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Abstract 

Modern lifestyle curtails sleep and increases night-time work and leisure activities. This has 

a deleterious impact on vigilance and attention, exacerbating chances of committing 

attentional lapses, with potential dramatic outcomes. Here, we investigated the brain 

signature of attentional lapses and assessed whether cortical excitability and brain response 

propagation were modified during lapses and whether these modifications changed with 

aging. We compared electroencephalogram (EEG) responses to transcranial magnetic 

stimulation (TMS) during lapse and no-lapse periods while performing a continuous 

attentional/vigilance task at night, after usual bedtime. Data were collected in healthy 

younger (N=12; 18-30 y) and older individuals (N=12; 50-70 y) of both sexes. The amplitude 

and slope of the first component of the TMS-Evoked Potential (TEP) were larger during 

lapses. In contrast, TMS response scattering over the cortical surface, as well as EEG 

response complexity, did not significantly vary between lapse and no-lapse periods. 

Importantly, despite qualitative differences, age did not significantly affect any of the TMS-

EEG measures. These results demonstrate that attentional lapses are associated with a 

transient increase of cortical excitability. This initial change is not associated with detectable 

changes in subsequent effective connectivity - as indexed by response propagation - and 

are not markedly different between younger and older adults. These findings could 

contribute to develop models aimed to predicting and preventing lapses in real life situations.   

Keywords: Vigilance, lapses, Transcranial Magnetic Stimulation, Electroencephalogram, 

Errors, Aging, Sleep 
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Statement of Significance 

We show that attentional lapses as detected during a visuomotor attentional task are 

characterized by a transient increase of cortical excitability, measured using EEG responses 

to TMS pulses, without affecting brain effective connectivity as indexed by response 

propagation over the cortical surface. Importantly cortical excitability changes were not 

markedly different in younger and older adults. These results shed new light on the brain 

signature of attentional lapses and could contribute to better predict and prevent lapses in 

real-life situations. 
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1. Introduction 

Attention is a cognitive process that is required for the normal functioning of other 

cognitive domains. When attention is not focused on the environment, we can experience a 

detachment that may lead to lapses of attention. Lapses are more prevalent when vigilance 

decreases, and can contribute to errors1. Their full electrophysiological characterization 

could therefore contribute to error detection, anticipation, and prediction, which is of foremost 

importance in many disciplines in which they can have catastrophic consequences (e.g. 

driving, medicine, military, industry, etc.). 

The prevalence of attentional lapses is tightly related to the regulation of sleep and 

wakefulness. During the day, while well-rested, they are relatively rare, because sleep need 

is low and the circadian system helps to maintain wakefulness2. If one extends wakefulness 

during the night beyond habitual sleep time, sleep need further increases while the circadian 

system promotes sleep, such that lapses become more frequent1,3. Invasive recordings in 

animals have associated lapses with local and transient periods of neuronal silence (OFF-

periods), which resemble what happens during sleep4,5. Intracranial recordings in a few 

epileptic patients showed that neuronal spiking in response to stimulations is attenuated, 

delayed, and lengthened before cognitive lapses6. In addition, slower EEG activity of local 

field potentials remains relatively high prior to and during lapses6. A similar phenomenon 

may therefore take place in animals and humans during lapses of attention. Yet, the neural 

bases of attentional lapses have not been fully characterized in healthy human beings, likely 

in part because isolating an attention lapse is not straightforward. Boundaries of lapses are 

difficult to define since a lapse often consists in the absence of response to stimulus7. In 

addition, lapses may alter sensory perception or higher cognitive functions8. In this context, 

transcranial magnetic stimulation coupled to electroencephalography (TMS-EEG) represents 

an ideal mean to probe the neural mechanisms underlying lapses. TMS triggers brain 

responses over a relatively small area of the cortex and mimics normal brain functioning, 
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while bypassing sensory inputs and processing9. Once EEG is recorded, one can 

characterize brain responses in terms of shape, propagation, and complexity9. 

Cortical excitability reflects the responsiveness and response selectivity of cortical 

neurons to stimulations and can be probed with TMS-EEG9. Its sensitivity to both sleep need 

and the circadian system has been demonstrated10,11, as well as its changes during sleep12. 

Cortical excitability progressively increases with wakefulness extension, with local influences 

of the circadian system exacerbating the night-time increament11. TMS response 

propagation varies during prolonged wakefulness. When focusing on the night-time period, 

when one would be normally asleep, participants with lower response propagation perform 

worse on a vigilance task, suggesting that a reduction in response spreading at night is 

associated with worse performance and a potentially higher number of lapses13. During slow 

wave sleep, a further increase of cortical excitability and a limited response propagation is 

observed12 concomitantly to a reduction in response complexity14. Whether similar changes 

happen during attentional lapses is unknown. 

Modifications in sleep and wakefulness regulation are hallmarks of the aging 

process15,16. Sleep becomes “shallower”, more fragmented, and more sensitive to challenges 

over the adult lifespan17,18, while the circadian system advances sleep timing and seems to 

send a weaker sleep and wakefulness promoting signal19,20. However, one suffers less from 

acute sleep loss in aging, such that lapses are less common in older individuals during sleep 

deprivation21. Cortical excitability dynamics during wakefulness extension is also dampened 

in aging, reflecting both a reduction in strength of both sleep homeostasis and circadian 

signals22. Whether age-related changes in sleep-wake regulation are reflected in 

modifications in cortical excitability and brain response propagation during lapses of 

attention has not been investigated.  

