costs provided
by the company include an hourly cost α =23.8e and a cost per kilometer τ =0.17e. No fixed vehicle
cost λ was given by the company. Moreover, with a homogeneous fleet of vehicles, this cost has no major
impact on the solution nor on solutions consistency. Thus, we simply assume an arbitrarily small value595

λ = 1 in order to favor solutions with similar route cost but fewer vehicles.
Travel times and distances are obtained from the Open Source Routing Machine2 (OSRM) proposed

by Luxen and Vetter [20]. For each user u ∈ U , we define maximum ride times according to direct
travel time tpu,du between the pickup location pu and the delivery location du. The following formula
generates maximum ride times (RT ) that are between 15 and 30 minutes longer than direct travel times:600

RT = 15× d(tpu,du
+ 15)/15e.

Time windows at MSIs are 15 minutes wide. The size of time classes is 10 minutes wide. Finally,
time windows at pickup locations and service times strongly influence the actual design of routes, but
they have no impact on the efficiency of our solution method. We therefore ignored them for the sake of
simplicity.605

6.3 Performance evaluation on benchmarks from the literature
As the TC-DARP is a new problem, there is no benchmark in the literature. However, to evaluate the
performance of spεc, we solve reference instances for two other time consistent routing problems. The
first benchmark is an adaptation of the conVRP instances of Groër et al. [11]. This adaptation, proposed
by Feillet et al. [9], transforms the small conVRP instances of Groër et al. [11] into TC-VRP instances.610

These instances are denoted RconVRP. They include up to 12 users over 3 days and have been solved
to optimality by a MILP solver. The second benchmark set is the TC-VRP from Feillet et al. [9]. It
contains instances for up to 65 users over 5 time periods.

Although the TC-VRP is the closest problem to the TC-DARP, there are some differences between
both problems. The TC-VRP has the following hypothesis: (i) it has a single depot and no time windows;615

(ii) it assumes a limited fleet of vehicles; (iii) the consistency objective function is the maximal number of
time classes over all users (i.e. Cmax); and (iv) routes must start at time 0, with no waiting time allowed.
To be solved by spεc, TC-VRP instances have been converted to TC-DARP instances by defining one
copy of the depot for each request. Ride times and time windows have been relaxed by setting arbitrary
large values. Finally, since the VRP routes are not subject to time windows nor ride times, routes can620

be traveled in either direction. Thus, each time a route is appended to the pool, the reverse route is also
appended.

6.3.1 RconVRP instances

This benchmark proposes 10 small instances of the TC-VRP: the first 5 instances with 10 users and
the next 5 with 12 users. Instances have been solved to optimality with CPLEX. Table 7 presents the625

comparison with spεc over 10 runs.
Columns 2-4 (Opt Cost), present the cost of optimal solutions for each time class. In the next three

columns, we report the average Gap of spεc for each instance and number of time classes. The Gap
is computed as ( Avg Cost - Best) / Best × 100. Numbers in bold mean that spεc could find optimal
solutions in all 10 runs. Thus spεc systematically found optimal solutions for problems with three time630

classes. It also finds the optimal solutions on each run for eight problems with two time classes and for
four problems with one time class.

The last row (Avg Gap) shows the average gap of spεc to the optimal solutions over all instances
for each number of time classes. For solutions with one time class, the average gap is 1.5%, and the
algorithm performance improves as the number of time classes increases.635

2http://project-osrm.org/
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Instance Opt. Cost spεc
Cmax ≤3 ≤2 1 ≤3 ≤2 1

RconVRP10-1 92.91 92.91 92.91 92.91 92.91 92.91
RconVRP10-2 80.42 80.42 80.96 80.42 80.42 82.83
RconVRP10-3 94.12 94.12 94.37 94.12 94.12 94.37
RconVRP10-4 93.71 93.71 94.09 93.71 93.71 94.09
RconVRP10-5 83.84 83.84 96.01 83.84 84.50 96.70
RconVRP12-1 103.65 103.65 104.40 103.65 103.65 109.19
RconVRP12-2 73.89 73.89 81.25 73.89 73.89 83.40
RconVRP12-3 82.77 82.77 83.12 82.77 82.77 83.12
RconVRP12-4 97.57 97.57 101.91 97.57 98.55 104.31
RconVRP12-5 83.63 83.63 89.25 83.63 83.63 91.38

