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Abstract

Engineering structures are becoming lighter and more complex to accommodate the
ever-increasing demand for performance and to comply with stringent environmental
regulations. This trend comes with several challenges, one of which is the increased
susceptibility to high-amplitude vibrations. These vibrations can be detrimental to
structural performance and lifetime, and may sometimes even threaten safety. Passive
and active vibration reduction techniques can provide a solution to this issue. Among
the possibilities, piezoelectric damping is an attractive option, due to its compact
and lightweight character, its reduced cost and its tunability. This technique uses
the ability of a piezoelectric transducer to transform part of its mechanical energy
into electrical energy. The converted energy can then be dissipated by connecting
a shunt circuit to the transducer. However, the difficulty of realizing such circuits
limits the broad applicability of piezoelectric shunting.

This doctoral thesis investigates the potential of replacing the electrical circuit comprising
classical components such as resistors and inductors by a digital unit and a current source,
thereby creating a digital vibration absorber (DVA). Virtually any circuit can be emulated
with a digital controller, providing this approach with an extreme versatility for vibration
mitigation of complex mechanical structures. In this regard, the DVA is first analyzed
in terms of power consumption and stability of the controlled system. Then, effective
and easy-to-use tuning approaches for the control of multiple structural modes either
with passive electrical circuits or a DVA are proposed, namely a passivity-based tuning
of shunt circuits, a modal-based synthesis of electrical networks interconnecting multiple
piezoelectric transducers, and a numerical norm-homotopy optimization resulting in an
all-equal-peak design. These techniques are eventually applied and adapted to real-life
structures with potentially complex dynamics. Specifically, effective vibration mitigation
is demonstrated on structures exhibiting nonlinear behaviors and high modal density.
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Introduction

The aerospace industry is facing new challenges regarding competitiveness and
performance in a global market economy. Sustainability and the global threats of climate
change are also key concerns. In Europe, the Flighpath 2050 document [1] lists guidelines
for the years to come to maintain and extend industrial leadership, meet societal and
market needs, ensure safety and security, and protect the environment. Drastic reductions
in the environmental impact of aviation are envisioned therein. To meet these stringent
requirements, innovative projects were recently proposed by leading industries such as
Airbus with the ZEROe aircraft project [2]. Technology developments and sustainable
aviation fuels are expected to play a role of up to 30% and 60% in these reductions,
respectively [3]. Short-term technology advances can be realized through the improvement
of engines, aerodynamics and flight controls, and through the use of lighter structures.

Using lightweight structures leads to a number of challenges, one of them being
their increased susceptibility to vibration coming from their increased flexibility.
Large-amplitude motions are an issue for several reasons. First, structural failure may
occur due to overloading or high-cycle fatigue. Second, structural nonlinear behavior can
be triggered, which can lead to sudden and often unexpected changes in the response
of the structure. Other aspects such as precision in positioning and comfort can be a
concern depending on the application. Special precaution must be taken at the design
stage of a mechanical part to avoid resonances. If this is not possible due to, e.g.,
conflicting design objectives, or if vibration problems appear in later design stages,
other means should be used to prevent the harmful action of vibrations. In this respect,
numerous vibration mitigation techniques have been developed over the years.

Vibration mitigation

Vibration mitigation can pursue different objectives, such as stiffening, damping and
isolation [4]. In this thesis, the aim is to improve the damping of a host structure, i.e.,
reducing the vibratory amplitude at its resonances by energy dissipation or counteracting
forces. To achieve this goal, several means are possible.

Tuned mass damper

One of the most famous means for vibration mitigation is the tuned mass damper (TMD),
which was invented by Frahm more than a century ago [5] using a small auxiliary body
to counteract the vibrations of a larger body. The working principle of this vibration
absorber is to match its resonance frequency to that of its host structure. By destructive
interference, the targeted resonance frequency can be completely suppressed in the
controlled host. This however comes at the expense of two additional resonances, and a
large amplitude of vibration of the TMD at the host resonance frequency. Ormondroyd
and Den Hartog [6] added a damper to this device (see Figure 1(a)) and Brock [7]
proposed a particular value of the absorber damping coefficient to approximately
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minimize the maximum amplitude (i.e., the H∞ norm) of the forced response of the
controlled structure. Those developments, gathered in Den Hartog’s book [8], laid down
the foundations of the equal-peak design because the controlled receptance exhibits
two peaks of (approximately) equal amplitude, usually much lower than that of the
uncontrolled structure, as illustrated in Figure 1(b). Nearly one century after the
invention of the TMD, Nishihara and Asami [9] found the exact analytical solution to the
H∞-optimization problem by minimizing the maximum value of the receptance under
the assumption that the latter exhibits two peaks of equal amplitude (i.e., an exact
equal-peak design). TMDs are used in a wide range of civil and mechanical engineering
applications, and reviews on the subject can be found, e.g., in [10, 11].
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Figure 1: Schematic representation of a structure with a TMD (a) and typical vibratory
response of the structure without TMD (—), and with an undamped ( ) and damped
( ) TMD (b).

Piezoelectric vibration absorber

Piezoelectric shunt damping is an alternative vibration mitigation means that was
invented by Forward [12], and the seminal work of Hagood and von Flotow [13] laid the
grounds of the theoretical tuning approach used nowadays. A piezoelectric transducer
bonded to a vibrating structure is strained by the vibrations and converts part of its
mechanical energy into electrical energy. This electrical energy can then be dissipated
in properly-tuned circuits that connect the electrodes of the transducers, as shown in
Figure 2(a). Piezoelectric shunt damping is an appealing vibration mitigation technique
for its compact and potentially lightweight character, its high bandwidth, its reduced cost
and its possibility of fine-tuning [14]. By contrast with TMDs, piezoelectric absorbers
do not require the addition of a moving mass to the structure. These features make
this approach attractive for aerospace applications [15–18]. The main downsides of
piezoelectric transducers are their brittleness (for piezoceramic materials), their limited
temperature working range and the high voltages they can exhibit.

The circuit which connects the electrodes of the transducer is called a shunt. Various
types of shunts were proposed in the literature. The most famous are the resistive and
resonant shunts. The resistive shunt is constituted of a mere resistor that dissipates
the electrical energy by Joule’s effect [13]. A resonant shunt is created with the
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connection of a resistor with an inductor, either in series [13] or in parallel [19]. The
inductor resonates with the inherent capacitance of the piezoelectric material at a
specific frequency, largely enhancing the electrical dissipation in the resistor. As a
consequence, a properly-tuned resonant shunt is generally much more efficient than a
resistive shunt in terms of vibration reduction, see Figure 2(b). However, the resonant
shunt has to be tuned to a frequency close to that of the host structure. If the latter
changes for any reason, the performance of a resonant shunt may be severely degraded.
The resonant shunt thus has a broad similarity with the TMD, being both efficient
vibration mitigation means conditioned upon their precise tuning.
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Figure 2: Schematic representation of a structure with a shunted piezoelectric
transducer (a) and typical vibratory response of the structure with a piezoelectric
transducer with electrodes in open-circuit (—), short-circuit (—), or connected to a
resistive ( ) or resonant ( ) shunt (b).

Since its inception, the field of piezoelectric shunt damping has largely grown, and
numerous alternative solutions to the classical resistive and resonant shunts were proposed
in the literature. The interested reader may refer to various reviews on the subject [20–22].

Digital vibration absorber

When it comes to the practical realization of a resonant piezoelectric vibration absorber, a
number of challenges have to be overcome. The first difficulty is the large inductance value
(typically hundreds of Henries) required for structures with low resonance frequencies.
Although physical inductors with such high inductance values were realized [23], they
are not commercially available. A common workaround is to use synthetic inductors
or gyrators, but they come with non-ideal characteristics, such as frequency-dependent
resistance [24]. Finally, some shunt circuits may not be simple to realize, because they
would require numerous or complex electrical components.

To address these issues, a synthetic impedance was proposed by Fleming et al [25].
A digital signal processing unit together with a current source make the realization
of an arbitrary impedance possible, as schematized in Figure 3. This however
comes at the expense of a non-fully-passive absorber (because the analog and
digital electronics need power) and at the risk of creating instabilities (because
the system contains active elements).
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Figure 3: Schematic representation of a structure with a piezoelectric transducer
connected to a synthetic impedance.

Other vibration mitigation techniques

The two aforementioned approaches are far from forming an extensive list of vibration
mitigation techniques. They both belong to passive control, in which additional
damping is brought to a host structure by coupling it with an additional device that
dissipates energy. Other mechanical vibration absorbers such as the tuned liquid
damper [26], tuned viscoelastic damper [27], nonlinear energy sink (NES) [28] and
acoustic black hole (ABH) [29] use vibrating auxiliary devices or parts of the structure
to absorb energy, similarly to the TMD. Some approaches make use of materials
with high material damping like viscoelastic matrials [27]. Passive control system
using transducers are also common and include electromagnetic shunt damping [30]
or magnetostrictive materials [31], to name a few. The advantages of passive control
are the guaranteed stability of the controlled system and the absence for power
requirements, which additionally makes this approach fail-safe.

Semi-active control means work similarly to passive control, but can adapt the
characteristics of the auxiliary device in order to meet specific needs. For instance,
piezoelectric transducers can be switched on capacitive loads in order to adjust the
resonance frequency of a structure away from that of an external excitation [32].
Semi-active control can achieve similar performance to passive control but is
generally more robust due to its adaptive nature.

Alternatively, active vibration control can be used. With this approach, the state of
the host structure is determined with sensors, and the structure is acted upon via
actuators. The driving signals for the actuators are determined by the sensed signals
and control laws, which can be synthesized with analog or digital electronics [33]. In
structural vibration control, common control laws include direct velocity feedback [34],
positive position feedback (PPF) [35–37] and integral force feedback [38, 39], to
name a few. By contrast with passive control, active control does require power
for operation, and is not a fail-safe approach. However, active control generally
allows for better performance and is much more versatile.

Finally, hybrid control takes on the advantages of passive and active control. A
hybrid control system generally consists in a passive device augmented with an active
control apparatus. Examples of hybrid control systems include hybrid TMDs [40]
and hybrid piezoelectric [41–43] and electromagnetic [44, 45] shunts. The active
control part is used to achieve better performance, whereas the passive device
guarantees a minimum performance and eases the power requirements on the active
system. It can be a fail-safe approach, because in the event of a power failure,
the passive part of the control system can still work.
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Bladed structures in aircraft engines

One of the target applications of this doctoral thesis is a bladed structure used in aircraft
engines. Turbofan engines are used in a large proportion of commercial and military
aircraft. A celebrated example is the CFM56 depicted in Figure 4. These engines contain
a number of bladed structures which rotate at high speeds.

Figure 4: Cutaway drawing of a CFM56 engine, reproduced from [46].

Emergence of integrally bladed structures

Bladed structures are traditionally manufactured as assemblies, as depicted in
Figure 5(a). The separately-manufactured blades are attached to the disk through
root-fixing features, either axially or circumferentially. The disk is required to
support the centrifugal blade load.

The progress of manufacturing techniques enabled the industrial production of monolithic
structures, thereby removing the need for fastenings and connectors. This in turn entails
great savings in terms of weight, which makes this type of new designs very attractive
for the aerospace industry. This has motivated the appearance of integrally bladed parts
such as bladed disks (BLISKs) (Figure 5(b)) or bladed drums (BluMs). These parts can
be realized by machining the disk/drum, and friction welding of the blades. On the one
hand, BLISKs and BluMs feature several advantages over their assembled counterparts,
including weight savings of the order of 25%, improved aerodynamic efficiency, and
suppression of the fretting fatigue occuring at the blade/disk attachment (which is one
of the common modes of failure [47]). On the other hand, these structures are expensive
to produce and repair, and may require exhaustive quality control [48].
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(a) (b)

Figure 5: Quarters of bladed disks in turbomachines: classical assembly (a) and
BLISK (b).

Vibration problems in turbomachinery

Aircraft engines constitute a harsh environment for their mechanical components.
Dynamic loadings such as out-of-balance forces and lack of axisymmetry in the
airflow coming from upstream obstacles create vibrations that can cause structural
failure through fatigue or overloading. The consequences can be dramatic, especially
on rotating components, because they are associated with out-of-balance forces
and debris expulsion [49]. Dynamic phenomena such as forced resonance must be
avoided, and this is generally accounted for in early design phases by changing
the mechanical design of the part, for instance.

In addition to these severe conditions, other phenomena peculiar to nominally cyclic
symmetric structures can also accelerate the blade failure. One of them is called mistuning
and originates from the lack of perfect cyclic symmetry in the structure stemming from
manufacturing tolerances or in-operation wear. Localization of the resonant modes to a
few blades can occur because of this mistuning. As a result, a few blades may vibrate
with a very large amplitude and fail quickly due to high-cycle fatigue [50].

Combining the low structural damping of BLISKs and BluMs, the presence of mistuning
and the dynamical loading conditions makes these parts prone to early failure, and
vibration mitigation means should then be used to allow for a broad and safe deployment
of such parts. The harsh environment limits the possible solutions [51]. Industrial
state-of-the-art methods use friction damping [52] and/or viscoelastic damping [53], but
the past decades have witnessed a growing interest for piezoelectric shunt damping [54].

Contributions of the thesis

This doctoral research was funded in the frame of a WALInnov project named Maveric.
This project aims to develop smart vibration absorbers for aerospace structures, and, in
particular, for the BluM in Figure 6 used in low-pressure compressors of aero-engines
manufactured by Safran Aero Boosters. In this respect, the ability of passive and active
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vibration mitigation techniques to damp the resonances of this structure is assessed. The
eventual goal of this project is to demonstrate the action of these smart vibration absorbers
in laboratory conditions (i.e., bring the concept to the technology readiness level (TRL) 4).

Figure 6: BluM of a low-pressure compressor manufactured by Safran Aero Boosters.

In this context, this thesis focuses on passive control solutions. Due to its
exceptional versatility, the DVA was deemed to be a potential candidate for
such an application. The main purpose of this work is thus to lay down solid
theoretical and computational foundations for effective vibration mitigation of
complex structures such as a BluM using a DVA.

In the first part of this thesis, Chapter 1 analyzes the DVA. The architecture of this
apparatus is detailed in terms of hardware and software. The consequences of using
elements that need to be powered in the DVA are also studied. Figures on its power
consumption are given. The effects of sampling delays are characterized and are shown
to be the cause of potential instabilities. A method is proposed to counteract these
instabilities by simple modifications of the emulated shunt circuit.

The second part is constituted of Chapters 2, 3 and 4 and proposes new tuning strategies
for the control of multiple structural resonances with piezoelectric vibration absorbers.
Chapter 2 focuses on piezoelectric damping with a single transducer using shunt circuits
with multiple branches. A three-step passivity-based design procedure is proposed. The
first step concerns the identification of the piezoelectric structure. Generic specifications
on the shunt circuits are then derived. Finally, the values of the electrical components
making up the circuit are tuned. This approach is numerically verified and experimentally
validated. In Chapter 3, multiple piezoelectric transducers are interconnected by an
electrical network. A modal-based synthesis of the network is proposed, i.e., the network’s
behavior is specified in terms of its electrical modal properties. These properties are
optimized to provide effective multimodal damping while guaranteeing the possible
realization of the network with passive electrical elements. Finally, Chapter 4 proposes
a robust numerical norm-homotopy optimization method to tune the characteristics of
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piezoelectric vibration absorbers (realized either with circuits or networks) in order to
minimize the H∞ norm of a transfer function. The typical outcome is an all-equal-peak
design, where all peaks of the transfer function at hand are equated in amplitude.

In the final part, Chapters 5 and 6 are concerned with the application of piezoelectric
damping to complex structures. Chapter 5 outlines the detrimental effects of structural
nonlinearities on the performance of tuned vibration absorbers. A remedy is to use
an absorber which is itself nonlinear, and its realization is eased by the use of a
DVA. This strategy is also extended to the control of multiple nonlinear resonances.
Chapter 6 applies and adapts the previously-studied control approaches to bladed
assemblies. To accurately represent the dynamics of such structures with models
of tractable size, a modified Craig-Bampton model-order reduction approach is
proposed. A hybrid control strategy tailored to the control of multiple families of
modes with closely-spaced frequencies is developed. Effective vibration mitigation
is then demonstrated on a bladed rail and a BluM.

Finally, conclusions regarding the completed research and the associated contributions
to the field are drawn. A discussion of the ways in which this research
may be extended is also given.



1 A digital vibration absorber

Abstract

This chapter presents a practical realization of a digital vibration absorber and
discusses the purpose of its electronic components. The equivalence of a digital
absorber and a piezoelectric shunt is experimentally demonstrated. The notion of
passivity, as understood in this work, is discussed. Figures on power consumption
entailed by the presence of electronic components are given from theoretical
predictions and experimental measurements. Finally, the issue of stability of
the digitally-controlled electromechanical system is tackled. Systems with low
electromechanical coupling are shown to be prone to delay-induced instabilities,
and a stabilization procedure is proposed to mitigate them.

1.1 Introduction

Piezoelectric shunt damping was originally proposed by Forward [12], and formalized
by Hagood and von Flotow [13]. Its working principle is based on the transduction
capability of piezoelectric materials: a piezoelectric transducer is able to convert a
part of its mechanical energy into electrical energy. The latter can be dissipated by
connecting a so-called shunt circuit to the electrodes of the transducer. A common type
of shunt circuit is a resonant one, composed of a resistor and an inductor, arranged
either in series or in parallel. The realization of this circuit may be challenging for
several reasons. The first one is that the required inductance may be impractically
large. The second reason is that the performance of the piezoelectric shunt is highly
sensitive to the values of the electrical components. Any misevaluation or time variation
of the system characteristics will result in sub-optimal performance, rectified by
time-consuming manual modifications of the electrical parameters.

Fleming et al [25, 55] introduced the concept of synthetic impedance as an alternative
solution. The combination of a digital signal processor with a current source makes it
possible to realize an arbitrary impedance. The synthetic impedance is an attractive
option to realize shunt damping circuits owing to its flexibility. This nonetheless
comes at the expense of the need for powering the digital unit and its associated
electronics. Since it was proposed, implementing piezoelectric shunt damping with a
digital vibration absorber (DVA) has received rather limited attention. Fleming et
al [56] and Pliva et al [57] developed architectures using pulse width modulation (PWM)
in order to simplify the driving electronics. Giorgio [58] and Rosi [59] used digital
controllers to validate their theoretical developments on shunt damping with electrical
networks. Matten et al [60, 61], Necasek et al [62, 63] and Silva [64] investigated
various electronic architectures to implement a DVA, and discussed how to set up
its analog and digital parts. Dal Bo et al [65] configured a digital unit to realize
vibration absorber with swept and switched characteristics. Recently, this concept was
applied to metamaterials by Sugino et al [66] and Yi et al [67].
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In the aforementioned works, the implications of implementing a passive control law with
an electronic (thus active) control system were not thoroughly discussed. The purpose of
this chapter is to present the working principles of a DVA, and to analyze the effects of
its non-passive character. The main interest of the DVA, i.e., the flexibility it provides,
will be a key point in the remainder of this thesis: it will enable the implementation of
shunt circuits possessing numerous electrical elements (Chapters 2, 3 and 4) and with
nonlinear elements (Chapter 5). All these aspects can enhance the performance of the
control system in the cases discussed therein.

This chapter is organized as follows. Theoretical reminders on piezoelectric shunt damping
are given in Section 1.2. Practical realizations of the digital absorber are then presented
in Section 1.3. The presence of electronic components raises three issues. The first one
is to determine whether the control system is to be considered either as passive or as
active. This is discussed in Section 1.4. The power consumption of the electronics is
addressed in Section 1.5. Finally, the stability of the controlled system is assessed in
Section 1.6. Conclusions on the DVA are drawn in Section 1.7.

1.2 Reminders on piezoelectric structures and

piezoelectric shunt damping

This section provides reminders on important notions used throughout this thesis.
Section 1.2.1 reviews the basics of piezoelectric structures through their mechanical
and electrical models, and then introduces the effective electromechanical coupling
factor and the dynamic capacitance. Section 1.2.2 reviews the mechanisms of
shunt damping achieved with various shunt circuits.

1.2.1 Single-degree-of-freedom structure coupled to a
piezoelectric transducer

A single-degree-of-freedom (SDoF) structure coupled to a massless piezoelectric rod
shown in Figure 1.1 is studied as a representative example. Although it is a rather
simple apparatus, it can be used to understand the salient features of more complex
piezoelectric structures, as shall be shown in Chapter 2. The rod is composed of a
homogeneous piezoelectric material and possesses two thin electrodes (of negligible
mechanical characteristics) at its ends. The piezoelectric structure and transducer
are represented in Figure 1.1(a) and Figure 1.1(b), respectively.

To derive the governing equations of the system, the constitutive equations of
linear piezoelectric materials in Voigt notation [68] are recalled (where Einstein
summation convention on repeated indices is used):

σk = cEklεl − epkEp
Dk = ekpεp + εεklEl

(1.1)

where σk (εk) is the kth component of the Voigt stress (strain) vector and Dk and Ek
are the kth components of the electric displacement field and electric field, respectively.
cEkl represents Hooke’s matrix at constant electric field and εεkl the permittivity at
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Figure 1.1: SDoF structure to which is bonded a piezoelectric rod (a) and schematic
representation of the piezoelectric rod (b).

constant strain. The first mechanical and second electrical equations are coupled
through a matrix ekp. In the notation used herein, superscripts ε, σ and E denote
a quantity at constant strain, stress and electric field, respectively (corresponding
to superscripts S, T and E in [68], respectively).

Assuming that the expansion and polarization directions coincide with the axis of the rod
(which is conventionally called the 3-direction), these constitutive equations reduce to

σ3 = cE33ε3 − e33E3

D3 = e33ε3 + εε33E3

. (1.2)

The integration of these equations over the volume of the rod (of thickness h along
direction 3 and cross-section A) and division by its thickness leads to

fp = kp,scx+ γpV

q = γpx− Cε
pV
, (1.3)

where the macroscopic variables

fp = σ3A, x = ε3h, V = −E3h, q = D3A, (1.4)

represent the force acting on the transducer, its stroke, the voltage across its electrodes
and the charge flowing through them, respectively. The macroscopic constants

kp,sc =
AcE33

h
, γp =

Ae33

h
, Cε

p =
Aεε33

h
, (1.5)

are the stiffness of the transducer when its electrodes are short-circuited, a piezoelectric
coupling constant and the piezoelectric capacitance at constant strain (also called
blocked capacitance), respectively. The piezoelectric transducer is then integrated
within a structure, symbolically represented as a spring-mass system of stiffness
k and mass m. The transducer is bonded between the mass and the ground, in
parallel to the spring, as shown in Figure 1.2(a). Introducing the structural stiffness
when the piezoelectric transducer is short-circuited ksc = kp,sc + k, the governing
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equations of the so-formed piezoelectric structure read
mẍ+ kscx+ γpV = f

γpx− Cε
pV = q

. (1.6)

Terms γpx and γpV are manifestations of the direct and converse piezoelectric
effects, respectively. The time derivation of the second line of Equation (1.6) is
equivalent to Kirchhoff’s current law (KCL), which indicates that the electrical
behavior of the transducer is modeled as an ideal current source (γpẋ) placed
in parallel with a capacitor (of capacitance Cε

p). This is Norton’s equivalent
representation [69], which is shown in Figure 1.2(b).

m

k

f x

kp,sc −γpV

(a)

γpẋ Cε
p V

q̇

(b)

Figure 1.2: SDoF structure to which is bonded a piezoelectric rod: mechanical
representation (a) and Norton equivalent electrical representation (b).

When the electrodes of the transducer are short-circuited, V = 0 and the
structure behaves as a SDoF oscillator of stiffness of ksc. A short-circuit
resonance frequency can be defined as

ωsc =

√
ksc
m

(1.7)

When the electrodes are left in open circuit, q = 0 and thus, using the second line of
Equation (1.6)

V =
γp
Cε
p

x. (1.8)

Inserting this relation in the first line of Equation (1.6),

mẍ+ kscx+ γpV = mẍ+ kscx+
γ2
p

Cε
p

x = mẍ+ kocx = f, (1.9)

in which

koc = ksc +
γ2
p

Cε
p

(1.10)

is the structural stiffness when the transducer is open-circuited. Hence, the electrical
boundary conditions applied to the electrodes of the transducer play a significant role
in the mechanical behavior of the structure it is bonded to.
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Equation (1.6) uses the piezoelectric charge and voltage as independent and dependent
variables, respectively. The dual representation is equally valid. From Equation (1.6),
the following equivalent set of governing equations can be obtained:

mẍ+ kocx− θpq = f

θpx−
1

Cε
p

q = V

, (1.11)

where

θp = γp/C
ε
p . (1.12)

With this representation, the electrical behavior of the transducer is modeled as
an ideal voltage source (θpx) in series with a capacitor (of capacitance Cε

p), i.e.,
by Thévenin’s equivalent model [69]. The representation of the system based
on Equation (1.11) is shown in Figure 1.3.

m

k

f x

kp,oc θpq

(a)

−
+θpx Cε

p V

q̇

(b)

Figure 1.3: SDoF structure to which is bonded a piezoelectric rod: mechanical
representation (a) and Thévenin’s equivalent electrical representation (b).

An open-circuit resonance frequency can be defined as

ωoc =

√
koc
m
. (1.13)

1.2.1.1 Electromechanical coupling factors

The foregoing discussion highlighted the impact of the electrical boundary
conditions on the mechanical behavior of the system, which is an indication
of its electromechanical coupling. To characterize quantitatively this coupling,
dimensionless coupling factors are generally used [70].

The quasi-static loading-unloading cycle represented in Figure 1.4 is considered.
The electrodes of the piezoelectric transducer are initially short-circuited. A
quasi-static loading f is applied to the system which reaches a deformed configuration
x = f/ksc. The energy stored into the system is then equal to the mechanical
work provided by the external force, i.e.,

Esc =

∫ f

0

xdf =

∫ f

0

f

ksc
df =

1

2

f 2

ksc
(1.14)
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Figure 1.4: Quasi-static loading cycle of a piezoelectric structure: loading with a
short-circuited transducer ( ) and unloading with an open-circuited transducer ( ).

The electrodes of the transducer are then disconnected, and the load is consecutively
brought to zero. The energy restored by the system can be computed as

− Eoc =

∫ 0

f

xdf =

∫ 0

f

f

koc
df = −1

2

f 2

koc
(1.15)

and because koc > ksc, there is a residual deformation

∆x =

(
1

ksc
− 1

koc

)
f (1.16)

and a residual energy, equal to the difference of the two aforementioned energies, remains
in the system.

Because of the direct piezoelectric effect, there is charge accumulation at the electrodes,
which induces a potential difference between them. This potential difference indicates
that the transducer has converted part of its strain energy into electrical energy while
being unloaded. If the electrodes of the transducer were connected back, this residual
energy would be dissipated, and the transducer would go back to its undeformed state.

The dimensionless effective electromechanical coupling factor (EEMCF) Kc is defined
from a normalized version of this residual energy1 as

K2
c =

Esc − Eoc
Eoc

=

1

2

f 2

ksc
− 1

2

f 2

koc
1

2

f 2

koc

=
koc − ksc
ksc

(1.18)

1A different energy may be used to normalize the EEMCF, leading to another definition

(K ′c)
2

=
Esc − Eoc

Esc
=
ω2
oc − ω2

sc

ω2
oc

=
K2
c

1 +K2
c

. (1.17)

This definition is more commonly used in works treating the material aspects of piezoelectric
structures [68, 70–73], whereas the definition used in this thesis is commonly used in the area of
piezoelectric shunt damping [13, 74–77]. The name given to the EEMCF also varies from one author to
another, but it is always aimed at representing electromechanical coupling with a dimensionless number.
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The EEMCF measures the strength of the piezoelectric coupling in the system. In terms
of parameters given in Equations (1.6) and (1.11), the EEMCF is given by

K2
c =

γ2
p

kscCε
p

=
θ2
pC

ε
p

ksc
. (1.19)

Dividing the numerator and denominator in Equation (1.18) by the structural mass
m and using the resonance frequencies defined in Equations (1.7) and (1.13),
the EEMCF can also be expressed as

K2
c =

ω2
oc − ω2

sc

ω2
sc

. (1.20)

This expression enables a rather straightforward experimental evaluation of the EEMCF,
for instance by performing two modal tests with the transducer short-circuited and
open-circuited and identifying the corresponding resonance frequencies, without the need
for any model. This is advantageous, since models are associated with uncertainties
coming from the material parameters2, boundary conditions, mechanical [78, 79] and
electrical [72] impact of the bonding layer between the transducer and the structure,
and unmodelled three-dimensional effects [80], to name a few.

1.2.1.2 Dynamic capacitance

Equation (1.6) can be Laplace transformed to yield
(ms2 + ksc)x+ γpVp = f

γpx− Cε
pV = q

, (1.22)

where s is Laplace’s variable. Assuming the host is unforced (f = 0), a dynamic relation
between the piezoelectric charge and voltage can be found as

q

V
= −Cε

p

(
1

Cε
p

γ2
p

ms2 + ksc
+ 1

)
= −Cε

p

(
ω2
oc − ω2

sc

s2 + ω2
sc

+ 1

)
= −Cε

p

s2 + ω2
oc

s2 + ω2
sc

= Cp(s).

(1.23)
This equation features the dynamic capacitance measured from the electrodes of the
transducer Cp(s), wherein a constant capacitance Cε

p is dynamically modulated. This
dynamic modulation comes from the electromechanical interaction of the transducer with
the structure, and is strongest near the structural resonance frequencies. Namely, we

2The EEMCF is not to be confused with the material coupling factor [68]

k233 =
e233

εε33c
E
33 + e233

=
kp,oc − kp,sc

kp,oc
6= kp,oc + k − (kp,sc + k)

kp,sc + k
= K2

c . (1.21)

The EEMCF is a property of an electromechanical system (structure and transducer), whereas the
material coupling factor is a sole property of the material used in the transducer. The former is smaller
than the latter (excepted in very specific cases [70]), especially when the structure is stiffer than the
transducer; K ′c = k33 when the sole piezoelectric transducer is considered (k = 0). In general, the
EEMCFs of typical piezoelectric structures are small, of the order of 0.1 or less.
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note that the short-circuit and open-circuit resonance frequencies are the poles and zeros
frequencies of the dynamic capacitance, respectively.

Figure 1.5 plots the magnitude of a typical Bode plot of a dynamic capacitance.
The interest of evaluating this transfer function is that the two frequencies ωsc and
ωoc as well as the capacitance Cε

p can be determined with a single test, thereby
providing all the required parameters to tune a shunt circuit, as shall be shown.
Moreover, this test only involves electrical measurements, which are generally easier
to perform than measurements of mechanical quantities.

oc

Frequency
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 c
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)

sc

C
p

Figure 1.5: Dynamic capacitance magnitude of a piezoelectric transducer bonded to
an SDoF structure.

