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Abstract

In the context of door-to-door transportation of people with disabilities, service quality consider-
ations such as maximum ride time and service time consistency are critical requirements. To identify
a good trade-off between these considerations and economic objectives, we define a new variant of
the multi-period dial-a-ride problem called the time consistent dial-a-ride problem. A transportation
planning is supposed to be time consistent if for each passenger, the same service time is used all along
the planning horizon. However, considering the numerous variations in transportation demands over
a week, designing consistent plan for all passengers can be too expensive. It is therefore necessary to
find a compromise solution between costs and time consistency objectives. The time consistent dial-
a-ride problem is solved using an epsilon-constraint approach to illustrate the trade-off between these
two objectives. It computes an approximation of the Pareto front, using a matheuristic framework
that combines a large neighbourhood search with the solution of set partitioning problems. This ap-
proach is benchmarked on time consistent vehicle routing problem literature instances. Experiments
are also conducted in the context of door-to-door transportation for people with disabilities, using
real data. These experiments support managerial insights regarding the inter-relatedness of costs and
quality of service.

Keywords: Vehicle routing, Dial-a-ride problem, Healthcare logistics, Consistency, Set partition-
ing, Large neighborhood search.

1 Introduction

The design of efficient para-transit systems relies both on minimizing operational costs and on providing
passengers with an adequate quality of service. In the operations research literature, the Dial-A-Ride
Problem (DARP) is a well-known optimization problem that consists in designing minimal-cost vehicle
routes to fulfill a set of transportation requests while satisfying a number of service quality requirements.
Common applications concern door-to-door transportation of elderly people or people with disabilities.
In Medico-Social Institutions (MSI) in France, transportation is considered to be the main expense after
wages [1]. Transportation plans are defined on a yearly basis and partially revised several times a year
whenever necessary. Due to the pressure to cut costs, this is often their main objective, although service
quality criteria are also taken into account to define transportation plans.

The DARP formulation considers a single period, typically half a day. Passengers are generally subject
to ride-time constraints: they must not be transported longer than a maximum predefined travel duration.
In this paper, we examine the case of para-transit systems for people who need to be transported on a
regular basis, for example handicapped workers or scholars. The DARP formulation is extended over
multiple periods and each period has a known set of transportation requests from passengers.

We carried out a statistical study on field data which shows that 30% of passengers have a complete
and regular schedule throughout the week. The other passengers may have a regular demand only a
part of the week, or have slight variations in their planning (change of pickup or destination according
to medical appointments, nights spent at the MSI, etc.).

Table [1] shows the percentage of users that have to be transported on five, four,..., one days of the
week, respectively.
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Number of demands per week 5 4 3 2 1
Percentage of passengers concerned 34.51% 9.33% 11.84% 15.42% 28.90%

Table 1: Frequency of transportation requests

For medical, cognitive or convenience reasons, it is desirable for passengers with regular demand to be
proposed a regular service, i.e. to be picked up at the same time every day in the morning and dropped off
at the same time on every evening. Each passenger’s demand can have an impact on the schedule of other
passengers on the same route. More particularly, the 28.9% of passengers with one weekly demand do
not have consistency requirement, but these passengers “perturbate” the planning of all other passengers
and make the consistency issue hard to solve.

During the week, the same fleet of vehicles must satisfy all transportation demands. To approach
this objective, it is possible to have different routes and a different number of routes everyday. In the
meanwhile, some practical constraints such as passenger time windows or maximum ride times must be
respected and the overall transportation cost should be minimized.

This work extends the consistent vehicle routing problem of [|9] to a consistent dial-a-ride problem.
This allows to fully integrate real-life considerations such as time windows at pickup and delivery points,
maximum ride times, and routes visiting several delivery points. The objective function to be minimized
in [9] is the maximal number of time classes per passenger, where the time classes represents the number
of significantly distinct schedules in the week. We reuse this definition of time classes and propose to
lexicographically minimize the number of passengers with each number of time classes. In brief, we
address a multi-period dial-a-ride problem and study the trade-off between service time consistency and
transportation costs. As this problem introduces time consistency within a DARP setting, we call this
new variant the time Consistent DARP (TC-DARP).

Section [2] presents how the TC-DARP is related to the existing literature in operations research.
In particular, we discuss various definition of time consistency and motivate the use of a lexicographic
objective function. In Section 3] we give a formal definition of the TC-DARP and formulate it as a mixed-
integer linear program (MILP) with two objectives: minimizing transportation costs and lexicographically
minimizing the number of time classes per passenger. Section [] presents the solution method used to
solve the TC-DARP. It is a e—constraint method, called SPeC, that repeatedly solves a set-partitioning
(SP) formulation of the TC-DARP. In practice, this set partitioning formulation contains only a small
subset, called pool of routes of all possible routes. This pool of routes is generated by an auxiliary
Large neighborhood Search (LNS) algorithm. When the current pool is not enough to ensure a good
time consistency, new routes are appended to this pool. This requires solving an auxiliary optimization
problem, which is a DARP with multiple time windows. The generation of these multiple time windows
and the adaption of the LNS method used to solve it are presented in Section

In section [6] we present computational results on consistent VRP instances and results on the case
study that motivated this work. It concerns the transportation of people with disabilities in the area of
Lyon, France. We collected data from the main carrier in the regiorEl, who works for multiple institutions
and has a fleet of adapted vehicles. We show how using lexicographic minimization of the number of time
classes offers a broader choice to decision makers to achieve a good trade-off between the transportation
cost and the quality of service.

2 Related literature

The research presented in this paper is related to people transportation |6] and more particularly to
the DARP, recently surveyed in 13| [23]. It also shares some similarities with the School Bus Routing
Problem [25] or integrated vehicle scheduling problems arising in bus network design |3} [21], although
research in this field seldom focus on modelling each passenger specific constraint. The research papers
studying people transportation problems are generally focused on determining the best routes for a set
of vehicles in order to serve the transportation requests of a single period. Some consistency aspects
are studied in [4] by minimizing the deviation from predefined desired starting time for predefined trips.
An alternative model was presented in |28] where the author minimize the deviation from ideal intervals
between consecutive service trips of the same link. The consistency aspects in these papers aim at evenly
spreading service times at a bus stop over the horizon. Note that we do not allow transfers between
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vehicles as it is generally done in public transit systems. The mono-period DARP of our application has
been presented in [36]. In this paper, we focus on the consistency aspects that appear in the multi-period
version of the problem.

The integration of time consistency appeared recently in the vehicle routing problem (VRP) literature.
Applications were first identified in the context of fast parcel delivery [11] and were rapidly extended to
passenger transportation |9]. Readers interested in an extensive review on vehicle routing with consistency
considerations can refer to Kovacs et al. |16]. Consistency in vehicle routing problems can be divided into
three main categories: service time consistency, driver consistency, and territory consistency. Service time
consistency means that regular customers are scheduled to be served at approximately the same time in
the planning horizon. As the main focus of our paper, the service time consistency will be detailed in the
next section.

Driver consistency consists in minimizing the number of different drivers assigned to each passenger
during the planning horizon. The aim is to reinforce the relationship between drivers and passengers in
order to improve the quality of service. Braekers and Kovacs [2| computed the average cost of a solution
where each passenger was served by one, two and three drivers, respectively, showing that a solution with
two drivers can be near optimal whereas solutions with one driver are 10% costlier on average. Other
approaches using soft constraints have yielded similar conclusions |30} [22]. In Feillet et al. |9], drivers are
assigned to routes a posteriori, so that service time consistency and driver consistency are considered as
independent problems in a lexicographical way.

Territory consistency aims at increasing drivers efficiency through their knowledge of the geographical
area in which they operate. A common way of addressing territory consistency is to design independent
districts in advance, where independent routing problems are solved every day. This approach was studied
in 18] |40} [30L [29].

This paper focuses on service time consistency applied to a Dial-a-Ride Problem (DARP). In contrast
to the VRP, the DARP considers one origin and destination for each user and a maximum ride time.
The main applications of the DARP concern door-to-door transportation of people, particularly elderly
or disabled people [13| 38} [17].

2.1 Service time consistency models

Service time consistency consists in serving regular needs at approximately the same hour throughout
the whole planning horizon. This is modeled either by hard constraints, that is, imposing an acceptable
level of service time variation, or by soft constraints, that is, penalizing service time variations in the
objective function.

Groér et al. |11] defined the maximum arrival time variation as the difference between the latest and
earliest service times throughout the whole planning horizon, for each customer. This consistent VRP
(conVRP) is an extension of the multi-period VRP where the maximal arrival time variation is bounded
above by a constant value L,,x. However, this measure, initially proposed for the small package shipping
industry, has some practical drawbacks in the context of passenger transportation. In the shipping
industry, regular customers are professionals, performing an activity while waiting for a delivery. Their
need for regularity is expressed as the wish to be delivered every day at approximately the same time
of day. In passenger transportation, the pickup or drop-off times are already well delimited with time
windows and maximum ride time constraints. But in this later case, passengers are sensitive to the
number of significantly different service times proposed in a week. To address this need, Feillet et al. |9]
define a passenger-oriented time consistency model based on the concept of time classes. They assume
that very small variations (e.g. &5 minutes) in service time are not significant for passengers, especially
considering approximations and variations due to traffic conditions or unexpected events. Similar times
are regrouped in the same time class. Consistency is then improved by minimizing the maximum number
Chax of time classes over all passengers. The difference between this measure and L,y is highlighted in
Figure

Figures[[{a) and [[{b) represent the service time of a passenger in two distinct solutions. Each vertical
line represents the service time from Monday to Friday. In Figure (a), as service times are evenly spread
between 7:00 and 8:00, there are 5 time classes. In Figure b)7 these times can be grouped into two
intervals of 10 minutes: [7:00-7:10] and [7:50-8:00]. This passenger is said to have 2 time classes. While
both solutions have the same value L. = 1 hour, they do not offer the same consistency to passengers
as far as service time is concerned. In our application, a measure based on the number of time classes
offers a better quality of service than a solution measure with Ly ay.

