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Abstract: Background: A key role of oxidative stress has been highlighted in the pathogenesis of
COVID-19. However, little has been said about oxidative stress status (OSS) of COVID-19 patients
hospitalized in intensive care unit (ICU). Material and Methods: Biomarkers of the systemic OSS
included antioxidants (9 assays), trace elements (3 assays), inflammation markers (4 assays) and
oxidative damage to lipids (3 assays). Results: Blood samples were drawn after 9 (7–11) and 41 (39–43)
days of ICU stay, respectively in 3 and 6 patients. Vitamin C, thiol proteins, reduced glutathione,
γ-tocopherol, β-carotene and PAOT® score were significantly decreased compared to laboratory
reference values. Selenium concentration was at the limit of the lower reference value. By contrast, the
copper/zinc ratio (as a source of oxidative stress) was higher than reference values in 55% of patients
while copper was significantly correlated with lipid peroxides (r = 0.95, p < 0.001). Inflammatory
biomarkers (C-reactive protein and myeloperoxidase) were significantly increased when compared
to normals. Conclusions: The systemic OSS was strongly altered in critically ill COVID-19 patients
as evidenced by increased lipid peroxidation but also by deficits in some antioxidants (vitamin C,
glutathione, thiol proteins) and trace elements (selenium).

Keywords: COVID-19; oxidative stress; critical care; vitamin C; lipid peroxides

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for
Coronavirus disease 2019 (COVID-19), the first cases having been reported in Wuhan,
China, in December 2019 [1]. Due to fast transmission and pathogenicity, the coronavirus
has spread across all countries, provoking a pandemic [2]. COVID-19 is characterized
by aberrant host immune response, leading to excessive inflammatory responses (or cy-
tokine storm)—as evidenced by high blood levels of cytokines, chemokines and C-reactive
protein—and is associated with severe damage to the respiratory system and multi-organ
failure, contributing to fatal outcomes of infected patients [3–5]. Post-mortem analysis of
COVID-19 lungs showed infiltration of inflammatory mononuclear cells and macrophages
in the air spaces, which may induce diffuse remodeling of the alveolar wall [6].
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In a large number of pathologies, inflammation is known to be closely related to
oxidative stress, one process being easily induced by the other [7–9]. Oxidative stress (OS)
is defined as an imbalance between toxic reactive oxygen species (ROS) and antioxidants in
favor of oxidants, leading to a disruption of redox signaling and/or irreversible oxidative
damage to lipids, deoxyribonucleic acid (DNA) or proteins [10]. Oxidative damages are
involved in the development of different pathologies including cancer, cardiovascular,
neurodegenerative and lung diseases [11]. Besides inflammation, other pathophysiolog-
ical mechanisms in relationship with increased OS have been advocated to explain the
pathogenesis of COVID-19 [12]: inhibition of angiotensin converting enzyme 2 (ACE-2)
activity [13–16], denaturation of hemoglobin leading to iron metabolism dysregulation
with release of toxic free iron ion [17–21], disseminated intravascular coagulation due to
hypoxia [12] and endothelial dysfunction [22–26].

Despite recent papers highlighting the key role of oxidative stress and inflammation
duo in the development of COVID-19 [12,27,28], little information is available about the
systemic oxidative stress status (OSS) of COVID-19 patients hospitalized in intensive care
unit (ICU) for severe pneumonia. The present study aimed to specifically identify blood
biomarkers of OS including antioxidants, trace elements, and oxidative damages to lipids
in such COVID-19 patients and to analyze their relationship with inflammation as a major
source of ROS production.

2. Material and Methods

This study was conducted during the first wave of the COVID-19 pandemic in May
2020 in the 50-bed Intensive Care Unit (ICU) of the University Hospital of Liège in Belgium.
Due to the particular context of the pandemic, we received first a written agreement from
the President of local Ethical Committee on 29 April 2020. The study protocol was then
formally approved under national reference B707202000035, Local reference 2020-201, on
5 June 2020. All legal representatives of the patients were instructed on the study objectives
and signed informed consent.

The study was conducted on a convenience sample of critically ill adult patients
hospitalized for severe COVID-19 pneumonia. Patients were excluded if they were weaned
from mechanical ventilation and if they were on continuous veno-venous hemofiltration
(CVVH) during the 7 days before blood sampling. In total, nine patients were included.