The static value (s = 0) of the dynamic capacitance in Equation (1.23)

Cp(0) = Cε
p

ω2
oc

ω2
sc

= Cε
p

(
1 +K2

c

)
(1.24)

is smaller than the piezoelectric capacitance at constant stress or the free capacitance Cσ
p ,

but larger than the piezoelectric capacitance at constant strain Cε
p , because

Cε
p ≤ Cp(0) = Cε

p

(
1 +

γ2
p

Cε
pksc

)
= Cε

p

(
1 +

γ2
p

Cε
p (k + kp,sc)

)
≤ Cε

p

(
1 +

γ2
p

Cε
pkp,sc

)
= Cσ

p

(1.25)
This stems from the fact that if a quasi-static voltage is applied to the transducer,
it may store energy under electrical form and under mechanical form with the direct
piezoelectric effect, but not as much as if it was completely free because of the stiffness
of the structure. If the voltage is applied at high frequencies, inertia impedes mechanical
motion, and energy can only be stored under electrical form, as if the transducer was
blocked. Thus, in a completely analogous way as the change in stiffness provoked by
different electrical boundary conditions, a change in mechanical boundary conditions
changes the apparent capacitance of the piezoelectric transducer.

1.2.2 Shunt damping

A piezoelectric transducer is able to convert part of its mechanical energy imparted by
the vibrations of its host. In an attempt to dissipate this energy, one may use electrical
dissipative elements such as resistors. By connecting a resistor to the electrodes of the
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transducer, a shunt circuit is thus created. The effect brought by the dissipation of
electrical energy generally is the reduction of the vibration amplitude in the controlled
structure, i.e., the shunted piezoelectric transducer exerts a force on the structure
which is similar to a damping force. The performance of the control system can be
enhanced by the use of more complex circuits. Namely, if the shunt circuit contains
an inductor, it is possible to make it resonate with the inherent capacitance of the
piezoelectric transducer and hence to enhance the energy dissipation in the resistor,
which eventually results in better vibration mitigation. The purpose of this section
is to review the basic mechanisms of these shunt circuits.

The electrical parameters of the shunt circuit can be tuned for optimal performance
according to some metric. The most common performance measures are the H∞ norm
of the receptance (optimization under harmonic forcing), the H2 norm of the receptance
(optimization under broadband forcing) and the real part of the closed-loop system’s
poles (optimization of the transient response). The optimal parameters according to these
different metrics are in general slightly different [75, 81]. Some tuning procedures use a
combination of these objectives, such as the balanced calibration proposed by Høgsberg
and Krenk [82], where the poles of the electromechanical system are set with equal (but
not maximal) modal damping, and the frequency responses of the structure and the
absorber are flat in the vicinity of the resonance. In this thesis, the H∞ norm of the
receptance is the considered performance index.

1.2.2.1 Resistive shunt damping

In order to dissipate the electrical energy generated by the vibrations through the direct
piezoelectric effect, a resistor could be connected to the electrodes of the transducer, as
shown in Figure 1.6. This approach was first pursued by Forward [12] and later formalized
by Hagood and von Flotow [13] and Thomas et al [75].

m

k

f x

kp,oc –
+

q̇Cε
p

R

V

Figure 1.6: SDoF piezoelectric structure controlled by a resistive shunt.

By Ohm’s law, connecting a resistor of resistance R to the transducer imposes a
relation between the voltage and the charge as

V = Rq̇ (1.26)

which, when inserted into Equation (1.11), gives the coupled system
mẍ+ kocx− θpq = f

Rq̇ +
1

Cε
p

q − θpx = 0

(1.27)
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The frequency response function (FRF) of the system can be computed with the
Laplace transform of these equations, and the subsequent insertion of the electrical
equation into the mechanical one, yielding

x

f
=

1

ms2 + koc − θ2
p

1

Rs+
1

Cε
p

=

Rs+
1

Cε
p

(ms2 + koc)

(
Rs+

1

Cε
p

)
− θ2

p

. (1.28)

The FRFs of the system controlled by a resistive shunt with various resistances are shown
in Figure 1.7(a). Using a zero resistance is equivalent to a short-circuit, whereas using
an infinite resistance is equivalent to an open-circuit. With finite resistances, the energy
dissipated by the resistor results in a damping effect on the structure.
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Figure 1.7: FRF of the structure with a short-circuited transducer (—), with an
open-circuited transducer (—) and with a resistive shunt: R = 0.1RRopt ( ), R =

0.5RRopt ( ), R = RRopt ( ), R = 2RRopt ( ) and R = 10RRopt ( ) (a) ; maximum
amplitude of the FRF for various resistances (b).

Looking closely at the FRFs in Figure 1.7(a), one can observe that all of them pass
through a fixed point. Thomas et al [75] used this fact to find the resistance that
makes this fixed point a maximum of the FRF

RR
opt =

1

Cε
pωsc

√
1 +K2

c /2
. (1.29)

The corresponding maximum amplitude is then given by

hRMax =
2

kscK2
c

(1.30)

Figure 1.7(b) compares the maximum amplitude of the FRFs obtained for various values
of the resistance. Clearly, the optimal value given by Equation (1.29) yields the minimum
maximum amplitude under harmonic forcing.
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1.2.2.2 Resonant shunt damping: series RL shunt

Resistive shunt damping is a rather simple technique but generally offers limited vibration
reduction. This is due to the generally low value of the EEMCF. It is however possible
to enhance the reduction using fully passive means thanks to the use of an inductor.
Hagood and von Flotow [13] proposed to place an inductor in series with the resistor, as
depicted in Figure 1.8. The presence of the inductor cancels the inherent reactance of
the piezoelectric transducer at one specific frequency, which makes the effect of the shunt
circuit equivalent to pure mechanical damping at that frequency. Connecting a series RL

m

k

f x

kp,oc –
+

q̇Cε
p

R L

V

Figure 1.8: SDoF piezoelectric structure controlled by a series RL shunt.

shunt circuit to the piezoelectric transducer induces an electrical relation given by

V = Lq̈ +Rq̇ (1.31)

which, in the frequency domain, reads

sq = Ys(s)V =
1

Ls+R
V, (1.32)

where Ys is the shunt admittance. When inserted into Equation (1.11), Equation (1.31)
gives the coupled system’s governing equations

mẍ+ kocx− θpq = f

Lq̈ +Rq̇ +
1

Cε
p

q − θpx = 0

. (1.33)

The FRF of the controlled structure can be computed from the Laplace transform of these
equations as

x

f
=

1

ms2 + koc − θ2
p

1

Ls2 +Rs+
1

Cε
p

=

Ls2 +Rs+
1

Cε
p

(ms2 + koc)

(
Ls2 +Rs+

1

Cε
p

)
− θ2

p

(1.34)

Figure 1.9 displays several FRFs for various values of inductance and resistance.
Interestingly, Equation (1.34) indicates that if R = 0, at the electrical resonance frequency

ωe =

√
1

Cε
pL
, (1.35)
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Figure 1.9: FRF of the structure with a short-circuited transducer (—), with an
open-circuited transducer (—) and with a series RL shunt: L = 0.95LRLSopt (a), L =

1.05LRLSopt (b) and L = LRLSopt (c) ; R = 0 ( ), R = 0.1RRLSopt ( ), R = RRLSopt ( ),

R = 10RRLSopt ( ).

the FRF is zero: the electrical resonance interferes destructively with the vibrations of
the mechanical system. However, Figure 1.9 shows that this comes at the expense of
two new undamped resonance peaks. This undesirable feature (in terms of H∞ norm)
can be mitigated with the use of a nonzero resistance.

Similarly to what was observed for a resistive shunt, it can be seen from Figure 1.9 that
there exist so-called fixed points which, for a given inductance, belong to all FRFs. A
way to tune the inductance is thus to make these fixed points equal in amplitude. There
are then multiple ways to set the resistance. Hagood and von Flotow [13] proposed to set
it such that the FRF amplitude at the electrical resonance frequency be equal to that of
the fixed points, thereby obtaining a relatively flat FRF. Yamada et al [74] tuned it so
that the fixed points be the maxima of the FRF. It is not possible to simultaneously make
these two points maxima for a given resistance, and a mean-square average of the values
making either fixed point a maximum was chosen as a practical choice of the resistance.
Thomas et al [75] simplified the resulting expression with a truncated Taylor series in Kc.

The fixed-point method is based on fixed points which are only approximations of the true
peaks of the FRF, and the resulting H∞ norm is somewhat suboptimal. Obtaining the
exact solution to the H∞ norm minimization problem is a rather cumbersome task, but



1.2. Reminders on piezoelectric structures and piezoelectric shunt damping 21

closed-form solutions have been found in [81, 83]. Introducing an intermediate parameter

r =

√
64− 16K2

c − 26K4
c −K2

c

8
, (1.36)

The optimal inductance and resistance yielding equal peaks with the exact same amplitude
are

LRLSopt =
4K2

c + 4

3K2
c − 4r + 8

1

ω2
ocC

ε
p

=
1

δ2(Kc)ω2
ocC

ε
p

(1.37)

and

RRLS
opt =

2
√

2 (K2
c + 1) [27K4

c +K2
c (80− 48r)− 64(r − 1)]

(5K2
c + 8)

√
3K2

c − 4r + 8

1

ωocCε
p

=
2ζ(Kc)

δ(Kc)ωocCε
p

, (1.38)

respectively. We note that δ(Kc)
Kc�1
≈ 1, that is, the electrical resonance is very

close to the open-circuit mechanical one.

Using the intermediate parameter defined in Equation (1.36), the peaks’ amplitude is

hRLSMax =
1

ksc
√

1− r2
≈
√

2

kscKc

+O(Kc). (1.39)

The approximate truncated Puiseux series shows that an RL shunt results in a maximum
vibration amplitude which scales with K−1

c . In contrast, that with a resistive shunt scales
with K−2

c (Equation (1.30)), which owing to the smallness of the EEMCF can much larger.
However, an issue of resonant shunts is highlighted by Figures 1.9(a) and 1.9(b): for a
mere 5% error in the inductance value, the two peaks of the FRF can become seriously
unbalanced. This sensitivity highlights the need for a precise tuning of the electrical
frequency to that of the mechanical system for proper operation.

1.2.2.3 Resonant shunt damping: parallel RL shunt

Instead of placing the inductor in series with the resistor in the shunt circuit, the
former may be placed in parallel with the latter, as in Figure 1.10. This particular
arrangement was proposed by Forward [12] and Wu [19] and also exploits an
electrical resonance for efficient vibration mitigation.

m

k

f x

kp,sc
q̇

Cε
p R L ψ̇

Figure 1.10: SDoF piezoelectric structure controlled by a parallel RL shunt.

The following quantities

ψ =

∫ t

0

V (τ)dτ, G =
1

R
, B =

1

L
, (1.40)
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are introduced as the flux linkage, the conductance of the resistor and the reluctance
of the inductor, respectively. The connection of a parallel RL shunt circuit imposes the
following relation between the current and the flux linkage

q̇ = Gψ̇ +Bψ. (1.41)

Inserting this relation into Equation (1.6) yields the governing equations
mẍ+ kscx+ γpψ̇ = f

Cε
pψ̈ +Gψ̇ +Bψ − γpẋ = 0

. (1.42)

Equations (1.33) and (1.42) are similar, and so are the performance of these two
approaches [81, 84, 85]. Differences however exist when tuning the electrical parameters,
especially the resistances. The tuning approaches are similar to those of the series RL
shunt, namely, fixed points exist for the parallel RL shunt as well, which gives a way to
determine the inductance. As for the resistance, Wu [19] equated the amplitude of the
FRF at the electrical resonance frequency to that of the fixed points and Yamada et al [74]
used the mean-square value of the resistances making the fixed-points maxima of the FRF.
The exact H∞-optimal solution was found by Ikegame et al [81] after noting the similarity
with the problem of series RC shunts for electromagnetic transducers found by Tang et
al [86]. The optimal formulae are obtained by first computing the series of coefficients
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and finally,
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+
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+

√
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(1.44)

and the optimal reluctance B and conductance G are given by
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√
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and
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p , (1.46)

respectively.
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1.2.2.4 Other piezoelectric shunting techniques

The techniques presented above form the basics of piezoelectric shunt damping,
but are far from constituting an extensive list of existing approaches. A few
extensions are discussed hereafter.

A first extension is to use shunt circuit composed of more elements in the attempt to
control multiple structural modes. This aspect is treated in Chapter 2.

Shunts circuits can be used in combination with a negative capacitance. In this
approach invented by Forward [87], an active element implementing the behavior of
a capacitor with negative capacitance is connected to the piezoelectric transducer.
The introduction of this negative capacitance results in an increase in the EEMCF
of the system (and thus in damping performance) through the modification of the
short- and/or open-circuit resonance frequencies [88, 89]. This improvement comes
at the expense of a necessarily active component.

Another approach using electromechanical coupling for vibration mitigation is the
so-called switch damping approach, wherein the piezoelectric electrodes are connected to
an electrical switch. Based on the features of a control signal, the switch either disconnects
the electrodes or connects them. The connection can either be a short-circuit [90], a
resistor [91], an inductor [92], a negative capacitance [93], or even a voltage source [94].
Although the switch is an active electronic component, this approach can be realized
with low-power electronics to be self-powered [95]. This technique can however present
issues when applied to structures with multiple modes: the excitation induced by the
switching sequence can excite higher-frequency modes, which in turn can perturb the
signals driving this sequence, resulting in loss of performance [96].

1.3 Purpose and practical realization of a digital

absorber

Shunt damping is an attractive approach but may present practical issues. Among
them, the main ones are listed below.

(i) Large inductances may be required. A commonly-used type of piezoelectric
transducer is the piezoelectric patch. Typically, capacitances of piezoelectric
patches are few tens nF and for low frequencies below a thousand Hz the required
inductance is of the order of the Henry (H) or greater. Such high inductances are
generally not commercially available. They can be realized using custom-made
inductors [23, 97], but the inductance value may come at the expense of high
associated series resistance, large weight and size or unwanted nonlinear behavior
of the component [98]. Another approach uses the so-called synthetic inductors
made with electronic amplifiers and realized either with Riordan gyrators [99] or
Antoniou’s generalized-impedance convertor circuit [100]. These circuits allow
for fine tuning of the inductance, but are no longer passive and show non-ideal
characteristics such as frequency-dependent resistance [24].

(ii) Vibration mitigation performance is very sensitive to the electrical parameters.
In general, this implies that if a first test shows some misadjustments in the
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electrical parameters, the corresponding components have to be manually modified
or replaced, which may be a time-consuming procedure prone to manipulation
errors. Besides, the host system’s characteristics may change with time due to
varying environmental conditions, which leads to a detuning of the absorber and
performance loss.

(iii) Functional properties of the absorber (e.g., for multimodal or nonlinear control)
most often require more electrical components, and some of them may not easily be
found.

(iv) Piezoelectric transducers typically exhibit high voltages across their electrodes.
Analog electrical circuits will require passive and/or active components to comply
with such high voltage ranges.

Fleming et al [25] introduced the concept of synthetic impedance, for which the shunt
circuit is replaced by an electronic circuit that mimics the desired impedance. The circuit
is composed of analog electronic components that are to be connected to a piezoelectric
transducer, and a digital unit. Issue (iv) is still present for the DVA, but can be mitigated
with the use of a reduced number of high-voltage components (whereas in analog circuits,
nearly every electrical component should be high-voltage). Issues (i) to (iii) are solved
by the fact that the digital unit can be programmed to emulate virtually any circuit,
regardless of its complexity. Modifications to this circuit are readily made by simple
changes in the software of the digital unit. The synthetic impedance is not to be confused
with the aforementioned synthetic inductor. In order to avoid any confusion, the terms
digital impedance or digital admittance shall rather be used in this work. Similarly, a
piezoelectric absorber made with such a digital impedance is called DVA.

A DVA can work in two ways to mimic an electrical circuit: it may either work
as an electrical admittance (from a measure of the voltage across the electrodes of
the transducer, the DVA injects a current) or as an electrical impedance (from a
measure of the current flowing through the transducer, the DVA imposes a voltage).
These two concepts can identically be referred to as immittance. Depending on
its working mode, the electrical architecture of the DVA may vary, but in either
case it comprises three basic building blocks:

1. A sensing element able to read the state of the transducer (either measure its
voltage or current) and convert it to a suitable input signal for the next block.

2. A digital processing unit such as a microcontroller unit (MCU) or a digital
signal processor (DSP) able to emulate a desired input-output (I/O) relation. The
key feature of the DVA lies in this unit, because it enables the possibility to emulate
any immittance by proper programming.

3. An actuating element able to impose the desired output (either voltage or current)
to the piezoelectric transducer.

The arrangement of these building blocks is schematically depicted in the block diagrams
in Figure 1.11.

In this work, digital absorbers sensing voltages and injecting currents (i.e., implementing
an admittance) are preferred over their counterparts. This configurations has two
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Electrical actuator

Digital unit
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Figure 1.11: General schematics of a piezoelectric structure controlled by a DVA.

advantages [20]. The first one is that charge (or current) actuation substantially
reduces hysteresis compared to voltage actuation [101]. The second reason is
that most admittances to be realized are proper transfer functions (they possess
more poles than zeros), and the impedances are thus improper transfer functions,
which cannot be implemented as such [102].

1.3.1 Hardware

Between the transducer and the digital unit, there must be analog electronics.
This stems from two main reasons. The first one is that piezoelectric transducers
can output large voltages (cases considered in this work went up to hundreds of
volts) whereas digital units generally work with low voltages (typically less than 10
V). The second one is that the digital unit may not be able to inject the desired
current into the transducer by itself. The analog electronics thus play the role of
an interface between the digital unit and the transducer.

A schematic view of the analog circuit used in this work is featured in Figure 1.12. The
circuit serves the same purpose as described by Fleming et al [25] and is very close
to what was proposed by Matten et al [60, 61].

The general working principles of the board are first explained and are followed by
more detailed explanations discussing the settings of the board. It is assumed that
every operational amplifier (OpAmp) behaves ideally, that is, they have an infinite input
impedance, infinite open-loop gain and zero output impedance [103]. In other words,
it can be assumed that the voltages of their inverting (−) and noninverting (+) inputs
are equal, and that no current flows through them.

The transducer’s voltage V is measured with a voltage divider made of R1 and R2. The
OpAmp OA1 is a follower which outputs a fraction of the patch voltage αV , where

α =
R2

R1 +R2

. (1.47)

A constant offset voltage ∆Vin is followed by OA2 to comply with the input voltage range
of the analog-to-digital converter (ADC) of the MCU. OA3 is a summing amplifier that
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Figure 1.12: Layout of the DVA. The port to the left is to be connected to the
piezoelectric transducer.

sums the two voltages and outputs αV + ∆Vin. The MCU computes the I/O relation to
inject the desired current and sends a voltage signal with its digital-to-analog converter
(DAC) to OA4, which is used as a buffer. Since the output voltage range of the MCU may
not be symmetric with respect to the circuit ground, another offset voltage −∆Vout coming
from OA5 is added to the output signal by OA6. This results in an output voltage signal
Vout proportional to the current to be injected in the transducer. This voltage signal is
imposed on one terminal of the resistor Ri, while the other one is maintained to a virtual
ground by OA7. Thus, the current injected into the piezoelectric patch is Vout/Ri.

The input voltage of the MCU must lie in a certain range comprised between VADC,min
and VADC,max in order to avoid permanent damage. According to Figure 1.12, this input
voltage depends on the division ratio α, the piezoelectric voltage V and the input offset
voltage ∆Vin. Assuming that the piezoelectric voltage maximum amplitude is Vmax, i.e.,
V ∈ [−Vmax, Vmax], the maximum and minimum voltages at the ADC are

VADC,max = αVmax + ∆Vin (1.48)

and
VADC,min = −αVmax + ∆Vin, (1.49)

respectively. Consequently, α and ∆Vin can be found as

α =
VADC,max − VADC,min

2Vmax
(1.50)

and

∆Vin =
VADC,max + VADC,min

2
, (1.51)

respectively. A more conservative approach is to choose α smaller than given in
Equation (1.50) in order to have safety margins. When VADC,max = −VADC,min the
voltage reference given by OA2 and the summing action of OA3 are not needed.

Similarly, the output voltage range should be shared equally between positive and negative
ranges. The output voltage of the MCU is comprised between VDAC,min and VDAC,max.
Consequently, the output offset voltage should be

∆Vout =
VDAC,max + VDAC,min

2
. (1.52)
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When VDAC,max = −VDAC,min the voltage reference given by OA5 and the summing action
of OA6 are not needed. In case OA2, OA3, OA5 and OA6 are not needed, the analog
circuit reduces to that given in Fleming et al [25].

OpAmps cannot in general have their input or output pins subjected to voltages outside
of the range of their supply. For OpAmps 1 to 6, this is not a stringent constraint, as
the order of magnitude of the voltages they are subjected to is identical to that of the
MCU. However, OA7 is directly connected to the electrodes of the piezoelectric transducer
and its output is at V , which might potentially be large. This particular OpAmp must
thus be chosen accordingly. In response to issue (iv), this is the only component that
needs to work with high voltages, as mentioned in [25].

The last parameter to be set in the analog circuit is the resistance of the current
injector Ri. This parameter is discussed in the next section, since it may
depend on the software implementation.

1.3.2 Software

The MCUs used in this work are Arduino, whose programming can be fairly
straightforward thanks to the MATLAB support packages for Arduino hardware.
The user essentially has to draw a block diagram in MATLAB Simulink representing
the action of the DVA. A C-code is then automatically generated, compiled and
downloaded to the MCU by the support packages.

Figure 1.13 represents the software working principles as a block diagram. With the
Arduino, the ADC reads a voltage level and translates it into an unsigned integer number.
This integer is reconverted to a floating point number representing a voltage level by the
gain gin. An offset ∆Vin is added to compensate for the input voltage offset generated by
the analog circuit. The shifted and scaled signal is processed according to the desired I/O
relation Ys, the synthesized shunt circuit admittance [25]. It is then amplified by a gain
g whose purpose is explained hereafter. The output signal is passed through a saturation
operator to avoid integer overflow at the DAC. Finally, the output signal is shifted (by
∆Vout) and scaled (by gout) back to an unsigned integer to be fed to the DAC.

ADC –
+

∆Vin

gin
αV

Ys(s) g
Riq̇

gout++

∆Vout

DAC

Figure 1.13: Block diagram representation of the software emulating a digital
admittance Ys(s).

If the minimum and maximum values of the ADC outputs are NADC,min and NADC,max

and correspond to an input voltage VADC,min and VADC,max respectively, the input gain
gin can be set to transform the input unsigned integer signal to an input voltage signal:

gin =
VADC,max − VADC,min
NADC,max −NADC,min

. (1.53)
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Similarly, if the minimum and maximum values that can be fed to the DAC are NDAC,min

and NDAC,max and correspond to an output voltage VDAC,min and VDAC,max respectively,

gout =
NDAC,max −NDAC,min

VDAC,max − VDAC,min
. (1.54)

Special care has to be taken when using the admittance block Ys due to the fact that the
digital unit works at a discrete rate. A discussion on this is made in Section 1.6.

If properly tuned, every voltage offset from the analog circuit should be compensated
by an offset in the software. The remaining parameter to tune is the gain g whose
purpose is to ensure the consistency of the I/O relation with a shunt circuit from the
point of view of the transducer. If the offsets are perfectly compensated, the current
i = q̇ injected into the transducer should be

i(s) =
1

Ri

Vout(s) =
gα

Ri

Ys(s)V (s), (1.55)

where s is the Laplace variable. Equation (1.55) shows that if the emulated shunt circuit
is to mimic the desired admittance, the following consistency condition should be ensured

gα

Ri

= 1 (1.56)

Which gives a final relation that fully specifies the characteristics of the DVA.
Among the two remaining parameters g and Ri, one can be chosen freely, while
the other is set to comply with Equation (1.56). Two approaches can then be
followed, given an emulated admittance Ys.

The first approach consists in setting Ri so that the full DAC voltage range is used
concurrently with the full ADC voltage range. Under the assumption that the piezoelectric
voltage amplitude is Vmax, the maximum current is given by

imax = H∞ {Ys(s)}Vmax (1.57)

where H∞ {·} is an operator giving the H∞ norm, i.e., the maximum value over the
frequency range

H∞ {Ys(s)} = max
ω
|Ys(jω)| . (1.58)

Consequently, the maximum output voltage amplitude should be

Vout,max = Riimax (1.59)

The DAC voltage should cover this range of voltages added to ∆Vout, thus

VDAC,min = −Vout,max + ∆Vout (1.60)

and
VDAC,max = Vout,max + ∆Vout (1.61)

Combining Equations (1.57), (1.59), (1.60) and (1.61) yields an optimal value
for the current injector resistance

Ri =
VDAC,max − VDAC,min

2H∞ {Ys(s)}Vmax
(1.62)
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The gain g may then be determined from Equation (1.56). This approach has the
advantage to make optimal use of the DAC range. An issue is that Ri becomes
dependent on the emulated admittance; changing the latter hence requires hardware
modifications which reintroduces issue (iii).

The second approach is thus to keep Ri to a fixed arbitrary value and compute
g accordingly (Equation (1.56)). Ri should be chosen smaller than the optimal
value given in Equation (1.62) considering any admittance Ys to be emulated. Too
low a resistance is however undesirable, as a smaller range of the DAC will be
used. Moreover, the current injected in the transducer will be more sensitive to
the output voltage noise of OA6 in Figure 1.12.

1.3.3 Experimental validation

Electrodynamic shaker

Impedance head Power supply

Beam Digital vibration absorber

Figure 1.14: Picture of the experimental setup.

The action of the DVA was experimentally demonstrated on a clamped-free steel beam
with a clamped thin lamina attached to its free end, as shown in Figure 1.14. When
it undergoes large relative deformation, the thin lamina can cause an overall hardening
nonlinear structural behavior. Up until Chapter 5, the excitation amplitude applied to
the structure will be low enough so as to neglect this nonlinear effect; the structure is
thus assumed to behave linearly. It was excited at middle span by an electrodynamic
shaker (TIRA TV 51075). An impedance head (DYTRAN 5860B) was used to measure
the force applied to the structure and the corresponding acceleration. The measurements
were recorded by an acquisition system (LMS Scadas Mobile).

The beam is 700mm long and has a cross-sectional area of 14mm×14mm. It is
covered over its whole length with pairs of 2mm-thick PSI-5A4E piezoelectric patches,
each pair being placed on either side of the beam, as represented in Figure 1.15(a).
The beam and each pair form a bimorph where the two patches are poled in
opposite directions. Their electrodes are connected in parallel, thereby forming
an electromechanical cell of the beam depicted in Figure 1.15(b). More details
about the experimental setup can be found in [104].



1.3. Purpose and practical realization of a digital absorber 30

(a)

(b)

Figure 1.15: Schematic representation of the piezoelectric beam in top view (a) and
close-up on an electromechanical cell of the beam (b).

By connecting cells in parallel, it is possible to form an equivalent transducer with a
different electromechanical coupling than that of a single cell. Figure 1.16 depicts the
EEMCFs with the first bending mode of the beam experimentally measured by connecting
various numbers of cells closest to the clamped edge. The EEMCF first increases with this
number, because the combined action of the patches increases the control authority over
the structure. However, the modal strains induced in the patches can have different signs,
and charge cancellation starts to occur when this number becomes too large, resulting in
a decrease in the EEMCF. Figure 1.16 indicates that the number of parallel connections
maximizing the EEMCF with the first bending mode is four. However, it was chosen
to connect the five cells closest to the clamped end in parallel to mitigate the resonant
vibrations around the first beam mode (leaving the five other cells in open circuit) in
order to obtain results comparable to [104] with a near-optimal EEMCF.

1 2 3 4 5 6 7 8 9 10

Number of cells connected in parallel (-)

0

0.02

0.04

0.06

0.08

0.1

0.12

K
c
 (

-)

Figure 1.16: EEMCFs of the parallel connection of various numbers of cells closest to
the clamped edge with the first bending mode of the beam.

Figure 1.17(a) shows a picture of the DVA, where the analog circuit realized with a printed
circuit board (PCB) and the MCU are visible. Figure 1.17(b) offers a top view of the
PCB. The PCB contains twice the circuit schematized in Figure 1.12. In Figure 1.17(b),
the operational amplifiers (OPA 454 from Texas Instruments [105]) labeled with Ui or
U(i + 7) (i = 1, · · · , 7) correspond to OAi in Figure 1.12. The blue potentiometers
are used to easily set up R1, Rin,1, Rout,1 and Ri.

To identify the system, the FRFs of the beam when the patches are short-circuited or
open-circuited were measured. These FRFs, noted x/f and obtained with a low-level
broadband excitation, are displayed in Figure 1.18.
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Figure 1.17: Pictures of the DVA: general view of the DVA (a) and top view of the
PCB (b).

The peaks of these FRFs gave an estimation of the short- and open-circuit resonance
frequencies. The piezoelectric capacitance was then measured with a multimeter
(FLUKE 177). From these parameters, the optimal resistance of a resistive shunt
was computed from Equation (1.29), and the optimal inductance and resistance of
a series RL shunt were computed using Equations (1.37) and (1.38), respectively.
All these parameters are reported in Table 1.1.

Parameter fsc foc Kc Cε
p RR

opt RRLS
opt LRLSopt

Value 31.08Hz 31.29Hz 0.116 245nF 20 854Ω 2 961Ω 105.7H

Table 1.1: Parameters of the experimental setup.
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Figure 1.18: Experimental FRFs of the beam with short-circuited (—) and
open-circuited (—) patches.

The DVA was powered with ±25V by an external power supply (Keysight E3647A), and
the MCU was programmed in order to mimic a desired admittance, with a sampling
frequency of 10kHz. The parameters of the PCB were set according to the procedure
exposed in Section 1.3.1, and the resistance of the current injector Ri = 268.3Ω was
measured with a multimeter. At first, to validate the equivalence between a shunt
circuit and the DVA, a resistive shunt was considered, since its realization with passive
resistors is easily done. From series connections of available resistors, the resistance of
the analog resistive shunt was measured at 20.51kΩ. The resulting FRF is compared to
that obtained with the DVA emulating a resistive shunt in Figure 1.19. The two FRFs
are very close, which confirms that the DVA can be used as a substitute to a shunt
circuit and that its parameters are tuned correctly. It should be noted that unlike the
case featured in Figure 1.7, the peak of the FRF with a resistive shunt is not coincident
with the intersection of the short-circuit and open-circuit curves. This is solely due to
the presence of structural damping in the host structure.
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Figure 1.19: Experimental FRFs of the beam with short-circuited (—) and
open-circuited (—) patches, analog resistive shunt ( ) and digital resistive shunt
( ).

A series RL shunt was then implemented with the DVA. Figure 1.20 gives the experimental
FRFs of the structure for various values of R and L, and is to be compared to Figure 1.9.
This parametric study is rather straightforward to implement, since it only requires to
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Figure 1.20: Experimental FRF of the beam with short-circuited (—) and
open-circuited patches (—), and a series RL shunt: L = 0.95LRLSopt (a), L =

1.05LRLSopt (b) and L = LRLSopt (c) ; R = 0.1RRLSopt ( ), R = RRLSopt ( ), R = 10RRLSopt

( ).

change the values of R and L in MATLAB Simulink files before measuring a FRF. Clearly,
the DVA is able to emulate the desired shunt circuit.

1.4 Passivity

So far, the ability of the DVA to mimic a piezoelectric shunt was demonstrated. However,
since the circuit made of purely passive components was replaced by an electronic circuit,
the question of whether one is dealing with an active or a passive control system may be
raised. The concept of passivity itself thus has to clearly be defined.

In this work, the term passivity may hold two meanings:

1. The passivity of the control system, i.e., the fact that the actual realization of
the control system requires no external power supply for operation.

2. The passivity of the control law, i.e., the equivalence between the action of the
control system on the plant and a passive control system.
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The first meaning is purely related to the implementation of the control system, and,
since the DVA possess both analog and digital electronics that require to be powered
for operation, it is not a passive control system.

