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Ben M. Rendle1,2?, Gaël Buldgen1,2, Andrea Miglio1,2, Daniel Reese3,

Arlette Noels4, Guy R. Davies1,2, Tiago L. Campante5,6, William J. Chaplin1,2,

Mikkel N. Lund2,1, James S. Kuszlewicz7,2, Laura J. A. Scott8, Richard Scuflaire4,

Warrick H. Ball1,2, Jiri Smetana9,1, Benard Nsamba5,6

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
2Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C,

Denmark
3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot,
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ABSTRACT

A key aspect in the determination of stellar properties is the comparison of ob-
servational constraints with predictions from stellar models. Asteroseismic Inference
on a Massive Scale (AIMS) is an open source code that uses Bayesian statistics and a
Markov Chain Monte Carlo approach to find a representative set of models that repro-
duce a given set of classical and asteroseismic constraints. These models are obtained
by interpolation on a pre-calculated grid, thereby increasing computational efficiency.
We test the accuracy of the different operational modes within AIMS for grids of stel-
lar models computed with the Liège stellar evolution code (main sequence and red
giants) and compare the results to those from another asteroseismic analysis pipeline,
PARAM. Moreover, using artificial inputs generated from models within the grid (as-
suming the models to be correct), we focus on the impact on the precision of the code
when considering different combinations of observational constraints (individual mode
frequencies, period spacings, parallaxes, photospheric constraints,...). Our tests show
the absolute limitations of precision on parameter inferences using synthetic data with
AIMS, and the consistency of the code with expected parameter uncertainty distri-
butions. Interpolation testing highlights the significance of the underlying physics to
the analysis performance of AIMS and provides caution as to the upper limits in pa-
rameter step size. All tests demonstrate the flexibility and capability of AIMS as an
analysis tool and its potential to perform accurate ensemble analysis with current and
future asteroseismic data yields.
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1 INTRODUCTION

At present, asteroseismic supporting space missions in oper-
ation and ground-based networks (TESS, Ricker et al. 2015;
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SONG, Andersen et al. 2014; Grundahl et al. 2017) or retired
missions (CoRoT, Baglin et al. 2006; CoRot Team 2016; Ke-
pler, Borucki et al. 2010; K2, Howell et al. 2014) have gener-
ated high quality data for large ensembles of stars. Further
missions are also in preparation (PLATO, Rauer et al. 2014).
In order to model these stars, we need pipelines that can ef-
ficiently compare observations and models. They must be
stable, robust and fast to deal with the current volume of
data and the subsequent increases expected in the future.

Often, inferred pipeline properties rely on simple scal-
ing relations of the large frequency separation (∆ν) and
the frequency of maximum oscillation power (νmax) (Kjeld-
sen & Bedding 1995). Though quick and simple to use,
more robust estimations can be made when, for example,
the average large frequency separations from model pre-
dicted radial mode frequencies and the use of gravity mode
period spacings are considered in the parameter determi-
nations (see Rodrigues et al. 2017; Serenelli et al. 2017).
Though an improvement, these still do not exploit all of
the information the individual modes contain, e.g., presence
of acoustic glitches (Vorontsov 1988; Gough 1990; Miglio
et al. 2010; Pérez Hernández et al. 2016; Verma et al. 2017)
and long term internal structure changes from curvature
of the large frequency separation (Hekker & Christensen-
Dalsgaard 2017; Mosser et al. 2012).

Multiple asteroseismic modelling techniques have been
developed with the objective to fully exploit seismic infor-
mation (Guenther & Brown 2004, Miglio & Montalbán 2005,
Bazot et al. 2008, Metcalfe et al. 2009, Gruberbauer et al.
2012, PARAM (da Silva et al. 2006; Rodrigues et al. 2014,
2017); see the KAGES (Silva Aguirre et al. 2015; Davies
et al. 2016) and LEGACY (Lund et al. 2017; Silva Aguirre
et al. 2017) projects for further pipelines).

The use of individual mode frequencies as constraints
to the analysis, increases significantly both the precision and
accuracy of the inferred masses, radii and age for both main
sequence (e.g. Lebreton & Goupil 2014 for a recent review,
Reese et al. 2016 for tests using artificial data, or results
based on Kepler ’s best data sets by Silva Aguirre et al. 2017)
and red giant stars (Huber et al. 2013; Lillo-Box et al. 2014;
Pérez Hernández et al. 2016; Li et al. 2018). Improving the
use of seismic information will lead to more precise global
stellar properties and allow for testing aspects of the micro-
and macro-physics which are currently poorly constrained.

We present here the stellar modelling pipeline, AIMS
(Asteroseismic Inference on a Massive Scale, Reese 2016;
Lund & Reese 2018). AIMS is a pipeline designed to pro-
cess the measured individual acoustic oscillation frequen-
cies of stars coupled with classical, spectroscopic or inter-
ferometric constraints to provide a powerful diagnostic tool
for the determination of stellar properties. Much like Bazot
et al. (2008), Gruberbauer et al. (2012), and BASTA (Silva
Aguirre et al. 2015), AIMS uses a Bayesian approach. Bazot
et al. (2008) implements an on-the fly model calculation with
an MCMC algorithm to produce a representative sample of
model parameters. This leads to a higher accuracy but at a
significant computational cost, whereas the remaining codes
use pre-computed grids (faster calculation time). Gruber-
bauer et al. (2012) and BASTA then evaluate probability
distribution functions by scanning the grid. Like Bazot et al.
(2008), AIMS also uses an MCMC algorithm, but what is

unique is that it is combined with model interpolation. This
provides a compromise between accuracy and efficiency.

This paper details the capabilities and potential of
AIMS and its applicability within the scientific community.
The paper is set out as follows: Section 2 describes the func-
tionality of the code and section 3 describes the input grids
containing the models used in the analysis. Sections 4 and 5
discuss the results of the various interpolation tests on the
grids and the performance of the program in analysing artifi-
cial and real data. Finally, a comparison of the performance
of AIMS using different combinations of asteroseismic and
classical constraints is given in section 6. The results of these
tests are discussed with a summary of the work in section 7.

2 AIMS

AIMS uses Bayesian statistics and a Markov-Chain-Monte-
Carlo (MCMC) algorithm (emcee, Foreman-Mackey et al.
2013) to select models representative of the input data by
interpolating in a pre-defined grid. The combination of these
techniques allows for an efficient, comprehensive search of
the parameter space defined by the grid parameters. User-
defined priors and the likelihood function resulting from the
input constraints shape the exploration of the parameter
space. AIMS initialises the grid search in the region of a
set of models with the highest posterior probability. This
increases the efficiency of the parameter space exploration,
which in turn helps the MCMC algorithm converge faster.

The program itself has three modes of functionality: bi-
nary grid generation; interpolation testing; and stellar pa-
rameter characterisation. The performance and capabilities
of interpolation mechanism and stellar parameter determi-
nation are tested here. Information on the other functions
can be found in the supporting documentation1.