Avg Gap (%) 0.0% 0.2% 1.5%

Table 7: Benchmark on RconVRP instances reported in [9]

6.3.2 Results on time consistent VRP instances

This benchmark was built from real data collected in 14 distinct MSIs, with a number of users ranging
from 15 to 65, and a number of time periods equal to 5 (Monday to Friday). For each MSI, 5 profiles of
transportation demands where randomly generated where each profile corresponds to the percentage of
people present during the complete week. This percentage varies between 50% and 90%. This yields a640

total of 70 benchmark instances.
Transportation cost of solutions with one to five time classes are provided for most instances. Feillet

et al. [9] solved the TC-VRP with an LNS-based matheuristic with a time limit of 1 hour. spεc stops
when all users reach a single time class. For each value of Cmax, our lexicographic optimization explores
all non-dominated solutions. This approach is more time consuming but returns a more complete Pareto645

front approximation that can help decision makers to select intermediate trade-off solutions for each
number of time classes.

Tables 8 and 9 show the average gap of spεc with respect to the LNS method of Feillet et al. [9], aggre-
gated in two different ways. For each instance, we compute the gap as (Cost spεc−Cost LNS)/Cost LNS ×
100. Thus, any negative gap represents an improvement.650

Table 8 shows the numerical results aggregated by percentage of presence during the week. For
example, data-5-Y aggregates instances where, on average, 50% of users are transported everyday, while
in the group data-9-Y the average percentage of users transported rises to 90%.

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

data5-Y -1.10% -1.00% -1.02% -0.21% -0.37%
data6-Y -1.03% -1.03% -0.81% -0.26% 0.83%
data7-Y -1.09% -0.96% -0.86% 0.13% -0.13%
data8-Y -1.06% -1.00% -0.72% 0.00% -0.25%
data9-Y -0.61% -0.61% -0.49% -0.27% -1.76%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%
Nb Sols 70 70 70 70 70
Nb new BKS 63 59 53 35 35

Table 8: Results aggregated by percentage of user requests on the benchmark of Feillet et al. [9]

The average relative gap (Avg Gap) overall instances between the results obtained with spεc and
the LNS was improved for all number of time classes. However, slightly better results are reported for655

solutions with 3, 4 and 5 time classes. This result is confirmed with the number of new best-known
solutions (Nb new BKS) which is more than 50 for solutions above 3 time classes, and 35 for solutions
with 1 and 2 time classes. A total number of 245 strictly new best solutions were found, as shown on the
last row of the table. Detailed results can be found in Appendix B.
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Table 9 shows the numerical results aggregated by MSI. The last two digits of the instance name660

represent the number of users. This table shows that spεc has better performance with larger instances.
However, dataX-59 instances are in particular the most difficult to solve for spεc, with an extra cost of
3.41% for Cmax = 2 solutions and 2.39% for Cmax = 1 solutions.

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

dataX–15 0.03% 0.03% 0.00% 0.47% 3.04%
dataX–21 -0.15% 0.07% 0.18% 0.24% 1.53%
dataX–25 -0.21% -0.06% 0.01% 0.19% 0.53%
dataX–26 -0.21% -0.21% -0.03% 0.04% 0.08%
dataX–27 -0.27% -0.12% -0.16% 0.03% -0.93%
dataX–32 -0.54% -0.54% -0.19% 0.10% 0.49%
dataX–41 -1.15% -1.15% -1.65% -1.19% -2.46%
dataX–44 -0.75% -0.75% -0.61% -0.72% -1.19%
dataX–46 -1.05% -1.05% -0.62% -0.18% -0.34%
dataX–48 -1.24% -0.98% -0.77% -0.20% -1.38%
dataX–55 -1.91% -1.91% -1.63% -0.92% -4.84%
dataX–59 -2.17% -2.12% -1.62% 3.41% 2.39%
dataX–64 -2.30% -2.30% -2.14% -1.66% -0.18%
dataX–65 -1.77% -1.79% -1.71% -1.33% -1.42%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%