The passivity of the control law is determined based on energy concerns and only makes
sense if the sensed and actuated quantities are energetically conjugate (e.g., position
and force or charge and voltage). The theoretical conditions given in [106, 107] are
based on the requirement that a passive system should not be able to supply more
energy than the amount it initially stores plus the amount it received between this initial
time and the current time. When used to implement passive shunt circuits, the DVA
theoretically implements a passive control law.

It is then legitimate to wonder why one should implement passive control laws if a
non-passive control system is used. A first advantage of such approach is the theoretically
guaranteed stability of the controlled system with infinite gain margin [108]. Another
advantage is that there exists a large body of literature on passive piezoelectric shunt
damping, where tuning rules are relatively simple and allow a physical interpretation of
the action of the controller. From a different point of view, the DVA could also be used as
a fast prototyping device, for instance to validate theoretical tuning laws (which is one of
its main use in this thesis). Despite the approach followed in this thesis, nothing prevents
the use of the DVA as an active controller, as pursued in [60, 61, 109].

In the previous sections, an ideal DVA was considered, i.e., an absorber which is able
to perfectly mimic a passive shunt circuit. The DVA nonetheless has two non-ideal
characteristics that distinguish it from a passive shunt circuit. The first one is the
non-passivity of the control system, which entails power consumption. This aspect is
discussed in Section 1.5. The second non-ideal characteristic is the introduction of time
delays in the system, due to the very nature of the digital unit. The consequences of
such delays are investigated in Section 1.6.

1.5 Power consumption

Because of the presence of digital and analog electronics, the DVA needs to be
powered. The purpose of this section is to explain how this power can be computed
and to give some figures on power consumption.

Going back to the schematic representation of the DVA in Figure 1.12, two
power-consuming elements can be identified: the operational amplifiers and the
digital unit. The total power consumed by the DVA is simply the sum of the
power consumed by these components.

The power consumption of the MCU can be estimated by [110]

PMCU = PMCU,Static + PMCU,Dynamic = VCC,MCUICC,MCU + βMCUCLV
2
CC,MCUfCPU (1.63)

where VCC,MCU is the supply voltage, ICC,MCU the quiescent current, βMCU is the activity
factor, CL is the load capacitance (it can also integrate the CMOS power-dissipation
capacitance, and is generally determined from measurements, see [111] for more details)
and fCPU is the clock frequency at which the digital unit is operating. The static power
PMCU,Static is consumed as soon as the digital unit is powered (even when it is idling), and
the dynamic power PMCU,Dynamic is consumed when the digital unit is active.
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The analog electronics consume a power which can be computed from the operating
characteristics of the absorber. This power can be broken down into two parts.
The first one is the quiescent power, i.e., the power consumed when the absorber
is powered but not used to damp a structure. The additional power required to
operate as an absorber is the useful power.

1.5.1 Power consumed by an operational amplifier

Figure 1.21(a) represents an OA whose output is connected to a load and to a power
supply, and Figure 1.21(b) represents a model used to compute the power in this
system [112]. The two impedances inside the OpAmp are used to model the output
push-pull stage of the OpAmp [103], whereas the power consumption of the remainder
of the electronics is abstracted out in the quiescent current.

−

+

VCC

VEE

Vout

(a)

−

+−
+VCC

−
+VEE

Vout

Iout

ICC

IEE

(b)

Figure 1.21: Model of an OpAmp connected to a load: electrical diagram (a) and
equivalent model for power consumption assessment (b).

Applying KCL, the currents are related by

Iout = ICC − IEE. (1.64)

The instantaneous power in the system can be computed as the sum of the powers in
each impedance. The latter are given by the product of the current flowing through
the impedances times the voltage drop across them.

P = ICC(VCC − Vout) + IEE(Vout − VEE) + (ICC − IEE)Vout = ICCVCC − IEEVEE (1.65)

The first two terms in the first equality represent the instantaneous power in
the OpAmp, while the last one represents the instantaneous power in the load.
The second equality states that the power consumed by the OpAmp and the
load must be equal to the supplied power.

The OpAmp is generally supplied with a constant current called quiescent current
IQ. In addition, the power supply must supply the current sourced (Iout > 0) or
sinked (Iout < 0) to the load. Owing to the internal mechanisms of the OpAmp
(not detailed here but explained in [103]), sourced current comes from the positive
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power supply rail (VCC), whereas sinked current flows to the negative rail (VEE).
The supplied currents then take the conditional form

ICC = IQ + Iout IEE = IQ if Iout ≥ 0

ICC = IQ IEE = IQ − Iout if Iout ≤ 0

(1.66)

Inserting these expressions into Equation (1.65) yields another way of expressing the
OpAmp power

P =


IQ(VCC − VEE) + IoutVCC if Iout ≥ 0

IQ(VCC − VEE) + IoutVEE if Iout ≤ 0

(1.67)

In either case, the first term featured in the expression of power in Equation (1.67) is
the quiescent power consumed by the OpAmp, whereas the second one is the power
needed to supply the current Iout to the load.

1.5.2 Power budget for a digital absorber

In the sequel, it is assumed that the OpAmps are powered by symmetric supplies, i.e.,

VCC,i = −VEE,i, (1.68)

where subscript i refers to a particular OpAmp. Under this assumption, the power
consumed by the OpAmp given in Equation (1.67) simplifies to

Pi(t) = 2IQ,iVCC,i + |Iout,i(t)|VCC,i. (1.69)

With the help of Figure 1.12 and assuming that every unlabeled resistor in this figure has a
resistance R0, the power consumed by each OpAmp can be assessed. Since all the voltages
in this circuit are known from the operating conditions, the currents can be evaluated with
Ohm’s and Kirchhoff’s laws. Thus, the power consumption of the OpAmps is

P1(t) = 2IQ,1VCC,1 +

∣∣∣∣αV (t)−∆Vin
2R0

∣∣∣∣VCC,1, (1.70)

P2(t) = 2IQ,2VCC,2 +

∣∣∣∣αV (t)−∆Vin
2R0

∣∣∣∣VCC,2, (1.71)

P3(t) = 2IQ,3VCC,3 +

∣∣∣∣αV (t) + ∆Vin
2R0

∣∣∣∣VCC,3, (1.72)

P4(t) = 2IQ,4VCC,4 +

∣∣∣∣Vout(t) + 2∆Vout
2R0

∣∣∣∣VCC,4, (1.73)

P5(t) = 2IQ,5VCC,5 +

∣∣∣∣Vout(t) + 2∆Vout
2R0

∣∣∣∣VCC,5, (1.74)

P6(t) = 2IQ,6VCC,6 +

∣∣∣∣Vout(t)Ri

+
Vout(t)

2R0

∣∣∣∣VCC,6, (1.75)
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and

P7(t) = 2IQ,7VCC,7 +

∣∣∣∣Vout(t)Ri

− V (t)

R1 +R2

∣∣∣∣VCC,7. (1.76)

In addition, the voltage references quiescently dissipate power due to the
current flowing through the resistors

PVin =

(
∆Vin
Rin,2

)2

(Rin,1 +Rin,2) , (1.77)

and

PVout =

(
∆Vout
Rout,2

)2

(Rout,1 +Rout,2) . (1.78)

The overall power consumption can be assessed in terms of average power. If the signals
are harmonic with period T , the average power is given by

Pavg,i =
1

T

∫ T

0

Pi(t)dt. (1.79)

Finally, the total power consumption of the DVA PDA is computed as

PDA =
7∑
i=1

Pavg,i + PVin + PVout + PMCU . (1.80)

1.5.3 A practical example

As a practical example, the power consumption of the DVA presented in Section 1.3.3
is assessed, and the predicted power consumption is compared to the experimentally
measured one. In this study, only the power consumption of the PCB was considered,
while that of the MCU was not measured (in the experimental setup, the MCU is powered
via USB, not via the external power supply). If available, this contribution can be used
in the assessment of the total power consumption of the DVA by simple addition.

All the OpAmps on the PCB are identical OPA454 from Texas Instruments. They are
assumed to all have the same quiescent current, IQ,i = IQ, ∀i. The typical value for
this quiescent current is given in the datasheet of the OpAmp and is 3.136mA at that
supply voltage [105]. The power supply provides identical voltages to every electronic
component, so that VCC,i = VCC , ∀i. The voltages and currents of the PCB are given
in Table 1.2, and its resistances are listed in Table 1.3.

Parameter VCC IQ ∆Vin ∆Vout

Value 10V 3.136mA 1.65V 1.65V

Table 1.2: Voltages and currents of the PCB.

The characteristics of the experimental setup were obtained by fitting the FRFs
measured when the patches were in short-circuit and open-circuit. A series RL
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Parameter R0 R1 R2 Rin,1 Rin,2 Rout,1 Rout,2 Ri

Value 1kΩ 13.66kΩ 2.7kΩ 2.83kΩ 560Ω 2.83kΩ 560Ω 269Ω

Table 1.3: Resistances of the PCB.

Parameter m ksc koc θp Cε
p R L

Value 3.88kg 148.27kN/m 150.49kN/m 95kV/m 244.7nF 3 025Ω 105.44H

Table 1.4: Characteristics of the beam and the shunt circuit.

shunt circuit with optimal characteristics was then emulated by the DVA. All the
characteristics of this setup are reported in Table 1.4.

Since the emulated shunt circuit is a series RL one, the output and piezoelectric voltages
are related through their Laplace transform as

Vout(s) = αgYs(s)V (s) =
αg

Ls+R
V (s). (1.81)

The last specification to estimate the power consumption of the PCB is V . To
ease the comparison with experiments, it is assumed that the system is excited
by a constant forcing amplitude f . This forcing was set such that the maximum
piezoelectric voltage does not exceed VCC ; in this case, f = 0.15. When the shunt
circuit is connected to the electrodes of the transducer, the force-to-voltage transfer
function is related to the force-to-displacement one by

V

f
= θp

x

f
− 1

Cε
p

q

f
= θp

x

f
− 1

sCε
p

Ys(s)
V

f
. (1.82)

Thus,
V

f
=

(
1 +

Ys(s)

sCε
p

)−1

θp
x

f
, (1.83)

where x/f is given by Equation (1.34).

In order to experimentally measure the power delivered to the PCB, it is necessary
to measure the current sourced or sinked by the supply. With this in mind, two
series resistors with small resistances of 10Ω were connected to the leads at positive
and negative voltages. The sensing terminals of the power supply were connected
to the other terminals of the resistors in order to compensate for the voltage drop
incurred by the resistors, i.e., to ensure that VCC = 10V . The currents were
monitored by measuring the voltage drops across the series resistors with a dSPACE
MicroLabBox. Figure 1.22 displays the circuit that was used.

Figure 1.23 compares the power computed with the method outlined in the previous
section with that actually measured on the experimental setup. Because the DVA used in
this work has twice the circuits depicted in Figure 1.12, the computation had to account for
twice this circuit, one of them being at rest (but still being supplied quiescent power). It
can be seen that the two graphs feature a good qualitative agreement. The quiescent power
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Figure 1.22: Schematic of the circuit used to monitor the power consumption of the
PCB. In the power supply, S+ and S− are the sensing terminals for the positive and
negative supplied voltages, respectively.

consumption of the PCB (0.978W) is lower than predicted (1.112W). This discrepancy
could be explained by uncertain experimental parameters, such as the quiescent currents
of the OpAmps. The maximum power amplitude increase compared to the quiescent case
is 6.6mW, which is in fair agreement with the predicted one (5.7mW). The maximum
predicted power exceeds by 13% the measured power. Therefore, the proposed model can
be used to give a relatively accurate idea of the actual power consumption of the DVA.
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Figure 1.23: Predicted (a) and experimentally measured (b) power consumption of the
PCB when the DVA is used to control a beam forced at 0.15N.

The power consumption of the DVA is of the order of the Watt. It mainly comes from
quiescent consumption, whereas a small fraction of its total power is actually used for
the practical realization of shunt damping. It should be noted that the DVA presented
here is more of a prototype, and could be optimized to minimize its power consumption.
There are several paths that can be explored to reach this goal:
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• OA1 to OA6 can be powered with low-voltage power supplies, which would lower
their power consumption. OA7 is the only OpAmp requiring high-voltage power
supplies because of its connections to the piezoelectric transducer. This feature was
implemented in the DVA presented in Chapter 5.

• If ∆Vin = ∆Vout, the signals to and from the MCU must be shifted by the same
amount. Instead of connecting the ground of the MCU to that of the PCB, it could
be connected to a voltage reference of −∆Vin. This way, the MCU voltage signals
would naturally be shifted by the correct amount. This would only require a voltage
reference, and suppress the need for OA2, OA3, OA5 and OA6.

• Ultra-low-power OpAmps could be used in the PCB. Unfortunately, this kind of
OpAmp usually also has very reduced bandwidths.

• Some OpAmps could be replaced by switched electronics, as in [56]. This is probably
one of the best ways to reduce power consumption, but a quantization of this
statement, as well as a characterization of the newly introduced parameters (such
as the PWM period), remain to be done.

1.6 Stability

From a theoretical standpoint, a passive control system guarantees the stability
of the controlled system [108]. If the problem is cast into a feedback control one,
the system exhibits an infinite gain margin but a finite phase margin. Because
a digital unit needs to sample the signals it is working with, unavoidable delays
occur in the control loop. These delays introduce a phase lag which may destabilize
the controlled system if they are too large.

Necasek et al [62] and Sugino et al [66] pinpointed the fact that in some cases a DVA
needs to have a sampling frequency much higher than the typical frequencies of interest.
It is the purpose of this section to understand why such a high sampling frequency may
be needed, how delay-induced instabilities may arise and how to counteract them. After
reviewing the basics of digital signal processing, the problem is cast as a feedback control
one, and a relation between the EEMCF and the phase margin is highlighted. Values of
the maximum sampling period under which the system remains stable are then derived.
Finally, a stabilization procedure is proposed.

1.6.1 Basics of digital signal processing

Figure 1.24 depicts a schematic representation of the process undergone by an input
signal u(t) (typically, the piezoelectric voltage) to be transformed to an output signal
y(t) (typically, the piezoelectric current) by a digital unit [33].

A sample-and-hold circuit (SHC) holds the input signal u(t) constant at specific times,
multiples of the sampling period τ . The resulting sampled signal, called discrete
signal can be seen in Figure 1.25(a). The ADC then quantizes the signal in order
to code it on discrete words of finite length. The quantized discrete signal, called
digital signal, can thus only take discrete values (multiples of the quantum yq) at
discrete instants in time, as shown in Figure 1.25(b).
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Figure 1.24: Block diagram representation of the input/output relation in a digital
system.
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Figure 1.25: Sampling effect on a signal (a): continuous-time signal (—) and discrete
signal (-◦); sampling and quantization effect on a signal (b): continuous-time signal
(—) and digital signal (-◦).

To emulate the desired admittance, the MCU operates on the input signal coming from
the ADC. This signal being discrete, a discrete I/O transfer function must thus be
employed. Tustin’s method [113] is used to discretize the continuous transfer function. If
the continuous transfer function to be emulated is given by Ys(s), a discrete z-transform
Ys,d(z) is obtained by substituting the s variable by a bilinear function of z as

Ys,d(z) = Ys(s)|s= 2
τ
z−1
z+1

. (1.84)

The resulting discrete transfer function is a rational function of the z variable.
Rearranging it as

Ys,d(z) =

∑M
m=0 bmz

−m∑N
n=0 anz

−n
(1.85)

defines a difference equation linking the input and output:

N∑
n=0

any(kτ − nτ) =
M∑
m=0

bmu(kτ −mτ), k ∈ Z. (1.86)

The resulting output signal is also a discrete signal. It is applied to the continuous system
with the DAC by holding its value constant for the sample interval by a zero-order hold
(ZOH). Figure 1.26 illustrates such a signal. When compared to the original continuous
signal that the output is supposed to follow, it is seen that the average output of the
ZOH is a delayed version of the former by a time τ/2.
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Figure 1.26: Effect of a ZOH: continuous-time signal (—), ZOH output signal (-◦-)
and continuous average of the discrete signal ( ).

If the MCU operates at a high enough clock frequency, it may be considered that the
digitization of the input signal and computation of the output signal occur instantaneously
at each sampling time. The differences between the continuous transfer function and the
digital one then principally comes from the delay brought by the ZOH, as well as the
frequency warping stemming from the discretization of the transfer function.

Both sampling and quantization have a detrimental effect on passivity [114], which may
eventually have consequences on the stability of the controlled system. If the voltage
ranges are properly set as explained in Section 1.3, quantization will in general have
negligible effects. A high enough sampling frequency can also be chosen, so as to avoid any
issue related to time delays. However, quantifying what ”high enough” means requires
careful inspection, as shall be shown in this section.

1.6.2 Open-loop analysis

The stability of the controlled system can be assessed using the analysis tools from
feedback control theory [115]. The action of the shunt circuit is first represented
as a feedback. It is then shown that for systems with small electromechanical
coupling, the phase margin can be very small, which makes the system prone to
delay-induced instabilities. Before moving on to a closed-loop analysis, a physical
explanation on why the system is sensitive to phase lags is provided, showing that
delays can make the digital admittance non-passive.

1.6.2.1 Open-loop transfer function

If an unforced system is considered, the piezoelectric voltage and charge are linked by
the dynamic capacitance given in Equation (1.23). Moreover, connecting an admittance
Ys(s) to the electrodes of the transducer further imposes the relation Equation (1.32) in
the case of a series RL shunt. This suggests that the dynamics of the unforced controlled
system may be represented with the feedback diagram depicted in Figure 1.27.
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Figure 1.27: Block diagram representation of the controlled system.

Using Equations (1.23) and (1.32), one may form the open-loop transfer function

H(s) = − V (s)

sq(s)
Ys(s) =

1

Cε
p

s2 + ω2
sc

s2 + ω2
oc

1

Ls2 +Rs
(1.87)

such that the poles of the closed-loop system may be found by solving the characteristic
equation

1 +H(s) = 0 (1.88)

Neutral stability is reached when a pole of the closed-loop system lies on
the imaginary axis, i.e., if there is a value s = jω (where j is the unit
imaginary number (j2 = −1)) such that

1 +H(jω) = 0. (1.89)

In feedback control theory, the stability of a closed-loop system is often quantified by
measuring how far H(jω) is from -1, i.e. from |H(jω)| = 1 and ∠H(jω) = ±180◦

(where the operators | · | and ∠ give the magnitude and argument of a complex number,
respectively) for all values of ω. This leads to the definition of a gain margin GM

GM = 20 log10

(
1

|H(jω)|

)
= −20 log10 (|H(jω)|) , when ∠H(jω) = ±180◦, (1.90)

which quantifies by which amount the open-loop transfer function can be multiplied by
a gain inside the loop before the closed-loop system reaches neutral stability. For most
systems, the closed-loop system is stable if GM is positive and unstable otherwise (i.e.,
increasing the gain causes instabilities). A phase margin PM can also be defined by

PM = min {∠H(jω) + 180◦, 180◦ − ∠H(jω)} , when |H(jω)| = 1, (1.91)

which quantifies the distance from ±180◦ at the crossover frequency, i.e. when |H(jω)| =
1. Phenomena bringing phase modification such as delays in the loop can affect the phase
of this open-loop transfer function and lead to instabilities of the closed-loop system.
These margins are therefore important quantities to monitor when dealing with a control
loop, and are easily read from a Bode plot [115].

Note that by normalizing the Laplace variable with the short-circuit resonance frequency

s =
s

ωsc
(1.92)

and using Equations (1.20), (1.37), (1.38) and (1.87),

H(s) = H (ωscs) =
s2 + 1

s2 + 1 +K2
c

1

1

(1 +K2
c ) δ2(Kc)

s2 +
2ζ(Kc)

δ(Kc)
√

1 +K2
c

s

, (1.93)
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the coefficients of the open-loop transfer function depend only on the EEMCF. This
parameter is thus expected to play an important role in stability.

The transfer function given in Equation (1.87) has a simple pole at s = 0, a simple

pole at s = R/L = 2ωocζ(Kc)/δ3(Kc)
Kc�1
� ωoc, a double zero at s = ωsc and a double

pole at ωoc. The phase of this transfer function is thus bounded between -180◦ and
180◦, and the system has an infinite gain margin. The two low-frequency poles make
the phase approach -180◦ early on; the 180◦ phase gain at ωoc is quickly compensated
for by the 180◦ phase drop at ωoc. Thus, before ωsc and after ωoc, the phase of the
transfer function is expected to be close to -180◦.

Figure 1.28(a) features Bode plots of the open-loop transfer function given in
Equation (1.93) for various values of Kc around the short- and open-circuit resonance
frequencies. As expected, the system has an infinite gain margin. There are two
crossover frequencies, and the phase margin is calculated at the highest one (which
also corresponds to the lowest phase margin). The phase margin decreases with
Kc. This trend is also highlighted in Figure 1.28(b).
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Figure 1.28: Bode plot of the open-loop transfer function (a): Kc = 0.01 ( ), Kc =
0.05 ( ), Kc = 0.1 ( ) and Kc = 0.2 ( ) ; phase margin as a function of Kc (b).

As stated earlier, the EEMCF is typically small, and thus the system may have a small
phase margin. This in turn makes it very sensitive to time delays in the loop.

1.6.2.2 Destabilization mechanism

In order to have an intuitive understanding of the effect of delays, a simple model is
introduced in the first instance. Considering the case of a series RL shunt circuit, the
delays imparted by the sampling procedure are modeled as a pure time delay τ/2:

Lq̈(t) +Rq̇(t) = V
(
t− τ

2

)
. (1.94)

Taking the Laplace transform of this equation yields

q =
e−

sτ
2

Ls2 +Rs
V =

e−
sτ
2

s
Ys(s) =

1

s
Yd(s), (1.95)
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where Ys is the nominal shunt admittance and Yd is an equivalent delayed admittance. In
order to see how these two quantities differ with a simple exposition, the formulas from
Thomas et al [75] (which are incidentally identical to a linearization of Equations (1.37)
and (1.38) with respect to Kc) are used to tune the inductance and the resistance.

L =
1

Cε
pω

2
oc

, R =

√
3

2

Kc

ωocCε
p

. (1.96)

The admittance of the shunt circuit evaluated at ωoc is thus

Ys(jωoc) =
1

jωocL+R
=

Cε
pωoc

j +

√
3

2
Kc

=
Cε
pωoc

1 +
3

2
K2
c

(√
3

2
Kc − j

)
. (1.97)

An important feature of this admittance is that it has a positive real part.
In fact, it must be so for any passive circuit, because the average power
dissipated across an admittance Y is

P =
1

2
<{V ∗I} =

1

2
<{V ∗Y V } =

1

2
<{Y } |V |2 (1.98)

and must be positive, because the circuit dissipates true power (< denotes the operator
that gives the real part of a complex number and superscript ∗ denotes complex
conjugate). Another important feature is that since Kc � 1, this real part is much
lower than the absolute value of the imaginary part.

The nominal admittance Ys(jωoc) given by Equation (1.97) is plotted in Figure 1.29 (where
= represents the operator that gives the imaginary part of a complex number). Using
Equation (1.95), the delayed admittance Yd(jωoc) can be obtained through a clockwise
rotation of angle ωocτ/2 of the complex vector Ys(jωoc). If this angle (i.e., the delay τ)
is large enough, this rotation may result in a delayed admittance with a negative real
part. Because the nominal admittance is almost aligned with the imaginary axis, this
can happen for relatively small delays. Hence, they entail a possible generation of true
power within the delayed admittance, which may be transmitted to the structure and
potentially cause the instability of the closed-loop system.

={Y (jωoc)}

< {Y (jωoc)}

Ys(jωoc)Yd(jωoc)

ωocτ

2

Figure 1.29: Representation of the admittance in the complex plane.
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More quantitatively, the delayed admittance is given by

Yd(jωoc) =
Cε
pωoc

1 +
3

2
K2
c

[√
3

2
Kc cos

(ωocτ
2

)
− sin

(ωocτ
2

)

−j

(
cos
(ωocτ

2

)
+

√
3

2
Kc sin

(ωocτ
2

))]
, (1.99)

whose real part becomes negative when

τ =
2

ωoc
arctan

(√
3

2
Kc

)
=

1

ωoc

√
6Kc +O(K3

c ) =
1

ωsc

√
6Kc +O(K3

c ). (1.100)

It should however be noted that passivity is a sufficient but non-necessary condition for
stability. This is fortunate, because for any non-zero delay τ , the admittance becomes
non-passive at high frequencies, but if these frequencies are far enough from the mechanical
resonance the closed-loop system is stable. A more refined model is therefore needed
to assess the stability of the closed-loop system.

1.6.3 Closed-loop analysis

The poles of the closed-loop system can be computed with a model accounting for the
delays of the ZOH. Root loci given by the variation of the time delay τ are traced, and
the destabilizing effect of the delays can clearly be observed. In order to quantify their
importance, approximations of the model are made in order to determine the value of the
sampling period τc above which the closed-loop system becomes unstable.

1.6.3.1 Characteristic equation

The closed-loop system is represented in Figure 1.30. Delays are introduced in the system
by the ZOH.

0 sq V (s)

sq(s)

V

Ys(s)HZOH(s; τ)

++

Figure 1.30: Block diagram representation of the controlled system with a ZOH.

Sampling makes the system time variant. However, if the signals are band-limited
(i.e., their frequency content beyond the frequency π/τ is zero so as to respect
the conditions for the Nyquist-Shannon sampling theorem), this time varying
character may be neglected. Assuming the output of the ZOH is dominated by the
fundamental harmonic of the frequency it is subject to, an equivalent continuous
transfer function can be shown to be [33]

HZOH(s; τ) =
1− e−sτ

sτ
. (1.101)
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Based on Figure 1.30, the characteristic equation is then

1− V (s)

sq(s)
Ys(s)HZOH(s; τ) = 1 +H(s)

1− e−sτ

sτ
= 0. (1.102)

where H is given by Equation (1.87) and is the open-loop transfer function of the system
without delays, i.e., for τ = 0. The characteristic roots of Equation (1.102) are the
poles of the closed-loop system. A condition for stability of this system is that all
the poles must have a negative real part [116]. An inherent difficulty introduced by
the presence of delays is that this characteristic equation is now transcendental because
of the complex exponential. For nonzero τ , the system possesses an infinity of poles,
and they cannot be found in closed-form.

1.6.3.2 Root loci

Equation (1.102) is transcendental and thus not easy to solve, even numerically. One
must resort to numerical solvers such as MATLAB’s routine fsolve to find the roots of
this equation. These solvers usually require an initial guess, close enough to the actual
roots of the equation to ensure convergence. In the case of Equation (1.102), the roots are
known when τ = 0, because they are the roots of a polynomial. The idea is thus to use
homotopy: at each step, starting from a known solution for a given τ , τ is incremented
by ∆τ and Equation (1.102) is solved with fsolve using as initial guess the solution for
τ . If the increment is small enough, fsolve is generally able to find the solution. The
procedure is then repeated until τ reaches a prescribed final value.

Figure 1.31 shows root loci (parametrized by τ) of the controlled system with delays
for various values of Kc. The maximum value for τ is the maximum sampling period
satisfying the Nyquist-Shannon sampling theorem if the system was forced at its resonant
frequency ωsc, π/ωsc. Only the poles with positive imaginary part are shown, but they
complex conjugate counterpart also satisfy the characteristic equation.

In all cases, the poles of the original system initially move to the right of the complex
plane with increasing delays, and for large enough τ the highest-frequency poles cross the
imaginary axis, which makes the closed-loop system unstable. As expected, the value of
τ for which this instability occurs grows with Kc. Intuitively, a controlled system with a
higher Kc will have poles which are further in the left half of the complex plane; a larger
delay effect will thus be required to bring them to the right half.

Figure 1.31 does not feature all the poles of the delayed system, except for τ = 0. As
soon as τ > 0 a countable infinite set of poles emanate from −∞. Figure 1.32 shows
some of these poles, starting from τ = 0.01/ωsc, for the lowest (Kc = 0.01) and highest
(Kc = 0.3) EEMCFs considered in Figure 1.31 (the procedure to find an initial guess
for these poles is detailed in Section B.1). As Figures 1.32(a) and 1.32(c) show, the
poles start off with a very high frequency and progressively move in toward the right of
the complex plane. Even for large τ , their damping ratios and frequencies nonetheless
remain rather high compared to the poles that originate from the poles of the original
system, as testified by the zoom on low frequencies featured in Figures 1.32(b) and 1.32(d),
and this feature is pretty insensitive to the EEMCF. Thus, these poles are not causing
stability issues and will not be considered hereinafter.
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Figure 1.31: Root loci (parametrized by τ) of the closed-loop system with delays (×:
poles for τ = 0, •: τ = 0.01/ωsc, •: τ = 0.1/ωsc, •: τ = 1/ωsc, ×: τ = π/ωsc):
Kc = 0.01 (a), Kc = 0.05 (b), Kc = 0.1 (c) and Kc = 0.3 (d).

1.6.3.3 Critical delays

Of particular interest is the value of τ for which the system becomes marginally stable,
i.e., at which the poles of the closed-loop system cross the imaginary axis, signalling the
onset of instability. An inconvenient feature of Equation (1.102) is that this value can only
be obtained by solving a transcendental equation. However, the following approximation
can be made at frequencies comparatively low to the sampling frequency:

HZOH(s; τ) =
1− e−sτ

sτ
= e−

sτ
2
e
sτ
2 − e− sτ2
sτ

= e−
sτ
2

+∞∑
k=0

(sτ
2

)k
−

+∞∑
k=0

(
−sτ

2

)k
sτ

= e−
sτ
2

+∞∑
k=0

(sτ
2

)2k

≈ e−
sτ
2 , (1.103)

which justifies the near-equivalence between a ZOH and a pure delay of τ/2 observed in the
beginning of this section. With a pure delay model, the method of Walton et al [116] can
be used to compute the characteristics roots of interest. Equation (1.102) is rewritten as

1 +H(s)e−
sτ
2 = 0, (1.104)
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Figure 1.32: Root loci (parametrized by τ) of the closed-loop system with delays (×:
poles for τ = 0, •: τ = 0.01/ωsc, •: τ = 0.1/ωsc, •: τ = 1/ωsc, ×: τ = π/ωsc):
Kc = 0.01(a) and (b), Kc = 0.3 (c) and (d).

The time delay resulting in purely imaginary characteristic roots is noted τc.
At this delay, a pair of complex conjugate poles or a single real pole cross the
imaginary axis, possibly changing the stability of the system. Thus, s = jωc
and s = −jωc satisfy the characteristic equation

1 +H(jωc)e
− jωcτc

2 = 0

1 +H(−jωc)e
jωcτc

2 = 0

. (1.105)

Multiplication of these two equations yield

H(jωc)H(−jωc) = 1. (1.106)

This equation is a polynomial; hence, there is a finite set of frequencies at which the poles
of the closed-loop system cross the imaginary axis [116]. The corresponding time delay
τc can then be found using either line of Equation (1.105) as

τc =
2

ωc
[∠−H(jωc) + 2kπ] , k ∈ Z. (1.107)
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1.6.3.4 Series approximations

Using Equation (1.87), it can be seen that Equation (1.106) is a quartic polynomial of
ω2
c . In theory, it can thus be solved in closed form. However, due to the complexity

of the expression, the complete solution is not reported here. A more convenient
form is obtained through Maclaurin series expansion in powers of Kc of the analytical
solution, which is easily performed with a symbolic calculation software such as
Wolfram Mathematica. This provides an approximation of the three frequencies
(the fourth root being such that ω2

c < 0 is meaningless)



ωc,1 = ωsc

(
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8
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c −

73

128
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c +O(K4

c )
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(
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2
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c +O(K4

c )

)
ωc,3 = ωsc

(
1 +Kc +

5

8
K2
c +

73

128
K3
c +O(K4

c )

) . (1.108)

Inserting these critical frequencies into Equation (1.107) and expanding the result in
power series of Kc gives the corresponding delays
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3
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) . (1.109)

Among these values, τc = τc,3 is the smallest and is thus called critical delay herein,
because it corresponds to the largest admissible value of sampling time for a marginally
stable closed-loop system. It also corresponds to the highest critical frequency,
which is coherent with the root loci analysis. The leading order of Kc is one, which
means that electromechanical systems exhibiting a small EEMCF are subject to these
instabilities. It may also be noted that the first-order coefficient in Kc obtained
in Equation (1.109) for τc,3 corresponds to that of the linearized value of τ leading
to a non-passive delayed admittance (Equation (1.100)).