To determine stellar parameters in a Bayesian man-
ner, an affine invariant ensemble Markov chain Monte Carlo
(MCMC) sampler (Goodman & Weare 2010) is implemented
via the Python package emcee developed by Foreman-
Mackey et al. (2013). For a given data file, the user can em-
ploy so-called walkers that are initiated in a tightball config-
uration (optional), uniformly distributing the walkers within
a sphere centred on an initial estimation of the most prob-
able grid model. If tightball is not selected, the walkers are
initiated through the sampling of model parameter priors.
The step number for the walkers can be user defined. Parallel
tempering is available with the option to define the number
of temperatures, and the MCMC chains can be thinned.

To determine the properties of targets falling between
grid points defined by the evolutionary tracks, AIMS uses a
two step interpolation procedure of the model parameters:

(i) Linear interpolation in the chosen evolutionary param-
eter along a track.

(ii) Interpolation between tracks.

This method allows for greater control over the evolu-
tionary parameter (prevention of exceeding the boundaries
of evolutionary tracks) and attempts to achieve greater ac-
curacy as consecutive models on an evolutionary sequence

1 AIMS Overview:
http://bison.ph.bham.ac.uk/spaceinn/aims/version1.3/
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AIMS - Asteroseismic Inference on a Massive Scale 3

Table 1. The values of Xinit, Zinit and [Fe/H] attributed to the

CLÉS grid of models.

Xinit Zinit [Fe/H]

0.691 0.0300 0.25
0.716 0.0175 0.00

0.731 0.0100 -0.25

0.740 0.0057 -0.50
0.745 0.0032 -0.75

are not expected to change significantly. AIMS includes an
accuracy test of the interpolation procedure and an addi-
tional program is joined to AIMS to visualise these results
as a function of the global grid parameters.

The linear interpolation along a track can be modified
to use various evolutionary parameters. However, only a
parameter varying monotonically as a star evolves should
be used to prevent any spurious results or unexpected errors
within the interpolation. Examples of such variables include
the Helium core mass in red giant branch (RGB) stars or
the central hydrogen content for main sequence stars (MS).

3 THE GRID - CLÉS WITH LOSC

The analysis performed by AIMS is based upon the explo-
ration of a predefined grid of models. In this work, the grid
is parametrised by mass (0.75-2.25 M�, in 0.02 M� incre-
ments), initial metallicity (Zinit) and initial hydrogen content
(Xinit). The range of Xinit and Zinit values ([Fe/H] values also
included for completeness) used can be found in Table 1. Fig.
1 is a Hertzsprung-Russell diagram (HRD) showing the evo-
lutionary tracks calculated for this grid for a given chemical
composition. A gap between the MS and sub-giant branch
can be observed due to the selection criteria used to split
the nominal grid into specific MS and red giant sub grids,
which is described in detail later.

The grid contains the evolutionary tracks of theoret-
ical stellar models and their frequencies. Here, we consid-
ered ∼ 38000 models, but larger grids of up to ∼ 1.5 million
models have been used in the past. The models were com-
puted using the CLES (Code Liégeois d’Évolution Stellaire,
Scuflaire et al. 2008a) stellar evolution code and the frequen-
cies were generated using the LOSC (Liège Oscillation Code,
Scuflaire et al. 2008b) pulsation code. We use the Grevesse
& Noels (1993) abundances, nuclear reaction rates of Adel-
berger et al. (2011), opacities of Iglesias & Rogers (1996) and
the FreeEOS equation of state (Irwin 2012). The mixing-
length parameter was kept to a solar calibrated value of
1.67 and a convective overshoot of 0.05 times the local pres-
sure scale height was used, assuming instantaneous chemical
mixing and the radiative temperature gradient in the over-
shooting region. Microscopic diffusion was not included in
the grid. The border of the convective zones was calculated
following the guidelines of Gabriel et al. (2014) to avoid spu-
rious solutions for the evolution of convective cores.

In this work, we used two sub-grids: one for MS and an-
other for RGB stars. We based our criteria on the changes in
chemical composition (variations of central hydrogen for the
MS, helium core mass for the RGB), effective temperature

Figure 1. Hertzsprung Russell Diagram displaying the evolu-
tionary tracks found within the CLÉS grid (Xinit = 0.731, Zinit =

0.0100). The gap between the end of the MS and beginning of the
sub-giant branch is due to the Helium core mass fraction selection

criterion for the MS and RGB grids.

and νmax values. While AIMS is very versatile in the grids it
can use, it should be noted that the tracks must contain a
sufficient number of models to ensure an accurate interpo-
lation. On the MS, we included modes with angular degree
(`) values of 0, 1 and 2 whereas the RGB grid only used
radial modes (` = 0). This difference stems from intrinsic
limitations of AIMS in processing non-radial modes of RGB
stars which are highly non-linear. Both grids included radial
orders of the frequencies in the range n = 0 − 30. It should
be noted that the grids were built to test the functionality
of the code that we will describe in sections 4 and 5.

4 INTERPOLATION TESTING

The objective of AIMS is to carry out precise asteroseismic
analyses. Hence, it is paramount to ensure an accurate inter-
polation of the determined stellar properties to ensure the
reliability of the modelling results. Here, we briefly present
the interpolation procedure used in AIMS and the tests that
can be made to certify accurate and reliable results.

4.1 Interpolation Procedure

AIMS uses a two step interpolation process to explore the
regions between models, namely:

(i) interpolation between evolutionary tracks
(ii) interpolation along an evolutionary track

Interpolation between the tracks relies on a multi-
dimensional Delaunay tessellation (see Field 1991 and ref-
erences therein) of the grid parameters excluding age. The
tessellation and subsequent interpolation are carried out by
python’s scipy.spatial.Delaunay module which is based
on the Qhull2 package (Barber et al. 1996). Using a tes-

2 http://www.qhull.org/
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Figure 2. Comparison of physical and scaled age interpolation.

In the right panel, only scaled age interpolation works.

sellation approach offers two advantages: the grid does not
need to be structured, and fewer tracks (namely ndim + 1 as
opposed to 2ndim , where ndim ≥ 2 is the number of dimensions
excluding age) are used when interpolating at a given point,
accelerating the calculations. During the tessellation, the pa-
rameter space is divided into simplices (i.e. triangles in the
2D case, tetrahedra in the 3D case, etc.). For a given point in
this space, AIMS searches for the simplex containing it and
carries out a linear combination of its vertices (or nodes).
The interpolation coefficients correspond to barycentric co-
ordinates provided by scipy.spatial.Delaunay. These co-
efficients are simply the ratios between the volumes of the
reduced simplices where one of the vertices has been replaced
by the point where the interpolation is carried out and the
volume of the original simplex.