There is however one limitation related to objective Cpyax. It is the largest number of time classes in
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Figure 1: Comparison, for one passenger, of two solutions having the same L, but different numbers
of time classes. The width of a time class is 10 minutes.

the solution, for all passengers. Hence, a solution with 99% of passengers who have Cp,.y time classes is
equivalent to another solution where only 1% of passengers are the same situation. In order to overcome
this limitation, we propose a lexicographic optimization. We first minimize the number of passengers
from the highest to the lowest number of time classes: first passengers with Ci,.x time classes, then
Chax — 1, Chax — 2 and so forth.

To the best of our knowledge, this approach is a new refinement of the Feillet et al. [9] model. Still,
according to the passenger transportation company, many good trade-off solutions can be found between
the cost optimal solution with C,.x = 2 and the cost optimal solution with Cp.x = 1. According to the
fair optimization literature [24], the proposed model corresponds to a lexicographic minimax refinement
of the min-max model, using counting functions. We show that this lexicographic objective is easily
adapted to the context of passenger transportation.

2.2 Solution approaches for time consistent routing problems

In the conVRP model introduced by Groér et al. [11], the objective is to optimize service time consis-
tency (Lmax) without compromising a perfect driver consistency (1 driver per customer). These authors
proposed a record-to-record travel algorithm and developed benchmark instances for up to 100 customers.

The consistency measure Ly,x has been used in several subsequent papers (i.e. [34, 35} (14} [15] [19]
39]). The current best results on the Groér et al. [11] benchmark instance set was obtained by Xu and
Cai [39], who proposed a Variable Neighborhood Search procedure using dedicated local search methods
for quickly finding local optima. This approach is based on improving template solutions generated by 3
different shaking methods. A problem extension, denoted the genConVRP, is proposed by Kovacs et al.
[15] in which: routes do not necessarily start at the same time, customers are associated with AM/PM
time windows, and a maximum number of drivers per customer is defined. Subramanyam and Gounaris
[33] propose a branch-and-cut framework to solve the consistent traveling salesman problem which is a
particular case of the conVRP using a single vehicle without capacity constraints. They solve instances,
randomly generated, with up to 51 customers.

The time Consistent VRP (TCVRP) of Feillet et al. |9] is solved with a dedicated Large Neighborhood
Search (LNS) framework. At each iteration, the routes of all periods are destroyed. A VRP with multiple
time windows and no waiting time (VRPmTW-nw) is defined in order to decrease the number of time
classes of one passenger. A branch-and-price heuristic is used to recreate the routes. The minimum cost
solutions for Cpax = 1 to 5 are saved in the process.

Another related problem is the Time Window Assignment Vehicle Routing Problem (TWAVRP)
introduced by Spliet and Gabor [32]. In the TWAVRP, a single time window of fixed width has to be
assigned to some regular customers before the effective daily demand is known. The assignment is based
on a set of demand scenarios, each of which is associated with a given probability. The objective is
to minimize the expected transportation cost. The TWAVRP is a particular case of the genConVRP
if scenarios are seen as periods and the number of drivers per customer is set to infinity. However,
the objective differs: genConVRP optimizes the total transportation cost and TWAVRP the average
transportation cost. A branch-price-and-cut algorithm is proposed to optimally solve instances with up
to 25 customers. Spliet and Desaulniers [31] propose a variant, called the discrete time window assignment
vehicle routing problem, where the chosen time windows are selected from a discrete set. Considering its
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formulation, the TWAVRP corresponds to the case where each user should have exactly one time class
in the TCVRP, with each day in the TCVRP corresponding to a scenario with probability one in the
TWARVP.

Consistency issues are also often related to having stochastic customers in the VRP [27]. For example,
Sungur et al. [34] use a combination of robust optimization in a first phase master problem, and stochastic
programming with recourse to daily schedules to address the uncertainty in service times and customer
occurrence. Erera et al. [8] investigate the opportunity to give a main fixed route as well as a backup one
to frequent customers in a stochastic context.

Finally, the question of service time consistency presents some similarities with some non-periodic
applications such as the synchronization of multiple vehicles at the same node. In this case, the arrival
time of multiple vehicles at a given location should be synchronized in order to perform a collective
operation. The vehicles then continue their routes independently. A survey on synchronization in VRP
is given by Drexl [7].

2.3 Contributions with respect to the literature

The literature review shows that there is still some gap between what has been proposed in the literature
and a practical implementation of time consistency for a DARP application. In this paper, we reuse the
notion of time classes introduced in Feillet et al. 9] and extend this previous work from the time consistent
VRP to the time consistent DARP. In particular, we consider time windows both at pickup and delivery
locations and maximum ride times for all passengers. Another contribution is to better explore solutions
where some passengers accept several time classes. To aggregate of the number of time classes over all
passengers, we refine the C,x minimization approach of [9]. Our lexicographic approach minimizes the
number of passengers with the highest to the lowest number of time classes: first passengers with Cpax
time classes, then with Cpax — 1, Chnax — 2 and so forth. As a result, the proposed method finds a more
complete Pareto front, showing more trade-off between cost and consistency.

Due to the time windows at delivery locations, routes might contain waiting times. Similarly to
Kovacs et al. [15], we consider that the departure time of routes can be changed in order to improve
consistency. To achieve these objectives, we revisit the method of [9], in particular by integrating the
LNS matheuristic of [36] in the method to design the routes of each week day. As in [9], our algorithm
includes a component that recreates the routes of one day, taking account of the times at which users are
served on the other days. For this component, a specific case of the DARP with multiple Time Windows
is defined. It is solved by adapting the previous LNS algorithm through a new route scheduling algorithm
that integrates the constraints and objectives of our problem. The generated routes are combined in an
e-constraint method, with routes selection strategies, to exhibit the TC-DARP Pareto front.

3 Modeling the time consistent dial-a-ride-problem (TC-DARP)

In this section, we present the TC-DARP problem settings and give its MILP formulation. Tables [2] [3]
and [4 synthesize the mathematical notations for the sets, data and variables, respectively.

Users

In the remainder of this paper, we refer to the passengers of the transportation system as users. The set
of users is denoted by U. Each user v € U is carried between a pickup node p, € P and a delivery node
dy € D, where P and D, denote the set of all pickup and delivery nodes, respectively. Moreover, each
user has a maximum ride time 7', and occupies a particular space v € J in vehicles.

Given a planning horizon 7 (typically one week), each user can be service at most once in any period,
the user’s demand is modeled by a vector of binary values of size |T|. More precisely, we define 8¢ € {0,1}
for all w € U,t € T, where 3. = 1 if user u requires transportation at period ¢ and 0 otherwise. Note
that if several users have a common origin or destination, nodes are duplicated so that each pickup node
and each delivery node corresponds to exactly one user. Similarly, we only consider users with stable
demand within the planning horizon (same pickup, same delivery). Actually, it is not expected by users
with several addresses that an overall consistency will be aimed at over all their addresses. Thus, they
are considered as distinct users with separate plannings.
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Vehicles

We assume a homogeneous and unlimited fleet of vehicles based at a single depot o. In practice, vehicles
are equipped with several spaces (e.g. seats, spaces for wheelchairs) that can receive different categories
of users. We thus consider vehicles’ capacity as a vector indicating the number of available places in
each space. It is denoted by Q = {Q1,...,Q|7}, where J represents the set of passenger spaces (seats,
wheelchairs, etc.)

Graph representation

The TC-DARP is defined on a directed graph which node set is {P UD U o} and the arcs set containing
the following arcs: (o,4) where i € P; (i, ) where i,j € PUD,i # j; and (i,0) where ¢ € D. Each node i
is associated with a service duration ¢; and a time window [a;, b;]. Every arc (i, j) represents the fastest
path from node ¢ to node j and is associated with a travel time ¢;; and a distance d;;.

Routes

We propose a route-based MILP formulation of the TC-DARP. The set of all routes is denoted by €.
A route w € Q) is any feasible sequence of nodes visited by the same vehicle. More precisely, a route is
feasible if it starts and finishes at the depot o, serves a set of users by visiting their pickup node and
their delivery node (in this order), while respecting time windows at all nodes visited, users ride time
constraints and vehicle capacity constraints. Given a potentially large set of feasible routes, the MILP
model aims at selecting a subset of routes that cover the whole demand. The binary decision variable y/,
is equal to 1 if route w € 2 is selected at period ¢t € T.

Each selected route is associated with one vehicle. For each route, we consider three types of costs: a
fixed cost A paid if the route is used at least once in the planning horizon, a cost per kilometer 7 related
the fuel consumption, and a cost per hour « related to the driver’s cost. For a given route w which length
and duration can be easily calculated, the sum of fuel and driver’s related cost is denoted by 7.

Routes scheduling

The pickup and delivery nodes ¢ € PUD on a route w are associated with a time H; ,,. H;, is the earliest
possible service time of node 7 in a schedule of w that minimizes its duration, satisfies time windows at
each node and users maximum ride time constraints. In order to improve time consistency, the departure
of a route can be postponed provided the route remains feasible. The maximal possible shift for a route
w € Q is denoted by Af. The shift of route w € Q departure time at period ¢ € T is expressed by
continuous variables %, € [0,AF]. Adding waiting time to improve consistency is possible only at the
depot. More precisely, once vehicles have left the depot, waiting times are introduced only when the
vehicle arrives at some pickup or delivery point before the opening of time windows. Other waiting times
are not authorized, even though they would sometimes improve consistency. This rule is realistic with
respect to drivers practice. Indeed, a driver would not wait at a pickup location within the user’s time
windows, possibly with other users on board, just to improve its consistency. Appendix [A.2] details the
scheduling procedure for the calculation of A} and the satisfaction of the time windows and ride-time
constraints.

Time classes

The set of selected routes determines the service times for all users on each day where they have a request.
Given these times, it is possible to assign each service to a time class. The binary variable 2!, is equal
to 1 if user u € U is assigned to time class ¢ € C at period t € T, and 0 otherwise. For example, in
Figure (b)7 Tuesdays and Fridays belong to class 1. Thus, assuming that the corresponding user is
denoted @, we have 22, = 23, = 1. Similarly, Mondays, Wednesdays and Thursdays belong to class 2,
then 2L, = 23, = 23, = 1.

Binary variables p,. indicate which time classes from set C are actually used by user u. In the
preceding example, the user @ has two classes, thus g1 = pge = 1. Without loss of generality, we assume

that if a user has ¢ time classes (1 < ¢ < 5), these time classes are sequentially numbered from 1 to .



