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This talk is inspired and adapted from previous talks given by my wonderful co-
authors Kyle Cranmer and Johann Brehmer. Thanks to them!
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Simulation-based inference
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θ, z,x ∼ p(θ, z,x)
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θ, z ∼ p(θ, z∣x)
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Bean machine Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables 

(stochastic execution traces
through simulator)

The Bean machine is a metaphore of simulation-based science:

→

θ → θ

x → x

z → z
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The case of particle physics
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SM with
parameters 

Simulated observables Real observations 

 

θ
x xobs

9 / 39



10 / 39



10 / 39



10 / 39



10 / 39



p(x∣θ) = p(z ∣θ)p(z ∣z )p(z ∣z )p(x∣z )dz dz dz

yikes!

∭ p s p d s d p s d
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Inference
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a) estimate  

(e.g., MLE)

b) construct con�dence
sets

c) estimate the posterior 

(or sample from it)

Problem statement(s)
Start with

a simulator that lets you generate  samples  (for parameters

 of our choice),

observed data ,

a prior .

Then,

N x ∼ p(x ∣θ )i i i

θi

x ∼ p(x ∣θ )obs obs true

p(θ)

θtrue
p(θ∣x )obs

12 / 39



Ingredients

Statistical inference requires the computation of key ingredients, such as

the likelihood ,

the likelihood ratio ,

or the posterior ,

but none are usually tractable in simulation-based science!

p(x∣θ)

r(x∣θ , θ ) =0 1 p(x∣θ )1
p(x∣θ )0

p(θ∣x)
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Inference algorithms
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Inference algorithms
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The Neyman-Pearson lemma states that the likelihood
ratio

is the most powerful test statistic to discriminate between
a null hypothesis  and an alternative .

The frequentist (physicist's) way

r(x∣θ , θ ) =0 1
p(x∣θ )1

p(x∣θ )0

θ0 θ1
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De�ne a projection function  mapping observables  to a summary

statistic .

Then, approximate the likelihood  with the surrogate .

From this it comes

s : X → R x

x = s(x)′

p(x∣θ) (x∣θ) = p(x ∣θ)p̂ ′

≈ = (x∣θ , θ ).
p(x∣θ )1

p(x∣θ )0
(x∣θ )p̂ 1

(x∣θ )p̂ 0
r̂ 0 1
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Discovery of the Higgs boson at 5-σ
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The likelihood ratio trick
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The solution  found after training approximates the optimal classi�er

Therefore,

ŝ

(x) ≈ s (x) = .ŝ ∗

p(x∣θ ) + p(x∣θ )0 1

p(x∣θ )1

r(x∣θ , θ ) ≈ (x∣θ , θ ) = .0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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To avoid retraining a classi�er  for every  pair, �x  to  and train a

single parameterized classi�er  where  is also given as input.

Therefore, we have

such that for any ,

ŝ (θ , θ )0 1 θ1 θref
(x∣θ , θ )ŝ 0 ref θ0

(x∣θ , θ ) =r̂ 0 ref (x∣θ , θ )ŝ 0 ref

1 − (x∣θ , θ )ŝ 0 ref

(θ , θ )0 1

r(x∣θ , θ ) ≈ .0 1 (x∣θ , θ )r̂ 1 ref

(x∣θ , θ )r̂ 0 ref
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Inference
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Amortizing Bayes

The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

As before, it can be approximated e.g. from a neural network classi�er, but trained
to distinguish  from , hence resulting in

This enables direct and amortized posterior evaluation.

p(θ∣x) = = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =
p(x)
p(x∣θ)

x, θ ∼ p(x, θ) x, θ ∼ p(x)p(θ)

(x∣θ) ≈ = .r̂
p(x)p(θ)
p(x, θ)

p(x)
p(x∣θ)

22 / 39



Gold mining

We cannot compute .

However, using techniques from probabilistic programming we can often extract

the joint likelihood ratio 

the joint score .

p(x∣θ) = p(x, z∣θ)dz∫

r(x, z∣θ) = p (x,z)ref

p(x,z∣θ)

t(x, z∣θ) = ∇ log p(x, z∣θ)θ
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This is interesting because

the joint likelihood ratio is an unbiased estimator of the likelihood ratio,

the joint score provides unbiased gradient information

 use them as labels in supervised NN training!⇒
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RASCAL
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Showtime!
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Case 1: Hunting new physics at particle colliders
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With enough training data, the ML algorithms get the likelihood function right.

Using more information from the simulator improves sample ef�ciency
substantially.
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Case 2: Dark matter substructure from gravitational lensing

28 / 39



29 / 39



30 / 39



Case 3: Constraining dark matter with stellar streams

―
Image credits: C. Bickel/Science. 31 / 39



Interaction of Pal 5 with two dark matter clumpsInteraction of Pal 5 with two dark matter clumps
Later bekijkLater bekijk…… DelenDelen

―
Image credits: D. Erkal. 32 / 39

https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg
https://t.co/U6KPgLBdpz?amp=1


Preliminary results for GD-1 suggest a preference for CDM over WDM.
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Robotic grasping with SBI, atRobotic grasping with SBI, at……
Later bekijkLater bekijk…… DelenDelen

Case 4: Robotic grasping
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https://www.youtube.com/watch?v=-VWclv-xqGE
https://www.youtube.com/channel/UCJWL9RHD2nZa85lK-k0v8lA


Robotic grasping with SBI, atRobotic grasping with SBI, at……
Later bekijkLater bekijk…… DelenDelen

Case 5: Inference in hierarchial m
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https://www.youtube.com/watch?v=-VWclv-xqGE
https://www.youtube.com/channel/UCJWL9RHD2nZa85lK-k0v8lA


The frontier
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In summary
Much of modern science is based on simulators making precise predictions,
but in which inference is challenging.

Machine learning enables powerful inference methods.

They work in problems from the smallest to the largest scales.

Further advances in machine learning will translate into scienti�c progress.
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Thanks!
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The end.
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