To assess the accuracy of these series, they were compared with a direct numerical
resolution of Equations (1.102) and (1.104) with s = jωc(Kc). As with the root
loci, these equations were solved with the fsolve routine from MATLAB, using
a homotopy on Kc. Figure 1.33 compares the obtained results for τc,1 and τc,3
(τc,2 being significantly larger, it was omitted).

For small EEMCF, the three models agree almost perfectly. Incidentally, this is also the
range where the instabilities can be a critical problem. For large EEMCF (Kc & 0.3),
the critical sampling frequency becomes a fraction of the minimum sampling frequency
to comply with the Nyquist-Shannon theorem (τ = π/ωsc), and thus delay-induced
instabilities may not be the driving factor to set the sampling frequency.



1.6. Stability 51

0 0.1 0.2 0.3 0.4 0.5

K
c
 (-)

0

0.5

1

1.5

2

s
c

c
 (

-)

Figure 1.33: Critical delays τc,1 (upper curves) and τc,3 (lower curves): ZOH model
( ), pure delay model ( ) and series approximation ( ).

1.6.3.5 FRF of the controlled system

Considering vibration mitigation goals, stability is a necessity but not the only
concern; performance in terms of vibration reduction must also be assessed. It is
known that a small phase margin can lead to amplifications in the closed-loop transfer
function near the crossover frequency [4]. Figure 1.34 shows representative FRFs
of the controlled system including the ZOH (using Equation (1.101)). Small delays
(τ ≤ 0.1τc) have an imperceptible effect on the FRF compared to the continuous
case. Conversely, a strong effect can be observed for large delays, especially on the
rightmost peak whose amplitude grows with the delay. At τ = τc, the poles that lie on
the imaginary axis create an undamped resonance in the FRF. Figure 1.34(a) shows
a similarity with Figure 1.9(b), and delays are somewhat equivalent to a diminution
of the resistance. When the EEMCF is higher, delays also cause a slight detuning
of the frequency of the absorber, as shown in Figure 1.34(b).
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Figure 1.34: FRF of the controlled system with a delayed admittance, Kc = 0.01 (a)
and Kc = 0.1 (b): τ = 0.01τc ( ), τ = 0.1τc ( ), τ = 0.5τc ( ), τ = 0.8τc ( ) and
τ = τc ( ).

The foregoing approximations were also verified by time simulations of the systems’
responses to a unit-amplitude swept sine forcing under various sampling frequencies.
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The simulation of the system represented as a block diagram in Figure 1.35 was carried
out with Simulink. In addition to the sampling delay, this simulation accounts for the
time-varying character of the system caused by sampling, as well as the effect of the
discretization of the transfer function with Tustin’s method.

sq
Piezoelectric structure

V

τ
Yd(z)ZOH

f x

Figure 1.35: Block diagram representation of the controlled system used for time
simulations.

Figure 1.36 shows the envelopes of the systems’ responses. The fact that the FRF
is nearly not affected for τ ≤ 0.1τc is verified, and so is the progressive degradation,
up to the onset of instability for τ ≈ τc.
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Figure 1.36: Simulated envelope of the response of the controlled system with a delayed
admittance to a unit-amplitude swept sine, Kc = 0.01 (a) and Kc = 0.1 (b): τ = 0.01τc
( ), τ = 0.1τc ( ), τ = 0.5τc ( ), τ = 0.8τc ( ), τ = τc ( ) and τ = 1.01τc ( ).

A rule of thumb to choose the delay is thus to use a sampling time which is at
most one tenth of the critical delay. Besides, the sampling time must also be small
enough so as to respect the Nyquist condition. Typical sampling frequencies of
ten to thirty times the highest frequency of interest are often recommended, the
factor thirty being recommended for the accuracy of the emulation used here [33].
The sampling time should therefore satisfy

τ ≤ 1

ωsc
min

{
2π

10
,

√
6

10

(
Kc −K2

c

)
+

19

320

√
3

2
K3
c

}
. (1.110)
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1.6.4 Discussion

The delay-induced instabilities are clearly defeating the purpose of the DVA
and should therefore be avoided. If the closed-loop system is prone to these
instabilities, there are two possible options:

1. Choose a high enough sampling frequency.

2. Modify the implemented admittance in anticipation of the delays.

The first option is the most obvious and straightforward, but not always most
desirable one for two main reasons.

The first reason is that a given digital unit’s power consumption is a growing
function of its clock frequency (see Equation (1.63)), which must be high enough
to handle data at a given sampling frequency. Increasing the sampling frequency
will increase βMCU and/or fCPU , leading to a higher power consumption. Moreover,
if fCPU is increased, VCC,MCU will also have to be increased, which leads to an
actual power consumption proportional to f 3

CPU [110].

The second reason is that the required sampling frequency to make the delays
effect negligible or let alone to have a stable closed-loop system may be very
large. This would require high-frequency specialized equipments, whose financial
cost may become prohibitively large.

Therefore, when the consequences of a sufficient increase in the sampling frequency are
unacceptable, the other solution may be preferable. In this case, it is sought to modify
the programmed admittance in order to anticipate the effects of the sampling delays.

1.6.5 Stabilization procedure

The stabilization procedure reported herein was proposed in [117], but the results
have been reviewed and expanded. The principles of this approach are very
similar to a pole placement approach: it is sought to place the poles of a modified
delayed system as close as possible to those of the nominal system. To do so, the
parameters of the shunt admittance are modified.

1.6.5.1 Pole placement via transfer function modification

The admittance of a shunt circuit can be expressed as a rational transfer function

Ys(s) =

∑M
m=0 bms

m∑N
n=0 ans

n
(1.111)

According to Equation (1.88), the poles of the nominal closed-loop system pk
(k = 1, · · · , K) satisfy the equation

1− V (pk)

pkq(pk)
Ys(pk) = 0. (1.112)
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In order to anticipate the delays, a modified admittance is introduced as

Ỹs(s) =

∑M
m=0 bm(1 + δbm)sm∑N
n=0 an(1 + δan)sn

, (1.113)

where δan and δbm are modification factors and are unknown for now. The poles of the
modified delayed closed-loop system would be the solutions of Equation (1.102):

1− V (s)

sq(s)

1− e−τs

τs
Ỹs(s) = 0. (1.114)

By comparing Equations (1.112) and (1.114), in order for pk to be a pole of
the modified delayed system, the modified delayed admittance must be equal
to the nominal one at s = pk:

1− e−τpk
τpk

Ỹs(pk) =
1− e−τpk
τpk

∑M
m=0 bm(1 + δbm)pmk∑N
n=0 an(1 + δan)pnk

=

∑M
m=0 bmp

m
k∑N

n=1 anp
n
k

= Ys(pk). (1.115)

Rearranging this equation, the following relation is obtained

1− e−τpk
τpk

∑M
m=0 bmδbmp

m
k∑M

m=0 bmp
m
k

−
∑N

n=0 anδanp
n
k∑N

n=0 anp
n
k

= 1− 1− e−τpk
τpk

, (1.116)

which, when imposed for k = 1, · · · , K, defines a linear system that can be put in a matrix
form as



1− e−τp1
τp1

b0
M∑
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bmp
m
1

· · · 1− e−τp1
τp1

bMp
M
1

M∑
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bmp
m
1

− a0
N∑
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anp
n
1

· · · − aNp
N
1

N∑
n=0

anp
n
1

...
...

...
...

1− e−τpK
τpK

b0
M∑
m=0

bmp
m
K

· · · 1− e−τpK
τpK

bMp
M
K

M∑
m=0

bmp
m
K

− a0
N∑
n=0

anp
n
K

· · · − aNp
N
K

N∑
n=0

anp
n
K





δb0

...

δbM

δa0

...

δaN



=


1− 1− e−τp1

τp1
...

1− 1− e−τpK
τpK

 , (1.117)

or, in short,

Pδ = d. (1.118)

This system has a trivial solution δ = [−1, · · · ,−1]T . This makes all the coefficients
of the modified admittance equal to zero, which clearly is not an acceptable solution.
To resolve this, one of the modification factor can be imposed to an arbitrary value,
for instance 0. For this particular choice, the column associated with this modification
coefficient may simply be removed from P. Thus, the number of unknowns is reduced to
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M + N + 1. Since this number may not be equal to K, the system may not be square.
To solve it, the pseudoinverse (denoted by a superscript †) is used.

δ = P†d. (1.119)

By doing so, if d is in the range of P,

• If M + N + 1 < K, the system is overdetermined, and Equation (1.118) is
approximated with the least squares error.

• If M +N + 1 = K, the system is well-posed, and the pseudoinverse is equal to the
inverse of a square matrix, providing the latter is non-singular.

• If M + N + 1 > K, the system is underdetermined, and δ obtained with
Equation (1.119) is the least-squares solution to Equation (1.118).

The formulation presented herein differs slightly from that presented in [117], in that the
unknowns are modification factors rather than the coefficients of the modified transfer
function. The latter generally have widely different scales, which can make the problem
badly conditioned, and in case of an underdetermined system, some coefficient may
undergo a very large relative modification. By contrast, the formulation used in this
thesis allows to obtain a somewhat balanced relative modification of the coefficients. It
should also be noted that the procedure only requires the knowledge of the sampling period
τ in addition to what is already known for tuning the shunt circuit. This parameter is
set by the user and is thus well-known and well-controlled.

1.6.5.2 Numerical verification

Figure 1.37 shows the results of the stabilization procedure on the FRF of the controlled
system. The maximum sampling period π/ωsc, is about 130 and 14 times greater than
τc for Kc = 0.01 and Kc = 0.1, respectively. A remarkable feature is that two FRFs
for a different EEMCF but with an identical sampling frequency look similar, unlike the
unmodified case. Therefore, with this modification, the EEMCF no longer appears to
play a role in the delay-induced degradation of the vibration reduction. The FRFs for
τ > 0.1/ωsc do not exhibit as good performance as the others, but it is not advised
to choose such a low sampling frequency anyway [33].

A second check was made with the time simulation of the system featured in Figure 1.35
using the modified admittance parameters. By comparing Figures 1.37 and 1.38, it can
be observed that both models agree well for τ ≤ 0.1/ωsc. However, discrepancies appear
above this limit. In particular, the system is unstable for sampling periods equal to
and above τ = 1/ωsc and τ = π/ωsc for Kc = 0.01 and Kc = 0.1, respectively. This
can be attributed to the time-variant characteristics of sampling which were neglected
in the analysis, as well as the frequency warping due to Tustin’s transform. In practice,
it is not advised to choose a sampling frequency smaller than thirty times the highest
frequency of interest [33]. Equation (1.110) therefore becomes

τ ≤ 2π

30ωsc
(1.120)

to ensure the stability of the closed-loop system with a modified admittance with some
margin.
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Figure 1.37: FRF of the controlled system with a modified delayed admittance, Kc =
0.01 (a) and Kc = 0.1 (b): τ = 0.01/ωsc ( ), τ = 0.1/ωsc ( ), τ = 0.5/ωsc ( ),
τ = 1/ωsc ( ) and τ = π/ωsc ( ).
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Figure 1.38: Simulated envelope of the response of the controlled system with a delayed,
modified admittance to a unit-amplitude swept sine, Kc = 0.01 (a) and Kc = 0.1 (b):
τ = 0.01/ωsc ( ), τ = 0.1/ωsc ( ), τ = 0.5/ωsc ( ) and τ = 1/ωsc ( ).

1.6.6 Experimental validation

To experimentally validate the developments about delay-induced instabilities and the
proposed stabilization procedure, the experimental setup of Section 1.3.3 is considered
again. FRFs were measured under progressively decreasing sampling frequencies. As
testified by Figure 1.39(a), the destabilization effect of the sampling frequency is clearly
observable. The results featured in this figure are close to those of Figure 1.34(b) (the
coupling factor of the experimental setup is 0.116, which is close to the EEMCF of
0.1 used therein), which validates the model used to describe sampling delays. From
Equation (1.109), the stability limit of the unmodified system should theoretically be
reached at τ = 1.3 × 10−3s. The experimental system is still stable but very lightly
damped. This small discrepancy can be explained by the presence of structural damping
in the host, as well as by experimental uncertainties.

The stabilization procedure recovers the performance of a case without delays,
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as shown in Figure 1.39(b). Namely, all the curves are virtually superimposed
up to τ = τc, which validates the proposed developments. Fourfold a sampling
period leads to a system with modified admittance where the effect of sampling
are observable, more than in the numerical model featured in Figure 1.37(b), but
similarly to the time simulation in Figure 1.38(b). Nevertheless, a case with such
a high sampling period when the admittance is unmodified is not disclosed here,
as it leads to an unstable closed-loop system.
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Figure 1.39: Experimental FRF of the beam (Kc = 0.116) with an unmodified (a)
and a modified (b) admittance: τ = 10−4s≈ 0.1τc ( ), τ = 6.5 × 10−4s= 0.5τc ( ),
τ = 10−3s≈ 0.8τc ( ), τ = 1.3× 10−3s= τc ( ) and τ = 5× 10−3s≈ 1/ωsc ( ) .

1.7 Conclusion

This first chapter introduced the DVA used for piezoelectric shunt damping and
reviewed its strengths and weaknesses. In Section 1.2, important notions associated
with piezoelectric structures and piezoelectric shunt damping were reviewed. The
importance of the EEMCF was highlighted. The general working principles of a DVA
and its practical realization were presented in Section 1.3. The central role of the
digital processing unit and the advantages it brings were underlined. The equivalence
of the action of a DVA to that of a piezoelectric shunt was then experimentally
validated on a beam. Section 1.4 defined notions of passivity, and discussed the
interest of implementing a passive control law with a non-passive control system.
The implications of the non-passive character of the control system were discussed
afterwards. Section 1.5 described a method to evaluate the power consumption of a
DVA. Calculations and experimental measurements showed that the power consumed
by the absorber is of the order of the Watt, and that most of it comes from quiescent
power consumption. Finally, Section 1.6 investigated the effects of sampling delays in
the controlled system. Instabilities were shown to arise, especially quickly for systems
with low electromechanical coupling, whose open-loop transfer function exhibits a small
phase margin. A stabilization procedure was proposed, wherein the delays effect is
anticipated and the poles of the modified delayed closed-loop system were placed as close
as possible to their nominal position through modifications of the shunt admittance.
The theoretical developments were eventually experimentally validated.
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The DVA is a viable approach to implement piezoelectric shunt damping. Table 1.5
compares the different approaches mentioned in the introduction of Section 1.3 in terms
of advantages and drawbacks. From this thesis’ standpoint, the main advantage provided
by the DVA, i.e., its flexibility, is central, as this will allow to implement more complex
shunt circuits in the next chapters. Among the two drawbacks of the DVA, the possibility
for instability was mitigated by a method presented in Section 1.6. Power consumption
remains a potential issue. Embedded systems have become more and more ubiquitous in
our society [110], and smart way to power them have been proposed. This is a point in
favor of the possible industrial deployment of DVAs in smart structures. However, the
PCB of the DVA presented in Section 1.3 appears to consume a large amount of power,
and possible ideas to reduce it were listed in Section 1.5.

Implementation Advantages Drawbacks

Passive circuit Passivity
Hardware modifications

Resistance/nonlinearity/size tradeoff [23, 97, 98]

Synthetic inductor High inductance
Hardware modifications

Power consumption
Frequency-dependent resistance [24]

Digital absorber
High inductance

Flexibility
Power consumption

Possibility of instabilities

Table 1.5: Summary of the advantages and drawbacks of the different approaches
implementing shunt damping.



2 Multimodal vibration damping
with a single transducer

Abstract

This chapter presents a technique to control multiple resonances of a structure with
a shunt circuit possessing multiple branches connected to a single transducer. After
a brief review of the dynamics of multiple-degree-of-freedom structures, a three-step
tuning procedure is proposed. The first step is the identification of the piezoelectric
structure. The second step consists in specifying the characteristics of the shunt
circuit impedance or admittance. With a few simplifying assumptions, the problem
becomes similar to the control of a single mode, and well-established tuning formulas
can be used. From these characteristics, the third step derives the actual parameters
of the electrical elements making up the shunt circuit. The approach is numerically
verified and experimentally validated on piezoelectric beams.

2.1 Introduction

Structures exhibit multiple modes, and several of them may be excited during
operation, e.g. by broadband, transient or multi-harmonic forcing. If they impart
an unacceptably large motion amplitude, they should be controlled. The shunt
circuits reviewed in Section 1.2.2 are typically used to target a single mode. Various
approaches have been proposed in the literature to extend the control ability of
piezoelectric shunt damping to multiple modes.

The tuning procedure for shunt circuits becomes more complicated when there are
multiple modes than when considering a SDoF structure. Berardengo et al [77]
showed that the frequency-dependent character of the piezoelectric capacitance due
to the electromechanical interaction (see, e.g., de Marneffe [118]) is to be taken into
account during tuning for improved accuracy. The significant impact on performance
of non-resonant modes was illustrated by Hogsberg and Krenk [119], and an explicit
correction for background flexibility and inertia was proposed. Gardonio et al [120] showed
that simple lumped-parameter models yield inaccurate tuning of the shunt parameters for
a simply-supported plate. The near-equivalence of using the effective electromechanical
coupling coefficient and a residual-mode corrected electromechanical coupling coefficient
when tuning shunt circuit parameters was demonstrated by Toftekær et al [121].

An advantage of piezoelectric absorbers is their conceptually simple extension to
the control of multiple resonances. A first approach is to use as many shunted
transducers as resonances to be controlled [122]. A second approach for multimodal
piezoelectric shunt damping is based on multiple patches interconnected through
an electrical network. The network is designed to be the electrical analog of the
mechanical structure to which it is coupled [123, 124].
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A third approach uses a single transducer, as multiple transducers cannot always be
accommodated for practical reasons [14]. Since the classical RL shunt resonates with the
transducer at a specific frequency, one can devise a more complex electrical circuit that
resonates at multiple frequencies. Edberg et al [125] tested this concept experimentally
for two modes; the circuit topology was later generalized by Hollkamp [126] to control
an arbitrary number of resonances. In view of the difficulty to tune the circuit, Wu [127]
introduced the so-called current blocking shunt circuit, which, however, requires a large
number of electrical components. Behrens et al [128] proposed a current flowing shunt
circuit and Fleming et al [129] developed a series-parallel impedance structure requiring
a lower number of components. The downside of these latter topologies is that they may
provide a rather low vibration reduction on the controlled modes. The aforementioned
shunt circuits are discussed in more details in [14]. More recently, ladder topologies were
proposed by Agneni et al [130] and Goldstein [131].

The two first approaches require multiple transducers and will be studied in
Chapter 3. The focus of the present chapter is on multiple-branch shunt circuits
connected to a single transducer.

After reviewing important aspects of the dynamics of multiple-degree-of-freedom (MDoF)
piezoelectric structures, this chapter will focus on tuning a shunt circuit connected to
a single transducer whose goal is to mitigate multiple resonances. For this aim, the
circuit should contain a certain number of electrical elements in order to have multiple
resonances itself. The dynamics of a MDoF structure and those of the circuit are governed
by high-order transfer functions. In the SDoF case, tuning the shunt circuit involved
equations of the same order as these transfer functions [83], but closed-form solutions
are beyond reach for the MDoF case. Hence, if tackled directly, mitigating multiple
resonances simultaneously is a substantially more complex problem. The purpose of this
chapter is to propose a method which under mild approximations simplifies the problem
and offers a tuning approach based on the SDoF case.

In the proposed approach, tuning a multi-branch shunt circuit requires three distinct
steps (also schematically represented in Figure 2.1):

1. Identification of the host system’s characteristics

2. Specification of the circuit’s immittance characteristics

3. Tuning of the circuit’s electrical components

The first step consists in determining the resonance frequencies and capacitance at
constant strain of the transducer. As in the SDoF case, knowing the information
conveyed in the dynamic capacitance (or the dynamic elastance) is sufficient to complete
this step. All the essential aspects are covered in Section 2.2.

The second step is based on an analysis of the electromechanical coupling existing between
the resonances of the structure and those of the electrical circuit. After a few simplifying
assumptions, it is possible to show that the problem reduces to a problem similar to
the SDoF case, and the formulas given in Chapter 1 can be used. Namely, a baseline
case can be chosen either as the series RL shunt or parallel RL shunt, depending on
the topology of the shunt circuit. This step is explained in Section 2.3. Its output
specifies a set of frequencies and associated damping ratios for the shunt circuit. When
a DVA is used, these characteristics are sufficient to synthesize a passive shunt circuit,
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as explained in Section 2.4. The developments are numerically verified in Section 2.5
and experimentally validated in Section 2.6.

The last step uses the specifications to find the values of the electrical elements making
up the shunt circuit. The procedure varies depending on the circuit topology, and
is applied to shunt circuits proposed in the literature. Namely, Hollkamp’s shunt
circuit [126] and the current flowing shunt circuit [128] are tuned in Section 2.7, the
series-parallel impedance structure [129] and a similar circuit are tuned in Section 2.8,
and the current blocking shunt circuit [127] is tuned in Section 2.9. The tuning procedure
is numerically verified in Section 2.10 and experimentally validated in Section 2.11.
It is also compared to the method proposed in [132, 133].

Piezoelectric
structure

Identification Specification

Targeted modes
Desired control authority

Tuning

Shunt circuit topology

Shunt
circuit

parameters

Basel
ine case

Figure 2.1: Conceptual flowchart of the proposed shunt circuit tuning approach.

2.2 Modeling piezoelectric structures with a single

piezoelectric transducer

Models of piezoelectric structures can be obtained analytically [4, 14], via a Rayleigh-Ritz
approach [78, 134] or the finite element method (FEM) [135–138]. Introducing
the vector of generalized mechanical degrees of freedom (DoFs) x and the vector
of generalized mechanical loading f , the governing equations of the structure with
a single piezoelectric transducer are obtained as

Mẍ + Kscx + γpV = f

γTp x− Cε
pV = q

, (2.1)

which can be seen as a MDoF version of Equation (1.6). In these equations, M is the
structural mass matrix, Ksc is the structural stiffness matrix when the transducer is
short-circuited, γp is a piezoelectric coupling vector and Cε

p is the piezoelectric capacitance
at constant strain. Alternatively, the piezoelectric voltage may be used as independent
variable. After inversion of the electrical equation, the governing equations become

Mẍ + Kocx− θpq = f

θTp x− 1

Cε
p

q = V

, (2.2)

where

Koc = Ksc +
1

Cε
p

γpγ
T
p , θp =

1

Cε
p

γp (2.3)
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are the open-circuit stiffness matrix and a piezoelectric coupling vector, respectively.
Equation (2.2) can be seen as a MDoF version of Equation (1.11).

2.2.1 Short-circuit and open-circuit modes

The short-circuit modes are the resonant modes of the structures when the transducer is
short-circuited (V = 0). They satisfy the following generalized eigenvalue problem

KscΦsc = MΦscΩ
2
sc, Ωsc =


ωsc,1

. . .

ωsc,N

 (2.4)

where Φsc is the matrix of short-circuit mode shapes, Ωsc is a diagonal matrix containing
the short-circuit resonance frequencies ωsc,n and N is the number of mechanical DoFs.
The mode shapes are usually mass-normalized, i.e.,

ΦT
scMΦsc = I, ΦT

scKscΦsc = Ω2
sc, (2.5)

where I is the identity matrix. If the generalized DoFs are expressed in terms
of short-circuit modal amplitudes ηsc as

x(t) = Φscηsc(t), (2.6)

then, Equation (2.1) can be rewritten, after premultiplication of the mechanical equation
by ΦT

sc, as 
η̈sc + Ω2

scηsc + ΦT
scγpV = ΦT

scf

γTp Φscηsc − Cε
pV = q

. (2.7)

Similar developments can be made with the open-circuit modes, which are the
resonant modes of the structures with the transducer open-circuited (q = 0). They
satisfy the following generalized eigenvalue problem

KocΦoc = MΦocΩ
2
oc, Ωoc =


ωoc,1

. . .

ωoc,N

 (2.8)

where Φoc is the matrix of open-circuit mode shapes and Ωoc is a diagonal matrix
containing the open-circuit resonance frequencies ωoc,n. The generalized DoFs can be
expressed in terms of open-circuit modal amplitudes ηoc as

x(t) = Φocηoc(t), (2.9)
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and Equation (2.2) can be rewritten, after premultiplication of the mechanical equation by
ΦT
oc, as 

η̈oc + Ω2
ocηoc −ΦT

ocθpq = ΦT
ocf

θTp Φocηoc −
1

Cε
p

q = V

. (2.10)

2.2.2 Dynamic capacitance

Assuming that the structure is unforced (f = 0), taking the Laplace transform of the
mechanical equation in Equation (2.7) and inserting it into the electrical equation gives
a dynamic relation between V and q, the dynamic capacitance Cp(s):

−
[
Cε
p + γTp Φsc

(
s2I + Ω2

sc

)−1
ΦT
scγp

]
V = −Cε

p

[
1 +

N∑
n=1

γ2
φ,n

Cε
p

1

s2 + ω2
sc,n

]
V = Cp(s)V = q,

(2.11)
where the modal coupling coefficients γφ,n are given by

γTp Φsc =

[
γφ,1 · · · γφ,N

]
. (2.12)

Applying an identical procedure starting from the open-circuit configuration
(Equation (2.10)) yields the inverse transfer function, the dynamic elastance Ep(s), as

−
[

1

Cε
p

− θTp Φoc

(
s2I + Ω2

oc

)−1
ΦT
ocθp

]
q = − 1

Cε
p

[
1−

N∑
n=1

Cε
pθ

2
φ,n

s2 + ω2
oc,n

]
q = Ep(s)q = V,

(2.13)
where the modal coupling coefficients θφ,n are given by

θTp Φoc =

[
θφ,1 · · · θφ,N

]
. (2.14)

Equations (2.11) and (2.13) show that the poles of the dynamic capacitance
(elastance) are the short-circuit (open-circuit) resonance frequencies. Furthermore,
since the dynamic capacitance (elastance) is the inverse of the dynamic elastance
(capacitance), the zeros of the former are the poles of the latter, i.e., the open-circuit
(short-circuit) resonance frequencies, as in Section 1.2.1.2. Therefore, an alternate
expression for the dynamic capacitance is

Cp(s) = −Cε
p

N∏
n=1

(
s2 + ω2

oc,n

)
N∏
n=1

(
s2 + ω2

sc,n

) =
1

Ep(s)
. (2.15)

Figure 2.2 plots the magnitude of a typical Bode plot of a hypothetical structure with
three resonance frequencies. The advantage of knowing the dynamic capacitance (or



2.2. Modeling piezoelectric structures with a single piezoelectric transducer 64

oc,1 oc,2 oc,3

Frequency

C
p
(0)

D
y
n
a
m

ic
 c

a
p
a
c
it
a
n
c
e
 (

d
B

)

sc,1 sc,2 sc,3

C
p

Figure 2.2: Dynamic capacitance magnitude of a piezoelectric transducer bonded to
an MDoF structure.

elastance) is obvious, as it directly gives the short- and open-circuit resonance frequencies,
as well as the capacitance at constant strain.

Equation (2.11) indicates that the coefficients γ2
φ,n/C

ε
p can be thought of as residues

associated with the poles ±jωsc,n. The cover-up method [115] can be used to deduce them
from the short- and open-circuit resonance frequencies and the piezoelectric capacitance
Cε
p with Equation (2.15). Indeed, from Equations (2.11) and (2.15),

Cp(s) = −Cε
p

[
1 +

N∑
n=1

γ2
φ,n

Cε
p

1

s2 + ω2
sc,n

]
= −Cε

p

N∏
n=1

(
s2 + ω2

oc,n

)
N∏
n=1

(
s2 + ω2

sc,n

) . (2.16)

Multiplying these equations by s2 + ω2
sc,r yields

− Cε
p

(
s2 + ω2

sc,r

) [
1 +

N∑
n=1

γ2
φ,n

Cε
p

1

s2 + ω2
sc,n

]
− γ2

φ,r = −Cε
p

N∏
n=1

(
s2 + ω2

oc,n

)
N∏

n=1,n 6=r

(
s2 + ω2

sc,n

) . (2.17)

Taking the limit of this equation as s → jωsc,r,

γ2
φ,r = Cε

p

N∏
n=1

(
ω2
oc,n − ω2

sc,r

)
N∏

n=1,n6=r

(
ω2
sc,n − ω2

sc,r

) . (2.18)
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Similar developments from Equation (2.13) would have yielded

θ2
φ,r = − 1

Cε
p

N∏
n=1

(
ω2
sc,n − ω2

oc,r

)
N∏

n=1,n 6=r

(
ω2
oc,n − ω2

oc,r

) . (2.19)

Equations (2.18) and (2.19) give a practical way to evaluate the modal coupling
coefficients experimentally from simple measurements of the resonance frequencies and
the piezoelectric capacitance Cε

p . As shall be shown in this chapter, this is sufficient
to tune a shunt circuit with multiple resonance frequencies.

2.2.3 Electromechanical coupling factors

An EEMCF can be defined for each mode analogously to Equation (1.20) as

K2
c,n =

ω2
oc,n − ω2

sc,n

ω2
sc,n

. (2.20)

This EEMCF quantifies the electromechanical coupling existing between mode n and
the piezoelectric transducer. Similarly to the SDoF case, it is an important quantity
to know when tuning shunt circuits [121].

2.3 Specifications for the shunt circuit

Traditionally, dissipative shunt circuits were first tuned by considering their lossless
counterparts [13, 19, 74, 75] because of the simplicity and effectiveness of Den Hartog’s
fixed points-based tuning approach [8]. The same approach shall be used herein,
but for a different reason: it leads to a simple evaluation of the electromechanical
coupling. The most general form of immittance is assumed for the lossless shunt
circuit. It will then be demonstrated that the immittance of an equivalent circuit
resulting from the connection of the piezoelectric transducer with a lossless circuit
takes a specific form. This immittance can be expanded in partial fractions, where
the resonance frequencies of the circuit are directly identifiable. Associated with
these frequencies are residues (that can be seen as resonance amplitudes squared)
which characterize the electromechanical coupling existing between the mechanical and
electrical resonances. Specifically, effective short- and open-circuit resonance frequencies
can be evaluated to compute an EEMCF. These effective frequencies may differ from
those of the structure because the circuit itself influences them.