Table 9: Results aggregated by instance size on [9] benchmark

6.4 Managerial insights on time consistency and transportation costs
This section reports managerial insights regarding the relationship between time consistency and trans-665

portation costs. Figures 8-10 show the Pareto front approximation obtained on Synergihp Rhône-Alpes
instances with 60, 160 and 280 users, respectively. The transportation cost is presented as the percentage
of cost increase with respect to the cheapest solution found in that instance (x-axis). The time consis-
tency of non-dominated solutions is shown in a vector form on the vertical axis. Each element of the
vector represents the number of users with 3, 2 and 1 time classes on that solution, respectively. Note670

that solutions with 4 or 5 time classes are not represented because, in our tests, they have always been
dominated by a solution with 3 time classes.

These Pareto front approximations provide decision makers with a fine intuition of the cost of time
consistency associated with each user. The first finding is that all Pareto front approximations start with
the majority of users having a single time class and very few users having 3 time classes. With a minor675

increase of cost, all users have at most 2 time classes (until the dotted line). This means that an useful
consistent solution can be found with respect to the cost of the cheapest solution, and a small increase
of cost can significantly improve the solution for users with many time classes.

Depending on the instance, the increase of cost for reaching single time class solutions can vary from
1% to 10%. Note that values on the y-axis are ordered but non-scaled as the distance between points is680

always constant. Figure 11 shows the same instances on a common scale for solutions with a maximum
of 2 time classes per user. The y-axis presents the percentage of users with 2 time classes. It shows that
each instance has very different trade-offs depending on the size and the consistency level of the solution.

Table 10 gives some additional details on the non-dominated solutions shown in Figure 8 (instance
TCDARP_01_60). The first column reports the inconsistency vector of each non-dominated solution.685

Columns 2 to 4 show the cost, the average route duration and the average ride time per user in the
corresponding solutions, respectively. The vectors in column 5 represent the number of routes for each
time period (from Monday to Friday). The last column reports the total number of routes. This example
shows that improving consistency requires increasing the number of routes, which results in a decrease of
the average route duration. It is noticeable that the number of routes for a given day does not increase690

monotonously. For example, the number of routes on Wednesdays is 3 in the first two solutions, then
5 and finally 4. Considering the user convenience perspective. Reducing the number of time classes
generally comes with a reduction of the users ride time. Nevertheless, we note that it was necessary to
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Figure 8: Pareto front approximation for instance TCDARP_01_60
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Figure 9: Pareto front approximation for instance TCDARP_10_160
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Figure 10: Pareto front approximation for instance TCDARP_12_280
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Figure 11: Scaled representation of the Pareto front approximations on five representative instances
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increase the average ride time to find a solution with one time class.

Inconsistency Cost Avg route Avg ride Nb. routes Total Nb.
duration (hour) time (min) per day of routes

[3, 20, 37] 1291.03 2.08 22.97 [4, 4, 3, 5, 3] 19
[0, 22, 38] 1291.73 1.97 22.49 [4, 4, 3, 5, 4] 20
[0, 17, 43] 1304.34 1.81 21.83 [4, 4, 5, 5, 4] 22
[0, 13, 47] 1317.20 1.82 21.30 [4, 4, 5, 5, 4] 22
[0, 2, 58] 1321.87 1.82 21.48 [4, 5, 4, 5, 4] 22
[0, 1, 59] 1331.94 1.75 21.36 [5, 5, 4, 5, 4] 23
[0, 0, 60] 1348.87 1.78 22.00 [5, 5, 4, 5, 4] 23

Table 10: Solution’s statistics instance TCDARP_01_60

Figure 12 shows how the consistency requirement concretely modifies the service times for some695

users. This figure represents the times at which two users are picked-up in several solutions of instance
TCDARP_01_60. The x-axis represents the time line. On each horizontal line, the five weekly service
times of users 1 and 2 are represented. Each line represents different non-dominated solutions denoted
s1, ..., s5, in which the users have one, two or three classes.