Interpolation along the tracks consists of a linear in-
terpolation in age between the two closest models. Points
outside the tracks are rejected, i.e. AIMS does not perform
extrapolation. AIMS can either interpolate according to the
physical age, or according to an age parameter which has
been scaled to go from 0 to 1 along the track (e.g. helium
core mass in red giants). This latter option is more robust
as it is less likely to lead to extrapolation (and hence model
rejection) when the two interpolation steps are combined.
Indeed, the point where the interpolation is being carried
out only needs to be within the age span of the interpolated
track rather than having to lie within the age span of all
tracks involved in the interpolation, as illustrated in Fig. 2.

The determined coefficients are then used to interpo-
late the models by linearly combining the global parame-
ters M, X0 (the initial hydrogen content), Z0 (the original
metallicity), Teff , and ρ (the mean density). The radius and
luminosity are then determined self-consistently from these
interpolated parameters using the relations:

R =
(

3M
4πρ

)1/3
, L = 4πσR2T4

eff . (1)

We note that even the constant σ is interpolated linearly in
case there were any departures from the Stefan-Boltzmann
law. Any supplementary user-provided global parameters
are interpolated linearly. The mean density is interpolated
linearly rather than the radius in order to be consistent with
the results from InterpolateModel.3 Non-dimensional fre-

quencies, ω/
√

GM/R3, with the same n and ` identification

3 https://bison.ph.bham.ac.uk/spaceinn/interpolatemodel/,
a program which interpolates the acoustic structure of models

using outputs from AIMS.
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Figure 3. Frequencies as a function of stellar age along an evo-

lutionary track. The upper panel corresponds to non-dimensional
frequencies and the lower panel to their dimensional counterparts.

The symbols correspond frequencies from the non-interpolated

models whereas the continuous lines represent the interpolated
frequencies.

are interpolated linearly rather than their dimensional coun-
terparts, as they vary much more slowly as a function of
stellar parameters, as illustrated in Fig. 3. They are subse-

quently multiplied by
√

GM/R3, using the interpolated val-
ues of M and R, in order to remain consistent with the inter-
polated global parameters. The interested reader is referred
to the AIMS documentation for additional information.

4.2 Interpolation Results

In this section, we present the tests included in AIMS to
check the suitability of the interpolation procedure to fit
observational data. We compare the interpolation errors to
the typical uncertainties of observed targets found in the
literature. On the MS, we used 16-Cyg A, which yields a
median frequency uncertainty on the l = 0 modes of 0.08
µHz (-1.097 in log10) and a smallest uncertainty of 0.04 µHz
(-1.398 in log10). On the RGB, we use KIC4448777, which
has a median frequency uncertainty on the l = 0 modes of

MNRAS 000, 1–16 (2019)
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0.018 µHz (-1.745 in log10) and a smallest uncertainty of
0.014 µHz (-1.854 in log10).

4.3 Interpolation along evolutionary tracks

The evaluation of the interpolation errors along an evolu-
tionary track is made by testing how well both frequencies
and global parameters of each model can be recovered from
adjacent models at 1 and 2 increments away. Figure 4 shows
the RMS average interpolation errors on the frequencies over
the range νmax ± 0.2νmax for the MS and RGB grids detailed
in Section 3. Overall the errors are smaller than the smallest
frequency uncertainty of 16-Cyg A over the tested frequency
range for both single and double increments. The behaviour
of the interpolation error is in line with the expectations for
a simple linear interpolation, as it increases by a factor of
∼ 4. Increased errors are seen between 1.2 and 1.8 M� and
are linked to the onset of a convective core during the evolu-
tion. The results are, however, satisfactory as they are well
below the observational error bars.

On the RGB, the interpolation errors remain below the
smallest and average uncertainties for KIC4448777 apart
from a small region at low masses and high metallicities,
which represents 2 to 3 % of the models, as highlighted in
the right panels of Fig. 4 by the black and magenta con-
tours respectively. Again, using double increments in the
interpolation leads to an increase in line with numerical ex-
pectations. While the RGB results may seem worse than for
the MS, one must bear in mind the comparatively smaller
error thresholds on the RGB. The RGB interpolation errors
remain actually smaller than the MS, as shown in Fig. 4 and
can of course be reduced by refining the grid.

4.4 Cross Track Interpolation

As a result of the multi-dimensional character of the param-
eter space and the use of Delaunay tessellation, the approach
used to test cross-track interpolation in AIMS is quite differ-
ent. The grid is partitioned in two sub grids: one to form the
simplices for the interpolation and one containing the tracks
to be recovered via interpolation. The partition is made ran-
domly to avoid biasing the test towards one of the directions.
This, however, means that the models are not always adja-
cent to the interpolated ones, reducing the representativity
with respect to what is done in practice.

Panel (A) of Fig. 5 displays the recovered sub-grid from
the MS interpolation. The RMS average interpolation errors
are consistent with the MS and RGB values for along track
interpolation, but extend to higher values in some regions.
These predominately follow the increased error pattern in
Fig. 4. Higher uncertainties are expected though, as a greater
range of parameter space than normally used is interpolated
across. The maximum interpolation errors are the order of
the average frequency uncertainty of 16-Cyg A. The errors
are acceptable as the values are consistent with average ob-
servation uncertainties for interpolations over greater ranges
than will be executed during real parameter determination.

Selecting a model from the recovered sub-grid, one can
see how well the interpolation has reconstructed the original
track. Panel (B) of Fig. 5 shows the recovered 1.47 M�,
Xinit = 0.740, Zinit = 0.0057 track and panel (C) an echelle

diagram for the original and interpolated frequencies for a
single model. The interpolated temperatures, luminosities
and frequencies vary fractionally about the original values,
illustrating further the accuracy of the interpolation method.

Appendix A1 shows an example of the RGB grid. The
variation in the residuals is minimal, confirming the proper
behaviour of the interpolation. In additional tests, some in-
stances show variations from the expected values along sec-
tions of the track. These features are largest when interpo-
lating between grid points separated widely in mass (> 0.05
M�) or metallicity, consistent with the regions of increased
uncertainty in Fig. 5 outside of the convective onset region.

4.5 Other Parameters

These tests can also be performed for parameters such as
mass, radius, luminosity, effective temperature and surface
metallicity ratios. The results are not presented here to avoid
redundancy but details an be found in Appendix A2. Again,
these tests validated the quality of the grid at both the single
and double increment level.

5 OBSERVATIONAL OUTPUTS AND
CONSTRAINTS

In this section, we present the robustness and accuracy of
AIMS in reproducing accurately and precisely stellar param-
eters. The results presented here illustrate the absolute pre-
cision AIMS could achieve for the specific grid used in this
study. It should be noted that the performance will depend
on the grid and the free parameters included.

5.1 Artificial Data

At first, tests were performed using models from the underly-
ing CLÉS grids. An observation file for a single, randomly se-
lected model containing the artificial frequencies, Teff , νmax,
luminosity (L) and [Fe/H] values for the track was gener-
ated. This track was then removed from the grid. The input
file was perturbed 100 times to simulate noise in the data
signal. This artificial target was fitted using 100 AIMS runs
and the average values from these consecutive fits and their
uncertainties were used to determine the degree of success
of the procedure.