With this partial fraction expansion and a few simplifying assumptions, it is possible to
show that the problem can be put into a simpler form similar to the SDoF case. From there
on, a specification procedure can be devised. The procedure takes as input the identified
piezoelectric structures, a set of modes to be controlled and a set of associated residues,
which characterize the control authority on these modes. For each targeted mode, the
tuning formulas presented in Chapter 1 are used to fully specify the characteristics of the
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immittance in terms of zeros frequencies and damping ratios. The type of single-mode
RL shunt to which these formulas are associated (series RL or parallel RL) constitutes
the baseline case. The simplifying assumptions make this procedure sequential, i.e., the
characteristics of the immittance can be determined one by one without iterations.

The models used in this section are generic, but Sections 2.7-2.9 will show how
to use the obtained specifications in order to tune multi-branch shunt circuits
which were proposed in the literature.

2.3.1 Admittance-based model

This section uses the Norton-type model (Equation (2.1)). It is shown that when
the piezoelectric transducer is connected to a passive lossless circuit, Norton’s
equivalent admittance takes a specific form. The problem is then simplified by
considering a pair of resonant mechanical and electrical modes, whereas the contribution
from other non-resonant modes is seen as a background contribution, similarly
to [119, 139]. This allows for the extraction of effective short- and open-circuit
resonance frequencies, which can be used to specify the characteristics of Norton’s
equivalent admittance. Sections 2.3.1.1 to 2.3.1.6 describe the dynamics of the
structure coupled to the shunt circuit, and Section 2.3.1.7 uses these developments
to derive specifications on the shunt circuit.

2.3.1.1 Norton’s equivalent admittance

The connection of a shunt circuit of admittance Ys to the electrodes of the piezoelectric
transducer imposes the following relation between the charge and voltage

q =
Ys(s)

s
V. (2.21)

Inserting this relation into Equation (2.1), the governing equations for the
coupled system are obtained as

Mẍ + Kscx + γpV = f

YN(s)

s
V − γTp x = 0

, (2.22)

in which

YN(s) = sCε
p + Ys(s) (2.23)

is Norton’s equivalent admittance of the parallel connection of the shunt circuit with a
capacitor of capacitance Cε

p , as schematized in Figure 2.3.

Condensing the electrical equation into the mechanical one in Equation (2.22) yields(
Ms2 + Ksc +

s

YN(s)
γpγ

T
p

)
x = f . (2.24)



2.3. Specifications for the shunt circuit 67

γTp ẋ YsCε
p V
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γTp ẋ YN
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Figure 2.3: Shunt circuit connected to a piezoelectric transducer (a) and Norton’s
equivalent model (b).

When connecting an inductance to the electrodes of the transducers, Ys(s) = 1/(Ls),
Norton’s admittance takes the form

YN(s) = sCε
p +

1

Ls
= Cε

p

s2 +
1

LCε
p

s
. (2.25)

Thus,
s

YN(s)
=

1

Cε
p

s2

s2 +
1

LCε
p

. (2.26)

As discussed in Section 1.2, the zero of this admittance (which is a pole of
s/YN(s)) can be set equal to a short-circuit resonance frequency of the structure,
in order to suppress completely this resonance. The purpose of this section is
to set specifications on passive shunt circuits having such electrical resonances
used to damp multiple structural resonances.

2.3.1.2 Implications of Foster’s reactance theorem

Because the shunt circuit is made up of passive reactive lossless elements, Foster’s
reactance theorem1 [141, 142] stipulates that its admittance must be of the form

Ys(s) = Ks

s

Nz∏
i=1

(s2 + z2
s,i)

Np∏
i=1

(s2 + p2
s,i)

(2.27)

with Ks > 0,

0 ≤ ps,1 < zs,1 < ps,2 < zs,2 < · · · (2.28)

and either Nz = Np− 1 or Nz = Np. Inserting Equation (2.27) into Equation (2.23) gives

s

YN(s)
=

s

sCε
p + Ys(s)

=

Np∏
i=1

(s2 + p2
s,i)

Cε
p

Np∏
i=1

(s2 + p2
s,i) +Ks

Nz∏
i=1

(s2 + z2
s,i)

. (2.29)

1The mechanical counterpart of this theorem is the alternation of resonances and antiresonances in
a driving-point receptance [140].
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The degree of the numerator and that of the denominator are equal given that Nz ≤ Np,
and thus this transfer function is always biproper. Moreover, it cannot possess a pole at
s = 0 but may have a double zero at s = 0 (if ps,1 = 0). Therefore, it takes the general form

s

YN(s)
=

1

Cε
p

(
r0 +

Ns∑
i=1

ris
2

s2 + z2
i

)
, (2.30)

where zi is a zero of Norton’s admittance, and ri is its associated residue. It can be
noted that the terms in the sum featured in Equation (2.30) have the same form as in the
case of Equation (2.26). These terms correspond to electrical resonances imparted by the
connection of the piezoelectric transducer to the shunt circuit. It can be anticipated that

• the zeros zi of YN must be close to the structural resonance frequencies targeted for
shunt damping.

• the residues ri, which can be seen as (squared) modal amplitudes associated with
the electrical resonances, should be maximized in order to maximize performance.

These two points shall be developed further hereafter.

2.3.1.3 Passivity constraints

Foster’s reactance theorem [141] can also be used to set limitations on the values that the
residues can take. First of all, because the parallel connection of a passive circuit with
a capacitor makes up a circuit which is itself passive, every residue ri must be positive.
Second, by equating Equations (2.29) and (2.30) for s → ∞, it is remarked that

lim
s→∞

s

YN(s)
= lim

s→∞

Np∏
i=1

(s2 + p2
s,i)

Cε
p

Np∏
i=1

(s2 + p2
s,i) +Ks

Nz∏
i=1

(s2 + z2
s,i)

=
1

Cε
p

Ns∑
i=0

ri. (2.31)

If Nz = Np − 1,

1

Cε
p

Ns∑
i=0

ri =
1

Cε
p

, (2.32)

and if Nz = Np,

1

Cε
p

Ns∑
i=0

ri =
1

Cε
p +Ks

∈
[
0,

1

Cε
p

[
. (2.33)

The foregoing developments show that the residues must satisfy the passivity constraints

ri ≥ 0 ∀i ∈ [0, Ns], 0 ≤
Ns∑
i=0

ri ≤ 1. (2.34)

It shall be shown that the last constraint places fundamental limits on the
performance of multimodal shunt circuits.
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2.3.1.4 Background contributions

In the remainder of this section, it is assumed that mode k of Norton’s admittance
targets resonance r of the structure. Non-resonant mechanical modes are identified by
a subscript n (n = 1, · · · , r − 1, r + 1, · · · , N). The external forcing is also assumed
to be zero in order to characterize the poles of the system. Equation (2.22) can be
rewritten using short-circuit modal coordinates as

(
s2I + Ω2

sc

)
ηsc + ΦT

scγpV = 0

YN(s)

s
V − γTp Φscηsc = 0

(2.35)

Since the structural matrices are diagonal, the non-resonant modal coordinates
may be expressed as a sole function of V

ηsc,n = − γφ,n
s2 + ω2

sc,n

V, (2.36)

which, inserted back into the electrical equation, yields
(
s2 + ω2

sc,r

)
ηsc,r + γφ,rV = 0(

YN(s)

s
+

N∑
n=1,n 6=r

γ2
φ,n

s2 + ω2
sc,n

)
V − γφ,rηsc,r = 0

. (2.37)

Finally, expressing V as a function of ηsc,r and substituting the resulting expression
into the mechanical equation, one getss2 + ω2

sc,r +
γ2
φ,r

Cε
p

Cε
p

s

YN(s)

1 + Cε
p

s

YN(s)

N∑
n=1,n 6=r

γ2
φ,n

Cε
p

1

s2 + ω2
sc,n

 ηsc,r = 0. (2.38)

So far, no approximation was made. However, Equation (2.38) is potentially of high
order in s and thus complicated to work with. Moreover, it also requires the knowledge of
every characteristic from Norton’s admittance (ri and zi for each electrical mode), which
would not ease its use within a specification procedure. Approximations shall thus be
made to simplify the problem. The first approximation is a classical one and regards the
non-resonant mechanical modes [119]. From their contribution given in Equation (2.38),
only the static contribution from modes with frequency higher than ωsc,r is retained (the
other contribution decaying in s−2). In other words,

N∑
n=1,n6=r

γ2
φ,n

Cε
p

1

s2 + ω2
sc,n

≈
N∑

n=r+1

γ2
φ,n

ω2
sc,nC

ε
p

. (2.39)

The second approximation consists in similarly simplifying the dynamics of non-resonant
electrical modes. Electrical modes whose frequency is lower than zk are assumed
to be capacitively-dominated, i.e.,

ris
2

s2 + z2
i

≈ ri, i < k, (2.40)
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and electrical modes whose frequency is higher than zk are assumed to be
inductively-dominated

ris
2

s2 + z2
i

≈ ris
2

z2
i

, i > k. (2.41)

For conciseness, the following dimensionless quantities are introduced

κr =
N∑

n=r+1

γ2
φ,n

ω2
sc,nC

ε
p

, κr =
N∑
n=r

γ2
φ,n

ω2
sc,nC

ε
p

, (2.42)

representing the static influence from higher-frequency modes without and with mode r,
respectively, and

yl =
k−1∑
i=0

ri, yh =
Ns∑

i=k+1

riω
2
sc,r

z2
i

, (2.43)

representing the influence of capacitively-dominated and inductively-dominated
electrical modes, respectively. It can be remarked that computing yl and yh requires
the knowledge of all the residues but only the zeros from higher-frequency modes.
Using the simplifying assumptions (Equations (2.39)-(2.41)) into Equation (2.38), a
dynamic equation of lower order including the background contribution of non-resonant
mechanical and electrical modes is obtained ass2 + ω2

sc,r + ω2
sc,r (κr − κr)

yl +
rks

2

s2 + z2
k

+ yh
s2

ω2
sc,r

1 + κr

(
yl +

rks
2

s2 + z2
k

+ yh
s2

ω2
sc,r

)
 ηsc,r = 0. (2.44)

2.3.1.5 Effective short-circuit and open-circuit resonance frequencies

Going back to the single-mode case, Section 1.2 highlighted the relevance of short-
and open-circuit resonance frequencies for tuning. In these cases, associated Norton’s
equivalent admittances are, using Equation (2.23),

s

YN,sc
=

s

YN

∣∣∣∣
Ys=∞

= 0,
s

YN,oc
=

s

YN

∣∣∣∣
Ys=0

=
1

Cε
p

. (2.45)

By analogy, we define modal short circuit and modal open circuit Norton’s admittances by
replacing the resonant term by its asymptotic values for s→ 0 and s→∞, respectively.
In other words, the resonant electrical term can be replaced by

lim
s→0

rks
2

s2 + z2
k

= 0 (2.46)

and

lim
s→∞

rks
2

s2 + z2
k

= rk, (2.47)

in the case of a modal short circuit and modal open circuit, respectively. Substituting
these expressions into Equation (2.44) defines effective resonance frequencies. Based
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on their value, it is possible to assess an EEMCF which will eventually be used to
specify the characteristics of the shunt circuit.

Substituting the electrical resonant term by its expression in Equation (2.46) into
Equation (2.44) gives a quadratic equation in s2. The effective short-circuit resonance
frequency ω̂sc,r can be found by solving this equation for s = jω̂sc,r as

ω̂sc,r =
ωsc,r√√√√1 + ylκr + yhκr

2 + 2ylκr
+

√(
1 + ylκr + yhκr

2 + 2ylκr

)2

− yhκr
1 + ylκr

. (2.48)

Proceeding in an analogous way with Equation (2.47), the effective open-circuit
resonance frequency ω̂oc,r can be estimated by

ω̂oc,r =
ωsc,r√√√√1 + (yl + rk)κr + yhκr

2 + 2(yl + rk)κr
+

√(
1 + (yl + rk)κr + yhκr

2 + 2(yl + rk)κr

)2

− yhκr
1 + (yl + rk)κr

.

(2.49)

2.3.1.6 Coupling assessment

Equation (2.20) can be replaced by an EEMCF based on the effective short-
and open-circuit resonance frequencies

K̂2
c,r =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
sc,r

. (2.50)

We note the following particular cases

K̂2
c,r

∣∣∣
rk=0

= 0, K̂2
c,r

∣∣∣
rk=1

= K2
c,r (2.51)

and it is possible to show that ω̂oc,r is a growing function of rk, and thus so is K̂c,r.

A more explicit expression of K̂c,r as a function of rk can be obtained if one neglects
the influence of non-resonant terms (yl = yh = κr = 0). The effective short- and
open-circuit resonance frequencies are then estimated by

ω̂2
sc,r ≈ ω2

sc,r, ω̂2
oc,r ≈

(
1 + rk

γ2
φ,r

ω2
sc,rC

ε
p

)
ω2
sc,r. (2.52)

The EEMCF is

K̂2
c,r ≈ rk

γ2
φ,r

ω2
sc,rC

ε
p

≈ rkK
2
c,r, (2.53)

where K2
c,r is approximated under the same assumptions (i.e., starting from Equation (2.7)

and neglecting the contribution from non-resonant mechanical modes [137]). The
expressions given in Equation (2.52) are generally not accurate enough to be used to
tune a shunt circuit but Equation (2.53) gives a remarkably concise expression of the
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EEMCF as a function of the residue. It can be used as an approximate quantitative
guide to select a set of residues based on the performance desired for specific modes.

In any case, the larger the residue associated to one mode, the larger the EEMCF, as
anticipated. From Equation (2.34), it is noted that a residue cannot be greater than
unity, and in case it is unitary all the other residues are zero. Thus, regarding a specific
mode, a passive multimodal shunt circuit can at best perform as well as a single-mode
shunt circuit. When multiple modes are targeted, performance on one mode has to be
traded for performance on the other modes. This highlights a fundamental limitation in
performance that can be expected from passive multimodal shunt circuits.

It can also be noted that the residue r0 in Equation (2.30) is not associated to any mode,
but still intervenes in the passivity constraint (Equation (2.34)). Hence, in terms of
vibration reduction, r0 = 0 is desirable to maximize the value of the other residues. Some
topologies of shunt circuits however force this residue to be non-zero, as shall be seen.

2.3.1.7 Specifications for the shunt circuit

The previous developments can be assembled into a tuning procedure, which goes as
follows. The user first selects the modes to be controlled and their associated residues,
knowing that the latter will quantify the electromechanical coupling with the former.
Typically, Equation (2.53) can be used at this stage to predict the EEMCF. The tuning
procedure then consists in defining the zeros of Norton’s equivalent admittance zi and
to add dissipation to the circuit through specification of associated damping ratios ζi
in order to provide nearly-optimal vibration reduction.

From the tuning formulas of the SDoF case, the zeros can be computed from the
EEMCF and the effective resonance frequencies as

ωe,k = δ
(
K̂c,r

)
ω̂oc,r (2.54)

or
ωe,k = ν

(
K̂c,r

)
ω̂sc,r, (2.55)

depending on whether the circuit has to be tuned based on the series RL (Equation (1.37))
or parallel RL (Equation (1.45)) SDoF case, respectively2. In general, the best-suited
baseline case will depend on the topology of the dissipative shunt circuit. The
damping ratios can also be determined as

ζk = ζ
(
K̂c,r

)
(2.56)

or
ζk = ς

(
K̂c,r

)
, (2.57)

depending on the baseline case: series RL (Equation (1.37)) or parallel RL
(Equation (1.45)) SDoF, respectively.

From Equation (2.44), the electrical resonance frequency ωe,k of the lossless circuit
creates a zero in the mechanical receptance if

1 + κr

(
yl +

rks
2

s2 + z2
k

+ yh
s2

ω2
sc,r

)
= 0 (2.58)

2Other tuning formulas for the series or parallel RL shunt circuits [13, 19, 74, 75, 82] can also be
used.
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for s = jωe,k. Solving for zk eventually yields

zk = ωe,k

√√√√√1 +
rk

1

κr
+ yl − yh

ω2
e,k

ω2
sc,r

. (2.59)

From Equation (2.40), it is seen that when tuning zk, zk+1 to zNs have to be known.
In order to have a sequential specification procedure where everything is known when
considering resonance k, this suggests that the electrical resonances have to be specified
in descending order of frequency. Figure 2.4 summarizes the proposed approach.

System characteristics: Cε
p , ΦT

scγp
Modes to be controlled r(k) and associated residues rk (k = 1, · · · , Ns)

k := Ns

r := r(k)

Background contributions
Compute κr, κr yl and yh

Equations (2.42) and (2.43)

Effective resonance frequencies
Compute ω̂sc,r, ω̂oc,r and K̂c,r

Equations (2.48), (2.49) and (2.50)

Admittance specifications
Compute ωe,k(ω̂sc,r, ω̂oc,r, K̂c,r), ζk(ω̂sc,r, ω̂oc,r, K̂c,r) and zk

Series RL baseline: Equations (2.54) and (2.56)
Parallel RL baseline: Equations (2.55) and (2.57)

Equation (2.59)

k = 1?

k := k − 1

End

No

Yes

Figure 2.4: Flowchart of the proposed admittance specification approach.

Ideally, the shunt circuit admittance Ys should be chosen such that Norton’s
dissipative admittance is of the form

YN(s) = sCε
p + Ys(s) = sCε

p

(
r0 +

Ns∑
i=1

ris
2

s2 + 2ζizis+ z2
i

)−1

. (2.60)
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The values of the electrical components that make the shunt circuit up can then be
derived, but they depend specifically on the shunt circuit topology.

2.3.2 Impedance-based model

This section uses the Thévenin-type model (Equation (2.2)). In this case, Thévenin’s
equivalent impedance plays a similar role here to Norton’s admittance in Section 2.3.1.
An approach essentially similar to that exposed therein can be followed to specify the
characteristics of Thévenin’s equivalent impedance. Sections 2.3.2.1 to 2.3.2.6 describe
the dynamics of the structure coupled to the shunt circuit, and Section 2.3.2.7 uses these
developments to derive specifications on the shunt circuit.

2.3.2.1 Thévenin’s equivalent impedance

If the shunt circuit impedance Zs is considered, the charge-voltage relation reads

V = sZs(s)q, (2.61)

which, inserted into Equation (2.2), yields
Mẍ + Kocx− θpq = f

sZT (s)q − θTp x = 0

, (2.62)

in which

ZT (s) =
1

sCε
p

+ Zs(s) (2.63)

is Thévenin’s equivalent impedance of the series connection of the shunt circuit with a
capacitor of capacitance Cε

p , as depicted in Figure 2.5.

−
+θTp x Zs

Cε
p V

q̇

(a)

−
+θTp x ZT

(b)

Figure 2.5: Shunt circuit connected to a piezoelectric transducer (a) and Thévenin’s
equivalent model (b).

The receptance of the controlled structure then satisfies(
Ms2 + Koc −

1

sZT (s)
θpθ

T
p

)
x = f . (2.64)

When connecting an inductance to the electrodes of the transducers, Zs(s) = Ls,
and Thévenin’s impedance takes the form

ZT (s) =
1

sCε
p

+ Ls =
1

Cε
p

LCε
ps

2 + 1

s
. (2.65)
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Thus,
1

sZT (s)
= Cε

p

1

LCε
ps

2 + 1
. (2.66)

As discussed in Section 1.2, the zero of this impedance (which is a pole of 1/(sZT (s))) can
be set equal to that of the structure, in order to suppress completely a single resonance.

2.3.2.2 Implications of Foster’s reactance theorem

Foster’s reactance theorem [141, 142] can be used to deduce several properties of ZT (s). If
the shunt impedance is made of passive reactive lossless elements, it must be of the form

Zs(s) = Ks

Nz∏
i=1

(s2 + z2
s,i)

s

Np∏
i=1

(s2 + p2
s,i)

(2.67)

with Ks > 0,

0 ≤ zs,1 < ps,1 < zs,2 < ps,2 < · · · (2.68)

and either Np = Nz − 1 or Np = Nz. Inserting Equation (2.67) into Equation (2.63) gives

1

sZT (s)
=

1
1

Cε
p

+ sZs(s)
=

Np∏
i=1

(s2 + p2
s,i)

1

Cε
p

Np∏
i=1

(s2 + p2
s,i) +Ks

Nz∏
i=1

(s2 + z2
s,i)

. (2.69)

In this case, the degree of the numerator is equal to or lower than that of the denominator
given that Np ≤ Nz, and thus this transfer function is proper. Moreover, it can neither
possess a pole at s = 0 nor a zero at s = 0. Therefore, it takes the general form

1

sZT (s)
= Cε

p

r0 +
Ns∑
i=1

ri
s2

z2
i

+ 1

 , (2.70)

where zi is a zero of Thévenin’s impedance, and ri is its associated residue. It
can be noted that the terms in the sum featured in Equation (2.70) have the
same form as in the case of Equation (2.66). These terms correspond to electrical
resonances imparted by the connection of the piezoelectric transducer to the
shunt circuit. Again, it can be anticipated that

• the zeros zi of ZT must be close to the structural resonance frequencies targeted for
shunt damping.

• the residues ri should be maximized in order to maximize performance.
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2.3.2.3 Passivity constraints

Because the series connection of a passive circuit with a capacitor makes up a circuit
which is itself passive, every residue ri must be positive. By equating Equations (2.63)
and (2.70) for s → 0, it is remarked that

lim
s→0

1

sZT (s)
= lim

s→0

Np∏
i=1

(s2 + p2
s,i)

1

Cε
p

Np∏
i=1

(s2 + p2
s,i) +Ks

Nz∏
i=1

(s2 + z2
s,i)

= Cε
p

Ns∑
i=0

ri. (2.71)

Thus

Cε
p

Ns∑
i=0

ri =
1

1

Cε
p

+Ks

∏Nz
i=1 z

2
s,i∏Np

i=1 p
2
s,i

∈
[
0, Cε

p

]
, (2.72)

the upper bound Cε
p being reached if zs,1 = 0.

The foregoing developments show that the residues must satisfy the passivity constraints

ri ≥ 0 ∀i ∈ [0, Ns], 0 ≤
Ns∑
i=0

ri ≤ 1. (2.73)

Again, the last constraint places fundamental limits on the performance of multimodal
shunt circuits.

2.3.2.4 Background contributions

In the remainder of this section, it is assumed that mode k of Thévenin’s impedance targets
resonance r of the structure. As in Section 2.3.1.5, an unforced system is considered, and
it is possible to isolate a resonant frequency from Equation (2.10) and to obtains2 + ω2

oc,r − θ2
φ,rC

ε
p

1

Cε
p

1

sZT (s)

1− 1

Cε
p

1

sZT (s)

N∑
n=1,n 6=r

θ2
φ,nC

ε
p

s2 + ω2
oc,n

 ηoc,r = 0. (2.74)

Assuming that the lower-frequency electrical modes (zi < zk) are inductively-dominated,
i.e.,

ri
s2

z2
i

+ 1

≈ riz
2
i

s2
, i < k, (2.75)

that the higher-frequency electrical modes (zk < zi) are capacitively-dominated,

ri
s2

z2
i

+ 1

≈ ri, i > k (2.76)
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and that the non-resonant mechanical modes contribute only through static
response of the higher-frequency modes,

N∑
n=1,n6=r

θ2
φ,nC

ε
p

s2 + ω2
oc,n

≈
N∑

n=r+1

θ2
φ,nC

ε
p

ω2
oc,n

, (2.77)

a quadratic equation for the effective short- and open-circuit resonance frequencies can
be obtained. The following quantities are introduced

κr =
N∑

n=r+1

θ2
φ,nC

ε
p

ω2
oc,n

, κr =
N∑
n=r

θ2
φ,nC

ε
p

ω2
oc,n

. (2.78)

and

zl =
k−1∑
i=1

riz
2
i

ω2
oc,r

, zh = r0 +
Ns∑

i=k+1

ri. (2.79)

With the aforementioned approximations, Equation (2.74) simplifies to
s2 + ω2

oc,r − ω2
oc,r(κr − κr)

zl
ω2
oc,r

s2
+

rk
s2

z2
k

+ 1

+ zh

1− κr

zlω2
oc,r

s2
+

rk
s2

z2
k

+ 1

+ zh




ηoc,r = 0. (2.80)

2.3.2.5 Effective short-circuit and open-circuit resonance frequencies

Thévenin’s equivalent impedances with short- and open-circuited transducer are

1

sZN,sc
= Cε

p ,
1

sZN,oc
= 0. (2.81)

By analogy, we define modal-short-circuit and modal-open-circuit impedances
given respectively by replacing the resonant term by its asymptotic values for
s → 0 and s → ∞, respectively, that is,

lim
s→0

rk
s2

z2
k

+ 1

= rk, (2.82)

and

lim
s→∞

rk
s2

z2
k

+ 1

= 0, (2.83)

respectively.
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Substituting Equation (2.82) into Equation (2.80), the effective short-circuit resonance
frequency is the solution for s = jω̂sc,r, and is thus given by

ω̂sc,r = ωoc,r

√√√√1− zlκr − (zh + rk)κr
2− 2(zh + rk)κr

+

√(
1− zlκr − (zh + rk)κr

2− 2(zh + rk)κr

)2

+
zlκr

1− (zh + rk)κr
,

(2.84)
And with Equation (2.83) substituted into Equation (2.80), the effective open-circuit
resonance frequency can be estimated as

ω̂oc,r = ωoc,r

√√√√1− zlκr − zhκr
2− 2zhκr

+

√(
1− zlκr − zhκr

2− 2zhκr

)2

+
zlκr

1− zhκr
. (2.85)

2.3.2.6 Coupling assessment

The EEMCF given in Equation (2.50) is recalled here

K̂2
c,r =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
sc,r

(2.86)

We note the following particular cases

K̂2
c,r

∣∣∣
rk=0

= 0, K̂2
c,r

∣∣∣
rk=1

= K2
c,r (2.87)

and it is possible to show that ω̂sc,r is a decreasing function of rk, and thus

K̂c,r is a growing function of rk.

A more explicit expression of K̂c,r as a function of rk can be obtained if one neglects
the influence of non-resonant terms (zl = zh = κr = 0). The effective short- and
open-circuit resonance frequencies are then estimated by

ω̂2
sc,r ≈ ω2

oc,r

(
1− rkθ2

φ,rC
ε
p

)
, ω̂2

oc,r ≈ ω2
oc,r. (2.88)

The EEMCF is

K̂2
c,r ≈

rkK
2
c,r

1 +K2
c,r − rkK2

c,r

K2
c,r�1

≈ rkK
2
c,r. (2.89)

Again, it can be observed that the EEMCF can be predicted from the residue
with a rather simple formula. This highlights the same performance trade-off
as in the admittance-based models.

2.3.2.7 Specifications for the shunt circuit

As in the admittance-based model case, it is possible to set an electrical resonance
frequency and associated damping ratio based on the effective modal characteristics of
the electromechanical system. The formulas from the SDoF baseline case can be used to
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specify the electrical resonance frequency ωe,k and damping ratio ζe,k, as in Section 2.3.1.7.
To obtain a zero of the mechanical receptance in Equation (2.80), zk should satisfy

1− κr

zlω2
oc,r

s2
+

rk
s2

z2
k

+ 1

+ zh

 = 0, (2.90)

for s = jωe,k, i.e.,

zk =
ωe,k√√√√√1− rk

1

κr
+ zl

ω2
oc,r

ω2
e,k

− zh

. (2.91)

It is now possible to devise a specification procedure for the shunt circuit’s characteristics.
From a set of modes to be controlled and associated residues, the zeros of Thévenin’s
impedance and the desired damping for optimal vibration reduction can be computed.
Equation (2.75) shows that in order to tune zk, z1 to zk−1 have to be known,
which suggests that the tuning must be done in ascending order of frequency.
Figure 2.6 summarizes the proposed approach.

With these specifications, the shunt circuit impedance Zs should ideally be such
that Thévenin’s dissipative impedance is

ZT (s) =
1

sCε
p

+ Zs(s) =
1

sCε
p

r0 +
Ns∑
i=1

ri
s2

z2
i

+ 2ζi
s

zi
+ 1


−1

(2.92)

2.3.3 Equivalence between the models

Two types of specification procedures were developed in the previous sections. They
both yield a set of frequencies zi and a set of associated damping ratios ζi. Whether
the admittance-based or impedance-based specification is used, these parameters will
be very close provided they use the same baseline case, but not rigorously identical.
The small discrepancies come from the difference in the frequencies around which the
approximations are made (either short- or open-circuit resonance frequencies), and are
generally negligible in front of the other approximations.

It is now shown that the two approaches are equivalent in the lossless case (assuming
identical frequencies zi), but not in the dissipative case (assuming identical frequencies zi
and damping rations ζi). The shunt admittance is the inverse of the shunt impedance, i.e.,

Ys(s) =
1

Zs(s)
. (2.93)

Thus, a relation between Norton’s admittance defined in Equation (2.23) and Thévenin’s
impedance defined in Equation (2.63) can be derived as

YN(s) =
sCε

pZT (s)

ZT (s)− 1

sCε
p

, (2.94)
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System characteristics: Cε
p , ΦT

ocθp
Modes to be controlled r(k) and associated residues rk (k = 1, · · · , Ns)

k := 1

r := r(k)

Background contributions
Compute κr, κr, zl and zh

Equations (2.78) and (2.79)

Effective resonance frequencies
Compute ω̂sc,r, ω̂oc,r and K̂c,r

Equations (2.84), (2.85) and (2.86)

Impedance specifications
Compute ωe,k(ω̂sc,r, ω̂oc,r, K̂c,r), ζk(ω̂sc,r, ω̂oc,r, K̂c,r) and zk

Series RL baseline: Equations (2.54) and (2.56)
Parallel RL baseline: Equations (2.55) and (2.57)

Equation (2.91)

k = Ns?

k := k + 1

End

No

Yes

Figure 2.6: Flowchart of the proposed impedance specification approach.

and the inverse relation is

ZT (s) =
YN(s)

sCε
p(YN(s)− sCε

p)
. (2.95)

2.3.3.1 Lossless case

In the lossless case, if Norton’s admittance is given by Equation (2.23), then,
by Equation (2.95), one obtains

1

sZT (s)
= Cε

p

1−
Ns∑
i=0

ri +
Ns∑
i=1

ri
s2

z2
i

+ 1

 , (2.96)
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which is of the same form as Equation (2.63) (the only difference being the expression of
r0). Specifically, the zeros of ZT are identical to those of YN , and their associated residues
are also identical. Thus, the two approaches are equivalent in the lossless case. While
passing from one model to the other, it should be kept in mind that all the residues
stay identical except for r0, which becomes

r0 := 1−
Ns∑
i=0

ri. (2.97)

2.3.3.2 Dissipative case

If dissipative circuits are considered, Norton’s dissipative admittance would ideally be
given by Equation (2.60), while Thévenin’s dissipative impedance would ideally be
given by Equation (2.92). Inserting Equation (2.60) into Equation (2.95), the following
expression is obtained after transforming Norton’s admittance to Thévenin’s impedance:

1

sZT (s)
= Cε

p

1− r0 −
Ns∑
i=1

ri

(
2ζi

s

zi
+ 1

)
s2

z2
i

+ 2ζi
s

zi
+ 1

 . (2.98)

This shows that if dissipative circuits are considered (ζi 6= 0), the two approaches
are no longer completely equivalent, because Equations (2.92) and (2.98) do
not have the same form. The damping ratios are generally moderately small,
so the discrepancy is moderate as well.

2.3.3.3 Choosing a model type

As stated in the beginning of this subsection, the specifications of the shunt circuit are
almost identical using either model. Thus, when specifying the characteristics, either
model can be used, and the choice can be based on convenience.

