Upscaling the impact of coastal hypoxia from species to ecosystem function. Bioturbation on the Black Sea Shelf.

Arthur Capet, Fatima Anrade Pena, Audrey Plante, Adrian Teca, Lei Chou, Nathalie Fagel, Marilaure Grégoire

MAST-FOCUS, Liège University, Liège, Belgium
Coastal hypoxia

Breitburg et al, 2018

Soetart et al, 2000

A. Capet (MAST, Ulîège)

Coastal hypoxia

Breitburg et al, 2018

Soetart et al, 2000

A. Capet (MAST, Ulîège)
Question & Approach

Coastal Hypoxia

Macrobenthos

Macrobenthos

Hypoxia: from species to ecosystem
Habitat

Environmental Conditions (e.g. T°, light, orgC, $[O_2]$) shape populations
Question & Approach

Functions

- Providing food, shelter
- Regulating erosion, eutrophication, carbon burial

Breitburg et al, 2018
Soetart et al, 2000
Question & Approach

Coastal Hypoxia \(\rightarrow\) Habitat \(\rightarrow\) Macrobenthos

Functions

Impact on biogeochemical cycling

Bioturbation

Bioirrigation

Breitburg et al., 2018

Soetart et al., 2000

A. Capet (MAST, Uliège)
Question & Approach

Coastal Hypoxia → Habitat → Macrobenthos

Functions

Scales

km → mm
Question & Approach

Traits

Modalities of behavior:
- Mobility
- Feeding type
- ..
Question & Approach

- **Meta-Modelling**
 - Involve different models at different process scales
 - **Focus model**: Diagenetic model, 1D, 50cm of sediments
 - **General model**: Biogeochemical model, 500km the Black Sea
 - **Meta-Modelling**: To mimic the Focus model in the General Model

Soetart et al, 2000
Results

Trait Mapping

Question & Approach

Results

- Trait Mapping
- Diagenetic Modelling

Conclusions
Results
Trait Mapping

Stations

August 1995
Wijsman et al., 1999
~30 stations

May 2016
~15 stations

August 2017
~7 stations

Queiros et al., 2015
A. Capet (MAST, Uliège)
Results
Trait Mapping

Species

VanVeen Grabs

Allita Succinea

Mytilus Galloprovincialis

Abundance and biomass of dominant macrobenthic species
Results

Trait Mapping

Traits

- Method of sediments reworking
- Propensity to move through the sediment
- Max sediment dwelling depth
- Feeding mechanisms
- Diet
- Larval development mechanisms
- Propagule dispersal
- Larval type
- Degree of attachment
- Relative adult mobility
- Adult life habit
- Maximum adult size
- Tolerance to disturbance

Modalities

<table>
<thead>
<tr>
<th>Trait</th>
<th>Modalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of sediments reworking</td>
<td>(1) Epifauna that bioturbate at the sediment-water interface,</td>
</tr>
<tr>
<td></td>
<td>(2) surficial modifiers (<1-2 cm)</td>
</tr>
<tr>
<td>(Reworking mode: Ri)</td>
<td>(3) upward/downward conveyors that actively transport sediment to/from the sediment surface</td>
</tr>
<tr>
<td></td>
<td>(4) Biodiffusors</td>
</tr>
<tr>
<td>Propensity to move through the sedimentary matrix</td>
<td>(1) in a fixed tube</td>
</tr>
<tr>
<td>(Mobility : Mi)</td>
<td>(2) limited movement, sessile, but not in a tube</td>
</tr>
<tr>
<td></td>
<td>(3) slow movement</td>
</tr>
<tr>
<td></td>
<td>(4) free movement via burrow system</td>
</tr>
</tbody>
</table>
Results

Trait Mapping

In-Situ
Median Grain Size
Silt Content
OrgC, TotN

Model (3D GHER-BAMHBI)

Physics:
Temperature
Salinity
Age of bottom waters
Bottom stress

Biogeochemistry:
Hypoxia / Oxygen
OrgC rain / sed. content
PAR

Environ.
Queiros et al, 2015

A. Capet (MAST, Uliège) Hypoxia: from species to ecosystem
Results
Trait Mapping

Stations

Traits

<table>
<thead>
<tr>
<th>Species</th>
<th>Feeding Mechanisms</th>
<th>Adult Longevity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mya arenaria</td>
<td>SF 2 DF 1 GB 0</td>
<td><2 2-5 >5</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>3 0 0</td>
<td>0 1 3</td>
</tr>
<tr>
<td>Nerela rava</td>
<td>0 0 3</td>
<td>3 0 0</td>
</tr>
<tr>
<td>Terebellides stromeli</td>
<td>0 3 0</td>
<td>0 0 3</td>
</tr>
<tr>
<td>Lagis koreni</td>
<td>0 3 0</td>
<td>3 1 0</td>
</tr>
</tbody>
</table>