Here, we performed a retrospective analysis of TMS-EEG studies to compare TMS-

evoked potentials (TEP), as a probe for cortical excitability, and TMS response spatial 
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propagation over the cortex, as a proxy for effective connectivity, during lapses of attention 

versus normal periods with no-lapse. We collected data recorded at night in healthy younger 

and older adults, and assessed whether lapses of attention were associated with detectable 

alteration in cortical excitability and TMS response propagation. Our hypothesis was that 

cortical excitability and response propagation would, respectively, increase and decrease 

during lapses, and to a greater extent in younger compared to older individuals.  

2. Methods 

Data included in this analysis were retrospectively selected among three different 

studies, including repeated assessment of cortical excitability using TMS-EEG over the 

superior frontal gyrus during wakefulness extension protocols11,15,22. All studies were 

approved by the Ethics Committee of the Faculty of Medicine at the University of Liège, 

Belgium. Participants gave their written informed consent prior to entering the study and 

received financial compensation. 

2.1. PARTICIPANTS  

Participants’ exclusion criteria were as follows: Body Mass Index (BMI) ≤ 18 and ≥ 

29; recent psychiatric history or severe brain trauma; addictions, chronic medication affecting 

the central nervous system; hypertension; smoking, excessive alcohol (> 14 units/week) or 

caffeine (> 9 cups/day) consumption; shift work in the past 6 months; transmeridian travel in 

the past two months; anxiety, as measured by the 21-item self-rated Beck Anxiety Inventory 

(score ≥ 10)23; depression, as assessed by the 21-item self-rated Beck Depression Inventory 

(score ≥ 14)24. Participants with stable treatment (for > 6 months) for hypertension and/or 

hypothyroidism were included in the study. Participants with sleep apnea (apnea-hypopnea 

index ≥ 15/hour) were excluded based on in-lab adaptation and screening night of 

polysomnography. Older participants with clinical symptoms of cognitive impairment were 

excluded [Dementia rating scale < 13025 or Mini mental state examination (MMSE) < 2726]. 
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Twelve individuals aged between 18 and 30 years old and 12 individuals aged between 50 

and 70 were included in the current analyses (Table 1). 

[Table 1 here] 

2.2. EXPERIMENTAL PROTOCOLS  

Structural MRI was performed on a 3-Tesla MR scanner (MAGNETOM Prisma, 

Siemens, Germany) through a T1-weighted MPRAGE sequence (TR = 7.92 ms, TE = 2.4 

ms, TI = 910 ms, FA = 15°, FoV = 256 x 224 x 176 mm³, 1 mm isotropic spatial resolution). 

Structural data were used for TMS-neuronavigation and EEG source reconstruction. All 

participants completed a “pre-test” TMS-EEG session to select the optimal stimulation point 

over the superior frontal gyrus to avoid muscular or electromagnetic artefacts. Participants 

were then asked to maintain regular sleep-wake schedules during the 7 days preceding the 

experiments (+/- 30 min). Compliance was verified using sleep diaries and wrist actigraphy 

(Actiwatch©, Cambridge Neurotechnology, UK) which was analysed with pyActigraphy (DOI: 

http://doi.org/10.5281/zenodo.2537921) to assess sleep and wake times. If a participant 

deviated from her/his schedule > 30 min more than once over the 7 days preceding the 

experiment, s/he was either excluded or rescheduled to a later date. On the day preceding 

the experiment, participants arrived at the laboratory 6 to 8 hours before their habitual 

bedtime and were kept in dim light (< 5 lux) for 5 to 6.5 hours preceding bedtime. They then 

slept in the laboratory at their habitual sleep and wake times under EEG recording (in 

darkness, 0 lux). A TMS-compatible EEG cap was placed upon awakening and remained for 

the whole duration of the protocol. Participants remained awake in dim-light (5 lux) for the 

2015, 2911, or 35 hours22 following wake time, including repeated TMS-EEG assessments. To 

increase the likelihood of lapses, only night-time TMS-EEG recordings were considered in 

the analyses in each study, following ~19h15 and ~24h11,22 of continuous wakefulness, 

corresponding to 2AM and 7AM for a subject waking up at 7AM (Table 1; Figure 1A; 

Supplementary Table S1). To be included in the analyses, the session had to include at 

least 20 lapses as defined below.  
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2.3. TMS-EEG DATA ACQUISITION 

Stimulation and neuronavigation were achieved with a Navigated Brain Stimulation 

(NBS) system (Nexstim, Helsinki, Finland) which uses a focal bipulse 8-shape coil equipped 

with infrared position sensors and a head tracker allowing for coregistration of T1-weighted 

structural MR images. Recording was done with a 60-channel TMS-compatible EEG 

amplifier (Eximia, Helsinki, Finland), equipped with a sample-and-hold circuit to provide 

TMS-artefact-free data from 5 ms post-stimulation27. Electrooculogram (EOG) was recorded 

with two additional bipolar electrodes. EEG signal was band-pass filtered between 0.1 and 

500 Hz and sampled at 1450 Hz. Prior to each recording session, electrodes impedance was 

maintained < 5 kΩ. Auditory EEG potentials evoked by the TMS clicks and sensory 

stimulation were minimized by playing a continuous pink noise through earphones and 

applying a thin foam layer between the EEG cap and the TMS coil9. Stimulation point was 

set on the superior frontal gyrus, contralateral hemisphere to subject’s handedness, due to 

its sensibility to sleep pressure10, the reduced probability to elicit involuntary reaction such as 

muscular twitches or eye blinks when stimulated, and its direct involvement in the attentive 

task used28,29. Each session included around 250 pulses, with interstimulus intervals that 

were randomly set to 1900 to 2200 ms. Participants were continuously monitored by a 

research staff member during TMS/EEG recording to ensure they would not fall asleep.  