By contrast, when tuning the shunt circuit, the baseline model type is important.
Circuits containing series RL branches are generally best tuned with the series RL
shunt baseline case, whereas circuits with parallel RL branches are best tuned with
parallel RL shunt baseline case. The sequel of this chapter will illustrate these
concepts on the DVA and various shunt circuits, most of which have been proposed
previously in the literature (see, e.g., [14] for a review).

2.4 Multimodal damping with a digital vibration

absorber

When using a DVA, there is no need to explicitly set electrical parameters; the
characteristics of the admittance as a transfer function are sufficient to program
the digital unit and to make the DVA act as a passive shunt circuit. Hence, step
3 as depicted in Figure 2.1 is not necessary in this case.
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If the shunt circuit specifications come from an admittance-based approach (Section 2.3.1),
the shunt admittance can then be determined from Equation (2.23),

Ys(s) = YN(s)− sCε
p . (2.99)

In other terms, using Equation (2.60),

Ys(s) = sCε
p

1− r0 −
Ns∑
i=1

ris
2

s2 + 2ζizis+ z2
i

r0 +
Ns∑
i=1

ris
2

s2 + 2ζizis+ z2
i

. (2.100)

This model works best if the admittance is tuned with the parallel RL baseline.

If the shunt circuit specifications come from an impedance-based approach (Section 2.3.2),
the shunt admittance can then be determined from Equation (2.63) as

Ys(s) =
1

Zs(s)
=

1

ZT (s)− 1

sCε
p

, (2.101)

that is, using Equation (2.92),

Ys(s) = sCε
p

r0 +
Ns∑
i=1

ri
s2

z2
i

+ 2ζi
s

zi
+ 1

1− r0 −
Ns∑
i=1

ri
s2

z2
i

+ 2ζi
s

zi
+ 1

. (2.102)

This model works best if the admittance is tuned with the series RL baseline.

Similar forms to Equations (2.100) and (2.102) were proposed by Moheimani et
al [14, 108, 143] by casting the passive control problem into a feedback one and
using Youla’s parametrization of all stabilizing controllers. However, the role of
the residues was not as thoroughly discussed as here, and the tuning procedure
was different for zi (set equal to the corresponding open-circuit resonance frequency
therein) and ζi (tuned by an optimization algorithm therein).

2.5 Numerical verification of the specification

procedure

The cantilever beam that first appeared in Thomas et al [137] and was later
studied in several works [75, 76, 121, 133] is used as a first example to numerically
demonstrate the proposed approach. It is a clamped-free aluminum beam on
which two PIC 151 piezoelectric patches are symmetrically bonded, as depicted
in Figure 2.7. The geometrical and material properties of the system were taken
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(a)

f x

(b)

Figure 2.7: Schematic representation of the cantilever piezoelectric beam from [137]:
perspective view (a) and top view (b).

from [137]. The patches have opposite polarization, and they are connected in
series to form one equivalent piezoelectric transducer. A finite element (FE) model
was built following the procedure described in [137].

The beam is transversely excited on its free end. Modal damping was set to 0.1% on all the
modes. The driving-point FRF therefore exhibits lightly-damped resonances which can be
targeted by the above-mentioned shunt circuits in order to reduce the vibratory amplitude.

The ideal shunt circuits presented in Section 2.4 are considered. The first two bending
modes of the beam are targeted at first to keep the exposition simple.
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Figure 2.8: FRF of the beam with open-circuited patches (—) and controlled with a
circuit with ideal Thévenin’s impedance (a) and ideal Norton’s admittance (b): r1 =
0.1, r2 = 0.9 ( ), r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.9, r2 = 0.1 ( ).

Figure 2.8 presents the FRFs of the controlled beam with both approaches (yielding ideal
Norton’s admittance and Thévenin’s impedance), using various values of the residues
associated with modes 1 (r1) and 2 (r2), while respecting the passivity constraint r1 +
r2 = 1. Both techniques yield similar performance in terms of vibration reduction, given
identical residues. As expected, the greater r1 the greater the vibration attenuation on
mode 1, but the smaller the vibration attenuation on mode 2. The residues can thus be set
to balance the control authority on specific modes, at the expense of that on other modes.
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Figure 2.9: Attenuation of the modes as a function of the first residue for a circuit
with ideal Thévenin’s impedance (a) and ideal Norton’s admittance (b): attenuation
predicted with [75] using the EEMCF computed from effective short- and open-circuit
resonance frequencies ( : mode 1, : mode 2), with [75] using a linearized EEMCF
( : mode 1, : mode 2) and (as defined in [75]) computed from the FRFs of the
controlled systems ( : mode 1, : mode 2). Black lines on the left and right
indicate the attenuation of a single-mode (series (a) and parallel (b)) RL shunt tuned
to mode 1 and 2, respectively.

The impact of the residues on the vibration reduction of the modes is also confirmed
in Figure 2.9, where the attenuation on each mode is plotted against the value of the
residue r1 (while r2 = 1− r1)3. This figure compares the attenuation (as defined in [75],
i.e., the amplitude of the uncontrolled case at ωsc,r over that of the controlled case at
ωoc,r) computed in different ways. The first way is to use the prediction formula in [75]
(Equation (35) therein). This formula relates the EEMCF and modal damping ratio to
the attenuation. The EEMCF used can either be computed from Equation (2.50) using
the effective short- and open-circuit resonance frequencies, or predicted from the linearized
version given in Equation (2.53) (or Equation (2.89)). These two ways are shown in full
and dash-dotted lines in Figure 2.10, respectively, and agree quite closely. This proves
that the simple prediction of the EEMCF from the residues is conveniently accurate. The
other way to compute the attenuation is to estimate it directly from the FRF, and is
shown in dashed lines in Figure 2.10. An excellent agreement is obtained between the
methods in Figure 2.10(a) when the considered modes are not associated with a very
low residue. In Figure 2.10(b), that agreement is slightly worse, but this is because the
formula in [75] is based on the series RL shunt. Nevertheless, the prediction formulas
remain acceptable to predict the performance of this circuit.

The apparent disagreement between the prediction and the computed attenuation when
the residue associated to a specific mode is low can be explained. The attenuation
computed from the FRFs featured in Figure 2.9 is actually misleading, because it
indicates (for instance) that a single-mode RL shunt on mode 2 could bring nearly 30dB
of attenuation on mode 1, which is not the case if the peak amplitudes are compared.
This is merely due to the way the attenuation is defined in [75], where the FRFs that

3The unusual scale for the abscissa in these figures is given by log10 (r1/(1− r1)) in order to enlarge
the regions where r1 ≈ 0 and r1 ≈ 1.
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Figure 2.10: FRF of the beam with short-circuited patches (—) and controlled by a
series (a) and parallel (b) RL shunt tuned to the second mode ( ). The points (◦
and ×) indicate the frequencies at which these FRFs are evaluated to compute the
attenuation according to [75], while the points (◦ and +) indicate the frequencies to
compute the attenuation in this work.

are to be compared are computed at fixed frequencies. This works for a single-mode
shunt but not for a case with multiple modes, as testified by Figure 2.10. Indeed, if the
controlled FRF is evaluated at ωoc,1, it is far from indicating the true peak amplitude.
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Figure 2.11: Attenuation of the modes as a function of the first residue for a circuit
with ideal Thévenin’s impedance (a) and ideal Norton’s admittance (b): attenuation
computed from the FRF ( : mode 1, : mode 2) and attenuation predicted with [75]
using a linearized EEMCF ( : mode 1, : mode 2).

A more sensible choice for the attenuation in this case would be to compute the controlled
FRF at the effective open-circuit resonance frequency (ω̂oc,r). Figure 2.11 features the
attenuation defined this way. A better agreement is observed. The prediction formula
still underestimates the attenuation, but this is simply because it overlooks the action of
the shunts on other modes. For instance, it can be seen in Figure 2.11 that a series RL
shunt on mode 2 can have a non-negligible attenuation effect on mode 1 and the converse
is also true for a parallel RL shunt. Although not directly aimed at resonant shunts,
this aspect is discussed more in depth in [144]. In any case, the observed trends verify
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the relevance of using an EEMCF such as defined in Equation (2.50), and its predicted
approximation Equation (2.53) (or Equation (2.89)) to guide the choice of the residues.

2.6 Experimental validation of the specification

procedure

The piezoelectric beam studied in Section 1.3.3 is considered again to experimentally
validate the developments in this chapter. The two first transversal bending modes of the
beam were targeted for shunt damping. This time, two cells (as depicted in Figure 1.15(b))
were connected in parallel to form one equivalent piezoelectric transducer in order to
simultaneously maximize the EEMCFs of these modes, as indicated in Figure 2.12.

1 2 3 4 5

Number of cells connected in parallel (-)

0

0.02

0.04

0.06

0.08

0.1

0.12

K
c
 (

-)

Figure 2.12: EEMCFs of the parallel connection of various numbers of cells closest to
the clamped edge with the first (�) and second (�) bending modes of the beam.

The approach to implement a multimodal shunt circuit is fairly straightforward,
as in Section 1.3.3. The peaks of the FRFs of the structure with short- and
open-circuited patches can be used to estimate the short- and open-circuit resonance
frequencies, and the capacitance of the patches can be measured with a multimeter.
All these parameters are reported in Table 2.1. From there on, the modal coupling
coefficients could be evaluated from Equation (2.18) or (2.19), thereby completing
the identification step without the need to build a model of the structure. The
specification procedure was then performed, and the obtained admittance was emulated
by a DVA following the procedure outlined in Section 1.3. Delay-induced instabilities
were also suppressed using the method described in Section 1.6.

Parameter fsc,1 foc,1 Kc,1 fsc,2 foc,2 Kc,2 Cε
p

Value 31.36Hz 31.49Hz 0.091 144.55Hz 144.92Hz 0.072 99nF

Table 2.1: Parameters of the experimental setup.

The ideal impedance and admittance described in Section 2.4 were used to obtain the
FRFs featured in Figure 2.13. These experimental results validate the analysis presented
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Figure 2.13: Experimental FRF of the beam with open-circuited patches (—) and
controlled with a shunt circuit with ideal Thévenin’s impedance (a) and ideal Norton’s
admittance (b): r1 = 0.1 ( ), r1 = 0.5 ( ) and r1 = 0.9 ( ). Thick gray lines
indicate the FRF of the beam controlled with single-mode series (a) or parallel (b) RL
shunts.

in this chapter: the DVA is able to control the two modes, and the control authority over
the modes can be traded off with the residues. Moreover, the performance of the two
shunt circuit types is similar, and tends to a single-mode shunt of associated type on a
specific mode when the residue associated to that mode tends to one.
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Figure 2.14: Experimental attenuation of the two first modes of the beam with a
shunt circuit with ideal Thévenin’s impedance (a) and ideal Norton’s admittance (b):
mode 1 ( : prediction [75], -◦-: measurement) and mode 2 ( : prediction [75], -◦-:
measurement).

A more thorough analysis was pursued by measuring the FRFs for more values of
the residues. All these FRFs are not shown for brevity but Figure 2.14 summarizes
their information, by providing the attenuation as a function of r1. The experimental
results were compared to the theoretical formula from [75]. To use this formula,
the damping ratio on both modes was estimated from the short-circuit FRF using
the half-power method. Again, an excellent agreement with theory is obtained,
except for small r1. The attenuation in mode 2 is somewhat overestimated by the
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prediction, which could be explained by the slightly underdamped appearance of
the peaks associated with mode 2 in Figure 2.13.

2.7 Hollkamp’s and current flowing shunt circuits

tuning

Now that the theoretical developments on the specification procedure are numerically
verified and experimentally validated, the remainder of this chapter is devoted
to the third step of the tuning procedure given in Figure 2.1, i.e., tuning the
electrical parameters of a passive shunt circuit.

Two multimodal shunt circuits are featured in Figure 2.15: Hollkamp’s shunt circuit [126]
and a current flowing (CF) shunt circuit proposed by Behrens et al [128]. These circuits
can be tuned using the series RL baseline case with either approach proposed herein. The
lossless circuits (Ri = 0) connected in parallel to a capacitor are shown in Figure 2.16
and are used to build Norton’s equivalent admittance YN . It can be recognized that the
resulting circuits are equivalent to Foster’s first canonical form [142].

L0
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L1

R1

C1

LNs−1

RNs−1

CNs−1

· · ·

· · ·

(a)

L1

R1
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· · ·

· · ·

(b)

Figure 2.15: Hollkamp’s shunt circuit (a) and current flowing shunt circuit (b).
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Figure 2.16: Norton’s admittance model of a piezoelectric transducer connected to
Hollkamp’s losless shunt circuit (a) and a lossless current flowing shunt circuit (b).

Tuning either type of circuit requires to compute the zero-pole-gain (ZPK)
representation of YN . From Equation (2.30),

YN(s) = sCε
p

(
r0 +

Ns∑
i=1

ris
2

s2 + z2
i

)−1

= Ks

∏Ns
i=1(s2 + z2

i )∏Ns
i=1(s2 + p2

i )
. (2.103)
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The poles of Norton’s equivalent admittance can be found as the solution of the polynomial
equation

r0

Ns∏
i=1

(s2 + z2
i ) +

Ns∑
i=1

ris
2

Ns∏
j=1,j 6=i

(s2 + z2
j ) = 0. (2.104)

Realistically, this polynomial is of moderate order. Moreover, its coefficients are known.
Thus, the poles can readily be found with a computer. We note that when r0 = 0, p1 = 0
is a solution and thus YN has a simple pole at s = 0, whereas it has a simple zero at
s = 0 if r0 6= 0. The gain K can be determined later.

2.7.1 Hollkamp’s shunt circuit

The admittance of the lossless circuit featured in Figure 2.16(a) reads

YN(s) = sCε
p +

1

sL0

+
Ns−1∑
n=1

1

Ln
s

s2 +
1

LnCn

=
K

s

∏Ns
i=1(s2 + z2

i )∏Ns−1
i=1 (s2 + p2

i )
(2.105)

In this equation, the admittance computed as the parallel connection of a capacitor, an
inductor and Ns − 1 branches of series LC circuits is represented in its partial fraction
expansion. The fact that there are Ns − 1 complex conjugate poles indicates that this
circuit can only be used if r0 = 0. Equating the admittance to its ZPK representation
and taking the limit for s → ∞ in Equation (2.105), the gain K is found to be

K = Cε
p , (2.106)

which completely specifies the ZPK representation. The electrical parameters may then be
derived from it. The admittance possesses several poles to which are associated residues
which can directly be related to the electrical parameters. To evaluate these residues, the
cover-up method [115] can be used. This gives the single inductance L0 as

L0 =
1

Cε
p

∏Ns−1
i=1 p2

i∏Ns
i=1 z

2
i

(2.107)

whereas the inductances in the LC branches are identified as

Lk = − p
2
k

Cε
p

∏Ns−1
i=1,i 6=k(p

2
i − p2

k)∏Ns
i=1(z2

i − p2
k)

. (2.108)

Finally, the capacitances are computed from the poles of the admittance as

Ck =
1

Lkp2
k

. (2.109)

2.7.2 Current flowing shunt circuit

The admittance of the undamped CF shunt circuit shown in Figure 2.16(b) reads

YN(s) = sCε
p +

Ns∑
n=1

1

Ln
s

s2 +
1

LnCn

= Ks

∏Ns
i=1(s2 + z2

i )∏Ns
i=1(s2 + p2

i )
. (2.110)
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This time, the Ns complex conjugate poles impose r0 6= 0. In a similar way to
Hollkamp’s shunt circuit, the gain K is found to be

K = Cε
p , (2.111)

whereas the inductances are given by

Lk =
1

Cε
p

∏Ns
i=1,i 6=k(p

2
i − p2

k)∏Ns
i=1(z2

i − p2
k)

, (2.112)

and the capacitances by

Ck =
1

Lkp2
k

. (2.113)

It can be noted that when r0 → 0, one of the double roots of Equation (2.104), say, p1,
tends to zero. Then, Equation (2.113) shows that C1 →∞, i.e., the capacitance becomes
nearly equivalent to a short-circuit. By replacing C1 in Figure 2.15(b) by a short-circuit,
the same circuit topology as that of Hollkamp’s shunt circuit is obtained. Therefore, the
CF shunt circuit tends to Hollkamp’s shunt circuit as r0 → 0.

2.7.3 Resistances tuning

As discussed in Section 2.3.3, either the admittance or the impedance model can be chosen
to tune the lossless circuit, but the dissipative case exhibits dissimilarities. In the case
of Hollkamp’s and the CF shunt circuits, the best baseline case is the series RL shunt,
because the resistors are placed in series with the inductors in these circuits (and in
particular when Ns = 1, Hollkamp’s shunt circuit reduces to a series RL shunt). Tuning
based on the parallel RL circuit can also be used but gives less optimal results.

The purpose of the following procedure is to impose approximately the desired modal
damping on the zeros of Thévenin’s impedance. From Equation (2.63), its inverse is

1

ZT (s)
=

1
1

sCε
p

+
1

Ys(s)

=

Ys(s)

(
1 +

Ys(s)

sCε
p

)
− Y 2

s (s)

sCε
p

1 +
Ys(s)

sCε
p

= Ys(s)−
1

sCε
p

Y 2
s (s)

1 +
Ys(s)

sCε
p

, (2.114)

where Hollkamp’s dissipative shunt circuit admittance is given by

Ys(s) =
1

sL0 +R0

+
Ns−1∑
n=1

s

Lns2 +Rns+
1

Cn

(2.115)
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and can also be expressed by

Ys(s) = s

[
1 · · · 1

]

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+s2
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

−1 
1

...

1

 (2.116)

Using this matrix-based model and by comparing Equation (2.114) with the
Sherman-Morrison formula (Equation (A.1)), we can see that the inverse of
Thévenin’s impedance given in Equation (2.114) can be obtained if the inverted
matrix is rank-one updated, i.e.,

1

ZT (s)
= s

[
1 · · · 1

]
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1
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1
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1
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+s


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RNs−1


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
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L1
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
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−1 
1

...

1

 (2.117)

This type of model can also be derived using KCL and Kirchhoff’s voltage law (KVL) [145].

In the lossless case, the zeros of Thévenin’s impedance are the generalized eigenvalues
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of the generalized eigenvalue problem
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1
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]
1
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(2.118)
where

Ω2
e =


z2

1

. . .

z2
Ns

 , (2.119)

and Φe can be seen as an electrical mode shape matrix. In order to impose the
desired damping on the zeros of Thévenin’s impedance, the mode shape matrix
should ideally diagonalize the resistance matrix. However, this is not the case in
general, and the following relation is only approximate

ΦT
e



R0

R1

. . .

RNs−1
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
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2ζ2z2

. . .

2ζNszNs


(2.120)

By enforcing this relation on the diagonal of this resulting matrix (regardless of its
off-diagonal elements), the following set of resistances can be obtained:

R0

...

RNs−1

 =


φ2
e,0,1 · · · φ2

e,(Ns−1),1

...
. . .

...
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e,(Ns−1),Ns



−1 
2ζ1z1

...

2ζNszNs

 . (2.121)

The same procedure can be followed for the CF shunt circuit by simple adaptation of
the involved matrices, since its dissipative admittance is given by

Ys(s) =
Ns∑
n=1

s

Lns2 +Rns+
1

Cn

, (2.122)
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or, equivalently,

Ys(s) = s

[
1 · · · 1

]



1

C1

. . .

1

CNs

+ s


R1

. . .

RNs



+s2


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1

...

1

 . (2.123)

2.8 Series-parallel impedance and second Foster

form tuning

The series-parallel impedance structure (SPIS) shunt circuit proposed by Fleming et
al [129] is shown in Figure 2.17(b). Figure 2.17(a) features a shunt circuit which is to the
SPIS what Hollkamp’s circuit is to the CF circuit. This circuit is based on the second
Foster canonical form (SFCF) and can be seen as the dual of Hollkamp’s circuit. These
circuits can be tuned with either specification approach using the parallel RL baseline case.
The lossless circuits (Ri =∞) connected in series to a capacitor are shown in Figure 2.18
and are used to build Thévenin’s equivalent impedance ZT . It can be recognized that the
resulting circuits are equivalent to Foster’s second canonical form [142].

Tuning either type of circuit requires to compute the ZPK representation of ZT . From
Equation (2.70),

ZT (s) =
1

sCε
p

r0 +
Ns∑
i=1

ri
s2

z2
i

+ 1


−1

=
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s

∏Ns
i=1

(
s2

z2
i

+ 1

)
∏Ns

i=1

(
s2

p2
i

+ 1

) . (2.124)

The poles of Thévenin’s equivalent impedance can be found as the solution of the
polynomial equation

r0

Ns∏
i=1

(
s2

z2
i

+ 1

)
+

Ns∑
i=1

ri

Ns∏
j=1,j 6=i

(
s2

z2
j

+ 1

)
= 0, (2.125)

which can be solved with a computer. We note that when r0 6= 0, there are Ns poles,
whereas when r0 = 0 there are Ns − 1 poles. The gain K can be determined later.
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L0 R0

L1 R1 C1

LNs−1 RNs−1 CNs−1

...

(a)

L1 R1 C1

LNs RNs CNs

...

(b)

Figure 2.17: Shunt circuit based on the second Foster canonical form (a) and a
series-parallel impedance structure (b).
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LNs CNs

...
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Figure 2.18: Thévenin’s impedance model of a piezoelectric transducer connected to
a lossless shunt circuit based on the second Foster canonical form (a) and a lossless
series-parallel impedance structure (b).
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2.8.1 Second Foster canonical form

The impedance of the undamped SFCF circuit is computed as the series connection of a
capacitor, an inductor and Ns − 1 branches of parallel LC circuits as

ZT (s) = sL0 +
1

sCε
p

+
Ns−1∑
n=1

Lns

LnCns2 + 1
=
K

s

∏Ns
i=1

(
s2

z2
i

+ 1

)
∏Ns−1

i=1

(
s2

p2
i

+ 1

) (2.126)

Since there are Ns − 1 complex conjugate poles, this circuit requires r0 = 0. Evaluating
the residue associated with the simple pole at s = 0, K is found as

K =
1

Cε
p

, (2.127)

and the limit for s → ∞ then gives

L0 =
1

Cε
p

∏Ns−1
i=1 p2

i∏Ns
i=1 z

2
i

. (2.128)

The cover-up method enables the identification of the inductances of the LC circuits as

Lk = − 1

Cε
pp

2
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1− p2
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i

)
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(
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k

p2
i

) (2.129)

while the capacitances are found from the poles of the impedance as

Ck =
1

Lkp2
k

. (2.130)

2.8.2 Series-parallel impedance structure

The undamped impedance of the SPIS reads

ZT (s) =
1

sCε
p

+
Ns∑
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=
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s
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) , (2.131)

where, using the same techniques as previously,

K =
1

Cε
p

, (2.132)
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) , (2.133)
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and

Ck =
1

Lkp2
k

. (2.134)

It can be noted that when r0 → 0, one of the double roots of Equation (2.125),
say, p1, tends to infinity. Hence, Equation (2.134) shows that C1 → 0, i.e., the
capacitance tends to an open-circuit, which in Figure 2.17(b) would correspond to
a topology similar to that of the SFCF shunt circuit. Thus, as r0 tends to zero,
the SPIS shunt circuit tends to the SFCF shunt circuit.

2.8.3 Resistances tuning

A procedure completely analogous that exposed in Section 2.7.3 can be followed. In
this case, the parallel RL baseline case should be chosen, because the resistors are in
parallel with the inductors in the SFCF and SPIS shunt circuits (and when Ns = 1,
the SFCF circuit reduces to a parallel RL shunt circuit).

Using Equation (2.67), the inverse of Norton’s admittance is given by

1

YN(s)
=

1

sCε
p +

1

Zs(s)

= Zs(s)− sCε
p

Z2
s (s)

1 + sCε
pZs(s)

, (2.135)

where the dissipative impedance of the SFCF circuit is given by
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, (2.136)

or equivalently by
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Once again, by comparison of Equation (2.135) to the Sherman-Morrison formula
(Equation (A.1)), the inverse of Norton’s admittance can be obtained after a
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rank-one update of the inverted matrix
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In the lossless case, the zeros of Norton’s admittance are the generalized eigenvalues
of the generalized eigenvalue problem
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(2.139)

By enforcing the diagonal of the transformed matrix containing the resistances (regardless
of its off-diagonal elements), the following set of resistances can be obtained:
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A similar procedure can be followed for the SPIS circuit, because its dissipative impedance

Zs(s) =
Ns∑
n=1

s

Cns2 +
1

Rn

s+
1

Ln

, (2.141)
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is equivalently given by

Zs(s) = s

[
1 · · · 1

]



1

L1

. . .

1

LNs

+ s


1

R1

. . .

1

RNs



+s2


C1

. . .

CNs





−1 
1

...

1

 . (2.142)

2.9 Current blocking shunt circuit tuning

The current blocking (CB) shunt circuit was originally proposed by Wu [127], and
later simplified by Agneni et al [130]. A different tuning methodology was proposed
in [133], and will be compared to that proposed herein in Section 2.10.4. Once again,
the dynamics of the lossless circuit are first analyzed to assess the electromechanical
coupling, and the actual tuning of the circuits featured in Figure 2.19(a,b) is
tackled in Sections 2.9.3 and 2.9.4, respectively.
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(a)
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L̃Ns−1
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RNs

· · ·

· · ·

(b)

Figure 2.19: Simplified current blocking shunt circuit with parallel RL shunts (a) and
series RL shunts (b).

2.9.1 Lossless circuit tuning

Figure 2.20 features Norton’s admittance model using a lossless CB shunt circuit.
The resulting circuit is composed of a parallel capacitor, followed by a repetition
of Ns − 1 stages with identical topology (a shunt with an inductor and a branch
with a parallel LC circuit) and finally terminated by an inductor. The parallel
LC circuits are so-called current-blocking filters, because they act as band-stop
filters. Indeed, their impedance is given by

Z̃i =
1

1

L̃is
+ sC̃i

(2.143)
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and becomes infinite at s = j

√
1/(L̃iC̃i). Hence, by properly setting the

blocking frequency of these filters, it is possible to decouple some parts of
the circuits at specific frequencies.

Cε
p L1

C̃1

L̃1

L2

C̃2

L̃2

C̃Ns−1

L̃Ns−1

LNs

· · ·

· · ·

Figure 2.20: Norton’s admittance model of a piezoelectric transducer connected to a
lossless current blocking shunt circuit.

The tuning approach traditionally chosen for the CB shunt circuit thus consists in
considering sequentially each stage in ascending order [127, 130, 133]. By tuning the
filter of the considered stage to the frequency of the targeted resonance, the influence
of the following stages of unknown characteristics can be neglected close to that
frequency, and the shunt can be tuned taking into account the rest of the circuit
(the piezoelectric capacitance and previous stages of known characteristics). The
procedure can be repeated until all the stages have been tuned.

Figure 2.21 shows a representation of the tuning considerations for stage k. The
shunt impedances and current blocking filters are represented up to stage k,
whereas the remainder of the CB circuit is represented altogether with the
impedance Zk+1. The voltage across the shunt inductance k is noted Vk and
the current entering stage k is noted Ik.
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· · ·

︸ ︷︷ ︸
Known

︸ ︷︷ ︸
Unknown

Figure 2.21: Norton’s admittance model of a piezoelectric transducer connected to a
lossless current blocking shunt circuit: tuning considerations at stage k.

The relations between Vp, Ip, Vk and Ik can be obtained using the two-port network

theory [69]. These relations are expressed with a transfer matrix H
(k)
CB Vp

Ip

 = H
(k)
CB(s)

 Vk

Ik

 =

 h
(k)
11 (s) h

(k)
12 (s)

h
(k)
21 (s) h

(k)
22 (s)


 Vk

Ik

 . (2.144)
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The expression of the transfer matrix results from the cascade connection of the
parallel capacitor, and stages 1 to k − 1 [133]4

H
(k)
CB(s) =

 1 0

sCε
p 1

 k−1∏
i=1



1

1

C̃i
s

s2 +
1

L̃iC̃i

1

Lis
1 +

1

C̃i
s

s2 +
1

L̃iC̃i

1

Lis


. (2.145)

The relation between Ik and Vk can be deduced from Figure 2.21 as

Ik
Vk

= Yk(s) =
1

Lks
+

1
1

C̃k
s

s2 +
1

L̃kC̃k

+ Zk+1(s)

. (2.146)

The relation between Ip and Vp, i.e. Norton’s equivalent admittance, is then
deduced from Equations (2.144) and (2.146) as

YN(s) =
Ip
Vp

=
h

(k)
22 (s)Yk(s) + h

(k)
21 (s)

h
(k)
12 (s)Yk(s) + h

(k)
11 (s)

. (2.147)

A zero of Norton’s admittance occurs if

YN(jzk) = 0. (2.148)

The problem can be made independent of Zk+1 if the current blocking filter has an
infinite impedance at zk. This is the case if

z2
k =

1

L̃kC̃k
. (2.149)

Equation (2.146) then becomes at s = jzk

Yk(jzk) =
1

jzkLk
(2.150)

Solving Equation (2.148) with Equations (2.147) and (2.150) yields

Lk = − 1

jzk

h
(k)
22 (jzk)

h
(k)
21 (jzk)

. (2.151)

This tuning approach guarantees that Norton’s admittance will have a zero at the
desired frequency regardless of Zk+1. A free parameter yet remains for the lossless
case, as the two parameters of the current blocking filter are only constrained
by one relation given in Equation (2.149). It shall be shown next that the filter
capacitance is actually set by the value of the residue rk.

4What is termed transfer matrix in this thesis is the inverse of what is termed transfer matrix in [133].
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2.9.2 Coupling assessment

Norton’s equivalent admittance is such that

s

YN(s)
=

1

Cε
p

Ns∑
i=1

s2ri
s2 + z2

i

. (2.152)

Thus, the residue rk may be evaluated as

rk = lim
s→jzk

Cε
p(s

2 + z2
k)

1

sY (s)
= lim

s→jzk
Cε
p(s

2 + z2
k)

h
(k)
12 (s)Yk(s) + h

(k)
11 (s)

sh
(k)
22 (s)Yk(s) + sh

(k)
21 (s)

= lim
s→jzk

Cε
p

h
(k)
12 (s)

Lks
+ h

(k)
11 (s)

h
(k)
22 (s)

Lk
+ sh

(k)
21 (s)

s2 + z2
k

+ h
(k)
22 (s)C̃k

. (2.153)

Hence, the impedance of the higher-frequency stages Zk+1(s) has no influence on the
residue (provided that Equation (2.149) holds). This is a more formal justification
of the physically-motivated assumption made in [133]. However, the residue remains
rather uneasy to compute in that way, because no further simplification can be made
in general when considering the full CB circuit.

Equation (2.153) shows that the residue computed considering the whole CB circuit would
be identical to that computed when considering Zk+1 = 0, i.e., by replacing the next
stages by a short circuit, as pictured in Figure 2.22.
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Figure 2.22: Norton’s admittance model of a piezoelectric transducer connected to a
lossless current blocking shunt circuit: simplified tuning considerations at stage k.