The asteroseismic constraints selected for use in the
analysis were the individual mode frequencies. There are
multiple options that can be selected for the seismic con-
straints, with each having a slightly different effect on the
output parameters. Other constraints such as the average ∆ν
and various frequency separation ratios (r0,1, r0,2, r1,0) could
have been used. Using individual mode frequencies gives the
smallest uncertainties on the derived parameters, but the
final parameter values remain consistent throughout.

One should be cautious though as individual frequencies
are not individually unique constraints and can lead to an
underestimation of uncertainties. They are also significantly
affected by surface effects (this is true of other parameters,
e.g. mass, but the changes are more obvious in such cases),
at a level such that the precision of the fit is determined by
the uncertainties in the surface correction rather than the
frequencies (see Buldgen et al. 2018a for examples).

MNRAS 000, 1–16 (2019)
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5.1.1 Main Sequence

A 1.27 M�, Zinit = 0.01 and Xinit = 0.731 MS model with 21
mode frequencies (7 of each of l = 0, 1, 2) was selected (see
Fig. 6). We used the uncertainty distribution of 16-CygA
(Davies et al. 2015) for our artificial target. The magnitude
of the uncertainties are of the same order as those used in the
“Sun-as-a-star” tests in section 5.2. Uncertainties in [Fe/H]
and Teff were of order 0.1 dex and 80 K respectively. The
uncertainty on the luminosity was selected to be of order
3% based on Gaia (Gaia Collaboration et al. 2018) paral-
laxes, with a large proportion of the uncertainty due to the
applied bolometric corrections (Torres 2010; Casagrande &
VandenBerg 2014, 2018). No surface effects were used for
both the artificial target and the seismic modelling.

The values and uncertainties of the unperturbed model,
the 100 realisations (combined runs) and the best models de-
termined by the MCMC process for each of the perturbed
runs were compared to the real values of the model. Exam-
ples of the PDF distributions for the mass and radius for
each of the 3 trials are shown in Fig. 7.

The evidence from Fig. 7 indicates that the three differ-
ent statistics agree reasonably well about a common value.
The peaks of the distributions are not centred precisely
about the expected values (black vertical lines) though. The
weightings applied to each model to be combined greatly
influences the final results. In this instance, models with a
mass of 1.29 M� of the same Xinit as the input model were
preferentially selected compared to 1.25 M� models with the
same Xinit and 1.27 M� models of different Xinit values. All
models and weightings used during the analysis process are
exported from the program and can be accessed to under-
stand further which models and combinations are preferred

for different stars. This can be used to understand and im-
prove the construction of future grids.

The widths of the distributions are related to the uncer-
tainties determined from each run. The uncertainties related
to the single run are representative of the formal uncertain-
ties output by AIMS, those of the best MCMC models are
expected to be similar to results of the single (unperturbed)
run. The test shows that both sets of uncertainties are very
similar. Finally, the combined runs have uncertainties equal
to the approximate summation of those of the previous two
sets in quadrature, as the concatenation of the runs repre-
sents both the formal and random uncertainties.

The magnitude of the uncertainties also depends on the
underlying grid. An incomplete grid, with insufficient mod-
els and/or frequencies will lead to systematic errors in the
model selection. Indeed, AIMS rejects models which do not
match the entire observed spectrum. The final output pa-
rameters are based upon the selection procedure. Hence,
anything affecting the accuracy of the selection will affect
the final results. As the performance relies upon the input
criteria being accepted by a large number of models, an in-
complete grid will increase the number of rejections, reduc-
ing the accuracy of AIMS. A simple solution (performed
here) is to reduce the number of input frequencies in the
data file (e.g. limit range of ν to νmax ± 0.5 νmax), increasing
the probability for models to match the input criteria.

To further examine the quality of the results, the num-
ber of standard deviations (Nσ) the output parameter (xcalc)
lay from the true value (xtrue) was determined using

Nσ =
xcalc − xtrue

σ
. (2)

These tests are shown in Fig. 8. It is clear that the best
MCMC models outperform both combined and single mod-
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Figure 5. An example of results achieved recovering a 1.47 M�, Xinit = 0.740, Zinit = 0.0057 track during interpolation testing: (A) -

Colour map of the maximum interpolated frequency uncertainty along each track. Points represent the positions re-interpolated tracks;

the red circle shows the position of the track used in part (B). This track has a maximum log10 uncertainty on the interpolated frequencies
of -1.990. The red circle highlights the location of the track. Grey points and lines show the triangulation simplices for the interpolation.

Red diamonds donte tracks not interpolated due to no triangulation being possible. (B) - Hertzsprung-Russell Diagram showing the

original track (blue line), interpolated track (red markers) and the models the track was interpolated from. Models used for interpolation
are connected to the respective interpolated models by grey dashed lines and are shifted by 0.5 L� for additional clarity. The fractional

difference residuals in luminosity and Teff between the original and interpolated models are shown. The Teff residuals have been inflated by

a factor of 100. The red circle marks the model used in (C). (C) - An echelle diagram showing the original (blue, closed) and interpolated
(orange, open) frequencies for the highlighted model in (B). Full frequency range is shown with diagram modulated by the original model

∆ν value. All frequencies have been shifted by 5µHz in the x-direction for clarity.

els. The higher performance of the combined run stems from
the increased abundance of data, providing a better conver-
gence on the real value than a single run. As the results
always lay within 1.5σ of the result, we can conclude that
the fits were successful.

5.1.2 Red Giants

Using the same track and set of classical constraint parame-
ters for consistency, a model from the RGB grid was selected
and subjected to the same tests as the MS model. Frequency
uncertainties were constructed as for the MS observational
file. Uncertainties on the classical constraints were again con-
sistent with the literature. The period spacing, ∆Π, was in-
cluded as a grid parameter (σ∆Π = 1%, Vrard et al. 2016)
and consequently as one of the outputs in the results.

As before, PDFs of the mass and radius, in addition

to an Nσ plot for all parameters, have been included. Fig-
ure 9 shows a tight relationship between each of the three
model runs, sharing common peak values. The widths of the
distributions of the RGB PDFs are broader than their MS
counterparts. This is reflected in the increased uncertainties
of the output values. Using fewer frequencies compared to
the MS runs (9 RGB, 21 MS) and only l = 0 modes may con-
tribute to this factor, but it is inherent from broader studies
that larger RGB compared to MS uncertainties are to be
expected. A larger number of models are also rejected when
searching the RGB grid, indicating fewer models are likely
to be selected around the desired solution.