U set of users
T  set of time periods
Tu  set of time periods in which user u € U needs to be transported
J  set of user spaces in vehicles
Q  set of all routes
Q, set of routes serving user u € U
C set of time classes
Table 2: Sets
i equal to 1 if user u € U must be serviced in period ¢t € T, and 0 otherwise
T cost of route w €
A weekly vehicle fixed cost

H,., -earliest time service to user u € U by route w € Q
A} maximum time shift of route w €
time class width

Table 3: Data

Binary Variables

yt, € {0,1} =1 if route w € 2 is selected at period ¢t € T, and 0 otherwise
2t €40,1} =1 if user u € U is assigned to time class ¢ € C at period ¢t € T, and 0 otherwise
pue € {0,1} =1 if user u € U uses time class ¢ € C, and 0 otherwise

Other variables

oL € 0,Af]  time shift (used margin) of route w € Q at period t € T
Spes St € RT lower and upper bounds for the time class ¢ € C,, for user u € Y

ht € RT beginning of service for user u € U at period t € T
v number of vehicles needed for the whole planning horizon
Me number of users having ¢ € C time classes (post-processed variable)

Table 4: Summary of variables
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Objective functions

The TC-DARP is a bi-objective problem which consists in selecting a subset of routes from 2 such that
transportation requests on the planning horizon are satisfied within their time windows and maximum
ride times.

The first objective is the minimization of transportation costs, that include the fleet fixed cost Av and
the cost of all routes used in the solution.

min f = \v + ZZWwyi. (1)
weQteT
The second objective minimizes time inconsistency, which is modeled with a lexicographical refinement
of the time class model proposed by Feillet et al. [9]. The expression used in the MILP model is the

following:
lexmin g = <Z ;Ufu|C7~~~aZ,U/u2> . (2)

ueU ucU
This expression lexicographically minimizes the number of people having more than c¢ time classes, where

¢ decreases from |C| to 2. The expression Y i, counts the number of users with ¢ or more time classes.
ueU
This is equivalent to the lexicographical minimization of the number of users whose number of time classes

is exactly |C|, |C| — 1, down to 1, respectively. In the remainder of the paper, we denote by
lexming = (myc|,...,m1) (3)

the alternative formulation of this objective, where m. denotes the number of users having ¢ time classes.
It is post-processed from the values of the p,,. variables using the following expressions:

mi = \U| - Z 227
ueU

me = Z Huc — Z Hu,c+1 Ve € {1a7|C|_1} (4)
uel ueld

mic| = Z Haulc|
ueU

Constraints

The set of TC-DARP feasible solutions is defined by the following constraints:

Yy =p, VuclU,teT, (5)

WEN,
Zyﬁ)gu VteT, (6)

weN
Y zhe=1 Vuel,teT, (7)

ceC
o= (Huwyl +6L) YuelteT, (8)

WEN,

SL< ATyl VweteT, 9)
$7. <hi+ M1 —2L,) VeeCuecl,teT,, (10)
Rl <st +M(1—2.,) VeeCuecl,teT, (11)
sf.—s. =N VYeeCuecl, (12)
sjcgs;C_H Vee C/{IC|},uel, (13)
Zyizszw Yuel,teT,, (14)

WENy ceC
2h . <ye Ve€CuelU,teT,, (15)
Puct1 < plue Ve eC,YueU, Ve T, (16)
yl, 2t tue € {0,1} VeeCiuceU,t € T,w e Q, (17)
St hlsn, st veRT VeeCuel,teT,we. (18)
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Constraints are partitioning constraints ensuring the satisfaction of the users demand. Con-
straints @ count the number of vehicles needed during the planning horizon. Constraints state that
each user served in period ¢t € T should be given a single time class. Constraints determine the service
time for each user of route w when its departure is shifted by the value 4. Constraints (9) state that if
a route w is selected in period ¢, then its time shift 6/, should not exceed the value AF.

Constraints and linearize the following logical expression:

2o=1=s, <hl <sf VYuel,teT,ceC. (19)

They state that if a user u is assigned to the time class ¢ at period ¢, then its service time should be
within the bounds of this time class ¢. Constraints set the width of a time class. Constraints ((13])
avoid overlap between time classes. Constraints link the number of routes that serve one given user
and the number of time class variables. Constraints define variables p,. necessary for counting the
number of time classes of each user. Constraints ensure that time classes are defined in increasing
order. For example, time class #2 is allocated to a user only if time class #1 already exists and is not
compatible with a given service time. Finally, the definition of variables is given by constraints and

(L8).

4 Solution method

This section presents the Set Partitioning-based e—constraint matheuristic, denoted SP£C, that has been
designed to solve the bi-objective TC-DARP. This method iteratively solves Set Partitioning Problems
(SPPs) in an e-constraint framework. SPPs correspond to a route-based formulation of the TC-DARP
considering a subset of the whole set of feasible routes. This subset of routes, called pool of routes, contains
routes generated by an auxiliary heuristic solution method to solve the TC-DARP. Here we generate the
pool of routes by using a Large Neighborhood Search algorithm (LNS). This section is structured as
follows: Section [£.1] presents the general framework of SPeC, that traces a Pareto front approximation
between the two objectives of the TC-DARP. Section [£.2] details the optimization procedure for solving
the TC-DARP with a single objective. Next subsections are focus on two more specific topics: the
initialization of the SPeCframework (Section , the selection of the pool of routes from a larger set of

routes (Section [4.4).

4.1 The spPeC matheuristic framework

The general framework, introduced in Algorithm is based on an e-constraint procedure [12} |5]. It finds
an approximation of the Pareto front between the two objectives of the TC-DARP: the transportation
cost f, and the time inconsistency g. This is illustrated in Figure

In a nutshell, the algorithm starts from the best solution found by lexicographically minimizing cost
and then inconsistency. Then, the inconsistency objective is progressively improved by allowing an
increase of the transportation cost by € percent. Every time a new non-dominated solution is found, it is
stored in the Pareto front approximation. The procedure stops when every user has one time class.

Algorithm [I] presents the SPEC framework, the e—constraint matheuristic. In this algorithm, a pool
of routes L is generated together with the initial solution. Two types of solution are used, a temporary
solution S (line [3)) and a best found solution S*. They are initialized with the procedure described in
Section (line This procedure solves a multi-period DARP in which cost f is minimized. The
routes found while solving this multi-period DARP are appended to the pool £. The cost of solution S*
is taken as the cost upper limit f (line [5)).

Lines [7] to [15] describe an iteration of the algorithm. The procedures described in lines [7] and [§] aim at
finding a new temporary solution S, as detailed in Figure [3] First inconsistency g is minimized subject
to a maximal cost constraint. Given that this procedure starts with a feasible solution S*, it results in
a solution S such that g(S) <jer g(S*). Then the cost objective f is minimized subject to a maximal
inconsistency level g(S). During these two procedures, pool £ is updated with new routes.

If the temporary solution S is strictly better than S* for at least one of the objectives (i.e. if
f(S) < f(S*) or g(S) <iew g(S*), line[9) then solution S* is updated with S (line[L0)) and S* is added to
the Pareto front approximation (line . Otherwise, the value of ¢ is geometrically increased by a factor
¢ (line . At the end of an iteration, the cost limit f is updated based on the cost of S* (line and

€ value.



g (inconsistency)

_ Non dominated solution with minimal cost

Pareto front approximation
(set of non dominated solutions)

Non dominated solution with one time-class per user

>
f (cost)

Figure 2: Pareto front approximation designed by the SPEC algorithm

Algorithm 1: The SPeC framework

Parameters ¢ : initial value of epsilon, ¢ : increase factor of epsilon,
Result: Pareto front approximation
/* Initialization

1 ParetoFront < ()
2 L + (: Pool of routes
3 S < (: temporary solution

4
5

10
11
12
13
14

15
16
17
18

(S*, L) « initialize() /* See Section */
f « f(S*): cost upper limit

/* Iterations
while stopping criterion is not met do

/* Optimize inconsistency and cost objectives, see Section
(S, L) + solveMonoTCDARP(lexming, f < f,S*, L)
(S, L) + solveMonoTCDARP(min f, g <je.. 9(5), 5, L)

/* Update solution

if (f(S) < f(57))V (9(S) <iew 9(S™)) then
S*« S
Update ParetoFront with solution S*

else

‘ e+ pXxe

end

/* End of one iteration

Update epsilon constraint: f < f(S*) x (1 +¢)

Limit the size the £ to Nyea

end
return ParetoFront

*/

*/

*/

10
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g (inconsistency)

A --» 1) Optimize g subject to
a maximal cost f

--> 2) Optimize f subject to
a maximal inconsistency g(.S)

>
f f (cost)

Figure 3: Pareto front exploration with the two optimization procedures of one iteration (Algorithm

lines m and .

Note that the size of pool L increases at each iteration, which can eventually cause memory issues.
Thus, the routes in £ are ordered in non-decreasing order of the consistency measure among all TC-DARP
solutions found so far that contains these routes, and the first N, routes are kept (line .

Since the fleet size is not limited, there is an extreme point in the Pareto front such that every user
has only one time class (i.e. g = (0,...,[U])). Therefore the stopping criterion used in line@ is met when

g=(0,...,|U|).

4.2 Mono-objective optimization procedure

Line [7] of Algorithm [I] concerns the minimization of inconsistency subject to a maximal cost constraint.
Line [§] concerns the minimization of cost subject to a maximal inconsistency constraint. These two
consistent DARP formulations with a single objective are solved with Algorithm [2 The arguments of
Algorithm [2[ are the objective function z to be minimized (z is a generic notation representing either f
or g), an upper bound £ on the other objective, a solution Sy and a pool of routes L.

In lines [1] to [5) the main variables are initialized. The current solution S, a restricted pool of routes
L' C L and a list of selected routes are initialized as empty sets. The best solution found S* is initialized
to So. The variable it NonImp, initialized with the value 0, counts the number of iterations with no
improvement of the objective function. Finally, the boolean variable gen New Routes indicates if the pool
L must be enriched with new routes. It is initialized with the value FALSE.

Each iteration of Algorithm [2| consists of four steps: 1) selecting a subset of routes from £; 2) solving
the mono-objective TC-DARP given the set of selected routes; 3) managing the pool of routes; and 4)
updating the best solution. This process iterates until Maxlter iterations without any improvement of
S* having been performed.