2.4. COMPENSATORY TRACKING TASK 

During each TMS/EEG recording, participants were instructed to perform a 

Compensatory Tracking Task (CTT), a visuomotor vigilance task30. The task consists in 

keeping a constantly moving cursor on a central circular target, using a trackball device. 

Performance is measured as the distance, in pixels, between the cursor and the target. 

Transitory lapses of attention immediately result in temporary increases of the target-cursor 

distance. A lapse was defined as a time when the cursor was located outside of a central 

200 by 200 pixels box surrounding the target (distance from the screen: 60 cm; size of 

square: 6.2 cm; visual angle: 6.10°) and >500 ms from the last trackball movement. TMS-

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa284/6046202 by guest on 17 January 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 9 

evoked responses occurring during and <1s around a lapse were considered as acquired 

during a lapse. CTT was preferred to other classic lapse measures, such as the 

psychomotor vigilance task (PVT)7, because it does not need the burst-like muscular activity 

time-locked to the TEP but rather requires continuous smooth and limited movement of a 

single finger. 

2.5. TMS-EEG DATA PROCESSING – CORTICAL EXCITABILITY MEASURES 

Data were visualized and processed in MATLAB 2015 (The Mathworks Inc, Natick, 

MA). Data were visually inspected to reject trials with magnetic artefacts and eye 

movements. Noisy and artifacted channels were rejected. Data were highpass-filtered at 1 

Hz, then downsampled to 1000 Hz and finally lowpass-filtered at 80 Hz. Individual trials were 

then epoched between -100 and 300 ms post TMS. Baseline correction between -100 and -

1.5 ms was applied before averaging across trials, using robust averaging method31, a 

method which estimates the data distribution of each time bin and downweights strong 

deviants (> 5 standard deviations). The electrode closest to the TMS-EEG target in the 

stimulation hemisphere was chosen to extract excitability. Excitability of the cortex was 

inferred based on the first component of the averaged TEP (0-30 ms; Figure 1E). Amplitude 

(in µV) and maximal slope (referred to as slope, µV/ms) were the main parameters extracted 

to define cortical excitability, together with the latencies to the first negative and positive 

peaks of the TEP.  

2.5. TMS-EEG DATA PROCESSING – RESPONSE SCATTERING AND COMPLEXITY 

We computed brain response scattering (ReSc) – i.e. propagation -, at the cortical 

surface following EEG source reconstruction, as well as complexity (ReC) for exploratory 

purposes. The solutions for EEG source reconstruction depend on the signal-to-noise ratio. 

Therefore, the fact that lapses are inherently less frequent than no-lapse periods was likely 

to bias comparison across conditions. We therefore recomputed the EEG response average 

and variance matching TMS pulse number across lapses and no-lapses period at the 
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individual level (Figure 2B-C). Included no-lapse TMS pulses consisted of those at were 

least 2 pulses apart from lapses and immediately following of preceding them. If a lapse 

included several TMS pulses, we considered as many surrounding pulses as no-lapse 

pulses.  

Source reconstruction followed the procedure previously described13. Briefly, the 

averaged TMS-evoked EEG response from 0 to 300 ms post-TMS pulse on all available 

channels was used to obtain a spatio-temporal matrix of significant cortical sources. Sensor 

and fiducial positions were used for a realistic head model with Boundary Element Method 

(BEM) constructed based on individual MRI, sensor and fiducial positions, to perform all the 

analyses within the individual subject space. The inverse solution was based on the “Multiple 

Sparse Prior” (MSP) method with 5124 dipoles to model the propagation of significant 

current in the brain induced by the stimulation. ReSc consists of the sum of the geodesic 

distance between significant sources and the TMS target, averaged over the entire 5–300 

ms period post-TMS Figure 1F).  

ReC was computed at the sensor level using balanced number of trials across lapses 

and no-lapse periods by applying the algorithm for estimating perturbational complexity to an 

evoked response32. The algorithm aims to estimate the spatio-temporal complexity with on a 

transition matrix which quantifies the complexity of the trajectories of an evoked brain signal 

(i.e., a TEP) over the reduced dimensionality space of its principal components. A lower ReC 

means that the brain response is more stereotypical, less variable over time and space. 

Importantly, in the current study, the processing of the data is different from the original 

paper TEP32 so that a comparison of absolute values between studies is not pertinent, while 

it provides relevant insights about complexity relative changes. 