The trend in Fig. 10 closely resembles that observed in
Fig. 8, but little should be read into this. Repeating the tri-
als on multiple MS and RGB models from tracks in different
regions of the grid resulted in different Nσ parameter dis-
tributions with each track. Each set of parameters returned
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Figure 6. HR diagram showing the evolution of the 1.27 M�,
Zinit = 0.0100, Xinit = 0.731 track. The red stars indicate the po-

sitions of the models selected for the artificial data analysis on
the MS and RGB. Models prior to the zero-age-main-sequence

(ZAMS) have been removed for clarity and final grid selection

criteria have been applied.

is subject to different over/under estimations from models
resulting from their grid location and the boundary condi-
tions imposed on them. This variation in model determined
variables and their associated likelihoods means consistency
between Nσ patterns should not be expected from model to
model. The focus should therefore be on the distribution of
Nσ values which are all satisfactorily < 1.5σ in each case.

5.2 The Sun

Besides artificial data, we used AIMS to reproduce solar
data from the BiSON network of telescopes (Broomhall et al.
2009; Davies et al. 2014; Hale et al. 2016), using the l = 0, 1, 2
and n = 18 − 23 modes. The frequency uncertainties were
increased by a factor of

√
21/4 (Libbrecht 1992; Toutain &

Appourchaux 1994; Ballot et al. 2008) to perform a Sun-as-
a-star analysis. We recall that a solar-calibrated value of the
mixing length was used in the grid.

When working with real data, it is necessary to account
for surface effects, which are not present in tests performed
with artificial data. We used the two-term Ball and Gizon
surface correction (Ball & Gizon 2014), although other cor-
rections are also included in AIMS: Ball and Gizon single-
term (Ball & Gizon 2014); Kjeldsen (Kjeldsen et al. 2008);
Sonoi (single-term, scaling, two-term - Sonoi et al. 2015).

The fits were performed using two grids: the nominal
CLÉS MS grid and an identical grid, but with microscopic
diffusion included in the modelling (re-calibrated mixing
length: 1.81). From Table 2, we can see that models without
diffusion can reproduce quite well both the solar mass and
radii, although not at the 1σ level, but that they present
inaccuracies in age of about ∼1Gyr. This is in agreement
with helioseismic results which reject solar models without
microscopic diffusion (Christensen-Dalsgaard et al. 1993).
However, models with microscopic diffusion show excellent
agreement with solar values (Thoul et al. 1994). Fig. 11 con-
firms this, displaying Nσ results for multiple parameters of

Table 2. Comparison of Solar parameters using grids with and
without microscopic diffusion. Mass and radius are given in Solar

units, density in g cm−3 and age in Myrs. Literature density and

age are from Reese et al. (2012) and Bahcall et al. (1995).

Parameter With Diff. Without Diff. Literature

Mass 0.997 ± 0.005 0.994 ± 0.003 1.0
Radius 0.999 ± 0.002 0.996 ± 0.001 1.0

< ρ > 1.412 ± 0.001 1.4183 ± 0.0005 1.4104 ± 0.0012
Age 4578 ± 31 5264 ± 31 4570 ± 20

the Sun for grids with (blue stars) and without (red crosses)
microscopic diffusion.

Figure 12 shows the difference between the observed fre-
quencies (νobs) and the theoretical (surface corrected - s.c.,
νtheo s.c.) frequencies returned by AIMS for the grids with
(left) and without (right) diffusion respectively. All available
Solar frequencies are shown. Residuals are shown to illus-
trate the quality of the interpolation process, hence the ro-
bustness of the parameter determinations. A periodic trend
is seen in both cases, with a much higher emphasis for the
non-diffusive grid. This trend is the result of the large mis-
match of helium abundance between the theoretical model
and the Sun. Larger disparities are also observed above 3700
µHz as a consequence of the surface effects. This clearly il-
lustrates the difficulties and weaknesses of using individual
frequencies as direct constraints as the surface effects could
bias the modelling results. Using constraints such as fre-
quency ratios for MS stars can help mitigate such effects.

Looking at the reduced χ2 values of the frequencies, it
seems sensible to favour the values of the Solar parameters
determined using the grid including diffusion:

χ2 =
∑

i

(νtheo s.c.,i − νobs,i)2

σ2
i

(3)

χ2
red =

χ2

d.o. f .
(4)

where d.o. f . (degrees of freedom) is the number of input
parameters minus the number of free parameters, and σ the
compound uncertainty on the frequencies. Indeed, χ2

red,diff =

11.4 whereas χ2
red,non−diff = 52.5. Testing the hypothesis that

the model values are true, p values of 0.88 (χ2
red,diff) and

0.07 (χ2
red,non−diff) were returned. The order of magnitude

difference between the reduced χ2 values clearly indicates
that the grid including diffusion is superior for the Solar
analysis. As mass, radius and age are all within 1σ of the
Solar values for this grid, we can conclude that the processes
within AIMS perform well enough to produce the results to
a high degree of accuracy. All of the uncertainties are lower
than one would expect to find in the literature (see Silva
Aguirre et al. 2017 for recent Solar values from multiple
grids and codes) as they are of the same order of magnitude
as in tests using artificial data.

To determine whether the small uncertainties resulted
from the model or the use of individual mode frequencies,
the Solar data was also tested using the r0,1, r0,2 and r1,0 fre-
quency separation ratios (Roxburgh & Vorontsov 2003; grid
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Figure 7. The mass (left) and radius (right) PDF distributions for RGB the single model (green), 100 realisations (red) and best models
from the MCMC runs (blue). The model mass and radii are 1.27 M� and 1.414 R�, indicated by the vertical black, dotted line.

Figure 8. Nσ steps from the true value of each calculated pa-

rameter for the unperturbed (green), combined (blue) and best
MCMC (red) models for the MS tests.

Table 3. Solar parameters and uncertainties determined by
AIMS using the frequency separation ratios r0,1, r0,2 and r1,0 as as-
teroseismic constraints. Mass and radius are given in Solar units,
density in g cm−3 and age in Myr. The diffusive grid was used.

Parameter r0,1 r1,0 r2,0

Mass 1.01 ± 0.02 1.00 ± 0.02 0.99 ± 0.03
Radius 1.01 ± 0.03 1.00 ± 0.03 0.99 ± 0.03
ρ 1.40 ± 0.10 1.42 ± 0.10 1.44 ± 0.10

Age 4614 ± 258 4549 ± 204 4603 ± 139

including microscopic diffusion used). An improvement in
the returned parameters can be expected, as the ratios focus
more on the stellar interior (Roxburgh & Vorontsov 2003;
Ot́ı Floranes et al. 2005). Additionally, their reduced sensi-
tivity to surface effects should also lead to an improvement.
This is confirmed by the results in Table 3. The frequency

ratios give values consistent with the νind results and the
expected Solar values, but with larger uncertainties. When
using solely the frequency ratios4, one filters out additional
information (e.g. on the mean density of the star) and thus
naturally the uncertainties are increased. While this leads to
larger uncertainties on the stellar parameters, this degree of
precision can also be seen as more robust with respect to sys-
tematic effects which can be underestimated when directly
fitting the individual frequencies.