The fact that Zk+1(s) can be short-circuited and the fact that Norton’s equivalent
admittance has as zeros z1, · · · , zk leads to the following expression

1

Cε
p

k∑
i=1

ris
2

s2 + z2
i

= s

h
(k)
12 (s)

(
1

Lks
+ C̃k

s2 + z2
k

s

)
+ h

(k)
11 (s)

h
(k)
22 (s)

(
1

Lks
+ C̃k

s2 + z2
k

s

)
+ h

(k)
21 (s)

(2.154)
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Taking the limit as s → ∞, the sum of residues can be evaluated

k∑
i=1

ri = lim
s→∞

sCε
p

h
(k)
12 (s)

(
1

Lks
+ C̃k

s2 + z2
k

s

)
+ h

(k)
11 (s)

h
(k)
22 (s)

(
1

Lks
+ C̃k

s2 + z2
k

s

)
+ h

(k)
21 (s)

(2.155)

To evaluate this limit, the asymptotic behavior of the two-port network must be
determined. Taking the limit as s → ∞, the following asymptotic behaviors (indicated
by the symbol ∼) can be derived from Equation (2.145)

H
(k)
CB(s) =

h
(k)
11 (s) h

(k)
12 (s)

h
(k)
21 (s) h

(k)
22 (s)

 s→∞∼


1

k−1∑
i=1

1

sC̃i

sCε
p 1 +

k−1∑
i=1

Cε
p

C̃i

 (2.156)

The network associated with such a transfer matrix is depicted in Figure 2.23. Intuitively,
the components governing this asymptotic behavior are the capacitances, because the
inductances tend to have a much higher impedance at high frequency. In fact, Figure 2.23
can be obtained from Figure 2.22 after replacing the inductances by open circuits.

Cε
p

C̃1 C̃2 C̃k

· · ·

· · ·

Figure 2.23: Asymptotic behavior of the current blocking shunt circuit simplified at
stage k for s→∞.

Inserting Equation (2.156) into Equation (2.155), the sum of residues can then be
evaluated as

k∑
i=1

ri = lim
s→∞

sCε
p

k−1∑
i=1

1

sC̃i

(
1

Lks
+ C̃k

s2 + z2
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)
+ 1(

1 +
k−1∑
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p

C̃i

)(
1
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+ C̃k

s2 + z2
k

s

)
+ sCε

p

=

1 +
k−1∑
i=1

C̃k

C̃i

1 +
C̃k
Cε
p

+
k−1∑
i=1

C̃k

C̃i
(2.157)

A remarkable feature of this equation is that the residues depend only on the filter and
piezoelectric capacitances. By extracting C̃k, it is expressed as

C̃k =

1−
k∑
i=1

ri

k∑
i=1

ri

(
1

Cε
p

+
k−1∑
i=1

1

C̃i

)
−

k−1∑
i=1

1

C̃i

, (2.158)
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or as a sole function of the residues and the piezoelectric capacitance

C̃k =
Cε
p

k∑
i=1

ri

1−
k∑
i=1

ri

+
k−1∑
j=1

(−1)k−j

j∑
i=1

ri

1−
j∑
i=1

ri

. (2.159)

2.9.3 Dissipative circuit tuning with parallel RL shunts

The case of a dissipative CB shunt circuit is now considered. In case parallel RL shunts
are used as in Figure 2.19(a), the parallel RL baseline should be used. The transfer
matrix resulting in a cascade connection of a parallel capacitance Cε

p and the k − 1
first stages of the current blocking circuit read

H
(k)
CB =

 1 0

sCε
p 1

 k−1∏
i=1



1

1

C̃i
s

s2 +
1

L̃iC̃i

1

Lis
+

1

Ri

1 +

1

C̃i
s

s2 +
1

L̃iC̃i

(
1

Lis
+

1

Ri

)


. (2.160)

Using Equation (2.146), Norton’s admittance can be equated to its nominal value

YN(jzk) = −
Ns∑
i=1

riz
2
k

z2
i + 2jζizizk − z2

k

=
h

(k)
22 (jzk)Yk(jzk) + h

(k)
21 (jzk)

h
(k)
12 (jzk)Yk(jzk) + h

(k)
11 (jzk)

. (2.161)

Extracting Yk(jzk) from this relation yields

Yk(jzk) =
h

(k)
11 (jzk)YN(jzk)− h(k)

21 (jzk)

h
(k)
22 (jzk)− h(k)

12 (jzk)YN(jzk)
, (2.162)

which sets the ideal value of Yk(jzk). If the filter capacitance and inductance are properly
tuned (Equations (2.159) and (2.149), respectively), the admittance Yk evaluated at the
frequency zk is then only determined by the kth shunt

Yk(jzk) =
1

jLkzk
+

1

Rk

+
1

1

jC̃kzk
1

L̃kC̃k
− z2

k

+ Zk+1(jzk)

=
1

jLkzk
+

1

Rk

, (2.163)

so that the inductances and resistances can be set as

Lk = − 1

zk={Yk(jzk)}
(2.164)

and

Rk =
1

<{Yk(jzk)}
, (2.165)

respectively.
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2.9.4 Dissipative circuit tuning with series RL shunts

When series RL shunts are used as in Figure 2.19(b), the series RL baseline should be
used. The transfer matrix resulting in a cascade connection of a series capacitance Cε

p

and the k − 1 first stages of the current blocking circuit read

H
(k)
CB =

1
1

sCε
p

0 1

 k−1∏
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1

1
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1
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1 +

1
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s

s2 +
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L̃iC̃i

1

Lis+Ri


. (2.166)

Taking the inverse of Equation (2.146), Thévenin’s impedance can be equated to its
nominal value

ZT (jzk) =
Ns∑
i=1

ri

1 + 2jζi
zk
zi
− z2

k

z2
i

=
h

(k)
12 (jzk)Yk(jzk) + h

(k)
11 (jzk)

h
(k)
22 (jzk)Yk(jzk) + h

(k)
21 (jzk)

, (2.167)

and thus, Yk at s = jzk should be given by

Yk(jzk) =
h

(k)
11 (jzk)− h(k)

21 (jzk)ZT (jzk)

h
(k)
22 (jzk)ZT (jzk)− h(k)

12 (jzk)
, (2.168)

which sets the ideal value of Yk(jzk). If the filter capacitance and inductance are properly
tuned (Equations (2.159) and (2.149), respectively), the admittance Yk evaluated at the
frequency zk is once again only determined by the kth shunt

Yk(jzk) =
1

jLkzk +Rk

+
1

1

jC̃kzk
1

L̃kC̃k
− z2

k

+ Zk+1(jzk)

=
1

jLkzk +Rk

, (2.169)

so that the inductances and resistances can be set as

Lk =
1

zk
=
{

1

Yk(jzk)

}
(2.170)

and

Rk = <
{

1

Yk(jzk)

}
, (2.171)

respectively.

2.10 Numerical verification of the tuning procedure

The beam used in Section 2.5 is considered again in this section, in order to demonstrate
the tuning procedure and to show that the passive shunt circuits discussed above are nearly
equivalent to the ideal ones discussed in Section 2.4. The first two modes are targeted
to start with. To give an idea of the orders of magnitudes, Table 2.2 lists the resistances
and inductances of series and parallel RL shunt circuits that target mode one or two.
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Mode R L

1 65.24kΩ 405.74H

2 11.7kΩ 12.17H

(a)

Mode R L

1 654.1kΩ 449.9H

2 109.61kΩ 13.6H

(b)

Table 2.2: Parameters of series (a) and parallel (b) single-mode RL shunts.

2.10.1 Hollkamp’s shunt circuit

To check the tuning approach for Hollkamp’s shunt circuit, a similar set of residues to that
used in Figure 2.8 was considered. Figure 2.24 features the resulting FRFs and Table 2.3
gathers the associated electrical parameters. Similar trends between Hollkamp’s shunt
circuit and those in Figure 2.8 are observed, except for the case where r1 = 0.1. It can
also be observed in Table 2.3 that R0 is negative for this problematic case.
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Figure 2.24: FRF of the beam with open-circuited patches (—) and controlled with
Hollkamp’s shunt circuit: r1 = 0.9, r2 = 0.1 ( ), r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.1,
r2 = 0.9 ( ).

R0 L0 C1 R1 L1

r1 = 0.9, r2 = 0.1 56.95kΩ 376H 1.01nF 38.1kΩ 150H

r1 = 0.5, r2 = 0.5 23.3kΩ 239H 8.76nF 17.91kΩ 28.7H

r1 = 0.1, r2 = 0.9 -11.13kΩ 63.73H 57.4nF 19.36kΩ 17.46H

Table 2.3: Parameters of Hollkamp’s shunt circuit.

The apparent issue with r1 = 0.1 and r2 = 0.9 is due to the physical behavior of the circuit
in this configuration. This behavior is illustrated in Figure 2.25, where the resistance in
either branch is varied while the other one is maintained at zero. On the one hand,
from Figure 2.25(a), it can be seen that R0 barely affects mode 2, but can be tuned to
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optimally damp mode one. On the other hand Figure 2.25(b) indicates that R1 has a
significant effect on mode 2. However, its effect is even more pronounced on mode 1,
and when mode 2 is optimally damped mode 1 is overdamped. From this setting, the
tuning method seeks to retrieve a correct damping on mode 1 (and barely affect that on
mode 2) by setting R0 to a negative value. Hence, there does not seem to exist a set
of positive resistances that optimally damp modes 1 and 2 simultaneously. This rules
out this circuit for practical implementation in this case. Indeed, a passive resistor with
negative resistance does not exist. Even with a DVA, the implementation is strongly
inadvisable, as the equivalent controller would be unstable. In general, it was observed by
the author that Hollkamp’s shunt circuit is suited for emphasis on lower-frequency modes,
but may perform poorly if emphasis is put on higher-frequency modes, and a rule of thumb
should be to use this circuit with residues satisfying rk+1 ≤ rk (k = 1, · · · , Ns − 1), but
a verification of the electrical parameters is also advisable.
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Figure 2.25: FRF of the beam with open-circuited patches (—) and controlled with
Hollkamp’s shunt circuit (r1 = 0.1, r2 = 0.9): R1 = 0 and R0 = 1kΩ ( ), R0 = 5kΩ
( ), R0 = 10kΩ ( ) and R0 = 20kΩ ( ) (a); R0 = 0 and R1 = 1kΩ ( ), R1 = 5kΩ
( ), R1 = 10kΩ ( ) and R1 = 20kΩ ( ) (b).

2.10.2 Second Foster form

Figure 2.26 depicts the FRFs of the beam controlled with an SFCF shunt circuit, and
Table 2.4 gathers the associated electrical parameters.

R0 L0 C1 R1 L1

r1 = 0.9, r2 = 0.1 -536kΩ 110H 1.89nF 335.1kΩ 303H

r1 = 0.5, r2 = 0.5 393kΩ 26.9H 10.98nF 415kΩ 226H

r1 = 0.1, r2 = 0.9 132kΩ 15.1H 93.5nF 196kΩ 50.4H

Table 2.4: Parameters of the SFCF shunt circuit.
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Figure 2.26: FRF of the beam with open-circuited patches (—) and controlled with
an SFCF shunt circuit: r1 = 0.9, r2 = 0.1 ( ), r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.1,
r2 = 0.9 ( ).

An issue with r1 = 0.9 is observable in Figure 2.26. As can be seen in Table 2.4, this is due
to a negative resistance. This issue is similar to the one occuring with Hollkamp’s shunt
circuit, and it can be shown that it comes from the physical behavior of the circuit in this
configuration as well. The difference of this case with Hollkamp’s shunt circuit is that is
appears when emphasis is put on the lower-frequency mode. It was observed by the author
that, conversely to Hollkamp’s shunt circuit, the SFCF circuit is suited for emphasis on
higher-frequency modes, but may perform poorly if emphasis is put on lower-frequency
modes, and a rule of thumb should be to use this circuit with residues satisfying rk+1 ≥ rk
(k = 1, · · · , Ns − 1), but a verification of the electrical parameters is also advisable.

2.10.3 Current flowing and series-parallel impedance structure
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Figure 2.27: (a): FRF of the beam with open-circuited patches (—) and controlled
with Hollkamp’s shunt circuit ( ) and a CF shunt circuit with r0 = 0.1 ( ), r0 = 0.5
( ) and r0 = 0.9 ( ). (b): FRF of the beam with short-circuited patches (—) and
controlled with an SFCF shunt circuit ( ) and an SPIS shunt circuit with r0 = 0.1
( ), r0 = 0.5 ( ) and r0 = 0.9 ( ).
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The performance of the CF and SPIS shunt circuits is investigated in Figure 2.27 for
various values of r0 and by setting r1 = r2 = (1 − r0)/2. For reference, Hollkamp’s
and a SFCF shunt circuits are also used with r1 = r2 = 0.5. As expected from the
theoretical analysis, the CF and SPIS circuits performance tends to approach that of
Hollkamp’s and an SFCF circuits when r0 → 0, respectively. When r0 → 1, the passivity
constraint (Equation (2.34) or (2.73)) imposes that r1 → 0 and r2 → 0, i.e., the control
authority over the first and second modes gradually vanishes.
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Figure 2.28: Capacitances (a), resistances (b), inductances (c) and resonance
frequencies of branches of the lossless circuits (d) of the CF circuit branches ( )
and SPIS circuit branches ( ). In (d), the tuning rules from [128] ( ) and from [129]
( ) are also plotted.

The electrical parameters as functions of r0 (keeping r1 = r2 = (1 − r0)/2) are plotted
in Figure 2.28. Two asymptotic states for the CF can be identified. As r0 → 0, the
capacitance in the first branch tends to infinity, i.e., to a short-circuit, and the CF
circuit becomes equivalent to Hollkamp’s circuit. When r0 → 1, the capacitances tend to
zero while the resistances and inductances tend to infinity, i.e., the CF globally tends
to an open-circuit. Similarly, two asymptotic states for the SPIS can be identified:
the SFCF circuit when r0 → 0, and a short-circuit when r0 → 1. This latter state
has the practical advantage that the inductances are quite small when r0 . 1, and it
was what motivated its introduction in [129]. However, this comes at the expense of
reduced performance on the controlled modes.
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Figure 2.28(d) also features the resonance frequencies of the branches of the lossless

circuits, i.e.,
√

1/(CnLn). These resonance frequencies are compared to the tuning
rules proposed in the works first proposing the CF [128] and SPIS [129] shunt circuits,
considering that the capacitances are equal to those given by the proposed tuning
approach, and that the inductances are computed with the methods therein. For the CF
circuit, the tuning rules agree well for large r0, but a substantial error is made using
the rules in [128] for small r0. According to Figure 2.28(a), small r0 correspond to high
capacitances, which is desirable from a vibration reduction point of view in this case,
as discussed in [146]. It was also identified therein that the issue comes from a strong
interaction between the branches, whereas in [128] they are tuned independently. A
similar observation can be made for the SPIS circuit, but the discrepancy is larger for
large r0 in this case. This is simply due to the fact that the circuit is tuned to the
open-circuit resonance frequencies in [129], whereas it is tuned to the short-circuit ones
herein. To conclude the comparison, it should also be pointed out that no quantitative
selection method for the capacitances in the circuit was proposed in [128, 129], while
in this chapter they are deduced from the residues. Furthermore, the resistances
tuning was carried out using numerical optimization [147].

2.10.4 Current blocking shunt circuit

The last circuits are the CB circuits with series and parallel RL shunts. For these circuits,
a comparison with the tuning approach proposed in [133] is performed.
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Figure 2.29: FRF of the beam with open-circuited patches (—), controlled with a CB
circuit with series RL shunts (a) and a CB circuit with parallel RL shunts (b), with
r1 = 0.1, r2 = 0.9 ( : this chapter, : [133]), r1 = 0.5, r2 = 0.5 ( : this chapter,

: [133]) and r1 = 0.9, r2 = 0.1 ( : this chapter, : [133]).

Figure 2.29 shows the FRFs of the beam controlled with CB shunt circuits of both
types (with series and parallel RL shunts) tuned with both approaches. The filter
capacitances were determined with the approach in this chapter, and were used as
an input for the method in [133]. There exist slight differences (which are larger
for parallel RL shunts on the second mode), but the performance and trends in
terms of vibration mitigation are essentially the same.
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R1 L1 R2 L2 C̃1 L̃1

r1 = 0.9, r2 = 0.1 128.7kΩ 229H 13.32kΩ 14.5H 88.32nF 58.55H

r1 = 0.5, r2 = 0.5 98.98kΩ 414H 17.27kΩ 27.2H 9.81nF 465H

r1 = 0.1, r2 = 0.9 70.35kΩ 411.5H 38.51kΩ 144.9H 1.09nF 3 747H

Table 2.5: Parameters of the CB circuit with series RL shunts.

R1 L1 R2 L2 C̃1 L̃1

r1 = 0.9, r2 = 0.1 205.4kΩ 533.8H 269.2kΩ 15.7H 88.32nF 59.31H

r1 = 0.5, r2 = 0.5 460.67kΩ 492.8H 412.21kΩ 29H 9.81nF 492.9H

r1 = 0.1, r2 = 0.9 620kΩ 457.9H 4.288MΩ 147.4H 1.09nF 4 121H

Table 2.6: Parameters of the CB circuit with parallel RL shunts.

The approach proposed in this chapter has several advantages over the one proposed
in [133]. It is more generic, as it can be extended to other shunt circuits. It is
easier to implement and provides more insight. Namely, it requires as input the
residues whose connection with the EEMCF has been established, whereas the
approach in [133] requires the filter capacitance values, whose impact on coupling
is less straightforward to assess (Equation (2.159)). Finally, it decouples the
identification procedure from the tuning procedure, which permits to use more robust
identification approaches than that proposed in [133].

2.10.5 Comparison between the circuits

The near-equivalence of every shunt circuit presented in this work is demonstrated
in Figure 2.30. As expected, the performance of the CF and SPIS circuits is
slightly worse than that of the other circuits because the residue r0 6= 0, leading
to lower residues for the other modes.

The proposed approach also works with more than two modes. Figure 2.31 displays the
mobility (the transfer function between force and velocity) of the beam when its five
first bending modes are targeted. The residues were set to ri = 1/5 for i = 1, · · · , 5
and ri = 1/6 for i = 0, · · · , 5. Clearly, all circuit types exhibit similar performance,
with a slight worsening for the CF and SPIS circuits.
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Figure 2.30: FRFs of the beam with open-circuited patches (—) and various shunt
circuits targeting the two first modes. Circuits based on the series RL shunt (a):
Hollkamp’s shunt circuit ( ), CF shunt circuit ( ), CB circuit with series RL shunts
( ) and shunt circuit with ideal Thévenin’s impedance ( ). Circuits based on the
parallel RL shunt (b): SFCF shunt circuit ( ), SPIS shunt circuit ( ), CB circuit
with parallel RL shunts ( ) and shunt circuit with ideal Norton’s admittance ( ).
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Figure 2.31: FRFs of the beam with open-circuited patches (—) and various shunt
circuits targeting the five first modes. Circuits based on the series RL shunt (a):
Hollkamp’s shunt circuit ( ), CF shunt circuit ( ), CB circuit with series RL shunts
( ) and shunt circuit with ideal Thévenin’s impedance ( ). Circuits based on the
parallel RL shunt (b): SFCF shunt circuit ( ), SPIS shunt circuit ( ), CB circuit
with parallel RL shunts ( ) and shunt circuit with ideal Norton’s admittance ( ).

2.11 Experimental validation of the tuning

procedure

A last example is featured in this section to show the equivalence between the ideal
impedance and admittance with a shunt circuit with known electrical components
on the experimental setup considered in Section 1.3.3. CB shunt circuits with
series and parallel RL shunts were emulated and compared to the ideal ones in
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Figure 2.32: Experimental FRF of the beam with open-circuited patches (—) and
controlled with various shunt circuits. Circuits based on series RL shunts (a): shunt
circuit with ideal Thévenin’s impedance ( ) and CB circuit with series RL shunts ( ).
Circuits based on parallel RL shunts (b): shunt circuit with ideal Norton’s admittance
( ) and CB circuit with parallel RL shunts ( ).

Section 2.6. As shown in Figure 2.32, when provided with equal residues, these
circuits are almost perfectly equivalent to the ideal ones.

2.12 Conclusion

Structures can exhibit multiple problematic modes, and this chapter proposed a
tuning procedure for shunt circuits connected to a single piezoelectric transducer
that resonates at multiple frequencies to mitigate the structural resonances. The
procedure consists in three sequential steps.

The first step is to identify the piezoelectric structure through its piezoelectric capacitance,
and short- and open-circuit resonance frequencies. From this information, it is possible
to compute the modal coupling coefficients which are then used in the following steps.

The second step specifies a number of characteristics for the resonances of the shunt circuit.
This specification is made by sequentially considering pairs of resonant mechanical and
electrical modes. Upon simplifying the contribution of non-resonant modes to background
contributions, it was shown that the problem essentially reduces to a problem similar
to that of a single-mode series or parallel RL shunt. It was thus possible to use the
well-established tuning formulas for these cases. This step takes as input the residues
associated with the targeted modes. These residues are closely related to the EEMCF,
and can be used to balance the control authority between the targeted modes, but are
constrained by the passivity requirement on the shunt circuit.

The last step consists in deriving the actual parameters of the shunt circuit.
Several circuit topologies presented in the literature were reviewed. The proposed
tuning approach was successfully applied to them. We note that this last step
can be bypassed when using digital absorbers.

The approach was numerically verified and experimentally validated on piezoelectric
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beams. Numerous simulations were used to illustrate the properties of the various
shunt circuits. The main conclusions on the advantages and drawbacks of these
circuits are summarized in Table 2.7.

Circuit type Advantages Drawbacks

Hollkamp
Requires the least

electrical components
Not suited for rk+1 > rk

CF / Suboptimal (r0 6= 0)

SFCF
Requires the least

electrical components
Not suited for rk+1 < rk

SPIS Low inductance Suboptimal (r0 6= 0)

CB Versatile
Requires the most

electrical components

Ideal Versatile
Unknown topology and
electrical components

(but realizable with a DVA)

Table 2.7: Comparison of the different shunt circuits studied in this chapter.





3 Multimodal vibration damping
with multiple transducers

Abstract

This chapter presents a method that provides multimodal damping with multiple
piezoelectric transducers using an electrical network interconnecting them. The
characteristics of the network are specified in terms of modal properties. On the
one hand, the electrical resonance frequencies are chosen to be close to those of
the targeted set of structural modes. On the other hand, the electrical mode
shapes are selected to maximize the electromechanical coupling between the
mechanical and electrical modes while guaranteeing the passivity of the network.
The effectiveness of this modal-based synthesis is demonstrated using a free-free
beam and a fully clamped plate. Because the resulting network may require a
large number of interconnections, a decentralization approach breaking down the
network into multiple disconnected networks is proposed, and the modal-based
synthesis is adapted to such a situation. This simplification comes at the expense
of performance and/or number of controlled modes.

3.1 Introduction

Using a single transducer for multimodal vibration mitigation as in Chapter 2 makes
up for a potentially compact solution, but the transducer placement on the structure
may limit the performance in terms of vibration reduction of some modes. From this
standpoint, it is desirable to use multiple transducers distributed over the structure to
ensure sufficient electromechanical coupling with all targeted modes.

A first approach consists in using at least as many individually-shunted transducers
as resonances to be controlled. Examples where this approach was considered include
beams [122, 148] and truss-cored sandwich panels [149]. The recent work of Toftekær
and Høgsberg [139] proposed explicit corrections to account for non-resonant modes and
cross-interaction between the different shunt circuits.

A second approach for multimodal piezoelectric shunt damping is based on multiple
patches interconnected through an electrical network. Dell’Isola and Vidoli [150] used
piezoelectric actuators uniformly distributed over a truss beam and designed an electrical
transmission line with similar wavespeed as a target mechanical wave speed, opening
the possibility for efficient electrical dissipation of the mechanical energy. Vidoli and
Dell’Isola [151] then studied the spectral properties of the operators governing the
dynamics of a beam and characterized the coupling existing between mechanical and
electrical modes. An important conclusion of their work was that the mechanical and
electrical modal characteristics should coincide in order to obtain strong coupling. This
led Alessandroni et al [123] to find electrical circuits analog to beams and plates, i.e.,
having identical resonance frequencies and mode shapes. They also derived optimal
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resistances to efficiently damp one targeted mode. Maurini et al [152] studied different
circuit topologies and showed that one of them could provide multimodal damping of
a beam. Porfiri et al [153] synthesized a passive circuit analog to a vibrating beam
made only of inductors, capacitors and ideal transformers. The theoretical concepts
presented in these works were experimentally validated on rods [154], beams [155] and
plates [156, 157]. Reviews on this approach can be found in [97, 98, 124].

The aforementioned works used a homogenized model of a simple structure, later
discretized with finite differences in order to derive a circuit with lumped elements
being analog to the structure. Real-life structures may be more complex. This is
what motivated Darleux et al [98, 157] to develop a library of elemental electrical
cells analog to various elemental structures. By assembling these cells into a network
similarly to the way their mechanical counterparts are assembled in a complex
structure, it is possible to create a network analog to that structure. This approach
potentially requires a large number of cells and transducers.

In a slightly different spirit, Giorgio et al [158] proposed a generic approach, where
an electrical network was tuned based on the finite element model of a structure.
The idea developed therein was to find a transformation of the electrical DoFs of
the network that makes the piezoelectric coupling matrix nearly diagonal in order to
consider mechanical and electrical modes by pairs, thereby allowing a tuning based
on the classical resistive-inductive shunt formulas [19]. This method was numerically
verified and experimentally validated. However, it has two potential drawbacks. The
first one is that it requires to solve a quadratic system of N2

s equations, where Ns is the
number of modes to be controlled. For such systems, an iterative numerical solver is
needed which may not always converge to a satisfactory solution. The second issue is
that the number of piezoelectric transducers needs to be equal to the number of targeted
mechanical modes, which somewhat limits the flexibility of this approach.

The goal of the present chapter is to propose a procedure for synthesizing an electrical
network to be used for multimodal piezoelectric damping based on the modal properties
of the host structure. The proposed approach specifies the characteristics of the resonant
electrical modes of the network while requiring that the network is realizable using
passive electrical elements. Specifically, by matching the electrical resonance frequencies
to those of a set of targeted mechanical modes, and by analytically optimizing the
electrical mode shapes, it is possible to derive the nodal admittance matrix of the
network allowing to efficiently mitigate the targeted mechanical resonances. The
proposed method, termed modal-based synthesis, is non-iterative and can accommodate
a different number of transducers and targeted modes.

Sections 3.2 and 3.3 review the aspects about modeling piezoelectric structures and
electrical networks, respectively. An electrical network aiming to provide multimodal
vibration damping is introduced in Section 3.4, and the dynamics of the coupled system are
analyzed. The electromechanical interaction between a mechanical mode and its electrical
counterpart is described in terms of coupling factors. The actual design of the electrical
network is undertaken in Section 3.5. Limitations on the electrical modal characteristics
are imposed by the passivity requirement on the network. Under these constraints,
the electrical modal characteristics are optimized and the network is synthesized. The
approach is numerically demonstrated on a SDoF piezoelectric system, a free-free beam
and a fully clamped plate in Section 3.6. The networks yielded by the proposed approach
could be complicated and require a lot of electrical connections. With the aim to simplify



3.2. Modeling piezoelectric structures with multiple piezoelectric transducers 117

them, Section 3.7 analyzes the impact of imposing a disconnection between different
parts of the network. This decentralization procedure can be brought up to the point
where the network is broken down into multiple shunt circuits, bridging the concepts
seen in this chapter with those seen in Chapter 2. This decentralization approach is
finally illustrated with a piezoelectric beam in Section 3.8.

3.2 Modeling piezoelectric structures with multiple

piezoelectric transducers

This section extends what was presented in Section 2.2 to multiple transducers.
Introducing the vectors of electrical voltages V and electrical charges q, the governing
equations of the piezoelectric structure are obtained as

Mẍ + Kscx + ΓpV = f

ΓT
p x−Cε

pV = q

. (3.1)

In these equations, Ksc is the structural stiffness matrix with every piezoelectric
transducer short-circuited, Γp is a piezoelectric coupling matrix and Cε

p is the
piezoelectric capacitance matrix at constant strain. Alternatively, the piezoelectric
voltages may be used as independent variables:

Mẍ + Kocx−Θpq = f

ΘT
p x− Eε

pq = V

, (3.2)

where
Koc = Ksc + Γp

(
Cε
p

)−1
ΓT
p , Θp =

(
Cε
p

)−1
Γp, Eε

p =
(
Cε
p

)−1
(3.3)

are the open-circuit stiffness matrix, a piezoelectric coupling matrix and the matrix
of elastance at constant strain, respectively.

3.2.1 Short-circuit and open-circuit modes

The short-circuit and open-circuit modes are the resonant modes of the structure with
every transducer short-circuited (V = 0) and open-circuited (q = 0), respectively.
Following the same methodology as in Section 2.2.1, one obtains

η̈sc + Ω2
scηsc + ΦT

scΓpV = ΦT
scf

ΓT
p Φscηsc −Cε

pV = q

(3.4)

and 
η̈oc + Ω2

ocηoc −ΦT
ocΘpq = ΦT

ocf

ΘT
p Φocηoc − Eε

pq = V

. (3.5)
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The generalized DoFs can also be expanded in modes with hybrid electrical boundary
conditions (some patches in short circuit and some patches in open circuit).

3.2.2 Dynamic capacitance

Assuming that the structure is unforced (f = 0), taking the Laplace transform
of the mechanical equation in Equation (3.4) and inserting it into the electrical
equation gives a dynamic relation between V and q:

−
[
Cε
p + ΓT

p Φsc

(
s2I + Ω2

sc

)−1
ΦT
scΓp

]
V = Cp(s)V = q. (3.6)

Cp(s) is the dynamic capacitance matrix. Similarly, the dynamic elastance matrix
Ep(s) is obtained from Equation (3.5)

−
[
Eε
p −ΘT

p Φoc

(
s2I + Ω2

oc

)−1
ΦT
ocΘp

]
q = Ep(s)q = V. (3.7)

Equations (3.6) and (3.7) show that the poles of the dynamic capacitance (elastance) are
the short-circuit (open-circuit) resonance frequencies. However, unlike in Section 2.2.2,
the open-circuit (short-circuit) resonance frequencies cannot be deduced directly from
the dynamic capacitance (elastance) when there is more than one transducer. The only
information that can be deduced from the zeros is that those of the diagonal entries of
the dynamic capacitance (elastance) matrix are the resonance frequencies of the structure
when the corresponding transducer is open-circuited (short-circuited) while all the other
transducers are short-circuited (open-circuited). In some sense, these zeros allow to
quantify the coupling of the transducer alone with the structure.

Nevertheless, the identification of the dynamic capacitance (elastance) matrices
yields an estimate of the piezoelectric capacitance (elastance) at constant strain,
short-circuit (open-circuit) resonance frequencies and projection of the piezoelectric
coupling matrices on the short-circuit (open-circuit) modal basis. The tuning
method discussed in this chapter will require this information only. Thus, as
long as multiple-input multiple-output (MIMO) electrical measurements on all the
transducers are available to obtain the dynamic capacitance or elastance matrix,
no mathematical model of the structure will be required.

3.2.3 Electromechanical coupling factors

An EEMCF can be defined for mode r as

K2
c,r =

ω2
oc,r − ω2

sc,r

ω2
sc,r

, (3.8)

This EEMCF quantifies the electromechanical coupling existing between mode r and all
the piezoelectric transducers. If only one type of resonance frequency (short-circuit or
open-circuit) is known, Section D.1 discusses ways to estimate this EEMCF.
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3.3 Modeling electrical networks

An electrical network contains a series of nodes. One of them, called ground, is taken as a
reference to express the voltage levels. The voltage difference between a node and ground
is simply called the voltage of that node. These nodes can also be fed with a current.
The nodes are interconnected by branches, and connected to the ground by shunts. Each
of these branches and shunts is assumed to have a given admittance.