[Figure 1 Here] 
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2.6. STATISTICAL ANALYSIS 

Statistical analyses were performed with SAS version 9.4 (SAS, Institute, Cary, NC, 

USA). The outlier threshold was set at 3 standard deviations from the mean, but no outlier 

values were detected. TEP amplitude, slope, and latencies, as well as ReSc, constituted 

dependent variables of separate Generalized Linear Mixed Models (GLMM; PROC GLIMMIX 

SAS procedure), considering subject as random factor and response type (lapse, no-lapse) 

as repeated measures with autoregressive correlation type 1 (ar(1)). Dependent variable 

distributions were estimated using the allfitdist function in MATLAB (developed by Mike 

Sheppard, part of the MvCAT package33) and set accordingly in each GLMM. Models 

included the following covariates: age group, sex, BMI, and TMS parameters (mean 

generated electric field at the hotspot and electrode of interest distance from hotspot). A 

factor “study”, together with response-type-by-study and response-type-by-age-group 

interactions were included to take into account that each study session of interest was 

acquired at different times-of-day/circadian phases, leading to differences between age-

groups in elapsed time awake and in circadian phase. Partial effect sizes of the significant 

effects were calculated based on semi-partial R-squared (   
   computation for GLMM 

according to the literature34. We set the significance threshold to p-value = 0.01, accounting 

for Bonferroni correction for testing five models. 

For all frequentist GLMMs were also computed complementary Bayesian repeated 

measure ANOVAs (linear mixed model) using JASP software (version 0.13.1.035) to assess 

further whether a factor was contributing or not to a given model. Similar to the frequentist 

analyses, Bayesian rm-ANOVAs were computed with subject as random factor and 

response-type (lapse, no-lapse) as repeated measure and including age group, study, and 

TMS parameters as covariates. Including more covariates results in a model too complex for 

JASP software to converge. Separate models including sex and BMI as covariates showed 

not effect of these covariates (data not shown) and do not change the conclusions drawn 
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from Bayesian estimations. Inclusion Bayes factor ≤ 0.3 and ≥ 3 respectively indicate an 

absence of contribution or a non-negligible contribution35.  

3. Results 

As indicated in Table 1, except for BMI and caffeine consumption where older 

individuals had higher values, age groups did not differ for any demographic factor such as 

sex of the participants and the number of lapses per session.  

When assessing differences between electrophysiological measures between lapses 

and no-lapse periods, we first considered slope of TEP as the most typical assessment of 

cortical excitability10,11. GLMM including sex, age, BMI, study and TMS parameters as 

covariates indicated that response type (lapse vs no-lapse) significantly affected TEP slope, 

with higher slope for lapse compared to no-lapse periods (p = .009) representing a large 

effect size (   
  = .29) (Figure 2A,E; Table 2). Similarly, TEP amplitude showed an effect of 

response type (p = .0003) with higher amplitude for lapses vs. no lapse periods, 

representing a large effect size (   
  = .48) (Figure 2B,E; Table 2). We further found that 

latencies of the first TEP negative and positive peaks were, respectively, shorter and longer 

for lapses vs. no lapse periods (negative peak: p = .0007; large effect size,    
  = 0.45; 

positive peak: p = .008, large effect size:    
  = 0.30) (Figure 2C-E; Table 2). Bayesian 

statistical analysis confirmed the strong main effect of response-type (lapses vs no-lapses) 

for amplitude (BFinclusion = 34.229) as well as positive latency (BFinclusion = 4.113). In contrast, it 

did not allow to draw conclusion (0.3 ≤ BFinclusion ≤ 3) on the main effect of response-type 

effect for neither slope (BFinclusion = 0.961), nor negative latency (BFinclusion = 0.423) (Table 3). 

Given the unbalanced number of trials across response type (lapse < no-lapse period), we 

recomputed statistical included equal individual numbers of trials for both response types, 

considering only the no-lapse periods near lapses. Except for a noticeable change in noise 

level, average response over the no-lapse period appears similar when including all or the 

reduced set of TMS pulses (Figure 2B-C), particularly over the early component of the TEP. 
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Accordingly, statistical outcomes of the analyses of TEP cortical excitability measures 

remain the same with the reduced set of TMS pulses for the no-lapse period (data not 

shown). 

[Figure 2 Here] 

[Table 2 here] 

Importantly, age group and the interaction between age and response-type were not 

significantly associated with any of the 4 TEP parameters, suggesting that differences 

between lapses vs. no-lapse periods did not differ across age groups (Table 2). Inclusion 

Bayesian factor associated with age or the interaction between age and response type 

provided no evidence for an effect of age (BFinclusion < 3) on TEP slope and both latencies 

(age: BFinclusion < 2, P(incl|data) < 0.85; age x response type: BFinclusion < 0.84, P(incl|data) < 

0.28). In contrast, Inclusion Bayesian factor indicates an main effect of age for TEP 

amplitude (BFinclusion = 4.734, P (incl|data) = 0.93), but no evidence of an interaction between 

age and response-type (BFinclusion = 2.935, P(incl|data) < 0.575). In other words, Bayesian 

approach indicates that amplitude is lower in older compared to younger participants, but it 

does not provide evidence in favour nor against a contribution of age in the differences 

detected between lapses and no-lapse periods.  

We then turned to TMS Response Scattering (ReSc) to assess whether TMS 

response propagation would differ between lapses and no-lapse periods. GLMM yielded no 

significant difference in ReSc during lapses as compared to no-lapse periods (p = .73) 

(Figure 3; Table 2). A significant effect of age was detected (p = .02,    
  = 0.29), with older 

individuals showing reduced ReSc, as well as a significant interaction between age and 

response-type (p = .05,    
  = 0.18), with a reduced difference between lapses and no-lapse 

periods in older individuals but these effects did not reach corrected statistical significance. 