In Step 1, a subset [ of N routes is selected from a larger pool of routes, which is either £ (line@ or a
new pool L., determined from the set of service times in solution S* (lines . The process followed
to generate these new routes is detailed in Section New routes in L,,.,, are saved in £ (line to enable
their selection in further iterations. The procedure for selecting the N routes is the same regardless of
the pool. It is called selectRoutes and it is detailed in Section [4:3] In this procedure, routes are selected
based on their performance and whether they were chosen on a previous iteration. Selected routes are
then saved in memory at every iteration (line [16)).

Step 2 consists in solving a TC-DARP defined by the objective function z and constraints ,
with epsilon constraint £, where the set of routes 2 is the restricted pool £’. This model is solved with

11



Algorithm 2: solveMonoTCDARP( z, &, So, £)

o = B BNV N

®

10
11
12
13
14
15
16

17

18
19

20
21
22
23
24
25
26
27
28

Arguments: z: objective, £: epsilon constraint, Sy: solution, £: pool of routes.

Parameters: MaxIter: maximum number of iterations without improvement, ¢,,.x: solver time
limit, IV : number of routes selected at each iteration of a TC-DARP problem
Result: best solution found S*

S < P: current solution

S* < Sp: best solution found

L' + : restricted pool of routes

itNonImp < 0: number of iterations without improving S*

Imemory < (): initialize memory of selected routes

genNewRoutes + false

while itNonImp < MaxIter do

/* 1. Select routes */
if genNewRoutes = false then
‘ I + selectRoutes(L, N, Lnemory) /* See Section */
else
Lpew < generateNewRoutes(S™) /* See Section [5| */
L+ LUL,ew: Save new routes
l + selectRoutes(Lyew, N, lmemory) /* See Section */
end
L+~ LUl
l?nemm‘y <_ lmemory U l
/* 2. Solve a TC-DARP on subset [ */
Compute S by solving the TC-DARP problem with objective z and constraints 7,
epsilon constraint £, with Q = £/, time limit #,,.x, and warm start on S*

/* 3. Pool management */
if TC-DARP is not solved to proven optimality then
| L0
/* 4. TUpdate best solution and itNonImp */
if 2(S) < z(S*) then
S* S
itNonImp < 0
else
itNonImp < itNonImp + 1
genNewRoutes < — genNewRoutes
end

end

return S*, L

12
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a time limit set at t,,x and a warm start on S*. Depending whether z represents f or g, the objective
z to be minimized is either the cost or the inconsistency. In Step 3 (lines , the restricted pool of
routes is cleared if the TC-DARP at Step 2 could not be solved to proven optimality. This mechanism,
inspired by previous research |10} |36], keeps the pool size manageable.

Step 4 updates the current best solution S* and the counter it NonImp of iterations without im-
provement. Thanks to the warm start, the value of the objective function z(.S) cannot increase from one
iteration to another. Given this property, when the value of z(S*) has not been improved for MaxzIter
iterations, we suppose that the algorithm has reached a local optimum. The parameter it NonImp is used
as a stopping criterion. When the solution is not improved, the value of the boolean genNew Routes is
modified in order to diversify the process by switching between pools £ and L,,¢,, in step 1.

4.3 Initialization

The initial solution of Algorithm [I] can be obtained by executing a variant of Algorithm [2] ignoring all
consistency considerations. This amounts to solve a separate dial-a-ride problem for each time period
and the corresponding mathematical model, called MP-DARP (multi-period DARP) is as follows:

min f = \v + Z Z Tyl (20)

weNteT

s.t.

Zy321 Vuel,teT, (21)
WE,

Yoyl <v Vte T (22)
weN
y!, € {0,1} VwoeQteT (23)
veN (24)

The objective function is the same as Equation . Constraints are set covering constraints
for demand satisfaction. Constraints enforce the number of vehicles to be less than or equal to v at
each period.

The MP-DARP model is separable with respect to the variables y. This set covering formulation is
equivalent to | 7| independent DARP route based formulations.

It can be solved to optimality by a solver provided the number of routes [{2| remains reasonable.
Rather than directly using a solver, we first run the Large Neighborhood Search (LNS) method proposed
by Tellez et al. |36] in order to quickly generate good solutions with feasible routes of minimal duration.
For the sake of completeness, we summarize the content of this previous contribution: The LNS algorithm
iteratively destroys and repairs parts of the current solution using several operators. It is hybridized with
a set partitioning component. This component solves a set partitioning problem to reassemble routes
that were generated at distinct iterations of the LNS. A reactive mechanism automatically adjusts its
parameters. On the LNS side, the classical "best insertion" and "k-regret" operators are used to repair
solutions. To destroy a solution, we found that, in combination with the set partitioning component, only
those two destroy operators were needed. These are the random remowval and history node-pair removal
operators. The paper investigates the use of reconfigurable vehicles, which facilitates the transportation
of passengers with wheelchairs. An efficient feasibility checking algorithm is proposed to handle this
feature in repair operators. The route scheduling algorithm minimizes the route duration and checks
time windows and maximal ride time constraints. The method was evaluated on real-life instances as
well as academic instances of the DARP and was shown to be competitive with other state-of-the-art
metaheuristics.

We use the LNS algorithm as a black box that is able to generate a number of good solutions to the
DARP. These solutions contains routes that we store in a set Q' C Q. The MP-DARP is then solved
with ' instead of the untractable set 2. Each time ' is updated, dominated routes (i.e. routes w €
which users are included in another route w’ € £ and which cost is greater than w’) are filtered out.

Given that the MP-DARP is a set covering formulation, a solution S may contain users’ demands
served by more than one route. In this case, removing one of the duplicated visits reduces the solution
cost (the triangular inequality is assumed).

A solution S is repaired by updating €’ as follows. For each user u visited more than once in S and
for each route w € €’ that visits user u, a new route w’ identical to route w but that does not visit user
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u is added to €. Then, the MP-DARP formulation is solved again on the updated set of routes Q' and
a warm-start on S.

4.4 Selection of routes: function selectRoutes(L, N, lnemory)

When the current pool of routes £ or L., is too large, the MILP solver cannot improve the given
initial solution. Hence, it becomes necessary to select a subset of routes of reasonable size. The function
select Routes, called at lines [0] and [I3] of Algorithm [2]is used to randomly select N from a larger set L.
This process uses the set {pemory Of the routes previously selected at former calls of this function.

First, all routes in £ are given a score. When the objective function is f, this score of a route
corresponds to the cost of the best TC-DARP solution found so far that uses this route in at least one
period. When the objective function is g, the score of a route is the consistency measure among all
TC-DARP solutions found so far that use this route in at least one period. Then, £ is sorted according
to these scores in non-decreasing order.

The route selection process browses the sorted pool of routes. For each route, we check whether it
was already selected in a previous call. In this case, it is selected again with a probability 7. Otherwise,
it is systematically selected. The process stops when N routes have been selected.

Figure [4] shows an example of the route selection with N = 6. Each line represents the sorted pool
of routes. Each square represents a route in this sorted pool. The first call selects the first six routes.
In the second call, the grey area represents routes that have been selected at the first call. The second
call randomly selects 1 route in the grey area and completes the selection with the first five routes in the
white area. The third call randomly selects two routes in the grey area and completes the selection with
the first four routes in the white area.

15 call

2 call _/ /|vlv]v
e VA v v /v

(...)

v | Selected route Available route . Route selected in previous calls

Figure 4: Example of 3 successive calls to the sequential route selection with N = 6.

The sequential route selection process increases the probability of selecting together routes that have
been part of the same solution with the same overall cost-based or consistency-based performance. The
routes must be sorted each time the sequential route selection is called, as performance indicators may
change from one iteration to another.

The practical implementation of the select Route function includes an extension of the N selected
routes: the set of selected routes is augmented by projection and complementary routes, defined by

Definition 11

Definition 4.1. Projection and complementarity A route w’ is called a projection of a route w in
period t € T if it contains only the users of w who have a demand in period ¢, in the same sequence as
in w. The route w”’ = w \ w’ is called the complementary route of w'.

route for period t w :@ @ @ @ @ @ @ O
oL ]

projection route for period t' W’ :@ @ @ @ @ @
'

complementary route for period t' w’/ :@ @ @ O

Figure 5: Example of projection and complementary routes
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The definition [I1] is illustrated by Figure 5] At period ¢, Route w starts from depot D, serves user
requests 1,2 and 3 and returns to the depot. If users 1 and 2 have a transportation request at period ¢’
and user 3 does not, the route w’ serving user requests 1 and 2 is the projection of w and the route w”
serving request 3 is the complementary of w’.

5 Generation of new routes: the DARP with multiple time win-
dows

In section [4-3] it is explained how the SPeC framework is initialized with routes that are generated by
solving independent DARP instances with an LNS algorithm. These routes are combined in order to form
more consistent solutions. In Algorithm [2f (line 7 the time consistency can nevertheless be improved
by generating new routes, denoted L,,¢,, that are not likely to be generated by the LNS operators.

This section introduces a new optimization problem: the dial-a-ride problem with multiple time win-
dows (DARPmMTW). To the best of our knowledge, this problem has never been treated in the literature.
In order to better explain how the the DARPmMTW arises from the TC-DARP, we first explain in Section
.1 how multiple time windows arise for one particular user. These multiple time windows are defined
when a route visiting a user on a given day is modified. Their goal is to merge time classes by forcing
the new service time on the considered day to fall within already existing time classes corresponding to
other days. In section we explain how times windows are generated for all users and how these time
windows are embedded in DARPmTW instances. Section focuses on the solution methods to solve
the DARPmTW.

5.1 Multiple time windows for a given user

Let us consider a user u € U that must be visited with service times a,,, < hf, < b, for every day t € T,,.
The set of service times of user u is denoted H, and its number of time classes is denoted by u(H,).
Figure [6] represents an example of schedule for this user. The horizontal axis represents the time
window [ap, , by, ] and the five service times that can be regrouped in three time classes of width A: class
1 includes hl, h2 and h3 while isolated values h} and h? define two time classes on their own. Note that
the service times are regrouped in time classes with the same greedy algorithm as in Feillet et al. [9].

u bpu

Figure 6: Initial schedule of user u

Assume that the route visiting user v on day 5 is redesigned. This will modify the value of A and
possibly the number of time classes u(H,). Depending on the future value of h3, user u will have two or
three time classes. This is illustrated by Figure[7] Any value of hJ in the interval [h3 — A, hl + A] can
enter in class 1. Similarly, any value of 15 in the interval [hl — A, h% + A] can enter in class 2. Any
value out of these intervals re-creates a class 3.