6 IMPACT OF USING DIFFERENT
COMBINATIONS OF SEISMIC AND
NON-SEISMIC CONSTRAINTS

In addition to testing the main functionalities of AIMS, the
effect of the inclusion of certain combinations of constraints
within the input observation file were explored. For all tests
presented so far, the classical constraints used have been
νmax, Teff , L and [Fe/H]. In addition to these constraints,
equal weighting has been given to the asteroseismic (input
frequencies, νi) and classical constraints.

6.1 Main Sequence Fits

Four tests were performed on a single main sequence model
(the same model used in Sect. 5.1.1) from within the grid,
with the effect on the PDF distributions and uncertainties
of the mass, radius and age of the artificial star recorded.
The constraint variations were as follows:

(i) Teff, L(σGaia), [Fe/H], no acoustic oscillation frequen-
cies

(ii) Teff , [Fe/H], acoustic oscillation frequencies, no L
(iii) Teff, L(σGaia), [Fe/H], r0,2
(iv) Teff, L(σGaia), [Fe/H], acoustic oscillation frequencies

4 AIMS allows the use of other constraints along frequency ra-

tios, such as the large frequency separation, while self consistently

keeping track of the correlations between seismic indicators.
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Figure 9. The mass (left) and radius (right) PDF distributions for RGB the single model (green), 100 realisations (red) and best models
from the MCMC runs (blue). The model mass and radii are 1.27 M� and 4.403 R�, indicated by the vertical black, dotted line.

Figure 10. Nσ steps from the true value of each calculated pa-

rameter for the unperturbed (green), combined (blue) and best
MCMC (red) models for the RGB tests.

Figure 13 displays the PDFs for mass, radius and age
determinations. The inclusion or exclusion of luminosity
from the constraints appears to have a minimal impact on
the precision between cases (ii) and (iv). The increase in
precision on each parameter may not be as significant as the
inclusion of asteroseismology (narrowing of distributions ob-
served in both cases), but an improvement is still observed
when luminosity is included. Should other parameters (e.g.
initial He abundance) be free to vary, an independent con-
straint on luminosity is important to lift any existing degen-
eracies present when using only seismology.

Table 4 shows the uncertainties for each set of con-
straints. Test (i) returns uncertainties of order of the typical
literature values for age, mass and radii respectively, but
tests (ii) and (iv) return values at least an order of magni-
tude smaller. The addition of more free parameters to the
grid and the intrinsic differences they would cause between

Figure 11. Nσ steps from the true value of the mass, radius,

density, age (taken to be 4.57 ± 0.02 Gyr, Bahcall et al. 1995),
Z/X ratio, log10(g), Teff and luminosity for the Sun for the grids

with (blue stars) and without (red crosses) diffusion.

models would increase these uncertainties to be closer to
those expected. However, the trend between constraint sets
is clear. The decision to include or exclude the acoustic oscil-
lation frequencies has a significant impact on all parameters,
reducing the percentage errors by an order of magnitude.

Though reduced compared to case (i), case (iii) uncer-
tainties are of the same order of magnitude despite the in-
clusion of asteroseismology and are in line with the best
literature values. This illustrates the difference in precision
achievable with the inclusion of global asteroseismic param-
eters compared to the use of individual mode frequencies
when the same classical constraints are available. The po-
tential improvement in precision to be gained underlines the
importance of the development of analysis codes, such as
AIMS, capable of using individual acoustic oscillation fre-
quencies for the furthering of asteroseismic studies.
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With Diffusion Without Diffusion

Figure 12. Frequency residuals (νobs − νtheo) comparison between the observed and theoretical frequencies output by AIMS for the grid
with (left) and without (right) microscopic diffusion. The residuals subplot for the results with diffusion shows the residuals for frequencies

> 3750µHz. These residuals are much larger and therefore shown in a separate subplot to allow the underlying trend in the residuals to

be observed.
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Figure 13. Comparison of input classical and seismic constraints for mass (left), radius (centre) and age (right) determination. The

normalised distributions represent the different classical constraint criteria: (i) - green, dot-dashed; (ii) - blue, dashed; (iii) magenta,
dotted; (iv) - red, solid.

Table 4. Percentage uncertainties for the determined values of

mass, radius and age for the MS model used in the observational
tests, subject to the tested combinations of classical and astero-

seismic constraints.

Constraint Age (%) Mass (%) Radius (%)

(i) 34.64 3.69 3.12

(ii) 1.69 0.18 0.22
(iii) 12.65 2.48 1.98

(iv) 1.41 0.16 0.18

6.2 Red Giant Fits

The process was repeated for an RGB model from the grid to
illustrate that, despite less convincing interpolation results
than on the MS, it also performs well in this regime. Con-
sequently, a more comprehensive approach was taken. We
compare the results of AIMS for red giant stars to an ex-
tensively used, pre-existing stellar parameter determination
code to prove the capability of AIMS as an analysis tool. We
chose the PARAM software (da Silva et al. 2006; Rodrigues
et al. 2014, 2017), which is quite similar to AIMS in its phi-
losophy, with the only significant difference being that AIMS
uses asteroseismic data as an input. We run AIMS without

using the input mode frequencies to make a more informed
comparison between the capabilities of both codes.

A recent work by Rodrigues et al. (2017) (hereafter R17)
investigates the effects of various combinations of constraints
on the accuracy of stellar parameter determinations for a se-
ries of artificial red giant and red clump stars using PARAM.
We repeated these tests using the same sets of classical and
global seismic constraints in AIMS and our own RGB model.
10 different combinations of constraints were used:

(i) ∆ν (vi) ∆ν, νmax,∆Π, L
(ii) ∆ν, νmax (vii) νmax, L
(iii) ∆ν,∆Π (viii) log10(g), L
(iv) ∆ν, νmax,∆Π (ix) ∆ν, log10(g)
(v) ∆ν,∆Π, L (x) ∆ν, L

From the above list, it is clear that asteroseismic pa-
rameters are still to be used as initial constraints with the
large frequency separation (∆ν, σ∆ν = 0.05µHz), frequency
of maximum power (νmax, σνmax = 2%) and period spacing
(∆Π, σ∆Π = 1%) featuring heavily. These parameters are all
global seismic properties and are not necessarily reliant upon
determination of individual frequencies. Hence, they can be
input as classical constraints. In addition to the listed con-
straints, the effective temperature (σTeff = 80 K) and metal-
licity (σ[Fe/H] = 0.1 dex) were included for each case as in
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Table 5. Fractional uncertainties for each combination of input
constraints for AIMS run as PARAM. The RGB results from table

3 of R17 are displayed for direct comparison.

Constraints
σM /M σAge/Age

AIMS R17 AIMS R17

νi 0.002 - 0.029 -

∆ν 0.184 0.173 0.735 0.734

∆ν, νmax 0.061 0.078 0.230 0.284
∆ν, ∆Π 0.119 0.109 0.475 0.336

∆ν, νmax, ∆Π 0.047 0.054 0.190 0.192

∆ν, ∆Π, L 0.048 0.043 0.131 0.122
∆ν, νmax, ∆Π, L 0.037 0.034 0.110 0.097

νmax, L 0.041 0.039 0.108 0.107

log10(g), L 0.138 0.124 0.544 0.427
∆ν, log10(g) 0.166 0.173 0.590 0.727

∆ν, L 0.055 0.052 0.146 0.143

R17. The uncertainties used on L and log10(g) were 3% and
0.1 dex respectively. It should be noted that case (iii) of
R17 was ignored here, with a value of ∆ν calculated from
the frequencies used throughout.