All the patients received medical nutrition following the local nutritional practices.
According to the nutritional guidelines that were available at the time of the study, weight-
based formulas were used to estimate energy and protein targets (Table 1). Enteral nutrition
was administered continuously using a volumetric pump. Gastric residual volume was
monitored every 6 h: in case of volume ≥250 mL, feeding rate was reduced and prokinetics
(metoclopramide or erythromycin) were considered at the intensivist’s discretion. The
different industrial enteral solutions were: Nutrison Protein Plus, Nutrison Energy Multi
Fibre, (Nutricia®, Brussels, Belgium) and Peptamen AF (Nestlé Health Science®, Brussels,
Belgium). In case of insufficient or contraindicated enteral nutrition, respectively supple-
mental or total parenteral nutrition was initiated using a ternary mixture (Smofkabiven,
Fresenius Kabi®, Schelle, Belgium). Parenteral nutrition was administered continuously
via a central venous line, using a volumetric pump. Patients on parenteral nutrition or con-
tinuous veno-venous hemofiltration were supplemented with micronutrients (Addaven®,
Soluvit® Novum, Vitalipid® Novum Adult (Frésénius Kabi®, Schelle, Belgium)).

Demographic data (age, sex, weight, height, body mass index (BMI), medical history,
severity scores, organ support duration, route of nutrition, length of stay (LOS), survival)
were collected for all patients from the electronic medical record.
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Table 1. Nutrition calculations. y: years; * BMI: body mass index; CVVH: continuous veno-venous
hemofiltration; ** IBW: ideal body weight.

Body Weight Considered for Nutritional Calculations

Eutrophic patients:
* < 75y: BMI 18.5–25 kg/m2

* ≥ 75y: BMI 23–28 kg/m2

Actual weight: measured in hospital or obtained
from patient’s recent medical history

Underweight patients
* IBW = expected weight for

* BMI = 18.5 kg/m2 if age < 75y
* BMI = 23 kg/m2 if age ≥ 75y

Overweight patients
IBW = expected weight for

* BMI = 25 kg/m2 if age < 75y
* BMI = 28 kg/m2 if age ≥ 75y

Obese patients:
* < 75y: BMI ≥ 30 kg/m2

* ≥ 75y: BMI ≥ 30 kg/m2

Adjusted IBW =
** IBW + 0.25 × (actual weight − IBW)

Nutritional targets

Eutrophic, underweight and overweight patients Energy: 25 kcal/kg/d
Protein: 1.2 g/kg/d (1.7 g/kg/d if CVVH)

Obese patients Energy: 20 kcal/kg/d
Protein: 2 g/kg/d

Blood samples drawn from a venous central line on tubes containing EDTA and citrate
were immediately centrifuged at 3000× g during 10 min. Serum gel was allowed to clot
during 30 min before being centrifuged. Plasma and sera samples were then frozen at
−80 ◦C until analysis of OS biomarkers. Blood determination of antioxidants, respec-
tively vitamins C and E (γ- and α-tocopherols), vitamin E standardized to cholesterol (Vit
E/cholesterol), β-carotene, glutathione (GSH), thiol proteins (PSH), glutathione peroxidase
(GPx), trace elements (selenium (Se), copper (Cu), zinc (Zn), copper/zinc ratio), biomarkers
of oxidative damages to lipids (lipid peroxides (ROOH), oxidized LDL (ox-LDL), and
antibodies IgG against oxidized LDL (Ab-ox-LDL) has been described in detail [29,30].
C-reactive protein (CRP) concentration was determined on a COBAS®8000 analyzer (Roche
Diagnostics, Machelen, Belgium). Myeloperoxidase (MPO) was assessed using MPO ELISA
kit (Immun Diagnostik, Bensheim, Germany). Cholesterol was measured using an enzy-
matic method with cholesterol oxidase on Abbott Alinity C (Abbott, Chicago, IL, USA).
Albumin was assessed by spectrophotometry using Alinity C kit (Abbott, Chicago, IL,
USA). White blood cells and neutrophils were determined by flow fluorocytometry on
Sysmex-SN device (Ontario, Canada). The total antioxidant capacity (TAC) of plasma
was evaluated by using the PAOT® (Pouvoir AntiOxydant Total, Institut Européen des
Antioxydants, Nancy, France) score as previously described [31]. Briefly, the measurement
was carried out in a reaction medium (1 mL physiological solution at pH ranging from 6.7
to 7.2, temperature 24–27 ◦C) containing a molecule in a free radical state called mediator
(M•). Two microelectrodes, one being the working electrode and the second one the ref-
erence electrode, were then immersed in the medium. After addition of 20 µL of plasma,
the PAOT activity was estimated by registering electrochemical potential modifications
in the reaction medium. Blood concentrations of all OS biomarkers were compared to the
reference values applicable in the central laboratory of the CHU of Liège [29,30].