As a consequence, a necessary condition for u to have two time classes is that the value of h> lies in
one of the two time windows [h3 — A, hl + A] and [h — A, h? + A]. Hence, restricting the number of
time classes of user w amounts to restricting the possible times of service by considering multiple time
windows. More formally, given a user u and a partial set H,, of service times, we call gen MTW (H,,, u)
the function that returns a set of multiple time windows. The algorithm implementing the construction
of multiple time windows is detailed in Appendix [A1]

5.2 Multiple time windows for the DARPmMmTW

Section presented an example of multiple time windows definition for some user u given a known set
of service times H,, = {hL,h2,h3 h2}. In this section, we define multiple time windows, denoted by W,
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Figure 7: Construction of time windows of user u with H = {hl, h2 h3 hi}.

for any user u € U and for any set H,. More precisely, we explain how to define the parameters of the
function gen MTW (H.,, u).

In order to increase consistency and to generate routes that were not in the previous pool L, we propose
a very large neighborhood operator that sequentially removes the value of the variables associated with
each time period and rebuilds a feasible solution. At each time period, the operator focuses on a particular
user, denoted by u, which is randomly selected among all users with Cp,,x time classes. The idea is to
rebuild a solution that decreases the number p(#Hgz) of time classes of user @ and controls the number
1(H,,) of time classes for all other users.

Given one period ¢t € T, the current value of variables h!, is “forgotten” (removed) and multiple time
windows W are set according to the four cases represented in Table 5} These cases are defined according
to the answer to the following questions: i) Is the selected user 4? ii) Is the number of time classes of
user u decreased by 1 when the service time h!, at period ¢ is removed? This question can be answered
by checking if the inequality pu(H, \ {hl}) < u(H.) holds.

The yes/no answers to these questions yield four ways to define multiple time windows, representing
by the four main cells of Table

Is the number of time classes of user u decreased by 1 when the
service time h!, at period ¢ is removed?

Yes No
Changing the service time hf to any | Let [el L] € W(Hg,u) be the time
.~ service time in the time windows W. | window satisfied by service time hl
'S 8| has to decrease the number of time | (e} < hi <IL). Defining
P .
o) classes for this user: . -
= W, = genMTW (Hg, @) \ {[es, 1]}
3 WE = genMTW(Ha \ {Wt}a). | |
B will enforce a decrease in the number of
% time classes for this user.
n
0
< The service time h!, defines a time class
3 Zo on its own and any feasible service time . .
3 at period t can be accepted: Wi = genMTW (Ha, 1) \ {[eg, 5]}
Wt = {[ap,,by.]}- with a probability v = 60 X (Chax —
u(Hy)), where 6 is a fixed parameter.
Otherwise, W! = {[a,, , by, ]}
Table 5: Overview of cases for the definition of multiple time windows WY.
ago Note that using W = {[ay,,bp,]} in the bottom right-hand case may result in an increase in the

number of time classes for user u. We observed that this temporary relaxation helps decrease the number
of time classes of user @. The idea of relying on a randomly selected user @ was originally proposed by
[9] to solve a time consistent VRP. The contribution is to extend the approach of [9] from a VRP to a
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DARP. Finding the best routes that satisfy the multiple time windows amounts to solve a Dial-A-Ride
Problem with multiple Time Windows (DARPmTW).

Algorithm [3| describes the process used to generate new routes. It focuses on a randomly selected
user @ with Cpax time classes (lines [2). For each time period ¢ € T, multiple time windows for user @
are sought such that its number of time classes will be decreased (line . For all other users, multiple
time windows are sought such that their number of time classes will be controlled (line @, as detailed in
Table[5] These time windows are used to define a new instance of the DARPmTW for each time period.
Solving these instances yields a set of routes denoted by Lf_ for each time period ¢ (line . The sets
Lt .., are finally merged (line and returned. In section [5.3| we detail the solution method used to solve
the DARPmTW instances (line [g).

Algorithm 3: Fonction generateNewRoutes(S)

Arguments: S: a feasible solution of the consistent DARP
Result: list of routes L, ¢,
Initialize C,,4, to the maximum number of time classes in S
Randomly select a user @ with Ci,a.x time classes
for all time periods t € T do
Define multiple time windows W for user @ as detailed in Table
for all users u # @ do
Define multiple time windows W, as detailed in Table
end
£t

new

<+ solveDARPmTW (W) /* See Section */

© w0 N oo oA W N =

end

t
Lnew — UtETEnew
return £,,c,

e
= o

5.3 Solving the DARPmTW

Line (8] of Algorithm [3| consists of solving a DARP with multiple Time Windows (DARPmTW). Addition-
ally, the duration of routes should be minimized: waiting times caused by time windows are authorized
but waiting times aimed at artificially improving time consistency are forbidden.

To solve this optimization problem, we reuse the LNS-SCP used in Section [£.3] to solve single period
DARPs with one time window at each pickup or delivery point. However, this LNS-SCP requires two
adaptations. First, since the SCP component is somewhat redundant with the set partitioning problems
solved in SPeC, we do not activate it here. The algorithm is therefore called LNS in the following.
Second, a key point of the LNS is to handle the route duration minimization when repairing destroyed
solutions. This amounts to check a set of temporal constraints through a route scheduling algorithm,
called the DARPmTW scheduling algorithm.

More specifically, let us consider the feasibility check of an insertion in a route w € €. For each user
u visited by the route w, the DARPmMTW scheduling algorithm checks temporal constraints: a maximum
ride time T, a pickup time window [a,,,bp,] and a delivery time window [ag, ,ba,]. If these temporal
constraints are satisfied, a service time h; is computed for each node such that: (i) the route duration
is minimized and (ii) service times are scheduled as early as possible at each pickup node, delivery node
or depot. The DARPmMTW scheduling algorithm computes a mazimum route time shift A} . This value
indicates how much the route schedule can be shifted forward, while preserving both its feasibility and
the route duration. Hence, shifting the starting time of a route by a value 0 < § < AY shifts the service
times of all vertices on the route by the same value without impacting the route duration nor waiting
times. The detailed procedure, proposed in Tellez et al. [36], can be found in Appendix

Once the pickup time window [ap, , by, |, the delivery time window [ag,, b4, ] and ride time constraints
T, are satisfied, we check the satisfaction of the multiple time windows W with a new procedure.
Specifically, this procedure checks if there is a service time for each user w compatible with a time
window in W.. Given a route w €  with a minimal duration and service times scheduled as early as
possible, Algorithm [ checks if each user w on this route can be picked up within a set of multiple time
windows WY, without increasing the duration of the route. Accordingly, the only variable in this algorithm
is the departure time of the route, which can be postponed by a value 0 < § < AF called route time shift.
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Note that, for morning routes, the service in multiple time windows is only verified at pickups because
time consistency is measured at these nodes. For afternoon routes, time consistency must be checked at
delivery points only.

Algorithm 4: DARPmTW scheduling Algorithm

Parameters: a route w; U,,: set of users ordered by non-decreasing pickup times; W.: set of
multiple time windows sorted in non-decreasing order of the earliest value; h,,: earliest service
time for the pickup of user u given the duration of route w is minimal; A}: maximum route
time shift of route w.

Output: if route w is feasible or unfeasible

15+0 /* the route time shift */
2 for uwel, do

3 scheduledU ser < false

4 while —scheduledUser and W! # 0 do

5 [a,b] « first time window in W}

6 if hy, + 6 > b then /* the time window is too early */
7 | remove first time window [a, b] from W

8 else if a < h, + 6 < b then /* the time window is satisfied */
9 L scheduledU ser < true
10 else if h, + 0 < a then /* the departure of w should be delayed to meet the

time window */

11 6+ a—hy

12 if § <AF then

13 ‘ jump to line |2t the for loop is restarted to the first user u in U,
14 if =scheduledU ser then
15 ‘ return unfeasible

16 return feasible

Let U, be the set of users ranked in non-decreasing order of their pickup service time. Algorithm
looks for a route time shift § € [0, AJ] such that for all users u € U,, there exists a time window [a, b] € W!
in which the shifted service time h, + ¢ can be scheduled. Note that all nodes in route are shifted forward
by the same quantity of time. Thus, it is not possible to increase the duration of the route in order to
ensure feasibility.

In line |1} the route time shift ¢ is initialized to 0. Users are considered sequentially (line . For each
user u € U, its first time window [a, b] is evaluated (lines . Three cases are considered:

(1) If the shifted service time takes place after the end of the time window (h, 4+ > b), the time window
[a,b] can never be satisfied: it is removed from set W, (lines [6H{7). The next iteration of the while
loop will directly check the next time window for user w.

(ii) If the shifted service time takes place in time window [a, b], the shifted service time is feasible for
the pickup of user u (lines . The algorithm continues with the next user.

(iii) If the shifted service time takes place before the opening of the time window (h, + § < a, line ,
the route shift § has to be increased to a — h,, so that the new shifted service time is exactly a
(line[IT). At this point, two cases are possible a) the new value of route time shift 4 is feasible (i.e.
§ < A}), and the main loop is restarted from the first user with the new value of § (jump from
line [L3] to line [2); b) 4 is larger than the maximum allowed shift A} and the route is infeasible

(line [15).

Finally, if each user has a feasible time window given the same time shift J, then the route is declared

feasible (line [I6).

In the worst case, all time windows are removed (3_,, ¢, [W;| operations). For each removal, the
route time shift is increased and then the procedure is restarted. One iteration of the main loop
cannot take more than |U,,| operations. So the worse-case time complexity of Algorithm [4]is O(|U,,| x

Zueuw |W73|)

18



550

560

565

570

575

6 Computational experiments

The matheuristic described in Section [£.1] was coded in C++ and the mathematical models were solved
with CPLEX Concert Technology 12.6 running on a single thread on an Intel Xeon E5-1620 v3 @3.5Ghz
processor.