Figure 14 displays the results of these tests as the distri-
butions of the determined values normalised to the true pa-
rameter values. In addition to the above sets of constraints,
the model was tested using the standard constraints used
throughout this work and with a direct fit of the individual
mode frequencies. This is labelled ‘νi ’.

To further analyse the distributions, Table 3 from R17
has been recreated. Table 5 contains the relative uncertain-
ties for the mass and age of the tested model for each com-
bination of constraints. The majority of the results follow
typically Gaussian distributions, but cases (i), (viii) and (ix)
show asymmetry in their mass distributions. The sampling
of the mass in these cases has reached the lower end of the
grid, introducing a sampling bias as a build up of low mass
samples occurs. This causes the asymmetry observed, which
propagates to other parameters.

A direct comparison between the two sets of results is
not appropriate due to the different models used, but a com-
parison of the overall trends is meaningful. The attained val-
ues vary, but in general the distributions follow those of R17.
This is reassuring and confirms that AIMS reacts to certain
combinations of constraints in an expected manner.

Considering previous statements regarding AIMS un-
certainties, the fractional uncertainties shown in Table 5 are
comparable to those of PARAM. Removing the use of in-
dividual mode frequencies causes the inflation of the uncer-
tainties due to the smaller number of constraints. Consis-
tency between codes here is important to show that when
global asteroseismic parameters are used as constraints,
AIMS performs as well as a pre-established and trusted soft-
ware. Some variation of the fractional uncertainties com-
pared to R17 is present but likely stems from the differences
in model parameters and grid properties, as well as mod-
elling codes used in these tests.

Using all of the available information from the mode
frequencies improved the fractional uncertainties with values
of 0.002 and 0.029 in mass and age respectively. This test
case also produces the best PDFs in Fig. 14, showing the

Table 6. Percentage uncertainty of calculated variables with and
without the use of individual frequencies as a constraint for an MS

artificial model. ‘With ν’ indicates that the individual frequencies

were used in the analysis. < ∆ν > indicates the runs without the
use of the individual frequencies, but inclusion of the average large

frequency separation as a constraint. The l = 0, 1, 2 modes were
used.

Model σMass σRadius σLum σg σAge

MS (with ν) 0.14% 0.06% 0.48% 0.01% 1.18%
MS (< ∆ν >) 2.96% 1.12% 2.71% 0.10% 15.48%

potential of using constraints determined from individual
frequencies.

In order to demonstrate the difference in performance
between using all the available modes and only the global
asteroseismic parameters on an MS star, the model used in
section 5.1.1 was re-run using the same constraints and con-
figuration as test (ii). Though it was not possible to perform
such a comparison with PARAM results, the consistency of
the AIMS results without the use of individual frequencies
with PARAM allows meaningful comparisons.

Figure 15 shows the result comparison of two separate
runs for mass and radius as before, as well as the rela-
tions for the luminosity, surface gravity and evolutionary
parameter - age. An offset between the peaks of the dis-
tributions is present for various parameters, caused by the
known helium-mass degeneracy (see Baudin et al. 2012 and
references therein). As tighter constraints are placed on the
luminosity of the star when asteroseismology is used, these
degeneracies become lifted, allowing for tighter distributions
around the expected solutions.

Table 6 shows the statistical trends observed in the re-
lated figures, giving the percentage uncertainty on each of
the relevant parameters for the cases where the individual
frequencies were used and when only global asteroseismic
constraints were applied. It should be stressed that the un-
certainties displayed in Table 6 are purely statistical and
do not account for any systematics within the code. De-
spite this, the effect of including the individual frequencies
in the analysis is clear from Table 6. A reduction in uncer-
tainty is seen for all parameters when using the individual
frequencies, displaying the benefits of using this additional
information. However, as discussed before, the direct use
of individual frequencies as constraints can lead to under-
estimated uncertainties. This is particularly true for main-
sequence stars, which often have very rich oscillation spec-
tra. In that sense, being able to use frequency ratios in AIMS
allows us to obtain a more realistic precision on stellar pa-
rameters and should generally be preferred.

The reduction between the RGB and MS uncertainties
is not of the same order for case (vi) for mass and age (case
vi contains the initial artificial RGB test classical constraints
and therefore is most appropriate to compare). The uncer-
tainties in mass and age on the RGB decrease by factors of
18 and 4, while on the MS the reduction is by a factor of 20
and 15 respectively. The reduction in mass is quite similar
for each evolutionary state, but the reduction in age is an
order of magnitude greater for the MS. This is mainly due
to the observed frequencies and the additional information
they carry on the internal stellar structure. Indeed, the RGB
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Figure 14. Comparison of the posterior probability distributions for multiple combinations of constraints used as inputs to AIMS

without the use of the individual mode frequencies. The distribution marked ‘AIMS inputs’ shows the result obtained if the individual

mode frequencies are used.

Figure 15. Comparison of the normalised posterior probability distributions for the MS model both with (red, solid) and without (green,

dashed) the use of the individual mode frequencies.
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fit used 9 frequencies while 21 frequencies were used on the
MS. Besides the number differences, the MS fit used modes
of l = 0, 1 and 2, containing a lot of information on the evo-
lutionary stage on the MS, whereas the RGB fit only used
radial modes. The ` = 1 and ` = 2 modes can of course be
included within the RGB grid. However, their highly non-
linear behaviour and the decreased sensitivity of the small
separations to age in evolved stars (e.g. see Montalban et al.
2010), currently precludes their direct use in AIMS.

To further illustrate the impact of the inclusion of the
` = 1 and ` = 2 modes, an additional test on the MS using
only the ` = 0 modes from the previous tests (7 in total)
was performed. The reduction in uncertainty in this instance
was only a factor of ∼ 5 in age, much more in line with the
RGB results. This demonstrates the reliability with which
stellar parameters can be derived and also points towards
the potential improvement to make with RGB grids and data
sets containing more than just the ` = 0 mode frequencies.

7 DISCUSSION AND CONCLUSION

We have presented a new, open source, code for the determi-
nation of stellar parameters. It is unique as it is currently the
sole code using a Bayesian and MCMC algorithm approach
with grid interpolation to carry out asteroseismic inferences.
The code’s flexible, multidimensional approach to the anal-
ysis allows the user to analyse data as a function of 2 or
more fixed grid parameters, affording more control over the
analysis dimensions. We executed a comprehensive testing
phase and presented the results. All aspects of the program
were analysed, with the results proving satisfactory.