Bayesian analyses provided no evidence in favour or against of an effect of response-type 

(BFinclusion = 0.430, P (incl|data) = 0.546) and age group difference (BFinclusion = 0.424, P 
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(incl|data) = 0.543) but yielded evidence against an interaction between age and response-

type (BFinclusion = .24, P (incl|data) = 0.1). Finally, to assess whether the local cortical 

excitability differences between lapses and no-lapse reported above could have contributed 

to differences in ReSc, we added TEP amplitude in the model. TEP amplitude was not 

associated to ReSc (F(1, 27.71) = 0.11, p = .75) and the main effect of age group was only 

marginally affected (p = .037) while the interaction between age and response type becomes 

non-significant (p = .06), suggesting that the uncorrected-for-multiple-comparison interaction 

initially detected may arise from the initial difference in cortical excitability. 

[Figure 3 here] 

4. Discussion 

We used TMS-EEG to measure cortical excitability and brain response propagation 

during lapses and no-lapse periods while performing a continuous vigilance/sustained 

attention task. We report that, during attentional lapses, the first component of TEP shows a 

significant increase in slope, amplitude, and latency to its positive peak together with a 

shorter negative peak latency. In line with our hypothesis, these results demonstrate that 

cortical excitability is increased during lapses of attention. Yet, in contrast with our original 

hypothesis, these changes in cortical excitability were not associated with changes in TMS 

response propagation, as indexed by ReSc. This indicates that, once initiated, the dispersion 

of the TMS response does not depend on the occurrence of attentional lapses. Finally, and 

again contrary to our expectation, we find no clear evidence that age might affect cortical 

excitability and ReSc during lapses.  

Increased cortical excitability is observed when wakefulness is extended into the 

biological night and during healthy human sleep12. Recent findings indicate that cortical 

excitability, inferred based on the amplitude of an early TMS-evoked EEG response, varies 

according to concomitant variations in alertness, indexed based on theta/alpha EEG rhythm 
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ratio and Hori scoring system36. Extending these findings, we show that night-time cortical 

excitability increases during lapses as compared to normal attention periods. All these 

changes are arguable part of the same continuum, but the underlying mechanism is unclear. 

Animal data showed that local neuronal silent periods are more prevalent with increasing 

wakefulness duration and sleep deprivation, similarly to neuronal off-periods, or down-states, 

during sleep5. During sleep, these off-periods contribute to neuronal firing synchrony to 

generate the typical EEG slow waves, while during wakefulness off-periods are associated 

with slower local field potential variations, slower scalp EEG oscillations and reduced 

performance. Similarly, investigation in epileptic human patients indicates that attentional 

lapses during normal wakefulness are preceded and concomitant to attenuated, delayed, 

and lengthened spiking of individual neurons in the medial temporal lobe6. These effects 

appeared exacerbated following sleep deprivation, although based on a few patients only. 

We are not in a position to truly assess whether off-periods during lapses indirectly 

contributed to the observed increase in excitability as it would require invasive recordings 

and/or phase assessment of the EEG oscillation at which TMS pulses were delivered (and 

therefore more trials). A parsimonious explanation for a larger initial EEG response to TMS 

pulses is that neurons are more hyperpolarized during lapses and/or have a higher input 

resistance potentially because of temporary fluctuations in neuromodulator levels, such as 

acetylcholine37 or norepinephrine38. Excitatory Post Synaptic Potentials (EPSP) would 

therefore trigger action potentials more easily so that more neurons would contribute to the 

response, leading to a strong change in TEP amplitude. In other words, some neurons would 

be responding to the TMS pulse, which mimics normal stimulus brain processing, when they 

would not outside a lapse, resulting in altered cortical neuron response selectivity. The fact 

that we find no Bayesian evidence in favour of a main effect of response-type (lapses – no 

lapse periods) on slope suggest that, in comparison to the recruitment of neuron numbers 

during lapses, neuron synchrony is not deeply modified during lapses. Finally, increased 

cortical excitability during lapses could also be related to cortical and/or thalamic neurons 

responding more prominently with a burst during lapses39,40.  
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To explore long-range response to TMS, we assessed whether TMS response 

complexity (ReC)32 differed between lapses and no-lapse period, bearing in mind that 

optimal ReC computation requires more trials ( > 100; i.e. better signal-to-noise ratio). 

Analyses suggest that ReC does not change during lapses, reinforcing the idea of an intact 

brain processing following initial response (Supplementary Figure S1). The assumption 

remains to be properly tested however, using for instance functional magnetic resonance 

imaging and/or other behavioural tests. Yet, the fact that response propagation does not 

seem to significantly change during night-time lapses suggests that, despite an overall 

reduction of long-range signal propagation and integration during sleep deprivation4, long-

range cortical processing remains mostly unchanged during lapses. Our result could mean 

therefore that impaired brain processing, slower behavioural responses, reduced 

performance, and/or absence of response during lapses are mostly triggered by an alteration 

of the initial cortical responses rather than by altered functioning of higher cortical areas.  

Contrary to frequentist statistics, Bayesian statistics indicate a main effect of age 

group on TEP amplitude, irrespective of the occurrence of a lapse. This apparent difference 

between age-groups is most likely derived from the selection of night-time sessions for the 

present analyses. Aside from important inter-individual variability15, cortical excitability 

indices of older individuals remain overall relatively stable during prolonged wakefulness22, 

when younger individual show important increases in these indices at night. This means that 

while cortical excitability is similar between younger and older adults during the day, younger 

individuals present significantly higher values at night. In other word, the most parsimonious 

explanation for the non-negligible effect of age detected for TEP amplitude is that the effect 

of being awake at night, when one should normally be sleeping, on cortical excitability is 

more important in younger than in older individuals. 