This section details computational experiments in two families of instances. It is structured as follows:
Section [6.1] presents the value of parameters used by our algorithms. Section [6.2] introduces the instances
used to evaluate our approach. They are built from real data provided by the Synergihp Rhone-Alpes
Company. In Section[6.3] SPeC is assessed on benchmark instances of [11] and [9] for the time consistent
VRP. Finally, Section presents managerial insights regarding cost performance and time consistency.

6.1 Parameter settings

After preliminary tests on a representative subset of instances, parameters shown in Table [6] were found
to provide the best average performance.

Global parameters

e =0.01 initial value of epsilon

¢=1.5 epsilon increase factor

Mazxlter =4 maximum number of iterations without improvement

N =100 number of routes appended to the pool at each call of the TC-DARP (instances with
less than 250 users).

N =200 number of routes appended to the pool at each call of the TC-DARP (instances with

more than 250 users)
tmax = 60 X [|U|/100]s MILP solver time limit for instances with less than 250 users

tmax = H40s MILP solver time limit for instances with 250 users
Nmax = 50000 size of the pool L
Nyew = 5000 maximum number of routes in Lyew

Route selection parameters

=10% relaxation parameter in DARPmTW
v =10% percentage of routes that can be re-selected in the sequential route selection
p==6 Random Biased Selection parameter

Table 6: Summary of parameters of the SPeC algorithm

The value of parameter € has a strong impact on the computing time. Higher values of € help to
reduce the computation time. However, the quality of the Pareto front approximation is considerably
deteriorated. Thus, ¢ = 0.01 was taken as a good trade-off between computing time and quality of
the solution. SPeC is less sensitive to parameter ¢ but its value needs to be greater than 1.5 to have
significant impact on the value of e.

We found that a value of MaxIter greater than 4 does not improve the quality of each point of the
Pareto front approximation. Parameters N and t,,,, were determined in order to maximize the number
of times when the MILP solver is able to solve the TC-DARPs to proven optimality.

The TC-DARP considers two pools of routes: £ and L,¢,,. In order to keep the number of routes in
memory under control, limits in the maximum size of the pool £ and of the L,,.,, were set to N;,q, = 50000
and Ny, = 5000, respectively.

We compared several settings of the algorithm in order to assess its key components. In particular,
we run a variant of the SPEC algorithm without the procedure presented in Section [£.4] to generate new
routes. This resulted in a slight cost increase on solutions with two time classes and more, and a 10%
cost increase on solutions with one time class. Moreover, the hypervolume indicator increases by 17% if
the generation of new routes is disabled.

We also implemented a randomized route selection based on the roulette wheel mechanism inspired by
[26]. This randomization did not bring significant improvement. A detailed evaluation of the algorithm’s
components can be found in [37].

6.2 Description of instances

The time consistent DARP studied in this paper arises in the context of transportation of people with
disabilities. We collected real data from the Synergihp Rhone-Alpes Company based in Lyon, France.
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This data concerns the transportation of hundreds of users to MSIs.

From Monday to Friday, the users are carried in the morning from their home to a MSI. In the
afternoon, they are driven back home. Without loss of generality, this paper presents the results of our
research for morning trips.

The data collected from Synergihp includes 575 users from a large geographical area around the
city of Lyon. We partitioned this data in two independent geographical areas (distinct users, distinct
MSIs), yielding two large instances with with 280 to 295 users, respectively. These two large instances
were in turn partitioned into 4 medium-size instances with 120 to 160 users. Finally, the four medium-
size instances were partitioned into 8 small-size instances with 60 to 80 users. We assume an infinite
homogeneous fleet of vehicles with a capacity of 4 seats and 3 wheelchair spaces. Vehicle costs provided
by the company include an hourly cost a =23.8€ and a cost per kilometer 7 =0.17€. No fixed vehicle
cost A was given by the company. Moreover, with a homogeneous fleet of vehicles, this cost has no major
impact on the solution nor on solutions consistency. Thus, we simply assume an arbitrarily small value
A =1 in order to favor solutions with similar route cost but fewer vehicles.

Travel times and distances are obtained from the Open Source Routing Machineﬂ (OSRM) proposed
by Luxen and Vetter [20]. For each user u € U, we define maximum ride times according to direct
travel time ¢,, 4, between the pickup location p, and the delivery location d,. The following formula
generates maximum ride times (RT') that are between 15 and 30 minutes longer than direct travel times:
RT =15 x [(tp, 4, + 15)/15].

Time windows at MSIs are 15 minutes wide. The size of time classes is 10 minutes wide. Finally,
time windows at pickup locations and service times strongly influence the actual design of routes, but
they have no impact on the efficiency of our solution method. We therefore ignored them for the sake of
simplicity.

6.3 Performance evaluation on benchmarks from the literature

As the TC-DARP is a new problem, there is no benchmark in the literature. However, to evaluate the
performance of SPeC, we solve reference instances for two other time consistent routing problems. The
first benchmark is an adaptation of the conVRP instances of Groér et al. [11]. This adaptation, proposed
by Feillet et al. 9], transforms the small conVRP instances of Groér et al. [11] into TC-VRP instances.
These instances are denoted RconVRP. They include up to 12 users over 3 days and have been solved
to optimality by a MILP solver. The second benchmark set is the TC-VRP from Feillet et al. [9]. It
contains instances for up to 65 users over 5 time periods.

Although the TC-VRP is the closest problem to the TC-DARP, there are some differences between
both problems. The TC-VRP has the following hypothesis: (i) it has a single depot and no time windows;
(ii) it assumes a limited fleet of vehicles; (iii) the consistency objective function is the maximal number of
time classes over all users (i.e. Cpax); and (iv) routes must start at time 0, with no waiting time allowed.
To be solved by SPeC, TC-VRP instances have been converted to TC-DARP instances by defining one
copy of the depot for each request. Ride times and time windows have been relaxed by setting arbitrary
large values. Finally, since the VRP routes are not subject to time windows nor ride times, routes can
be traveled in either direction. Thus, each time a route is appended to the pool, the reverse route is also
appended.

6.3.1 RconVRP instances

This benchmark proposes 10 small instances of the TC-VRP: the first 5 instances with 10 users and
the next 5 with 12 users. Instances have been solved to optimality with CPLEX. Table [7] presents the
comparison with SPeC over 10 runs.

Columns 2-4 (Opt Cost), present the cost of optimal solutions for each time class. In the next three
columns, we report the average Gap of SPeC for each instance and number of time classes. The Gap
is computed as ( Avg Cost - Best) / Best x 100. Numbers in bold mean that SPeC could find optimal
solutions in all 10 runs. Thus SPeC systematically found optimal solutions for problems with three time
classes. It also finds the optimal solutions on each run for eight problems with two time classes and for
four problems with one time class.

The last row (Avg Gap) shows the average gap of SPEC to the optimal solutions over all instances
for each number of time classes. For solutions with one time class, the average gap is 1.5%, and the
algorithm performance improves as the number of time classes increases.

%http://project-osrm.org/
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Instance Opt. Cost SPeC
Cmax <3 <2 1| <3 <2 1

RconVRP10-1 | 9291 9291 9291 92.91 92.91 9291
RconVRP10-2 | 80.42 80.42  80.96 80.42 80.42  82.83
RconVRP10-3 | 94.12  94.12  94.37 | 94.12 94.12 94.37
RconVRP10-4 | 93.71  93.71  94.09 93.71 93.71 94.09
RconVRP10-5 | 83.84 83.84 96.01 83.84 84.50  96.70
RconVRP12-1 | 103.65 103.65 104.40 | 103.65 103.65 109.19
RconVRP12-2 | 73.89 73.89  81.25 73.89 73.89  83.40
RconVRP12-3 | 8277 8277  83.12 82.77 82.77 83.12
RconVRP12-4 | 9757  97.57 101.91 97.57 98.55 104.31
RconVRP12-5 | 83.63  83.63  89.25 83.63 83.63  91.38

Avg Gap (%) 0.0% 02%  1.5%

Table 7: Benchmark on RconVRP instances reported in |9

6.3.2 Results on time consistent VRP instances

This benchmark was built from real data collected in 14 distinct MSIs, with a number of users ranging
from 15 to 65, and a number of time periods equal to 5 (Monday to Friday). For each MSI, 5 profiles of
transportation demands where randomly generated where each profile corresponds to the percentage of
people present during the complete week. This percentage varies between 50% and 90%. This yields a
total of 70 benchmark instances.

Transportation cost of solutions with one to five time classes are provided for most instances. Feillet
et al. [9] solved the TC-VRP with an LNS-based matheuristic with a time limit of 1 hour. SPEC stops
when all users reach a single time class. For each value of C),,,, our lexicographic optimization explores
all non-dominated solutions. This approach is more time consuming but returns a more complete Pareto
front approximation that can help decision makers to select intermediate trade-off solutions for each
number of time classes.

Tablesand@show the average gap of SPeC with respect to the LNS method of Feillet et al. [9], aggre-
gated in two different ways. For each instance, we compute the gap as (Cost SPeC—Cost LNS)/Cost LNS x
100. Thus, any negative gap represents an improvement.

Table [8] shows the numerical results aggregated by percentage of presence during the week. For
example, data-5-Y aggregates instances where, on average, 50% of users are transported everyday, while
in the group data-9-Y the average percentage of users transported rises to 90%.

Instance Avg Gap Transportation cost
Cmax <5 <4 <3 <2 1

datab-Y -1.10% -1.00% -1.02% -0.21% -0.37%
data6-Y -1.03% -1.03% -0.81% -0.26% 0.83%
data7-Y -1.09% -0.96% -0.86% 0.13% -0.13%
data8-Y -1.06% -1.00% -0.72% 0.00% -0.25%
data9-Y -0.61% -0.61% -0.49% -0.27% -1.76%
Avg Gap (%) | -0.98% -0.92% -0.78% -0.12% -0.33%
Nb Sols 70 70 70 70 70
Nb new BKS 63 59 53 35 35

Table 8: Results aggregated by percentage of user requests on the benchmark of Feillet et al. [9]

The average relative gap (Avg Gap) overall instances between the results obtained with SPeC and
the LNS was improved for all number of time classes. However, slightly better results are reported for
solutions with 3, 4 and 5 time classes. This result is confirmed with the number of new best-known
solutions (Nb new BKS) which is more than 50 for solutions above 3 time classes, and 35 for solutions
with 1 and 2 time classes. A total number of 245 strictly new best solutions were found, as shown on the
last row of the table. Detailed results can be found in Appendix
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Table [0 shows the numerical results aggregated by MSI. The last two digits of the instance name
represent the number of users. This table shows that SPEC has better performance with larger instances.
However, dataX-59 instances are in particular the most difficult to solve for SPeC, with an extra cost of
3.41% for Cpax = 2 solutions and 2.39% for Cihax = 1 solutions.