In solution s1, user 1 has 3 classes with service times varying from 8:00 to 8:30. One time class (class700

3 - around 8:27) gathers 3 services out of 5. In solution s2, with 2 time classes, 4 service times out of 5
belong to time class 2, centered around 8:28. In solution s3, all service times are centered around 8:28. A
similar phenomenon is observed for user 2. To move from solution s4 with two time classes to solution s5

with one time class, the algorithm finds routes to serve the user within the time class with the greatest
number of service times in s4.705
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Figure 12: Schedule improvement for 2 users of instance TCDARP_01_60

6.5 Economic impact of shifting route departure times
In this section we compute the impact of having flexible route departure times on cost and time consis-
tency. This effect has been studied by Kovacs et al. [14] for the conVRP, showing that departure time
flexibility provides considerable improvement in the solution quality under tight consistency requirements.
As far as the TC-DARP is concerned, the departure flexibility is limited by time windows and maximum710

ride-time constraints. The departure of a route can be scheduled at any time between its earliest and its
latest departure date. We define the maximum time shift of a route as the difference between these two
schedules. The maximum time shift of a route ω is denoted by ∆+

ω .
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Table 11 measures the impact of the departure time shift on the complete set of Synergihp Rhône-
Alpes instances. Columns 2–4 present the best results on 5 runs of the spεc when the route time shift715

is allowed, for values of Cmax decreasing from 3 to 1. Missing values in column 2 mean that all solutions
found with Cmax = 3 were dominated by another solution with Cmax = 2. Column 5 (%R-Shift) shows
the percentage of routes in which a departure time shift is actually implemented. Columns 6–8 present
the minimum gap on 5 runs with respect to the minimum cost found by the spεc when no time shift is
allowed (∆+

ω = 0). The last row shows the average values.720

Instance spεc spεc(∆+
ω = 0)

Cmax 3 2 1 %R-Shift 3 2 1

TCDARP_00_80 2045.54 2044.43 2061.89 49% -0.07% 0.25% 0.35%
TCDARP_01_60 1291.03 1291.73 1348.87 40% 0.18% 0.48% 0.20%
TCDARP_02_80 2523.21 2533.86 2561.40 31% 0.00% -0.01% 0.31%
TCDARP_03_70 1735.07 1752.43 33% 0.00% 0.30%
TCDARP_04_80 1207.72 1220.91 32% 0.00% 2.44%
TCDARP_05_80 1871.25 1871.53 1923.21 40% 0.37% 0.06% 0.08%
TCDARP_06_60 3304.41 3332.21 42% 0.00% 0.54%
TCDARP_07_65 1865.46 1868.15 1920.95 50% 0.00% -0.07% 3.22%
TCDARP_08_120 5500.45 5534.44 39% 0.02% 1.76%
TCDARP_09_135 2857.18 2880.57 3107.12 38% 0.27% -0.18% 1.17%
TCDARP_10_160 2621.35 2779.06 42% 0.03% 0.00% 8.68%
TCDARP_11_160 3222.10 3233.17 3549.53 42% 0.21% 0.00% 4.84%
TCDARP_12_280 7724.32 8533.52 42% 0.27% 8.93%
TCDARP_13_295 6314.24 6329.57 7465.76 47% -0.08% 0.08% 6.16%

Avg 41% 0.10% 0.07% 2.79%

Table 11: Economic implications of allowing a later departure of routes (Best solutions on 5 runs)

Since the solution method is heuristic, some some small negative gaps can be observed for ∆+
ω = 0.