Patients were divided in two groups according to the ICU stay duration. Patients with
an ICU stay ≤10 days (short stayers, N = 3 patients) or >10 days (long stayers, N = 6 patients)
before blood sampling were arbitrarily defined as short or long stayers, respectively.

3. Statistical Analysis

Quantitative data were expressed as median and range while numbers and percent
were used for categorical findings. To compare the distribution of biological parameters
of COVID-19 patients with the laboratory reference intervals, we used the sign test based
on the binomial distribution. Specifically, according to the sign test, when all COVID-19
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patient values fell below (or above) the middle of the reference interval, we concluded that
the biological test was significantly lowered (or increased) in COVID-19 patients (p = 0.004)
and likewise for eight COVID-19 patients (p = 0.040); otherwise, COVID-19 patients were
not statistically different from presumably healthy subjects. Comparison of OSS between
short and long stayers was made using the nonparametric Mann-Whitney U test. Results
were considered significant at the 5% critical level (p < 0.05). The Spearman correlation
coefficient was calculated to measure the association between biological parameters. A
p-value < 0.05 was considered as statistically significant.

4. Results

The characteristics of the nine study patients are described in Table 2. Most of the
patients were overweight and/or presented pathologies such as type 2 diabetes (64%) or
arterial hypertension (66%).

Table 2. Demographic data of COVID-19 patients (N = 9). BMI: body mass index; LOS: length of stay;
SAPS II: simplified acute physiology score II; ICU: intensive care unit. Data are expressed as median
(P25-P75) or number (%).

Variable Summary Statistics

Age (y) 64 (53–71)
Sex ratio (M/F) 8/1

Weight (kg) 90 (81–102)
Height (cm) 173 (169–181)

BMI (kg/m2) 29.4 (28.4–32.3)
Active smoking, n (%) 1 (11)

Active alcoholism, n (%) 1 (11)
Pre-existing medical conditions:

- Type 2 diabetes, n (%) 6 (66)
- Arterial hypertension, n (%) 6 (66)

- Gastric sleeve surgery 1 (11)
SAPS II 33 (25–45)

ICU LOS (d) 54 (42–65.5)
Hospital LOS (d) 63 (49–91)

Mechanical ventilation duration (d) 38 (20–49)
CVVH during ICU stay, n (%) 1 (11)

Enteral nutrition during ICU stay, n (%) 9 (100)
Supplemental parenteral nutrition during ICU

stay, n (%) 3 (33)

All the patients were on enteral feeding and one patient received supplemental par-
enteral nutrition during the 7 days before blood sampling. During the entire ICU stay
before blood sampling, 3/9 patients received temporary supplemental parenteral nutrition
in addition to insufficient enteral nutrition, and 3/9 patients had been temporarily on
CVVH. These patients received an intravenous supplementation in vitamins and trace
elements. Mean daily macro- and micronutrients intakes from ICU admission to blood
sampling are described in Table 3.

As shown in Table 4, the median concentration of vitamin C, γ-tocopherol, β-carotene,
PSH, GSH and PAOT® score was statistically lower than the reference interval when
considering all patients. By contrast, those of GPx, MPO, neutrophils count and CRP was
significantly higher than the standards. Figures S1–S3 (see Supplementary Material) show
all the individual OS biomarkers values when compared to the reference interval. Vitamin
C, PSH and GSH concentrations were below the lower normal value (LNV) in almost all
patients. By contrast, elevated levels in GPX ROOH, copper/zinc ratio and CRP being
higher than the upper normal value were found in a large majority of patients.
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Table 3. Daily nutritional intakes in vitamins, trace elements and lipids in COVID-19 patients (N = 9)
hospitalized in ICU. Data are expressed as median (P25–P75).