Similarly, using frequentist statistics, we find that ReSc, and therefore effective 

connectivity, may be lower in older individuals irrespective of lapse occurrence at a 

significant threshold uncorrected for multiple comparisons. Using Bayesian statistics we find 
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evidence against an age-group difference. In a separate analyses (data not shown, 

unpublished analyses by GG) we find that ReSc associated with TMS response during no-

lapse period is lower in older individuals at all circadian phases, i.e. during the day and 

overnight. Lower ReSc may be related to the changes in spontaneous EEG activity in aging 

reported both during wakefulness and sleep18,41. It may also be underlined by a degradation 

of the brain white and grey matter42 which could, respectively, result in a higher dispersion of 

the electrical response, to a reduced number of neurons responding to TMS, or to difference 

excitation/inhibition balance43,44. Despite this overall difference in ReSc and contrary to our 

expectations, our results suggest that, age was not associated with modifications in the 

electrophysiological changes associated to lapses. In fact, Bayesian analyses support it is 

not the case for ReSc. Therefore, the large impact of aging on sleep and wakefulness 

regulation19,20, with a reduced prevalence of lapses during acute sleep deprivation in older 

individuals, and the more stable sleepiness and EEG spectral composition45,46, is not 

reflected in significant changes in the phenomenology of lapses per se, both when 

considering cortical excitability and response propagation. We stress that we only included 

individuals with at least 20 lapses in the session considered to ensure good signal-to-noise 

ratio of the average electrophysiological response. Whether the reduced number of trials and 

the exclusion of participant with less lapses contributed to the absence of age group 

difference is not known.  

EEG recordings of TMS responses can be used to study cortico-cortical interactions 

from a causal perspective. In that respect, ReSc constitutes an index of effective 

connectivity. The reduction in TMS response propagation during sleep was interpreted as 

reduced effective connectivity that is essential to loss of consciousness12. Our participants 

did not sleep during the TMS-EEG recordings – even micro-sleep –, as they were closely 

monitored, and they were conscious. In that respect, it is not surprising that ReSc remains 

stable during lapses when compared to normal attention. One can however arguably 

postulate that their consciousness was altered during lapses vs. no-lapse periods. 
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Interestingly previous observation12 suggests that, as compared to normal wakefulness, 

cortical excitability increases while response propagation remains wake-like during REM 

sleep47, which is a conscious experience while behaviourally detached from the 

environment. Future research will tell whether other awake detached behaviour, such as 

mind-wandering or mind blanking48 resemble lapses and/or REM sleep in terms of cortical 

excitability and effective connectivity. 

In addition, whether cortical excitability and brain response propagation (and effective 

connectivity) are qualitatively or quantitatively similarly affected by attentional lapses after 

sleep deprivation or by those, more sporadic, detected during normal rested wakefulness, 

remains to be assessed. Night-time/sleep deprivation lapses are likely to favour sleep onset, 

while daytime lapses are less likely to do so, such that one can expect brain activity 

differences. Moreover, since we only stimulated the frontal cortex, which shows the largest 

increase in sleep slow wave prevalence following sleep loss49, we expect regional 

differences in cortical excitability changes associated with lapses. On the other hand, given 

that sleep slow wave power shows a relative increase over the entire brain following sleep 

loss, we expect also a relative increase in excitability during lapses whatever the stimulated 

brain region50. Quantifying local vs. global variations will require further investigations. 

Likewise, since ReSc is a global brain measure, we consider that our findings reflect the 

stability of whole-brain effective connectivity during a lapse. This does not preclude, 

however, the origin of the initial brain response to affect its propagation.  

 In conclusion, we report that during night-time attentional lapses, cortex excitability is 

higher while brain responses propagation remains unchanged, both in younger (18-30 years 

old) and older (50-70 years old) individuals. The relevance of these findings is not limited to 

the theoretical understanding of sleep and wakefulness regulation but may help online 

detection of lapses and interventions to prevent errors (e.g. through closed-loop 

electrophysiological stimulation51,52).   
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Figures captions: 

Figure 1: Overview of protocol and analysis. A. Overview of the studies retrospectively 

analyzed and selected TMS/EEG sessions (Study 122, 211 and 315; see method for more 

details). B-D. Butterfly plot of the average TMS responses over all 60 channels in a 

representative subject, when considering all no lapse periods (B) and all lapses (D), and 

when considering an equal (lower) number of no-lapse period TMS pulses to include the 

same number of pulses as during lapses (C; see method). E. Average TMS response of the 

electrode closest to the stimulation point, from which the following are extracted a) Latency 

of the negative peak b) Latency of the positive peak c) Peak to peak amplitude d) Steepest 

slope, i.e. the tangent at the inflection point. F. Response scattering (ReSc) was computed 

following EEG source reconstruction and binarization of the significant and non-significant 

sources in time and space. ReSc is computed from this spatiotemporal binary matrix (ST) 

from 5 ms post-TMS to 300 ms post-TMS (t) as the sum of geodesic distance (d) between 

significant sources (x) and the TMS target.  