If the solutions found were optimal, negative gaps would not exist. These results show that shifting time
departure of routes yields 2.79% savings on average, with values ranging from 0% to 9%. According to
these results, time consistency can be achieved at a lower cost when route departure times are not fixed
in advance. This also implies that shifting time departure can be a lever to improve time consistency725

without significantly increasing transportation costs in a DARP context.

7 Conclusions
This paper introduces a new variant of the DARP denoted the time consistent DARP. It aims to find
trade-off solutions between two objectives: the transportation cost and the time consistency of users.
Regarding the literature on the topic, we propose a new formulation of the time consistency of a solution:730

for a particular user, the number of time classes expresses the number of significantly different service times
within one week. We calculate the time consistency of a solution as a lexicographic function of the number
of time classes per user. Regarding optimization methods, this formulation is more time consuming than
a traditional min-max objective, but it returns a more detailed Pareto front approximation that helps
decision makers to select the appropriate solution. TC-DARP extends the TC-VRP by considering time735

windows and maximum ride times in a problem with multiple destinations. This problem was studied in
the context of door-to-door transportation of children with disabilities in region Auvergne-Rhône-Alpes
in France.

To compute Pareto front approximations, we developed a matheuristic framework called spεc based
on an epsilon constraint procedure and a set partitioning problem. An initial set of routes is produced by740

a LNS matheuristic previously proposed for the FSM-DARP-RC in Tellez et al. [36]. Additional routes
are generated by an extension of this algorithm to the DARP with multiple time windows and minimal
waiting time. At each iteration, a subset of routes is chosen to feed the spεc procedure. Experiments
show the high performance of the spεc on real-life instances for up to 295 users. spεc was also been
tested on literature instances and was shown to improve the state-of-the-art algorithm for the TC-VRP745

benchmark.
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Some users with disabilities are very sensitive to inconsistent schedules. In this study, we show that
economic solutions are already fairly consistent with very few users having 3 time classes. In addition,
we found that in most instances, with a small increase in transportation costs (<1%), users schedules
with at most 2 time classes are possible. Finally, we show that allowing a flexible departure of routes750

improves the transportation costs of highly consistent solutions.
Future researches concern implementing additional features of the real-life problem such as driver-

related constraints (working time, breaks, regulation and driver-consistency) and heterogeneous fleet. An
interesting question would be whether some vehicle routing applications with pickup and delivery would
need consistent services both at pickup and delivery locations.755
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A Appendix

A.1 Generation of multiple time windows: genMTW (H, u)760

Algorithm 5: Generation of multiple time windows: function genMTW (H, u)

Parameters: u: user considered. H = {h1, . . . , hM}: set of the M service times of user u sorted
in non-decreasing order.
Data: Λ: width of time classes.
Output: The set of multiple time windows W(H, u)

1 mtw← ∅ /* initialize an empty set of multiple time windows */
2 h← h1

3 h← h1

4 for i = 2, . . . ,M do
5 if hi > h+ Λ then
6 mtw← mtw ∪ {[max{apu

;h− Λ},min{bpu
;h+ Λ}]}

7 h← hi
8 h̄← hi

9 mtw← mtw ∪ {[max{apu ;h− Λ},min{bpu ;h+ Λ}]}
10 return mtw

28



A.2 Scheduling algorithm

Algorithm 6: Schedule evaluation
Input: Route ω = {1, ...,M}.
Output: The set of service times hi ∀i ∈ ω and the maximal route time shift ∆+

ω , or -1 if
infeasible

1 h1 ← a1 /* beginning of the service */
2 H ← 0 /* total waiting time on the route */
3 F ← b1 − h1 /* FTS latest start at node 1 */
4 F ′ ← b1 − h1 /* FTS earliest start at node 1 */
5