Instance Avg Gap Transportation cost
Crmax <5 <4 <3 <2 1

dataX-15 0.03% 0.03%  0.00% 0.47% 3.04%
dataX-21 -0.15% 0.07% 0.18% 0.24% 1.53%
dataX-25 -0.21% -0.06% 0.01% 0.19% 0.53%
dataX-26 -0.21% -0.21% -0.03% 0.04% 0.08%
dataX-27 -0.27% -0.12% -0.16% 0.03% -0.93%
dataX-32 -0.54% -0.54% -0.19% 0.10% 0.49%
dataX-41 -1.15% -1.15% -1.65% -1.19% -2.46%
dataX-44 -0.75% -0.75% -0.61% -0.72% -1.19%
dataX-46 -1.05% -1.05% -0.62% -0.18% -0.34%
dataX-48 -1.24% -0.98% -0.77% -0.20% -1.38%
dataX-55 -1.91% -1.91% -1.63% -0.92% -4.84%
dataX-59 -2.17% -2.12% -1.62% 3.41% 2.39%
dataX 64 -2.30% -2.30% -2.14% -1.66% -0.18%
dataX-65 -1.77%  -1.79%  -1.71% -1.33% -1.42%

Avg Gap (%) | -0.98% -0.92% -0.78% -0.12% -0.33%

Table 9: Results aggregated by instance size on [9] benchmark

6.4 Managerial insights on time consistency and transportation costs

This section reports managerial insights regarding the relationship between time consistency and trans-
portation costs. Figures [§fI0] show the Pareto front approximation obtained on Synergihp Rhone-Alpes
instances with 60, 160 and 280 users, respectively. The transportation cost is presented as the percentage
of cost increase with respect to the cheapest solution found in that instance (x-axis). The time consis-
tency of non-dominated solutions is shown in a vector form on the vertical axis. Each element of the
vector represents the number of users with 3, 2 and 1 time classes on that solution, respectively. Note
that solutions with 4 or 5 time classes are not represented because, in our tests, they have always been
dominated by a solution with 3 time classes.

These Pareto front approximations provide decision makers with a fine intuition of the cost of time
consistency associated with each user. The first finding is that all Pareto front approximations start with
the majority of users having a single time class and very few users having 3 time classes. With a minor
increase of cost, all users have at most 2 time classes (until the dotted line). This means that an useful
consistent solution can be found with respect to the cost of the cheapest solution, and a small increase
of cost can significantly improve the solution for users with many time classes.

Depending on the instance, the increase of cost for reaching single time class solutions can vary from
1% to 10%. Note that values on the y-axis are ordered but non-scaled as the distance between points is
always constant. Figure [TT]shows the same instances on a common scale for solutions with a maximum
of 2 time classes per user. The y-axis presents the percentage of users with 2 time classes. It shows that
each instance has very different trade-offs depending on the size and the consistency level of the solution.

Table [10] gives some additional details on the non-dominated solutions shown in Figure [§] (instance
TCDARP_01 60). The first column reports the inconsistency vector of each non-dominated solution.
Columns 2 to 4 show the cost, the average route duration and the average ride time per user in the
corresponding solutions, respectively. The vectors in column 5 represent the number of routes for each
time period (from Monday to Friday). The last column reports the total number of routes. This example
shows that improving consistency requires increasing the number of routes, which results in a decrease of
the average route duration. It is noticeable that the number of routes for a given day does not increase
monotonously. For example, the number of routes on Wednesdays is 3 in the first two solutions, then
5 and finally 4. Considering the user convenience perspective. Reducing the number of time classes
generally comes with a reduction of the users ride time. Nevertheless, we note that it was necessary to
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Figure 11: Scaled representation of the Pareto front approximations on five representative instances
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increase the average ride time to find a solution with one time class.

Inconsistency Cost Avg route Avg ride Nb. routes  Total Nb.

duration (hour) time (min) per day of routes
3,20,37]  1291.03 2.08 2297 [4,4, 3,5, 3] 19
0,22,38]  1291.73 1.97 9249 [4, 4, 3,5, 4] 20
0,17,43]  1304.34 1.81 21.83  [4,4,5,5,4] 22
0,13,47]  1317.20 1.82 21.30 4, 4, 5, 5, 4] 22
0,2,58]  1321.87 1.82 2148 [4,5,4,5, 4] 22
0,1,50]  1331.94 1.75 2136 [5, 5, 4, 5, 4] 23
[0,0,60] 1348.87 1.78 22.00 [5, 5, 4, 5, 4] 23

i i

)

Table 10: Solution’s statistics instance TCDARP 01 60

Figure [I2] shows how the consistency requirement concretely modifies the service times for some
users. This figure represents the times at which two users are picked-up in several solutions of instance
TCDARP 01 60. The x-axis represents the time line. On each horizontal line, the five weekly service
times of users 1 and 2 are represented. Each line represents different non-dominated solutions denoted
S1, ..., S5, in which the users have one, two or three classes.

In solution s1, user 1 has 3 classes with service times varying from 8:00 to 8:30. One time class (class
3 - around 8:27) gathers 3 services out of 5. In solution so, with 2 time classes, 4 service times out of 5
belong to time class 2, centered around 8:28. In solution ss, all service times are centered around 8:28. A
similar phenomenon is observed for user 2. To move from solution s4 with two time classes to solution ss
with one time class, the algorithm finds routes to serve the user within the time class with the greatest
number of service times in s4.

Sol. Nb. Classes

. class 1 class 2 class 3
Sy 3 1 I I H
class 1 class 2
User1{ s, 2 1 HH
class 1
\ S3 1 1 i
p class 1 class 2
Sy 2 i 1 | |
User 24 class 1
Ss 1 I H-1

8:00 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:50
Time

Figure 12: Schedule improvement for 2 users of instance TCDARP 01 60

6.5 Economic impact of shifting route departure times

In this section we compute the impact of having flexible route departure times on cost and time consis-
tency. This effect has been studied by Kovacs et al. [14] for the conVRP, showing that departure time
flexibility provides considerable improvement in the solution quality under tight consistency requirements.
As far as the TC-DARP is concerned, the departure flexibility is limited by time windows and maximum
ride-time constraints. The departure of a route can be scheduled at any time between its earliest and its
latest departure date. We define the maximum time shift of a route as the difference between these two
schedules. The maximum time shift of a route w is denoted by A}.
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Table [I1] measures the impact of the departure time shift on the complete set of Synergihp Rhone-
Alpes instances. Columns 2—4 present the best results on 5 runs of the SPEC when the route time shift
is allowed, for values of C),, decreasing from 3 to 1. Missing values in column 2 mean that all solutions
found with C),4e = 3 were dominated by another solution with Cyq = 2. Column 5 (%R-Shift) shows
the percentage of routes in which a departure time shift is actually implemented. Columns 6-8 present
the minimum gap on 5 runs with respect to the minimum cost found by the SPeC when no time shift is
allowed (A} = 0). The last row shows the average values.

Instance SPeC SPeC(A} =0)
Crmax 3 2 1 %R-Shift | 3 2 1
TCDARP_00_80 | 2045.54 2044.43 2061.89 49% | -0.07%  0.25% 0.35%
TCDARP_01_60 | 1291.03 1291.73 1348.87 40% | 0.18%  0.48% 0.20%
TCDARP_02_80 | 2523.21 2533.86 2561.40 31% | 0.00% -0.01% 0.31%
TCDARP_03_170 1735.07  1752.43 33% 0.00%  0.30%
TCDARP_04_80 1207.72  1220.91 32% 0.00%  2.44%
TCDARP_05_80 | 1871.25 1871.53 1923.21 40% | 0.37%  0.06% 0.08%
TCDARP_06_60 3304.41 333221 42% 0.00%  0.54%
TCDARP_07_65 | 1865.46 1868.15 1920.95 50% | 0.00% -0.07% 3.22%
TCDARP_08_120 5500.45  5534.44 39% 0.02% 1.76%
TCDARP_09_135 | 2857.18 2880.57 3107.12 38% | 0.27% -0.18% 1.17%
TCDARP_10_160 2621.35 2779.06 42% | 0.03%  0.00% 8.68%
TCDARP_11_160 | 3222.10 3233.17 3549.53 42% | 0.21%  0.00%  4.84%
TCDARP_12_280 7724.32  8533.52 42% 0.27%  8.93%
TCDARP_13_295 | 6314.24 6329.57 7465.76 47% | -0.08%  0.08% 6.16%
Avg 4% | 010%  0.07% 2.79%

Table 11: Economic implications of allowing a later departure of routes (Best solutions on 5 runs)

Since the solution method is heuristic, some some small negative gaps can be observed for AY = 0.
If the solutions found were optimal, negative gaps would not exist. These results show that shifting time
departure of routes yields 2.79% savings on average, with values ranging from 0% to 9%. According to
these results, time consistency can be achieved at a lower cost when route departure times are not fixed
in advance. This also implies that shifting time departure can be a lever to improve time consistency
without significantly increasing transportation costs in a DARP context.

7 Conclusions

This paper introduces a new variant of the DARP denoted the time consistent DARP. It aims to find
trade-off solutions between two objectives: the transportation cost and the time consistency of users.
Regarding the literature on the topic, we propose a new formulation of the time consistency of a solution:
for a particular user, the number of time classes expresses the number of significantly different service times
within one week. We calculate the time consistency of a solution as a lexicographic function of the number
of time classes per user. Regarding optimization methods, this formulation is more time consuming than
a traditional min-max objective, but it returns a more detailed Pareto front approximation that helps
decision makers to select the appropriate solution. TC-DARP extends the TC-VRP by considering time
windows and maximum ride times in a problem with multiple destinations. This problem was studied in
the context of door-to-door transportation of children with disabilities in region Auvergne-Rhone-Alpes
in France.