A test of the interpolation procedures revealed the accu-
racy to which the interpolation function within the program
returns known values from within the grid. Primarily, the
tests focused on the interpolation of the radial mode fre-
quencies of the MS and RGB grids, showing that AIMS pro-
vides accurate interpolations well above the threshold values
set from the literature. Additional inputs (e.g. mass, age, ra-
dius...) were then also tested and again found to be returned
at a level matching or exceeding the desired threshold.

The parameter determination tests were very informa-
tive. Primary tests with artificial data shed light on some
potential limitations of both the analysis code and underly-
ing grid. We showed that the parameter uncertainties deter-
mined by AIMS are approximately an order of magnitude
smaller than typically reported in the literature. Further in-
vestigations confirmed that the statistical analysis and prop-
agation of observational uncertainties were robust. The un-
certainties stated by AIMS are thus statistical and do not
account for biases in the input physics or model selection.

The artificial data tests were satisfactory, with param-
eters lying within a few σ of the true results. The input
parameters of the model were not returned, but the results
were sufficiently close to the input values for this not to be of
great concern. Data for the Sun were analysed to test AIMS
on real data with clearly defined parameters for comparison.
As expected, the precision achieved when including individ-
ual oscillation modes leads to a comparable accuracy with
the known values only if one has flawless models. As shown
here, this objective is yet to be achieved. One can use the
evidence from comparisons of a diffusive and non-diffusive

grid to highlight the limitations of certain models and the
need to improve upon model selection. As AIMS is strongly
coupled to the input grid, its performance depends on the
standard of the grid used and the final model selection and
returned parameters are ultimately a reflection of this.

The AIMS code is highly flexible in terms of the param-
eter constraints one can use in the analysis. The code can
be operated using individual mode frequencies, frequency
ratios or large frequency separations as asteroseismic con-
straints. It is also possible to operate the code without these
options, simply using classical constraints instead. Full pos-
teriors are returned for determined parameters in each case,
meaning any correlations are taken care of in the analysis
process. The effect of altering the classical and asteroseis-
mic constraints associated with the input observational file
was explored, with the impact of including or excluding any
asteroseismic constraints extremely clear. The inclusion of
asteroseismic constraints improved the internal precision by
a factor 2-20 for both the RGB and MS stars respectively
for all of the tested parameters (M, R, ρ, age, Z/X, log10(g),
Teff , L), underlining how important asteroseismology is to
AIMS for accurate inferences and the improvement in mea-
surements this technique allows for.

A comparison with an established stellar parameter
code, PARAM, gave a valuable insight into the performance
of AIMS. For red giant stars, a set of artificial data similar
to those used in R17 was analysed using a variety of con-
straint combinations, including multiple global asteroseis-
mic parameters. Some variation from the expected values
for different combinations was observed, but upon compar-
ison with the work in R17, the distributions and relative
uncertainties show comparable trends. The similarity in re-
sults to an established code brings confidence to those being
output by AIMS, showing that it performs to the standard
expected by the field, even without the use of the individual
mode frequencies it is designed to use.

The primary focus of constraint testing was on the pre-
cision to which the code can operate, but pushing it to the
challenging limits of using the best constraints - i.e. individ-
ual oscillation frequencies with uncertainties of the order of
10−2µHz. The robustness shown here by the results achieved
give confidence to explore more possibilities with the code.

Our tests show that, when using individual mode fre-
quencies as constraints, one is in principle able to infer prop-
erties with exceedingly high precision. The latter, however,
should not be taken as realistic expectations concerning ac-
curacy. Individual mode frequencies are affected by system-
atic effects that will dominate the uncertainties on the in-
ferred properties. We do not explore such effects in this work,
except from the enlightening case of the Sun, where fitting
individual mode frequencies results in very high precision es-
timates of its global properties, which are, however, highly
inaccurate if one uses inaccurate models (see Sec. 5.2). This
strong model-dependence is attenuated when one uses fre-
quency ratios, as shown in the literature, at the cost of a re-
duced precision. Explorations of the systematic uncertainties
in the models and the inclusion of additional free parameters
(e.g. Yinit, mixing length, surface effects) provide additional
challenges to progress the code and maintain a high qual-
ity analysis tool for the community, and will be presented
in a forthcoming work (e.g. see Nsamba et al. 2018). On a
positive note, and as demonstrated by the tests using Solar
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data, AIMS can be used for the comparison of competing
models which can be selected using Bayesian inference, as
derived from the full posterior distributions of various esti-
mated properties. These tests will be instrumental to pro-
mote the development of next generation stellar models, and
will improve our ability to determine stellar ages and chemi-
cal yields, with wide impact e.g. on the characterisation and
ensemble studies of exoplanets, on evolutionary population
synthesis, integrated colours and thus ages of galaxies.

The overall outcome of this work has proven Asteroseis-
mic Inference on a Massive Scale to be a flexible, high pre-
cision stellar parameter determination program, fit for use
to bring tighter constraints to the determinations of stellar
parameters through robust asteroseismic analysis and grid
modelling for both dwarf and giant stars. Its flexibility and
open-source nature makes AIMS a suitable starting point for
the development of the pipelines of future missions such as
PLATO (Rauer et al. 2014). Moreover, its output can also be
used for additional seismic investigations with for example
non-linear inversion techniques as developed by Roxburgh
(2002) or linear inversions of structural indicators (Reese
et al. 2012; Buldgen et al. 2015, 2018b).
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APPENDIX A:

A1 Track Interpolation

Figure A1 is as Fig. 5, but for a track/model selected from
the interpolation tests of the RGB grid. A 1.19 M�, Xinit
= 0.731, Zinit = 0.0100 track is recovered here from models
0.02M� either side of the original track and of the same Xinit
and Zinit values. The frequency replication is slightly more

uncertain than for the MS example (max. log10 error of -
2.088), but again excellent parameter residuals and minimal
shifts in frequencies show that the process is working well.

A2 Parameter Interpolation

Examples of the interpolation plots for radius and luminosity
for the artificial main sequence star analysed in the main text
are shown in Fig. A2. The maximum uncertainty for each
evolutionary track is shown as per the main text.
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Figure A1. Results as for Fig. 5. A 1.19 M�, Xinit = 0.731, Zinit = 0.0100 track is tested here, but with a model from the RGB grid. A
maximum interpolated frequency error of -2.088 is returned for this track and the mass of the Helium core is used as the interpolation

parameter. The values of ∆T/T have been increased by a factor of 100 for ease of plotting. The frequencies in (C) have been increased

by 5µHz to centre the frequency pattern.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Radius R/R

2.50

2.25

2.00

1.75

1.50

M
et

al
lic

ity
, l

og
10

(Z
0)

4.0
3.8
3.6
3.4
3.2
3.0
2.8 log

10 (m
ax. error)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Luminosity L/L

2.50

2.25

2.00

1.75

1.50

M
et

al
lic

ity
, l

og
10

(Z
0)

3.5

3.0

2.5

2.0

1.5 log
10 (m

ax. error)
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