 

Figure 2: Early TMS-evoked response during lapse and no-lapse periods. Amplitude 

(A), slope (B), negative (C) and positive (D) peak latencies during lapse and no-lapse 

periods in both age groups (Red = Older, Blue = Young). Individual lines represent single-

subject values. Dots are the group means and the vertical bars represent the standard error. 

(E) TEP during lapse and no-lapse in a representative subject. 

Figure 3: Response Scattering (ReSc) during lapse and no-lapse periods. ReSc during 

lapses and no-lapses in both age groups (Red = Older, Blue = Young). Individual lines 

represent single-subject values. Dots are the group means and the bars represent the 

standard error.  
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Table 1: Demographics of the young and older groups 

 Young Older Comparison 

Number of subjects 12 12  

Age (y) 22 ± 2.76 59.58 ± 6.46  

Sex: Female (Male) 2 (10) 6 (6) p = .19 

Body Mass Index (kg/m²) 22.05 ± 2.59 25.08 ± 1.68 p = .003& 

Number of lapses (mean ± s.d.) 46.08 ± 
30.91 

Median: 31.5 

Range: 25-
116 

41.25 ± 
21.35 

Median: 35 

Range: 21-
100 

p = .66 

Right-handed 11 10 p = 1 

Mill Hill vocabulary scale* 22.17 ± 3.65 25.5 ± 3.2 p = .07 

Anxiety 2.50 ± 2.54 2.92 ± 2.64 p = .7 

Mood 2.7 ± 2.59 4.00 ± 4.30 p = .28 

Caffeine (cups/day)  1.33 ± 1.97 3.96 ± 2.68 p = .01 

Alcohol (doses/week) 3.92 ± 3.58 5.17 ± 4.79 p = .48 

Subjective sleep quality 4.17 ± 1.19 6.67 ± 4.25 p = .07 

Daytime sleepiness  4.67 ± 2.84 4.67 ± 3.85 p = 0.99 

Chronotype 53.75 ± 5.07 52.67 ± 8.90 p = .72 

Elapse time awake at TMS 
assessment (hrs) 

23.65 ± 1.72 20.38 ± 2.49 p = .001& 

Degrees relative to dim-light 
melatonin onset (15° = 1h) at 
TMS assessment (hrs) 

149.03 ± 
25.66 

95.63 ± 
38.06 

p = .0006& 

All values correspond to mean ± SD. Cognitive performance was measure by the Mill Hill 
Vocabulary Scale 26; Anxiety by the 21-item Beck Anxiety Inventory22; depression by the 21-
item Beck Depression Inventory II23; caffeine and alcohol consumption by self-reported 
questionnaires; subjective sleep quality by the Pittsburgh Sleep Quality Index27; daytime 

sleepiness by the Epworth Sleepiness Scale28; chronotype by the Horne‐Östberg 
questionnaire (no participants were extreme chronotypes, i.e. scores <30 or >70)29. 

*Mill Hill scale was administered to 6 young participants. 

& these factors are included in the statistical model reported here-after. Differences in elapse 
time awake and circadian phase are taken into account by including a “study” factor.  
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Table 2: GLMM outcomes for the four excitability measurements and response scattering 

(ReSc). Significant results (following multiple testing correction; p = 0.01) are in bold. When a 

variable reaches uncorrected-for-multiple-comparison significance level (p < 0.05), the partial 

effect size is reported. 

Dependent 

Variables 

Independent variables 

 Response 

Type 

Study Age 

Group 

Response 

Type * 

Study 

Response 

Type * 

Age 

Group 

Sex BMI Induced 

Electric 

Field 

Electrode 

distance 

Slope F(1,20) = 

8.30 

p = .009 

   
  = 0.29 

F(2,16) = 

0.07 

p = .93 

 

F(1,16) = 

1.27 

p = .93 

F(2,20) = 

0.21 

p = .81 

 

F(1,20) = 

2.90 

p = .10 

 

F(1,16) = 

0.16 

p = .70 

 

F(1,16) = 

0.02 

p = .90 

 

F(1,16) = 

0.02 

p = .90 

 

F(1,16) = 

0.76 

p = .40 

 

Amplitude F(1,20) = 

18.75 

p = .0003 

   
  = 0.48 

F(2,16) = 

0.06 

p = .95 

 

F(1,16) = 

1.26 

p = .28 

F(2,20) = 

0.18 

p = .84 

 

F(1,20) = 

2.97 

p = .10 

 

F(1,16) = 

0.09 

p = .77 

 

F(1,16) = 

0.00 

p = .99 

 

F(1,16) = 

0.04 

p = .85 

 

F(1,16) = 

0.17 

p = .69 

 

Negative 

Latency 

F(1,20) = 

16.11 

p = .0007 

   
  = 0.45 

F(2,16)  = 

0.09 

p = .92 

 

F(1,16)  = 

0.94 

p = .35 

F(2,20)  = 

6.19 

p = .008 

   
  = 0.38 

F(1,20)  = 

1.54 

p = .23 

 

F(1,16)  = 

1.06 

p = .32 

 

F(1,16)  = 

0.21 

p = .65 

 

F(1,16) = 

0.00 

p = .96 

 

F(1,16) = 

0.63 

p = .44 

 

Positive 

Latency 

F(1,20) = 

8.61 

p = .008 

   
  = 0.30 

F(2,16) = 

1.77 

p = .20 

 