To compute Pareto front approximations, we developed a matheuristic framework called SPeC based
on an epsilon constraint procedure and a set partitioning problem. An initial set of routes is produced by
a LNS matheuristic previously proposed for the FSM-DARP-RC in Tellez et al. [36]. Additional routes
are generated by an extension of this algorithm to the DARP with multiple time windows and minimal
waiting time. At each iteration, a subset of routes is chosen to feed the SPEC procedure. Experiments
show the high performance of the SPEC on real-life instances for up to 295 users. SPEC was also been
tested on literature instances and was shown to improve the state-of-the-art algorithm for the TC-VRP
benchmark.
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Some users with disabilities are very sensitive to inconsistent schedules. In this study, we show that
economic solutions are already fairly consistent with very few users having 3 time classes. In addition,
we found that in most instances, with a small increase in transportation costs (<1%), users schedules
with at most 2 time classes are possible. Finally, we show that allowing a flexible departure of routes
improves the transportation costs of highly consistent solutions.

Future researches concern implementing additional features of the real-life problem such as driver-
related constraints (working time, breaks, regulation and driver-consistency) and heterogeneous fleet. An
interesting question would be whether some vehicle routing applications with pickup and delivery would
need consistent services both at pickup and delivery locations.

8 Acknowledgements

We would like to thank the European Union through the European Regional Development Fund (ERDF)
and the French region Auvergne-Rhone-Alpes for their financial support of the NOMAJ project.

27



A Appendix

70 A.1 Generation of multiple time windows: gen MTW (H,u)

Algorithm 5: Generation of multiple time windows: function gen MTW (H, u)

Parameters: u: user considered. H = {hy,...,hp}: set of the M service times of user u sorted
in non-decreasing order.

Data: A: width of time classes.

Output: The set of multiple time windows W(H, u)

1 mtw <« 0 /* initialize an empty set of multiple time windows */
2 E — hl

3 h < h,l

4 fori=2,...,M do

5 if h; > h + A then

6 mtw < mtw U {{max{a,, ;h — A}, min{b, ;b + A}]}

7 h < h;

8 B <~ h;

9 mtw + mtwU {[max{a,, ;h — A}, min{b,, ;b + A}]}

10 return mtw
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A.2 Scheduling algorithm

Algorithm 6: Schedule evaluation

S VN

© w 3 o

10
11
12

13

14
15
16
17

18
19

20
21
22
23
24
25
26
27
28

29
30

31

32
33

Input: Route w = {1,..., M}.

Output: The set of service times h; Vi € w and the maximal route time shift AY, or -1 if

infeasible
hi < a1
H+0
F «+ b1 — hl
F' bl — h1

/* Phase 1: set up nodes at the earliest start

for i=2,...,M do

hi < max{a;; hi—1 + G—1 +ti—1,i}

if h; > b; then return -1

H<+ H+ max{O; a; — (hi,1 + tifl_’i + Cifl)}
F'« F

F + min{F; H + max{0;1; — h;}}

if i = M then F’' <« min{F’;H}

/* Phase 2: optimize route duration
AL+ F—F
hi+ hi +F'
for i=2,...,M do

| hi = max{hi_y + (1 +ti1a5ai)
/* Check route duration constraint
if (hps — h1) > T then return -1

/* Phase 3: check ride time constraints
for i=M—-2,...,1do
if ¢P then
u < user of pickup 4
0 (hdu - hpu + Cl) - Tu
if (6 > 0) then h,, < hy,, +¢
if hy, > b; then return -1
for j=p,+1,...,M do
L Wy <= max{aj; h]',1 + Cj*l + tjfl’k}
if h; > b; then return -1
if T, — (ha, — hp, +¢) <0 then
L return -1

return {h;|inw}, A

/* beginning of the service

/* total waiting time on the route
/* FTS latest start at node 1
/* FTS earliest start at node 1

/* route time shift

/* implies i = p,

*/
*/
*/
*/

*/

*/
*/

*/
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A.3 Parameters LSN-SCP

Parameters to generate pool £

x = 5% record-to-record acceptance criterion.

penalty = 10000 | penalty cost for incomplete solutions.

®" =10% minimal proportion of removed request used by removal operators.
T =45% maximal proportion of removed request used by removal operators.
p==6 roulette wheel parameter for the historical node-pair operator.
O';;”-t = 4-regret | repair operator for building the initial solution

n = 1000 launch frequency of the SCP.

Iters = 10000 max number of iterations.

P =1.25 RSCP coefficient to recompute the launch frequency of the SCP.
New parameters to generate pool Lyew

ITters = 250 max number of iterations.

n =00 the SCP is deactivated.

Table 12: Parameters LNS-SCP |[36].
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B TC-VRP

Instance Transportation cost Time
Chax <5 <4 <3 <2 <1 (min)
datab-15  663.2 663.2 663.2 6741 7823 11.6
datab-21  773.7 779.1 779.1 779.1 8173 21.9
datab-25 6174 6174 6174  622.2 669.0 29.1
datab-26 ~ 767.6 7676 7719 7788 8159 45.8
datab-27  934.6 9346 934.6 942.0 1026.1 61.2
datab-32  984.9 984.9 9849 989.9 1034.5 22.1
datab—41 1420.7 1420.7 1422.6 1461.6 16159 126.9
datab-44 1142.9 11429 11429 11494 12203 743
datab—46 1458.9 14589 14654 1492.9 1607.2 1144
datab—48 1440.8 1449.4 14524 1459.8 1597.8 154.9
datab-55 1569.1 1569.1 1571.1 1581.0 1696.9 1394
datab-59 2714.8 2721.5 2721.5 2883.6 31159 281.3
datab—64 2082.0 2082.0 2100.8 21124 2304.2 118.9
datab—65 1759.4 1759.4 1766.2 1777.1 1923.9 128.6
data6-15 689.4 689.4 6894  695.6  741.3 2.2
data6-21  792.0 7920 796.2 798.1  831.7 40.9
data6-25  680.9 680.9 683.5 6835  T728.7 329
data6-26  838.7 838.7 838.7 843.2 905.0 56.0
data6-27  949.8 949.8 949.8 954.0 1060.3 57.9
data6-32  991.1  991.1 991.1  996.2 1013.5 10.4
data6-41 1500.3 1500.3 1504.2 1506.7 1735.5  92.8
data6-44 1239.1 1239.1 1243.9 1244.6 14059 76.7
data6-46 1485.1 1485.1 1496.6 1526.0 1597.0 93.0
data6-48 1507.4 1507.4 1519.4 1531.6 1702.8 158.5
data6-55 1816.8 1816.8 1826.3 1854.4 1987.7 121.0
data6-59 2931.3 2931.3 2933.0 3037.4 3389.6 204.1
data6-64 2264.3 2264.3 2271.0 2305.6 2527.0 100.6
data6-65 1981.9 19819 1990.6 1998.3 2219.5 163.6

Table 13: Benchmark of [9]
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Instance Transportation cost Time
Cmax <5 <4 <3 <2 <1 (min)
data7-15  746.9 746.9 746.9 7526 790.3 11.9
data7-21 830.1  833.7 833.7 833.7 899.3 39.8
data7-25  719.5 7247 7247 7288  T767.9 349
data7-26 ~ 880.3  880.3 883.5 887.4  920.7 37.9
data7-27 1053.4 1053.4 1053.4 1056.5 1108.5  39.7
data7-32 1079.7 1079.7 1079.7 1097.3 1154.3 57.2
data7-41 1644.8 1644.8 1648.5 1661.0 17304 63.2
data7-44 12959 12959 1300.3 1307.0 1311.7 20.5
data7-46 1648.6 1648.6 1650.1 1664.6 1715.9 72.4
data7-48 1687.1 1698.9 1698.9 1712.0 1774.3 116.6
data7-55 1889.0 1889.0 1896.3 1918.0 2036.0 136.5
data7-59 3262.4 3262.4 3307.4 3596.6 38924 725.2
data7-64 25529 25529 2552.9 2583.6 2823.4 136.9
data7-65 2196.0 2196.0 2196.0 2224.2 2347.3 159.8
data8-15 7739 7739 7739 780.2 808.5 10.8
data8-21 898.4 8984 8984  905.0 956.3 37.8
data8-25  853.3 853.3 853.3 853.3 857.0 0.2
data8-26  962.5  962.5 962.5 970.8 998.2 35.2
data8-27 1184.8 11939 1193.9 1193.9 1220.6 17.6
data8-32 1144.0 1144.0 1152.8 1152.8 1181.7 35.8
data8-41 1886.8 1886.8 1888.5 1898.0 1954.3 63.9
data8-44 1409.0 1409.0 1409.0 14149 1441.2 288
data8-46 1758.5 1758.5 17729 17748 1817.2 33.8
data8-48 1815.7 1815.7 18209 1824.4 1898.1 125.7
data8-55 2007.7 2007.7 20154 2037.2 2104.0 120.0
data8-59 3545.7 3545.7 3580.5 3874.4 4020.5 4274
data8-64 2723.3 2723.3 2723.3 2743.0 2978.2 126.8
data8-65 2404.2 2404.2 24229 2433.5 25244 159.5
data9-15 7975 7975 7975 804.3 816.1 3.6
data9-21 998.6  998.6  998.6 1003.0 1008.9 5.7
data9-25 894.6 8946 894.6 894.6  908.1 1.6
data9-26 1024.6 1024.6 1024.6 1024.6 1028.0 0.4
data9-27 1210.6 1210.6 1210.6 1219.5 12419 12.3
data9-32 1187.7 1187.7 1199.4 1199.4 1204.9 6.4
data9-41 2022.8 2022.8 2022.8 2022.8 2032.1 6.3
data9-44 1532.5 1532.5 1532.5 1532.5 1595.1 54.1
data9-46 1827.0 1827.0 1827.0 1841.6 1871.0 30.7
data9-48 1973.5 1973.5 1973.5 1992.8 2007.7 28.6
data9-55 2176.0 2176.0 2176.0 2188.1 22759 70.3
data9-59 3913.0 3913.0 3916.3 3946.6 4025.3 96.3
data9-64 2942.6 2942.6 2964.9 2964.9 2999.6 28.8
data9-65 2586.5 2586.5 2586.5 2604.7 2624.2 68.0

Table 14: Benchmark of [9]
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