/* Phase 1: set up nodes at the earliest start */
6 for i = 2, . . . ,M do
7 hi ← max{ai;hi−1 + ζi−1 + ti−1,i}
8 if hi > bi then return -1
9 H ← H + max{0; ai − (hi−1 + ti−1,i + ζi−1)}

10 F ′ ← F
11 F ← min{F ;H + max{0; li − hi}}
12 if i = M then F ′ ← min{F ′;H}
13

/* Phase 2: optimize route duration */
14 ∆+

ω ← F − F ′ /* route time shift */
15 h1 ← h1 + F ′

16 for i = 2, . . . ,M do
17 hi ← max{hi−1 + ζi−1 + ti−1,i; ai}

/* Check route duration constraint */
18 if (hM − h1) > T then return -1
19

/* Phase 3: check ride time constraints */
20 for i = M − 2, . . . , 1 do
21 if iP then
22 u← user of pickup i /* implies i = pu */
23 δ ← (hdu

− hpu
+ ζi)− Tu

24 if (δ > 0) then hpu ← hpu + δ
25 if hpu > bi then return -1
26 for j = pu + 1, . . . ,M do
27 wj ← max{aj ;hj−1 + ζj−1 + tj−1,k}
28 if hj > bj then return -1

29 if Tu − (hdu
− hpu

+ ζi) < 0 then
30 return -1

31

32

33 return {hi|inω},∆+
ω
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A.3 Parameters LSN-SCP

Parameters to generate pool L

χ = 5% record-to-record acceptance criterion.
penalty = 10000 penalty cost for incomplete solutions.
Φ− = 10% minimal proportion of removed request used by removal operators.
Φ+ = 45% maximal proportion of removed request used by removal operators.
p = 6 roulette wheel parameter for the historical node-pair operator.
σ+
init = 4-regret repair operator for building the initial solution
η = 1000 launch frequency of the SCP.
Iters = 10000 max number of iterations.
ψ = 1.25 RSCP coefficient to recompute the launch frequency of the SCP.

New parameters to generate pool Lnew

Iters = 250 max number of iterations.
η =∞ the SCP is deactivated.

Table 12: Parameters LNS-SCP [36].
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B TC-VRP

Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data5–15 663.2 663.2 663.2 674.1 782.3 11.6
data5–21 773.7 779.1 779.1 779.1 817.3 21.9
data5–25 617.4 617.4 617.4 622.2 669.0 29.1
data5–26 767.6 767.6 771.9 778.8 815.9 45.8
data5–27 934.6 934.6 934.6 942.0 1026.1 61.2
data5–32 984.9 984.9 984.9 989.9 1034.5 22.1
data5–41 1420.7 1420.7 1422.6 1461.6 1615.9 126.9
data5–44 1142.9 1142.9 1142.9 1149.4 1220.3 74.3
data5–46 1458.9 1458.9 1465.4 1492.9 1607.2 114.4
data5–48 1440.8 1449.4 1452.4 1459.8 1597.8 154.9
data5–55 1569.1 1569.1 1571.1 1581.0 1696.9 139.4
data5–59 2714.8 2721.5 2721.5 2883.6 3115.9 281.3
data5–64 2082.0 2082.0 2100.8 2112.4 2304.2 118.9
data5–65 1759.4 1759.4 1766.2 1777.1 1923.9 128.6
data6–15 689.4 689.4 689.4 695.6 741.3 2.2
data6–21 792.0 792.0 796.2 798.1 831.7 40.9
data6–25 680.9 680.9 683.5 683.5 728.7 32.9
data6–26 838.7 838.7 838.7 843.2 905.0 56.0
data6–27 949.8 949.8 949.8 954.0 1060.3 57.9
data6–32 991.1 991.1 991.1 996.2 1013.5 10.4
data6–41 1500.3 1500.3 1504.2 1506.7 1735.5 92.8
data6–44 1239.1 1239.1 1243.9 1244.6 1405.9 76.7
data6–46 1485.1 1485.1 1496.6 1526.0 1597.0 93.0
data6–48 1507.4 1507.4 1519.4 1531.6 1702.8 158.5
data6–55 1816.8 1816.8 1826.3 1854.4 1987.7 121.0
data6–59 2931.3 2931.3 2933.0 3037.4 3389.6 204.1
data6–64 2264.3 2264.3 2271.0 2305.6 2527.0 100.6
data6–65 1981.9 1981.9 1990.6 1998.3 2219.5 163.6

