Are dynamic vegetation models able to simulate accurately water stress: confronting δ 13C predictions of the DVM CARAIB with field values? A. Hambuckers, L. François, I. Louidy, J. Wellens

- Improve the outputs of the DVM CARAIB model for wheat;
- Based on innovative traits parametrization;
- In Morocco and Belgium;
- Reveal species adaptations to climate and local conditions.

Dynamic vegetation models (DVM)

- inputs & outputs -

Inputs:

- monthly climate
- soil texture and colour
- elevation
- plant traits
- CO₂

Outputs:

- hydrology
- net primary productivity (NPP)
- dark respiration
- soil respiration
- ~ type abundance (fraction)
- fire

CARAIB a DVM example

DVM simulations based on Plant Functional Types

- some examples -

Annual global terrestrial ecosystems gross primary production (GPP) from MODIS (2000-2010), MTE (1982-2010) and ISIMIP models (1971-2010)

Which traits do we need ?

- to simulate more than PFT -

• *Bioclimate*: tolerance to cold and to drought, germination requirements ...

```
Extracted from 🔗
```

- <u>*Physiology*</u>: respiration response to temperature, photosynthesis response to temperature, slope of stomatal conductance ...
- <u>Structure</u>: max. height, specific leaf area, C/N ratios, longevity of the leaves, root depth, mortality rate...

Mean regional values or default values of PFT

DVM simulations using Bioclimate Affinity Groups

- Lack of trait adaptation ? -

BAG composition

- 1 Achillea, Alchemilla, Angelica, Campanula, etc.
- 2 Brassicaceae, Ranunculaceae, etc.
- 3 Anthemis, Artemisia, Bidens, Calystegia, etc.
- 4 Asteroideae, Cichorioideae, Poaceae, etc.
- 5 Anemone, Gypsophila, Helleborus, etc.
- 6 Ephedra, Ulex

Ν

- 7 Alnus viridis, Arctostaphyllos alpinus, Betula nana, etc.
- 8 Frangula alnus, Lonicera, Prunus, Rubus, Sorbus, Vaccinium, Viburnum
- Berberis vulgaris, Crataegus, Genista, Rhamnus, Sambucus, etc.
- 10 Arctostaphyllos uva-ursi, Calluna vulgaris, Daphne
- 11 Buxus sempervirens, Hedera helix, Ilex aquifolium, Ligustrum vulgare, Viscum
- 12 Cistus, Myrtus communis
- 13 Betula, Salix
- 14 Alnus, Alnus glutinosa, Corylus avellana, Quercus, Quercus robur, Populus, etc.
- 15 Acer, Fraxinus, Fraxinus excelsior, Tilia cordata, Ulmus
- 16 Acer campestre, Carpinus betulus, Fagus sylvatica, Tilia platyphyllos
- 17 Castanea, Juglans, Ostrya, Quercus pubescens
- 18 Olea europaea, Pistacia, Phillyrea, Quercus ilex, Quercus suber
- 19 Larix decidua
- 20 Picea abies, Pinus, Pinus sylvestris
- 21 Abies
- 22 Cupressaceae, Juniperus, Juniperus communis
- 23 Pinus cembra
- 24 Abies alba, Taxus baccata
- 25 Cedrus, Pinus halepensis, Pinus pinaster

Dury M, Hambuckers A, Warnant P, Henrot A, Favre E, Ouberdous M, François L. 2010. Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. *iForest* 4: 82-99

DVM to simulate a single species (1980-1999)

- Pycnanthus angolensis -

Here, adapting traits increases NPP

- Validation?
- Minimum threshold of presence?

Dury, M., Mertens, L., Fayolle, A., Verbeeck, H., Hambuckers, A., François, L., 2018. Refining species traits in a dynamic vegetation model to project the impacts of climate change on tropical trees in Central Africa. Forests 9.

DVM to simulate an ensemble of grassland plants

Measured VS modeled gross primary productivity (GPP), blind run, Grillenburg

Minet J, Laloy E, Tychon B, François L. 2010. Bayesian inversions of a dynamic vegetation model at four European grassland sites. Biogeosciences, 12(9), 2809-2829.

i Variations of the traits

• Between species and species type (climate, altitude, irradiance, site fertility...)

	Min	Max	Species	Examples
Sapwood N (%)	0.04	0.59	59	Martin et al. 2014, New Phytol., 204, 484-495
SLA (10 ⁻³ sq. m / g)	10	32	10	Verbeeck, et al. 2014 J. Trop. For. Sci. 26, 409-419.
Leaf N (%)	0.85	2.67	10	Luo, T., Luo, J., Pan, Y., 2005. Oecologia 142, 261-273.

• Within species (climate, altitude, irradiance, site fertility...)

in Poorter et al (2018, New Phytol. doi: 10.1111/nph.15206), 1300 individuals of 383 Amazonian species : 56 % of variation between species, <u>44 % within species (~acclimation)</u>

• Inside individuals (light, age, height, season ...)

ii Variations of the traits

• Relationships with environmental factors

P/PE = Precipitation/Pan evoporation

Eucalyptus loxophleba ssp. lissophloia

Steane, D.A., McLean, E.H., Potts, B.M., Prober, S.M., Stock, W.D., Stylianou, V.M., Vaillancourt, R.E., Byrne, M., 2017. Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biological Journal of the Linnean Society 121, 484-500.

iii Variations of the traits

Specific leaf area data for Picea abies, collected by Alain Hambuckers

iv Variations of the traits

Evaluation of the importance of plant traits to improve prediction accuracy at tree species level with the DVM CARAIB

- SLA
- leaf C:N
- sapwood C:N
- Temporal evaluation: throughout the growing season
- Spatial evaluation: Morocco & Belgium

Methods

- ~ n sites, in Morocco & Belgium
- Biomass and growth: height, C/N, biomass, yield
- Biomass and production of leaves: LAI(hemispherical pictures), leaf longevity, SLA, C/N
- Comparison of CARAIB simulations with these productivity estimates
- Correlations between traits and climatic variables for further modelling developments (dynamic trait approach)