Variable Summary Statistics

Cu (mg/day) 1.4 (1–1.8)
Zn (mg/day) 12.7 (8.6–15.7)
Se (µg/day) 72.3 (46.8–79.9)

Vitamin C (mg/day) 124.2 (94.6–172.1)
Vitamin E (mg/day) 17 (12.6–21.5)
Vitamin A (µg/day) 1012 (712.8–1182)

Lipids (g/day) 42.7 (27.8–54.2)
Energy (kcal/day) 1263 (899.8–1389)
Proteins (g/day) 65.2 (47.6–77.7)

Table 4. Statistical comparison of OS biomarkers in all COVID-19 patients (N = 9) with their reference
interval using the sign test based on the binomial distribution (see statistical analysis). k: number of
COVID-19 values below * or above ** the middle of reference interval.

Variable Reference Interval Median (Range) k p Value

Antioxidants
vitamin C (µg/mL) 6.21–15.18 3.91 (3.06–6.14) 9 * 0.004

vitamin E as α-tocopherol (µg/mL) 8.60–19.24 17.90 (13.3–21.1) 3 * 1
vitamin E/cholesterol (µg/g) 4.4–7.0 10.92 (9.14–13.16) 0 * 1

α-tocopherol (µg/mL) 0.39–2.42 0.84 (0.57–1.28) 8 * 0.040
β-carotene (mg/L) 0.06–0.68 0.14 (0.11–0.28) 9 * 0.004
thiol proteins (µM) 314–516 250 (204–258) 9 * 0.004
glutathione (µM) 717–1110 629 (508–697) 8 * 0.040

oxidized glutathione (µM) 0.96–10 <0.96 0 ** 1
PAOT® score (U/L) 1.46–36.74 10.52 (6.63–10.77) 9 * 0.004

glutathione peroxidase (UI/g Hb) 20–56 69.55 (61.90–78.27) 9 ** 0.004
albumin (g/l) 32–46 28 (27.5–33.0) 8 * 0.040

Trace elements
copper (mg/mL) 0.70–1.10 1.16 (0.66–1.47) 5 ** 1

zinc (mg/mL) 0.70–1.20 0.84 (0.81–1.09) 5 * 1
selenium (µg/L) 73–110 74 (59–103) 5 * 1

Biomarkers of lipid peroxidation
ROOH (µM) 0–432 674 (181–1415) 6 ** 0.50

ox-LDL (ng/mL) 28–70 50 (36–70) 5 ** 1
Ab-ox-LDL (IU/L) 200–600 306 (64–1200) 4 * 1

Sources of ROS production
copper/zinc ratio 1.00–1.17 1.55 (0.79–1.69) 5 ** 1

white blood cells (103/mm3) 4.60–10.10 8.42 (7.07–13.03) 6 ** 0.50
neutrophils (%) 42–71 75.6 (60.8–86.3) 8 ** 0.04

myeloperoxidase (ng/mL) 27–72 88 (60–191) 8 ** 0.04
C-reactive protein (mg/L) 0–5 32.8 (9.6–59.8) 8 ** 0.04

Table 5 displays the main significant correlations observed between OS biomarkers.
Copper correlated positively with ROOH, Cu/Zn ratio and CRP but negatively with γ-
tocopherol. Cu/Zn ratio tended to positively correlate with ROOH and similarly for Cu
and CRP. By contrast, γ-tocopherol tended to correlate negatively with ROOH, ox-LDL
and CRP. MPO negatively correlated with albumin and, to a lesser extent, with PSH. No
correlation was found between PSH and albumin (data not shown).

