
Scaling AI for Probabilistic
Programming in Scienti�c

Simulators
EuroHPC's LUMI kick-off, Belgium

January 14, 2021

Gilles Louppe
g.louppe@uliege.be

1 / 27

mailto:g.louppe@uliege.be


―
Credits: Johann Brehmer. 1 / 27



Simulation-based inference

―
Credits: Johann Brehmer. 2 / 27



Bayesian inference

Unconditioned probabilistic program.

θ, z,x ∼ p(θ, z,x)

3 / 27



Conditioned probabilistic program.

θ, z ∼ p(θ, z∣x)

3 / 27



―
Credits: Johann Brehmer. 4 / 27



Probabilistic programming
Probabilistic programming is a machine learning framework allowing us to

write programs that de�ne probabilistic models;

run automated Bayesian inference of parameters conditioned on observed
outputs (data).

Probabilistic programming normally requires one to implement a probabilistic
model from scratch, in the chosen language/system.

5 / 27



Key idea

Many HPC simulators are stochastic and they de�ne probabilistic models by
sampling random numbers. Scienti�c simulators are probabilistic programs!

We "just" need an infrastructure to execute them as such.

6 / 27



A new probabilistic programming system
for simulators and HPC, based on PyTorch.

7 / 27



Forward execution

Run forward and catch all random choices ("hijack" all calls to RNGs).

Record an execution trace: a record of all parameters, random choices,
outputs

8 / 27



Inference

Approximate the distribution of parameters that can produce (explain)
observed data, using inference engines like MCMC.

This is hard and computationally costly.

Need to run simulator up to millions of times

Simulator execution and MCMC inference are sequential

MCMC has "burn-in" and autocorrelation.

9 / 27



Good news: We can amortize the cost of inference using deep learning.

10 / 27



Training (recording simulator behavior)

Deep recurrent neural network learns all random choices in simulator.

Dynamic NN: grows with simulator complexity

Layers get created as we learn more of the simulator.

100s of millions of parameters

Costly, but amortized: we need to train only once per given model

11 / 27



Inference (controlling simulator behavior)

Trained deep NN makes intelligent choices given data observation

Embarassingly parallel distributed inference

No "burn-in period". No autocorrelation.

12 / 27



Inference (controlling simulator behavior)

Trained deep NN makes intelligent choices given data observation

Embarassingly parallel distributed inference

No "burn-in period". No autocorrelation.

12 / 27



13 / 27



Use case: LHC
Inverting the Large Hadron Collider

14 / 27



Large Hadron Collider

Seek to uncover secrets of the universe (new particles).

Today, physicists compare observed data to detailed simulations, using
billions of CPU hours for scans of simulation parameters (inef�cient, labor-
intensive, sometimes ad-hoc).

PyProb replaces this with automated, ef�cient inference; grounded in a
statistical framework.

15 / 27



Physics expressed in simulator code

We base on our proof-of-principle on existing Sherpa simulation (1M lines of
C++ code).

Execution traces represent particle physics collisions and decays.

PyProb will enable interpretability by relating a detector observation to
possible traces that can be related back to the physics.

16 / 27



17 / 27



17 / 27



17 / 27



PyProb gives access to all latent variables:
allows answering any model-based question.

18 / 27



Reaching supercomputing scale

19 / 27



Need for HPC resources and considerable optimization,
for both simulation and NN training.

20 / 27



Platforms and experimental
setup

NERSC Cori Cray XC40

NERSC Edison Cray XC30

Intel Diamond Cluster

21 / 27



Scaling

22 / 27



Large-scale training

Dataset of 15M Sherpa execution
traces (1.7 TB)

Fully synchronous data parallel
training on 1024 nodes (32768
cores) using PyTorch-MPI

Global mini-batch size of 128000

Overall 14000x speedup

Months of training in minutes

Ability to retrain model quickly is
transformative for research

23 / 27



Reminder: We are doing all this to performance inference.

24 / 27



Science results

First tractable Bayesian inference for LHC physics
(Full posterior and interpretability)

25 / 27



Summary
PyProb is a probabilistic software framework to execute and control exisiting
HPC simulator code bases.

Synchronous data parallel training of a NN is made possible thanks to HPC.

AI-powered probabilistic programming is for the �rst time practical for large-
scale, real-word science models.

This is just the beginning...

26 / 27



A team effort

27 / 27



References
Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, J., ... & Ma, M.
(2019). Etalumis: Bringing Probabilistic Programming to Scienti�c Simulators
at Scale. arXiv preprint arXiv:1907.03382.

Baydin, A. G., Heinrich, L., Bhimji, W., Gram-Hansen, B., Louppe, G., Shao, L., ...
& Wood, F. (2018). Ef�cient Probabilistic Inference in the Quest for Physics
Beyond the Standard Model. arXiv preprint arXiv:1807.07706.

Casado, M. L., Baydin, A. G., Rubio, D. M., Le, T. A., Wood, F., Heinrich, L., ... &
Bhimji, W. (2017). Improvements to Inference Compilation for Probabilistic
Programming in Large-Scale Scienti�c Simulators. arXiv preprint
arXiv:1712.07901.

27 / 27