Table 13: Benchmark of [9]
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Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data7–15 746.9 746.9 746.9 752.6 790.3 11.9
data7–21 830.1 833.7 833.7 833.7 899.3 39.8
data7–25 719.5 724.7 724.7 728.8 767.9 34.9
data7–26 880.3 880.3 883.5 887.4 920.7 37.9
data7–27 1053.4 1053.4 1053.4 1056.5 1108.5 39.7
data7–32 1079.7 1079.7 1079.7 1097.3 1154.3 57.2
data7–41 1644.8 1644.8 1648.5 1661.0 1730.4 63.2
data7–44 1295.9 1295.9 1300.3 1307.0 1311.7 20.5
data7–46 1648.6 1648.6 1650.1 1664.6 1715.9 72.4
data7–48 1687.1 1698.9 1698.9 1712.0 1774.3 116.6
data7–55 1889.0 1889.0 1896.3 1918.0 2036.0 136.5
data7–59 3262.4 3262.4 3307.4 3596.6 3892.4 725.2
data7–64 2552.9 2552.9 2552.9 2583.6 2823.4 136.9
data7–65 2196.0 2196.0 2196.0 2224.2 2347.3 159.8
data8–15 773.9 773.9 773.9 780.2 808.5 10.8
data8–21 898.4 898.4 898.4 905.0 956.3 37.8
data8–25 853.3 853.3 853.3 853.3 857.0 0.2
data8–26 962.5 962.5 962.5 970.8 998.2 35.2
data8–27 1184.8 1193.9 1193.9 1193.9 1220.6 17.6
data8–32 1144.0 1144.0 1152.8 1152.8 1181.7 35.8
data8–41 1886.8 1886.8 1888.5 1898.0 1954.3 63.9
data8–44 1409.0 1409.0 1409.0 1414.9 1441.2 28.8
data8–46 1758.5 1758.5 1772.9 1774.8 1817.2 33.8
data8–48 1815.7 1815.7 1820.9 1824.4 1898.1 125.7
data8–55 2007.7 2007.7 2015.4 2037.2 2104.0 120.0
data8–59 3545.7 3545.7 3580.5 3874.4 4020.5 427.4
data8–64 2723.3 2723.3 2723.3 2743.0 2978.2 126.8
data8–65 2404.2 2404.2 2422.9 2433.5 2524.4 159.5
data9–15 797.5 797.5 797.5 804.3 816.1 3.6
data9–21 998.6 998.6 998.6 1003.0 1008.9 5.7
data9–25 894.6 894.6 894.6 894.6 908.1 1.6
data9–26 1024.6 1024.6 1024.6 1024.6 1028.0 0.4
data9–27 1210.6 1210.6 1210.6 1219.5 1241.9 12.3
data9–32 1187.7 1187.7 1199.4 1199.4 1204.9 6.4
data9–41 2022.8 2022.8 2022.8 2022.8 2032.1 6.3
data9–44 1532.5 1532.5 1532.5 1532.5 1595.1 54.1
data9–46 1827.0 1827.0 1827.0 1841.6 1871.0 30.7
data9–48 1973.5 1973.5 1973.5 1992.8 2007.7 28.6
data9–55 2176.0 2176.0 2176.0 2188.1 2275.9 70.3
data9–59 3913.0 3913.0 3916.3 3946.6 4025.3 96.3
data9–64 2942.6 2942.6 2964.9 2964.9 2999.6 28.8
data9–65 2586.5 2586.5 2586.5 2604.7 2624.2 68.0

Table 14: Benchmark of [9]
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