As blood samples were taken after different times in the ICU, we investigated if
differences could occur in OS biomarkers concentration between short and long stayers
(Table S1, see Supplementary Material). Only a significant increase in vitamin C, β-carotene
and selenium was observed in long stayers when compared to short stayers. Nevertheless,
the median value of both antioxidants always remained below the INV. By contrast, those
of selenium has changed from 51 (28–67) µg/L in short stayers to 97.5 (73–105) µg/L in
long stayers, this last value being in the reference interval. GSH concentration decreased
in a non-significant way from 794 µM in short stayers to 598 µM in long stayers, a value
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largely below the INV. As shown in Table S2 (see Supplementary Material), abnormal
values in vitamin C, PSH, GSH, GPx, copper/zinc ratio, ROOH, neutrophils and CRP
were frequent (≥50%) in both groups. Low selenium levels were mostly observed in short
stayers (Figure S2, see Supplementary Material).

Table 5. Correlation between some OS biomarkers as observed in COVID-19 patients. ROOH: lipid
peroxides, CRP: C-reactive protein, MPO: myeloperoxidase, PSH: thiol proteins, Cu: copper, Zn: zinc.

Association Correlation p-Value

Cu ROOH 0.95 <0.001
Cu/Zn CRP 0.82 0.007

PAOT®score Vitamin E/cholesterol 0.82 0.007
albumin MPO −0.75 0.020

Cu γ-tocopherol −0.75 0.020
GSH PSH 0.73 0.026
Cu Cu/Zn 0.72 0.030

γ-tocopherol ROOH −0.63 0.067
PAOT®score Zn 0.63 0.067

CRP Vitamin E −0.61 0.081
MPO PSH −0.61 0.081

Cu/Zn ROOH 0.58 0.099

5. Discussion

To the best of our knowledge, this is the first report showing a deep alteration of
systemic OSS using an analysis of a large number of biomarkers in COVID-19 patients
hospitalized for severe pneumonia. Of interest to note is that results were homogenous
despite a different timing (short and long stayers) in the blood collection.

5.1. Antioxidant Analysis

An important collapse in antioxidant defenses was detected in the COVID-19 patients
as evidenced by levels of vitamin C, GSH, PSH, γ-tocopherol and β-carotene that were
largely below the reference interval.

When considering all the nine COVID-19 patients, their median value in vitamin C
corresponds to the definition of a hypovitaminosis C [32]. Despite a significant increase
when compared to short stayers, vitamin C level in long stayers remained below the
inferior normal value. In a recent paper, Chiscano-Camón et al. [33] reported that unde-
tectable vitamin C levels were observed in 94.4% of COVID-19 patients 17.5 days after ICU
hospitalization. In our study, such a vitamin C deficiency indicated that intakes of this
antioxidant given at nutritional doses as recommended by ESPEN guidelines [34] were
therefore not sufficient to maintain vitamin C concentration in the reference interval, as
already observed in other critically ill patients [35]. In fact, intravenous (IV) administration
only has been able to restore high-level ascorbic acid plasma concentration [36]. Even if
always being a matter of controversy [37,38], high doses (several grams) of IV vitamin
C could help reducing the “cytokines storm” [39] and could have immunosuppressive
effects [40]. When compared to a placebo group, Zhang et al. [41] recently demonstrated
in a preprint paper without peer-reviewing that high-doses of IV vitamin C (12 g every
12 h) for 7 days improved oxygenation in COVID-19 critically ill patients. Moreover, blood
interleukin-6 levels were significantly reduced after 7 days of treatment. Unfortunately, the
authors did not monitor serum vitamin C concentration before and after IV injection.

Glutathione, a crucial antioxidant, is well known to modulate the behavior of many
cells including the cells of the immune system, augmenting the innate and the adaptive
immunity as well as conferring protection against microbial, viral and parasitic infec-
tions [42,43]. Interaction between GSH metabolism and several diseases were also well
described [44]. For example, low glutathione has been associated with abnormalities in the
lung surfactant system, while normal levels of intracellular glutathione may exert a critical
negative control on the elaboration of pro-inflammatory cytokines [45]. Our study revealed
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that the GSH status was significantly altered downwards in our COVID-19 patients, par-
ticularly in the long stayers. Recently, Polinokov [46] concluded that blood deficiency
in GSH exacerbated COVID-19 illness. In two COVID-19 patients, Horowitz et al. [47]
observed that the 2 g per os or IV glutathione improved their dyspnea within 1 h of use.
Repeated use of 2 g was effective in further relieving respiratory symptoms. Recently, Poe
and Corn, Rangel-Mendez et al. and De Flora et al. [48–50] hypothesized that N-acetyl-L-
cysteine (NAC) as a precursor of glutathione could act as a potential therapeutic agent in
the treatment of COVID-19 through a variety of potential mechanisms, including increasing
glutathione, improving T cell response, and modulating inflammation. Interestingly, we
also observed in parallel a deep depletion in PSH. By its large amount in plasma, albumin
dotted of –SH groups represents around 75% of the thiol pool [51]. Infectious and inflam-
matory states are known to alter the serum concentration of albumin [52], as observed in
the present study. Nevertheless, we found no correlation between PSH and albumin.