F(1,16)  = 

1.74 

p = .21 

F(2,20) = 

0.11 

p = .90 

 

F(1,20) = 

1.07 

p = .31 

 

F(1,16)  = 

0.51 

p = .49 

 

F(1,16)  = 

0.30 

p = .59 

 

F(1,16) = 

3.90 

p = .07 

 

F(1,16) = 

0.03 

p = .87 

 

ReSc F(1,20) = 

0.12 

p = .73 

F(2,17) = 

3.06 

p = .07 

F(1,17) = 

6.29 

p = .02 

   
  = 0.27 

F(2,20) = 

2.29 

p = .13 

 

F(1,20) = 

4.36 

p = .05 

   
  = 0.18 

F(1,17) = 

0.01 

p = .93 

 

F(1,17) = 

0.53 

p = .48 

 

F(1,17) = 

0.42 

p = .52 

 

NA 
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Table 3: Results of Bayesian repeated-measured ANOVA. Only age group, study and TMS 

parameters were included as covariates as the inclusion of more covariates did not allow model 

to converge using JASP software. Separate models including sex and BMI as covariates show 

not effect of these covariates and does not change the conclusions drawn from the Bayesian 

estimations reported in the table. Evidence indicating absence of contribution (BFinclusion < 0.3) 

or non-negligible contribution (BFinclusion > 3) of a given factor are in bold. 

 
Depende

nt 

Variables 

Independent variables 

 Response 

Type 

Study Age group Induced 

Electric 

Field 

Electrode 

distance 

Response 

Type * 

Study 

Response 

Type * 

Age Group 

Study * 

Age 

Group 

Response 

Type * 

Age Group 

* Study 

Slope P(incl|data

) = 0.729 

BFInclusion  

= 0.961 

P(incl|data

) = 0.471 

BFInclusion  

= 0.318 

P(incl|data

) = 0.845 

BFInclusion  

= 1.942 

P(incl|dat

a) = 0.340 

BFInclusion  

= 0.516 

P(incl|dat

a) = 0.437 

BFInclusion  

= 0.775 

P(incl|dat

a) = 0.086 

BFInclusion  

= 0.203 

P(incl|data

) = 0.245 

BFInclusion  

= 0.704 

P(incl|dat

a) = 0.152 

BFInclusion  

= 0.387 

P(incl|dat

a) = 0.005 

BFInclusion  

= 0.092 

Amplitud

e 

P(incl|dat

a) = 0.990 

BFinclusion 

= 34.229 

P(incl|data

) = 0.544 

BFInclusion  

= 0.425 

P(incl|dat

a) = 0.930 

BFInclusion  

=  4.734 

P(incl|dat

a) = 0.360 

BFInclusion  

= 0.563 

P(incl|dat

a) = 0. 

398 

BFInclusion  

= 0.662 

P(incl|data

) = 0.163  

BFInclusion  

= 0.422 

P(incl|data

) = 0.575 

BFInclusion  

=  2.935 

P(incl|dat

a) = 0.212 

BFInclusion  

= 0.584 

P(incl|dat

a) = 0.016 

BFInclusion  

= 0.300 

Negative 

Latency 

P(incl|data

) = 0.542 

BFInclusion  

= 0.423 

P(incl|dat

a) = 0.450 

BFInclusion  

= 0.292 

P(incl|data

) = 0.823 

BFInclusion  

= 1.659 

P(incl|dat

a) = 0.457 

BFInclusion  

= 0.841 

P(incl|dat

a) = 0.327 

BFInclusion  

= 0.486 

P(incl|dat

a) = 0.064 

BFInclusion  

= 0.149 

P(incl|dat

a) = 0.089 

BFInclusion  

= 0.212 

P(incl|dat

a) = 0.147 

BFInclusion  

= 0.373 

P(incl|dat

a) = 0.005 

BFInclusion  

= 0.090 

Positive 

Latency 

P(incl|dat

a) = 0.920 

BFInclusion  

= 4.113 

P(incl|data

) = 0.520 

BFInclusion  

= 0.387 

P(incl|data

) = 0.586 

BFInclusion  

= 0.506 

P(incl|dat

a) = 0.386 

BFInclusion  

= 0.628 

P(incl|dat

a) = 0.319 

BFInclusion  

= 0.468 

P(incl|data

) = 0.152 

BFInclusion  

= 0.389 

P(incl|data

) = 0.279 

BFInclusion  

= 0.838 

P(incl|dat

a) = 0.155 

BFInclusion  

= 0.397 

P(incl|dat

a) = 0.011 

BFInclusion  

= 0.196 

ReSc P(incl|data

) = 0.546 

BFInclusion  

= 0.430 

P(incl|dat

a) = 0.441 

BFInclusion  

= 0.281 

P(incl|data

) = 0.543 

BFInclusion  

= 0.424 

P(incl|dat

a) = 0.320 

BFInclusion  

= 0.470 

P(incl|dat

a) = 0.431 

BFInclusion  

= 0.759 

P(incl|dat

a) = 0.114 

BFInclusion  

= 0.280 

P(incl|dat

a) = 0.119 

BFInclusion  

= 0.292 

P(incl|dat

a) = 0.187 

BFInclusion  

= 0.498 

P(incl|dat

a) = 0.016 

BFInclusion  

= 0.297 
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Figure_1 
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Figure_2 
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Figure_3 
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