Species

Environ.
Results
Trait Mapping

Species

Stations

Traits

<table>
<thead>
<tr>
<th>Species</th>
<th>Feeding mechanisms</th>
<th>Adult Longevity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mya arenaria</td>
<td>SF: 2, DF: 1, GB: 0</td>
<td>Age: 1, 3</td>
</tr>
<tr>
<td>Mytilius galloprovincialis</td>
<td>SF: 3, DF: 0, GB: 0</td>
<td>Age: 1, 3</td>
</tr>
<tr>
<td>Nerelrava</td>
<td>SF: 0, DF: 3, GB: 3</td>
<td>Age: 0, 0</td>
</tr>
<tr>
<td>Terebellides stroemii</td>
<td>SF: 0, DF: 0, GB: 0</td>
<td>Age: 0, 3</td>
</tr>
<tr>
<td>Lagis koreni</td>
<td>SF: 0, DF: 3, GB: 3</td>
<td>Age: 1, 0</td>
</tr>
</tbody>
</table>

A. Capet (MAST, Uliège) Hypoxia: from species to ecosystem 4/10
Results

Trait Mapping

Multiple Linear Regression

\[f(\text{Age}_{\text{std}}, \text{oxy}_{\text{av}}, \text{depth}, \text{oxy}_{\text{std}}, \text{H}_{\text{index}}) \]

\[R^2 = 0.7938, \quad \text{Adjusted } R^2 = 0.7446 \]

\[\text{Mi}_4: \text{free movement, burrower} \]

\[+\text{DEPTH} \]
Results
Trait Mapping

\[f(Age_{\text{std}}, oxy_{\text{std}}, \text{depth}) \]
\[R^2 = 0.41, \text{Adjusted } R^2 = 0.3428 \]

Ri1: Epifauna

Age_{\text{std}} (in days)

Oxy_{\text{std}} (in mmol/m^3)
Results

Trait Mapping

Bioturbation Community Potential (BP_c)

$$BP_c = \sum_{i=1}^{n \text{ species}} \sqrt{\text{Biomass}_i \cdot \text{Mobility}_i \cdot \text{Reworking}_i}$$

Solan et al, 2004
Results
Diagenetic Modelling

1 Question & Approach

2 Results
- Trait Mapping
- Diagenetic Modelling

3 Conclusions
Results

Diagenetic Modelling

Capet et al, 2016

Region 1 23,7.10³ km²; 15-57m
- D_C: 25 mmolC/m²/d
- Oxic: 18.3%
- Denit.: 5.9%
- Anox.: 76.0%

Region 2 33,9.10³ km²; 26-109m
- D_C: 9.8 mmolC/m²/d
- Oxic: 41.8%
- Denit.: 6.3%
- Anox.: 51.9%

Region 3 21,4.10³ km²; 46-120m
- D_C: 4.3 mmolC/m²/d
- Oxic: 68.8%
- Denit.: 5.1%
- Anox.: 26.1%
Results

Diagenetic Modelling

Denitrification ratio as a function of:
- Benthic respiration
- Bottom oxygen concentration
Results

Diagenetic Modelling

A. Capet (MAST, Uliège)

Hypoxia : from species to ecosystem
Results
Diagenetic Modelling

A. Capet (MAST, Uliège)

Hypoxia: from species to ecosystem

Region 1: 23.7 x 10^6 km²; 15-57m
- Dissolved Oxygen (DO): 25 mmol/Kg
- Oxidation: 18.3%
- Denitrification: 1.9%
- Anoxia: 76.0%

Region 2: 33.9 x 10^6 km²; 26-109m
- DO: 9.8 mmol/Kg
- Oxidation: 41.3%
- Denitrification: 6.3%
- Anoxia: 51.9%

Region 3: 21.4 x 10^6 km²; 46-120m
- DO: 4.3 mmol/Kg
- Oxidation: 68.8%
- Denitrification: 5.1%
- Anoxia: 25.1%
Conclusions

- Sediments are a nightmare for marine modellers..
Conclusions

- Sediments are a nightmare for marine modellers..
- .. but should be considered to resolve shelf biogeochemistry
Conclusions

- Sediments are a nightmare for marine modellers..
- .. but should be considered to resolve shelf biogeochemistry
- We propose a methodology to do so in large scale oceanic models
Conclusions

Thank for your attention

(BenthOx)

(2016-2020)