The determination of the total antioxidant capacity (TAC) has been proposed as a
global measure of non-enzymatic antioxidant efficiency despite the problem of inference
with uric acid [53,54]. Using an original electrochemical methodology developed by us [31],
we showed that the TAC as evaluated by the PAOT® score was logically decreased in
COVID-19 patients most probably because of their very low levels in vitamin C and GSH.
Nevertheless, no correlation could be evidenced between both antioxidants and TAC as
also shown in the EPIC Granada–Gipuzkoa study [55]. Nevertheless, it was interesting to
note the positive correlation of PAOT® score and the Vit E/cholesterol. More investigations
are required to better understand and evaluate the real role and place of TAC in the OSS.

5.2. Trace Elements Analysis

Adequate levels of Se are important for initiating immunity, but they are also involved
in regulating excessive immune responses and chronic inflammation [56]. In the present
study, selenium was close to the inferior normal value, and an important deficit was
detected in the three short stayers. Moghaddam et al. [57] analyzed the selenium status
in a cohort of 33 COVID-19 patients providing a set of four consecutive serum samples
taken from ICU admission to ICU discharge (median: 19 (3–46) days) or death (median:
10 (2–32) days). When compared to reference data issued from a European cross-sectional
analysis, these authors found, in agreement with us, a pronounced deficit with a very
low selenium concentration in 43.4% of the samples, more particularly in those of short
stayers (Figure S2, see Supplementary Material). By contrast, all our long stayers exhibited
individual values being within the reference interval, significantly higher than those of
short stayers. This could suggest that the nutritional intakes in selenium could have been
adequate to compensate initial deficits.

In their paper, Moghaddam et al. [57] also analyzed glutathione peroxidase (GPx), an
antioxidant enzyme requiring glutathione (GSH) and selenium as co-factors to eliminate
lipid peroxides (ROOH). Unlike the present results, these authors found a significant
correlation between selenium and GPx. Even if the GPx level was elevated in all our
patients, it should be surprising that its activity was optimal given the low level in its
co-factor GSH but also the elevated concentration in ROOH.

Copper exhibits, at non-physiological concentration, pro-oxidant activities by induc-
ing free radical formation through Fenton-like reaction [58]. The potential pro-oxidant
effect of copper was suggested in our study by both its strong positive correlation with
ROOH and negative correlation with γ-tocopherol, a major antioxidant acting as lipid per-
oxidation inhibitor. Besides an important role in immunity [59], zinc also had antioxidant
properties [60] as main co-factor of superoxide dismutase (SOD) but also as inhibitor of free
radical reaction induced by copper. As shown in Figure S2 (see Supplementary Material),
Cu/Zn ratio values higher than the UNV were found in half of the patients. As part of an
OS assessment, some authors suggested that the Cu/Zn ratio should be considered as a
better indicator of OS presence than copper alone [61,62]. Such a ratio is rarely analyzed in
critically ill patients. The strong relationship between health status and Cu/Zn ratio has,
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however, been extensively reviewed by Malavolta [63]. So, human studies have well evi-
denced that inflammatory stimuli modify serum concentration of Cu and Zn by increasing
the former and decreasing the latter through a hepatic organized mechanism [64]. In our
study, we effectively observed that the Cu/Zn ratio was positively correlated with CRP.
Moreover, the ratio also tended to be positively correlated with ROOH (Table 5). This is in
agreement with previous papers reporting that increased copper/zinc ratio was correlated
with heightened systemic oxidant load in aging-related degenerative diseases [65], patients
undergoing renal dialysis [66] or women taking oral contraceptive [30].

5.3. Analysis of Lipid Oxidation Biomarkers

Even if the elevated level of lipid peroxides was not statistically different from the
reference interval, a majority of COVID-19 patients (63.6%) exhibited higher levels than
the upper reference value (Figure S2, see Supplementary Material). The strong correlation
observed between ROOH and copper highlighted the important role of this last trace
element in the development of the lipid peroxidation process. By contrast, ox-LDL, as
another form of lipid peroxidation [67], did not confirm the presence of increased oxidative
damages to lipids. However, ox-LDL elicited the production of both IgG and IgM ox-LDL
antibodies. It is accepted that IgG ox-LDL antibodies had pro-inflammatory effect while
IgM were anti-atherogenic [68]. Surprisingly, we observed in our study two distinct profiles
in IgG values (Figure S2, see Supplementary Material). We have no clear explanation related
to such discrepancy.

5.4. Analysis of Inflammation Biomarkers

In COVID-19 patients as well as in critically ill patients, increased plasma inflammatory
markers such as CRP have been well described [69]. In our study, we confirmed such
inflammatory process (Table 4) as especially evidenced by elevated levels in MPO, an
enzyme specifically localized in neutrophils. This reflects the activation of these cells
probably by cytokines leading to the release in the extracellular medium of ROS in high
amount [70]. MPO can also catalyze the formation of toxic hypochlorous acid (HOCl),
able to oxidize albumin [71]. Oxidation of –SH groups of albumin is known to occur
in pathophysiological processes associated with increased inflammation and oxidative
stress [51] and potentially in COVID-19 patients [72]. This could explain why we have
observed a negative correlation between MPO and albumin in our patients.

Our observational study did not allow us to conclude if increased OS and antioxidant
depletion could be directly attributed to the COVID-19 disease by itself or by its compli-
cations and the delivered organ supports [73–75]. Nevertheless, significant alterations in
vitamin C, GSH and selenium concentrations, all molecules playing a key role in the immu-
nity, raise questions in the particular framework of the COVID-19 pathogenesis. Associated
to increased lipid peroxidation, these observations should therefore create opportunities to
explore potential approaches for prevention or treatment by antioxidants, as observed in
COVID-19 patients [76–80]. As recently suggested for vitamin C and glutathione [33,47,81],
monitoring of OSS should be implemented in COVID-19 critically ill patients, including
vitamin C, GSH in association with PSH, and, finally, ROOH in association with the Cu/Zn
ratio and CRP.

5.5. Study Limitations

First, only a few number of patients have been studied and blood sampling timing was
not standardized. Second, some clinical data, such as the number of septic complications,
were not taken into account in the present analysis. Moreover, OSS status of our patients
at ICU admission was unfortunately unknown. Our patients were overweight (median
value: 29 kg/m2) and some of them had pre-existing medical conditions such as diabetes
(64%) and/or arterial hypertension (55%), all conditions being potentially associated with
basal increased OS [82–84]. If focusing on vitamin C, the literature review indicated,
however, that these pathological situations by themselves could not be responsible for
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hypovitaminosis C [85–88]. Finally, nutritional support varied between patients and their
average energy and protein intakes was lower than recommended. This could have
influenced the observed OS status.

6. Conclusions

The systemic OSS was strongly altered in critically ill COVID-19 patients as evidenced
by increased lipid peroxidation but also by deficits in some antioxidants (vitamin C,
glutathione, thiol proteins) and trace elements (selenium). Strong positive correlations
between lipid peroxides and Cu and the negative correlation between γ-tocopherol and
Cu highlighted the role played by copper in increased OS in COVID-19 patients. These
observations need to be confirmed on a larger population.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-392
1/10/2/257/s1, Figure S1: Individual plasma values in antioxidants observed in COVID-19 patients
(N = 9). Figure S2: Individual plasma values in trace elements and markers of lipid peroxidation
observed in COVID-19 patients (N = 9). Figure S3: Individual plasma or blood values in inflammatory
biomarkers observed in COVID-19 patients (N = 9)., Table S1: Statistical comparison of median
values for all investigated OS biomarkers between short and long stayers., Table S2: Percentage (%)
of patients among short (N = 3) and long stayers (N = 6) having individual values of OS biomarkers
below the lower normal value (LNV) and above the upper normal value (UNV).
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