A part of an electrical network containing Ne nodes (excluding ground) is shown in
Figure 3.1, where node n and the nodes to which it is linked are represented. Electrical
nodes other than n may have other electrical connections which are not displayed therein.

In

Vn

YnnInn

· · ·

Yn1

V1

In1 Yn2

V2

In2 YnNe

VNe

InNe

Figure 3.1: Partial representation of an electrical network with node n and its
connected nodes.

The current flowing in the shunt is given by

Inn = Ynn(s)Vn, (3.9)

while that flowing from node n to node m is

Inm = Ynm(s)(Vn − Vm). (3.10)

Applying KCL to node n, the externally-supplied current In must be equal to the current
flowing out of this node through the branches and shunt:

In =
Ne∑
j=1

Inm = Ynn(s)Vn +
Ne∑

n=1,m 6=n

Ynm(s)(Vn− Vm) =
Ne∑
m=1

Ynm(s)Vn−
Ne∑

m=1,m6=n

Ynm(s)Vm.

(3.11)
Writing out this equation for every node gives the linear system of equations

Ne∑
n=1

Y1n(s) −Y12(s) · · · −Y1Ne(s)

−Y21(s)
Ne∑
n=1

Y2n(s) · · · ...

...
...

. . .
...

−YNe1(s) · · · · · ·
Ne∑
n=1

YNen(s)





V1

V2

...

VNe


=



I1

I2

...

INe


, (3.12)
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or, in short,

Y(s)V = I, (3.13)

where V and I are the nodal voltage and current vectors, respectively, and Y(s) is
the (symmetric) nodal admittance matrix [159].

In the particular case where each branch and shunt is a parallel connection of a
capacitor (of capacitance Cnm), a resistor (of conductance Gnm) and an inductor
(of reluctance Bnm), every admittance has the form

Ynm(s) = sCnm +Gnm +
Bnm

s
(3.14)

and the admittance matrix takes the form

Y(s) = sC + G +
1

s
B, (3.15)

where C, G and B are the (symmetric) capacitance, conductance and reluctance
matrices of the network, respectively.

3.4 Dynamics of the electromechanical system

In order to achieve multimodal damping with multiple piezoelectric transducers, a
properly tuned interconnecting network can be electrically connected to these transducers,
as shown in Figure 3.2. In this section, it is assumed that the network has known
electrical characteristics, and an analysis of its coupling with the resonant modes of the
structure is carried out. This will highlight the importance of the modal characteristics of
the overall network obtained by combining the electrical properties of the interconnecting
network together with those of the transducers. These modal characteristics will then be
used as design variables in the next section in order to synthesize the network.

Interconnecting network
Ce, G, B

Piezoelectric transducers
Cε
p, Γp

ψ̇1
q̇1

ψ̇2
q̇2

ψ̇P
q̇P

...

...

Structure
M, Ksc

Figure 3.2: Schematic of a structure (in gray) with multiple piezoelectric transducers
(in orange) connected to an electrical network.
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3.4.1 Governing equations

The interconnecting network is governed by the following equations

Ceψ̈+ Gψ̇+ Bψ = q̇, (3.16)

where Ce is the capacitance matrix of the interconnecting network. The vector

ψT =

[
ψT
p ψT

i

]
(3.17)

describes the flux linkages of the P ports to be connected to the piezoelectric
transducers ψp and I possible internal electrical DoFs ψi. In total, the number
of electrical DoFs is noted Ne = P + I. Equation (3.16) is obtained as the
inverse Laplace transform of Equations (3.13) and (3.15) by replacing C by Ce

and recalling that sψ = V (Equation (1.40)).

Connecting the network to the transducers imposes the charges flowing in the ports
of the interconnecting network to be equal to those flowing out of the transducers, as
shown in Figure 3.2, leading to the relation

q̇ = Epq̇p, (3.18)

where Ep is a localization matrix given by

ET
p =

[
IP×P 0P×I

]
. (3.19)

The ports associated to internal DoFs are not fed with an external current (q̇i = 0).
According to Equation (3.17), the flux linkages of the ports connected to the
piezoelectric transducers are also given by

ψp = ET
pψ. (3.20)

Upon connecting the network to the transducers of the piezoelectric structure and
differentiating the second relation, Equation (3.1) becomes,

Mẍ + Kscx + ΓpE
T
p ψ̇ = f(

Ce + EpC
ε
pE

T
p

)
ψ̈+ Gψ̇+ Bψ− EpΓ

T
p ẋ = 0

. (3.21)

In the sequel, the capacitance matrix of the overall network is noted

C = Ce + EpC
ε
pE

T
p . (3.22)

3.4.2 Electrical modes and modal equations

The mechanical modes with short-circuited transducers are defined by the generalized
eigenvalue problem in Equation (2.4), and they verify a series of orthogonality
relationships such as Equation (2.5). In a similar way, the electrical modes Φe
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of the lossless network decoupled from the structure (G = 0 and Γp = 0) can
be defined by the following equation:

BΦe = CΦeΩ
2
e, Ω2

e =


ω2
e,1

. . .

ω2
e,Ne

 , (3.23)

where ωe,i is the ith natural frequency of the network. The mode shapes also verify
orthogonality properties and can be capacitance-normalized

ΦT
e CΦe = I, ΦT

e BΦe = Ω2
e. (3.24)

It is assumed that the electrical conductance matrix is such that the mode shapes also
respect the same kind of orthogonality relations

ΦT
e GΦe = 2ZeΩe, Ze =


ζe,1

. . .

ζe,Ne

 , (3.25)

where Ze is a diagonal matrix containing the electrical modal damping ratios.

The governing equations can be projected on the mechanical and electrical modal
bases. For the electrical DoFs, ψ = Φeηe is inserted into the second line of
Equation (3.21), which is then premultiplied by ΦT

e and simplified using the modal
orthogonality relationships. Eventually, one obtains the governing equations of
the electromechanical system in modal form

(
s2I + Ω2

sc

)
ηsc + sΓΦηe = ΦT

scf(
s2I + 2sZeΩe + Ω2

e

)
ηe − sΓT

Φηsc = 0

, (3.26)

where

ΓΦ = ΦT
scΓpE

T
p Φe. (3.27)

3.4.3 Effective characteristics

As in Sections 2.3.1.4 and 2.3.2.4, this section simplifies the dynamics of
the electromechanical system by considering only a pair of mechanical and
electrical resonant modes. Different approximations are made to account for
the non-resonant modes in what follows.
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3.4.3.1 Modal characteristics

Around the frequency ωsc,r, it is assumed at first that only mechanical mode r and
electrical mode k are responding, i.e., ηsc,i = 0, ∀i 6= r and ηe,i = 0, ∀i 6= k. Furthermore,
an unforced structure is considered (f = 0) in order to characterize only the poles of
the electromechanical system. Equation (3.26) then becomes

(
s2 + ω2

sc,r

)
ηsc,r + sγΦ,rkηe,k = 0(

s2 + 2ζe,kωe,ks+ ω2
e,k

)
ηe,k − sγΦ,rkηsc,r = 0

, (3.28)

where
γΦ,rk = φT

sc,rΓpE
T
pφe,k. (3.29)

This system has the same form as the Laplace transform of Equation (1.42). An EEMCF
can then be deduced by analogy to Equation (1.19) as

K̂2
c,rk =

γ2
Φ,rk

ω2
sc,r

=

(
φT
sc,rΓpE

T
pφe,k

)2

ω2
sc,r

. (3.30)

3.4.3.2 Background contributions from the mechanical modes

The higher-frequency mechanical modes are now supposed to respond statically, whereas
the lower-frequency modes are assumed to be negligible, i.e., ηsc,<r = 0. Subscripts
< r and > r refers to mechanical modes of frequencies lower and greater than that
of mode r, respectively. Neglecting the inertia forces in the mechanical equations for
higher-frequency modes, their static response is then given by

ηsc,>r = −sΩ−2
sc,>rΦ

T
sc,>rΓpE

T
pψ = −sΩ−2

sc,>rΓΦηe. (3.31)

Inserting this relation back into the electrical equation in Equation (3.26) while still
assuming ηe,i = 0, ∀i 6= k yields the following system of equations

(
s2 + ω2

sc,r

)
ηsc,r + sγΦ,rkηe,k = 0(

(1 + κ̂k) s
2 + 2ζe,kωe,ks+ ω2

e,k

)
ηe,k − sγΦ,rkηsc,r = 0

, (3.32)

where
κ̂k = φT

e,kEpΓ
T
p Φsc,>rΩ

−2
sc,>rΦ

T
sc,>rΓpE

T
pφe,k. (3.33)

κ̂k represents the background contribution of the non-resonant mechanical modes on the
dynamics of electrical mode k, and is positive or zero since the matrix of mechanical
resonance frequencies is positive definite. It is the electrical modal counterpart of the
modal blocked capacitance [77, 160]. Noting once again the similarity between the Laplace
transform of Equation (1.42) and Equation (3.32), an EEMCF can be defined as

K̂2
c,rk =

γ2
Φ,rk

(1 + κ̂k)ω2
sc,r

. (3.34)
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3.4.3.3 Background contributions from the mechanical and electrical modes

A contribution from non-resonant electrical modes is now added, but it comes only from
lower-frequency modes (i < k). These modes are assumed to be capacitively-dominated.
Under these assumptions, Equation (3.26) becomes

(
s2 + ω2

sc,r

)
ηsc,r + sγΦ,rkηe,k + sγΦ,r<kηe,<k = 0(

s2 + 2ζe,kωe,ks+ ω2
e,k

)
ηe,k − sγΦ,rkηsc,r − sγTΦ,>rkηsc,>r = 0

Ω2
sc,>rηsc,>r + sγΦ,>rkηe,k + sΓΦ,>r<kηe,<k = 0

s2ηe,<k − sγTΦ,r<kηsc,r − sΓT
Φ,>r<kηsc,>r = 0

, (3.35)

where the subscript < k indicates electrical modes with index i < k, and the modal
piezoelectric coupling matrix is partitioned as

ΓΦ =

φT
sc,r

ΦT
sc,>r

ΓpE
T
p

[
φe,k Φe<k

]
=

 γΦ,rk γΦ,r<k

γΦ,>rk ΓΦ,>r<k

 . (3.36)

The last two lines of Equation (3.35) govern the dynamics of non-resonant
modes, and can be put in the form Ω2

sc,>r ΓΦ,>r<k

−ΓT
Φ,>r<k I


ηsc,>r
sηe,<k

 =

−sγΦ,>rkηe,k

γTΦ,r<kηsc,r

 . (3.37)

This system can be solved for the non-resonant modal amplitudes. It should be noted that
despite the potentially large size of the featured matrix imparted by the potential large size
of Ωsc,r, inverting it is not expensive because block inversion formulas (Equation (A.5))
can be used. In doing so, the only inversions that need to be performed are those of Ω2

sc,r,
which is immediate since it is diagonal, and that of its Schur complement

S = I + ΓT
Φ,>r<kΩ

−2
sc,>rΓΦ,>r<k (3.38)

of maximum size (Ne − 1) × (Ne − 1), hence realistically moderate. The non-resonant
modal amplitudes can be found asηsc,>r
sηe,<k

 =

Ω−2
sc,>r −Ω−2

sc,>rΓΦ,>r<kS
−1ΓTΦ,>r<kΩ

−2
sc,>r −Ω−2

sc,>rΓΦ,>r<kS
−1

S−1ΓTΦ,>r<kΩ
−2
sc,>r S−1


−sγΦ,>rkηe,k

γTΦ,r<kηsc,r


(3.39)

Inserting these relations back into the first two lines of Equation (3.35) yields the system
(
s2 + ω̂2

sc,r

)
ηsc,r + sγ̂Φ,rkηe,k = 0(

(1 + κ̂e,k) s
2 + 2ζe,kωe,ks+ ω2

e,k

)
ηe,k − sγ̂Φ,rkηsc,r = 0

, (3.40)
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were the effective modal characteristics accounting for the background contributions of
non-resonant mechanical and electrical modes are given by

ω̂2
sc,r = ω2

sc,r + γΦ,r<kS
−1γTΦ,r<k, (3.41)

γ̂Φ,rk = γΦ,rk − γΦ,r<kS
−1ΓT

Φ,>r<kΩ
−2
sc,>rγΦ,>rk, (3.42)

and

κ̂e,k = γTΦ,>rk
(
Ω−2
sc,>r −Ω−2

sc,>rΓΦ,>r<kS
−1ΓT

Φ,>r<kΩ
−2
sc,>r

)
γΦ,>rk. (3.43)

Since S is positive definite, so is its inverse, and ω̂sc,r ≥ ωsc,r. It can be noted with the
Sherman-Morrison-Woodbury (SMW) formula (Equation (A.2)) that

Ω−2
sc,>r −Ω−2

sc,>rΓΦ,>r<kS
−1ΓT

Φ,>r<kΩ
−2
sc,>r =

(
Ω2
sc,>r + ΓΦ,>r<kΓ

T
Φ,>r<k

)−1
(3.44)

The right-hand side of this latter equation does not offer a computationally
advantageous way of computing this matrix in general, but it shows that the
matrix is positive definite. Hence, κ̂e,k ≥ 0.

From Equation (3.40), an EEMCF can be defined as

K̂2
c,rk =

γ̂2
Φ,rk

(1 + κ̂e,k) ω̂2
sc,r

. (3.45)

3.5 Design of an electrical network

The goal of this section is to find optimal electrical modal parameters for the network
and to deduce its electrical capacitance, conductance and reluctance matrices from
Equations (3.24) and (3.25). Similarly to what has been explained in Section 1.2
and Chapter 2, the natural frequencies of the network should be close to those of
a targeted set of structural modes [151]. The choice of the electrical mode shapes
is less straightforward. As explained in Section 1.2, it is desirable from a vibration
reduction performance perspective to maximize the EEMCF. Any of its estimates
(Equations (3.30), (3.34) and (3.45)) is maximized if the amplitude of the electrical
mode shapes at the piezoelectric transducers are maximized themselves. Their amplitude
is however limited by passivity constraints, as shall be seen.

3.5.1 Passivity

The passivity of the network is set as a design requirement in this work. Passive control
has the advantage of guaranteeing the stability of the controlled system (because a passive
system can only store or dissipate energy), and theoretically does not need external power
sources for operation. It will be shown that this requirement places limits on the attainable
modal characteristics, which in turn limits the performance of the passive control system.
The electrical modal characteristics can be optimized under the passivity constraints, and
these optimal characteristics can finally be used to synthesize the electrical network.

According to Gannett and Chua [107], the nodal admittance matrix given in
Equation (3.15) must fulfill the conditions
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(i) Y(s) has no poles in {s ∈ C|<(s) > 0} (< denotes the real part operator),

(ii) Y(σ) is a real matrix for σ ∈ R+,

(iii) Y(s) + YH(s) is positive semidefinite in {s ∈ C|<(s) > 0} (superscript H denotes
Hermitian transposition),

(iv) The network associated to Y is controllable

in order to be the admittance matrix of a passive network (i.e., realizable using passive
capacitors, resistors, inductors and ideal transformers). According to Equation (3.15),
Y(s) has one simple pole at s = 0 (for a nonzero reluctance matrix), so Condition (i) is
satisfied. Condition (ii) is satisfied since C, G and B are real matrices. Condition (iv)
is also verified, because all the electrical states are controllable and observable for an
admittance matrix of the form of Equation (3.15). Now, since C, G and B are also
symmetric matrices, using Equation (3.15), Condition (iii) becomes

Y(σ + jω) + YH(σ + jω) = 2σC + 2G +
2σ

σ2 + ω2
B � 0, (3.46)

where � 0 indicates that the matrix is positive semidefinite. For σ > 0 and ω ∈ R,
this matrix is positive semidefinite if C, G and B are positive semidefinite themselves,
which gives the criteria to satisfy Condition (iii). Because of Equations (3.24) and (3.25),
the matrices C, G and B are guaranteed to be positive semidefinite, which eventually
ensures the passivity of the overall network.

Now, one must consider that the piezoelectric transducers are integrated into the
overall network associated with the matrix C. The capacitance matrix Ce of the
interconnecting network is obtained by removing the contribution of the piezoelectric
capacitance from C, as indicated by Equation (3.22). Thus, if Ce is the capacitance
matrix of a passive interconnecting network, it must satisfy

Ce = C− EpC
ε
pE

T
p � 0. (3.47)

A positive semidefinite matrix has positive eigenvalues, and a necessary (but not sufficient)
condition for this is that the determinant of this matrix (being equal to the product of
the eigenvalues) must be positive. This determinant is given by

det
(
C− EpC

ε
pE

T
p

)
= det

((
Cε
p

)−1 − ET
p C−1Ep

)
det (C) det

(
Cε
p

)
, (3.48)

where Equation (A.4) has been used. Since both C and Cε
p are positive definite, a

necessary condition for the positive semidefiniteness of Ce is thus(
Cε
p

)−1 − ET
pΦeΦ

T
e Ep � 0, (3.49)

in which the identity C−1 = ΦeΦ
T
e (inferred from Equation (3.24)) has been used. If

the modal amplitudes ΦT
e Ep are initially zero, this condition will be satisfied because

Cε
p is itself positive definite. Increasing gradually these modal amplitudes will affect

continuously the eigenvalues of the matrix in Equation (3.49), up to the point where one
of them reaches zero. Increasing the amplitudes beyond this point, the matrix will no
longer be positive semidefinite, and the interconnecting network will no longer be passive.
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3.5.2 Optimal electrical mode shapes

Equation (3.49) constrains the amplitude of the electrical mode shapes but leaves
freedom on their actual shape. However, some choices yield better electromechanical
coupling factors than others. The purpose of this subsection is to provide an
expression for the set of electrical mode shapes maximizing the modal electromechanical
coupling coefficients. Since at this stage the mode shapes are unknown, the
dynamics are approximated considering only the background contribution from
non-resonant mechanical modes (Section 3.4.3.2).

3.5.2.1 Optimization for a single mode

It is first considered that the network targets a single mode of the structure. To
simplify the exposition, the electrical mode shape at the piezoelectric transducers
is made dimensionless by the transformation

ϕp =
(
Cε
p

)1/2
ET
pφe =

(
Cε
p

)1/2
φp. (3.50)

Inserting this relation into Equation (3.49) yields(
Cε
p

)−1 −
(
Cε
p

)−1/2
ϕpϕ

T
p

(
Cε
p

)−1/2 � 0. (3.51)

Since this constitutes a rank-one update of the piezoelectric elastance matrix,
Equation (A.3) can be used to compute its determinant.

det
((

Cε
p

)−1 −
(
Cε
p

)−1/2
ϕpϕ

T
p

(
Cε
p

)−1/2
)

=
(
1−ϕT

pϕp

)
det
((

Cε
p

)−1
)
. (3.52)

A necessary condition for passivity requires this determinant to be positive.
Equation (3.51) is therefore satisfied if the dimensionless mode shape satisfies

|ϕp| ≤ 1. (3.53)

The contribution from non-resonant mechanical modes is first neglected, and
the EEMCF defined in Equation (3.30) is used. The EEMCF is maximized
if the quantity squared in the numerator is itself maximized, leading to the
following constrained optimization problem

Maximize
ϕp

φT
sc,rΓp

(
Cε
p

)−1/2
ϕp

Subject to ϕT
pϕp ≤ 1

. (3.54)

Since the objective function is a linear function of ϕp, its gradient is constant. A solution
which maximizes this objective function should thus be aligned with this gradient, yielding

ϕ?
p = αp

(
Cε
p

)−1/2
ΓTpφsc,r, (3.55)

where αp should be set so as to respect the constraint. The admissible solution to
this optimization problem can be found as

ϕ?
p =

1√
φT
sc,rΓp

(
Cε
p

)−1
ΓTpφsc,r

(
Cε
p

)−1/2
ΓTpφsc,r, (3.56)
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and the associated optimal capacitance-normalized mode shape at the piezoelectric
transducers is retrieved with Equation (3.50) as

φ?
p =

1√
φT
sc,rΓp

(
Cε
p

)−1
ΓTpφsc,r

(
Cε
p

)−1
ΓTpφsc,r. (3.57)

It is possible to account for the background contribution of non-resonant mechanical
modes to further optimize the mode shapes by considering Equation (3.34) instead
of Equation (3.30). The problem is much more complex and an approximate
solution is developed in Section D.2.

3.5.2.2 Optimization for multiple modes

In order for the network to mitigate Ns structural resonances, it is assumed
that the dimensionless electrical mode shapes are simply scaled versions of their
optimal counterparts in the single-mode case, i.e.,

Φp =

[
ϕp,1 · · · ϕp,Ns

]
= Φ

?

pDp =

[
ϕ?
p,1 · · · ϕ?

p,Ns

]

dp,1

. . .

dp,Ns

 , (3.58)

where dp,k is the positive scaling factor associated to electrical mode k. In order to satisfy
the passivity constraints (Equation (3.49)), these scaling factors must be chosen such that

I−Φ?

pD
2
p

(
Φ

?

p

)T
� 0. (3.59)

To determine them, a set of positive relative scaling factors dp,k can be chosen arbitrarily.
Their magnitude does not matter, but their relative magnitude can be set so as to put
more control authority on specific modes at the expense of control authority on other
modes. The actual scaling factors are obtained by multiplication by a scalar factor αp

Dp = αp


dp,1

. . .

dp,Ns

 = αpDp, (3.60)

which can be determined to enforce the passivity constraints. From Equation (3.59), it
should satisfy

αp ≤
1√

λMax

(
Φ

?

pD
2

p

(
Φ

?

p

)T) , (3.61)
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where λMax(·) is the maximum eigenvalue of the matrix at hand. The capacitance-normalized
mode shapes at the piezoelectric transducers can finally be retrieved as

Φp =
(
Cε
p

)−1/2
Φp = αp

(
Cε
p

)−1/2
Φ

?

pDp. (3.62)

The mode shapes obtained this way are proportional to αp. Equation (3.34) shows
that the EEMCF is a growing function of αp. Hence, the inequality in Equation (3.61)
should ideally be an equality to maximize the amplitude of the electrical modes at the
piezoelectric transducers and thus the coupling.

It should be pointed out that if the piezoelectric patches are all identical, Cε
p is

proportional to the identity matrix. ΓTpΦsc can be seen as modal strains in the
transducers, and the electrical mode shapes Φp are proportional to them, according
to Equation (3.57) in this case. Hence, the network is an analog of the structure,
because it features identical resonance frequencies and mode shapes, as in [123]
(but the scaling factors make the electrical mode shapes in Equation (3.62) a
scaled version of their mechanical counterparts).

3.5.3 Optimal electrical frequencies and damping ratios

In order to fully specify the characteristics of the network, its natural frequencies and
associated damping ratios should also be prescribed. The electrical mode shapes are
now known, and the model in Section 3.4.3.3 can be used. The modal characteristics
can simply be tuned by using Equations (1.45) and (1.46) with the characteristics of
the system in Equation (3.40), i.e., by replacing Cε

p by 1 + κ̂e,k, ωsc by ω̂sc,r, Kc by

K̂c,rk, B by ω2
e,k and G by 2ζe,kωe,k. The optimal effective frequency and damping

ratio for electrical mode k are thus given by

ω2
e,k = ν2

(
K̂c,rk

)
ω̂2
sc,r (1 + κ̂e,k) , ζe,k = ς

(
K̂c,rk

)
(1 + κ̂e,k) , (3.63)

respectively.

3.5.4 Network synthesis

Now that all the modal characteristics are specified, the capacitance, conductance and
reluctance matrices of the network can be computed so as to satisfy Equations (3.24)
and (3.25). Depending on the number of transducers P compared to the number of
targeted modes Ns, different cases must be considered. More rigorously and generally,
these cases can be discriminated by comparing the rank of Φp to Ns and P .

3.5.4.1 Full-rank Φp

The case P = Ns with full-rank Φp is the simplest, because the matrix Φe = Φp

is square and non-singular. The electrical matrices can then be obtained from
the inversion of Equations (3.24) and (3.25)

C = Φ−Te Φ
−1
e , G = 2Φ−Te ZeΩeΦ

−1
e , B = Φ−Te Ω

2
eΦ
−1
e . (3.64)
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3.5.4.2 rank (Φp) < Ns

If P < Ns, there are less transducers than targeted structural modes, and the matrix Φp

has more columns than rows. It could also be that P ≥ Ns but Φp is rank-deficient.
In both cases, this mathematically translates to rank (Φp) < Ns, and internal DoFs
ψi should be introduced. The minimal number of internal DoFs required to make the
problem well-posed is I = Ns − rank (Φp). The mode shapes on these DoFs Φi should
be specified in order to obtain a mode shape matrix of rank Ns

Φe =

Φp

Φi

 , (3.65)

and the electrical matrices can then be obtained with Equation (3.64). As long as the
electrical mode shape matrix is non-singular, the mode shapes on the internal DoFs can be
chosen arbitrarily without affecting the performance of the network. A practical choice
to ensure the non-singularity of the mode shape matrix could be to chose Φi = WT ,
where W contains the orthogonal basis of the kernel of Φp, i.e.,

ΦpW = 0, WTW = I. (3.66)

If rank (Φp) = P , Equation (3.64) can be used to synthesize the electrical matrices.

3.5.4.3 rank (Φp) < P

If P > Ns, there are more transducers than targeted structural modes, and the matrix
Φe = Φp has more rows than columns. More generally, the rank of Φe may be smaller
than P . Compliance with Equations (3.24) and (3.25) leads to an underconstrained
problem. This leaves some freedom on the choice of the other electrical mode shapes of
the network, but the passivity constraint (Equation (3.49)) still has to be satisfied. A
simple way to enforce Equations (3.24) and (3.25) is to choose

C = Φe

(
ΦT

eΦe

)−2
ΦT

e + VDV VT , G = Φe

(
ΦT

eΦe

)−1
2ZeΩe

(
ΦT

eΦe

)−1
ΦT

e ,

B = Φe

(
ΦT

eΦe

)−1
Ω2

e

(
ΦT

eΦe

)−1
ΦT

e , (3.67)

having ensured rank (Φe) = Ns for ΦT
eΦe to be regular (see Section 3.5.4.2).

DV is symmetric positive definite matrix, and V contains the orthogonal
basis of the kernel of ΦT

e , i.e.,

ΦT
e V = 0, VTV = I. (3.68)

DV does not affect the electromechanical coupling with the targeted modes, but has to
be chosen such that Equation (3.47) is satisfied. The projection of this equation on the
subspace spanned by Φe satisfies the equation, and that on V yields the condition

DV −VTEpC
ε
pE

T
p V � 0. (3.69)

The choice of DV to satisfy this condition is not unique. In an attempt to reduce
the number of electrical components needed for the network, one can try to make the
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capacitance matrix C as close as possible to the piezoelectric capacitance matrix EpC
ε
pE

T
p .

Imposing an equality of these matrices in the subspace spanned by V yields

VTEpC
ε
pE

T
p V = VTCV = VTVDV VTV = DV , (3.70)

on account of Equations (3.67) and (3.68). This choice of DV satisfies Equation (3.69),
since the involved matrix is 0.

In this case, the network has Ns resonant electrical modes, and P − Ns purely
capacitively-dominated modes, given by

VD
1/2
V , (3.71)

which satisfy the generalized eigenvalue problem in Equation (3.23) (accounting for
Equations (3.67) and (3.68)), with zero electrical resonance frequencies.

3.5.5 Summary of the modal-based synthesis

The proposed design procedure is summarized in Figure 3.3: from a set of targeted modes
and associated scaling factors reflecting the desired control authority on these modes,
the electrical matrices of the network can be obtained. Given the central role played by
modal properties in this approach, it is named modal-based synthesis.

It is noted that unlike in Chapter 2, the order in which the resonant frequencies of the
network are assigned is not important, because the influence of inductively-dominated
modes has been neglected in this chapter.

3.5.6 Implications of passivity on performance

To close this section, guidelines on choosing the relative scaling factors are given, and
the impact of passivity on performance is discussed.

3.5.6.1 Scaling factors and modes orthogonality

Using Equation (A.4), Equation (3.59) can also be put in the form

D−2
p −

(
Φ
?

p

)T
Φ
?

p � 0. (3.72)

Since the optimal dimensionless mode shapes are unit vectors, the elements on the

diagonal of the matrix
(
Φ
?

p

)T
Φ
?

p are equal to one. If these vectors are mutually

orthogonal, this matrix is equal to the identity, and in this case

D−2
p − I � 0. (3.73)

The elements on the diagonal of Dp can be chosen independently and should be smaller
than or equal to one. The optimal case is when Dp is set equal to the identity to comply
with Equation (3.72). As soon as the dimensionless mode shapes are not mutually
orthogonal, the elements on the diagonal of Dp have to be smaller than one. Indeed,
if Dp = I, the matrix in Equation (3.72) would have zero elements on its diagonal but
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System characteristics: Cε
p, ΦT

scΓp, Ωsc

Modes to be controlled r(k) and associated scaling factors dp,k (k = 1, · · · , Ns)

Optimal dimensionless mode shapes ϕ?
p,k

Equation (3.56)

Scaling factors for passivity dp,k
Equations (3.60) and (3.61)

Electrical mode shapes Φp

Equation (3.62)

Electromechanical coupling K̂2
c,rk, with ET

pΦe = Φp

Equations (3.36), (3.38), (3.41), (3.42), (3.43) and (3.45)

Modal characteristics Ωe and Ze

Equation (3.63)

rank (Φp) 5 Ns ?
rank (Φp) = Ns

Φe = Φp

rank (Φp) < Ns

Compute W
Equation (3.66)

ΦT
e =

[
ΦT

p W

]

rank (Φp) 5 P ?
rank (Φp) = P

Electrical matrices C
(and Ce), G and B

Equation (3.64)

rank (Φp) < P

Compute V and DV

Equations (3.68) and (3.70)

Electrical matrices C
(and Ce), G and B

Equation (3.67)

k
=

1,···
,N

s
k

=
1,···

,N
s

Figure 3.3: Flowchart of the proposed modal-based synthesis.

non-zero off-diagonal elements. Hence, some of its principal minors would be negative,
which means that the matrix is not positive semidefinite [161].

The other limit case is when the mode shapes are all aligned. In this case, Equation (3.72)
becomes1

D−2
p − 1Ns×Ns = D−2

p − 1Ns×111×Ns � 0. (3.74)

1If some mode shapes are antiparallel, their opposite can be considered without loss of generality,
such that the scalar product between all of them is equal to one.
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Using once again Equation (A.3), this condition is satisfied if

1− 11×NsD
2
p1Ns×1 = 1−

Ns∑
k=1

d2
p,k ≥ 0, (3.75)

i.e.
Ns∑
k=1

d2
p,k ≤ 1 (3.76)

This time, the sum of the scaling coefficients squared is constrained to be smaller than
one. We note the similarity between this equation and Equation (2.34). Indeed, the
squared scaling coefficients d2

p,k in this chapter play the same role as the residues rk in
Chapter 2, i.e., they determine the EEMCF that the circuit or network has with the
target mode. One notable difference can nonetheless be observed between networks and
shunt circuits. Passivity constrains the sum of the residues to be at most equal to one
for shunt circuits in all cases (Equation (2.34)), whereas for networks each of the scaling
factor can reach one simultaneously, provided the dimensionless optimal mode shapes are
mutually orthogonal, but this constraint can become identical to that on shunt circuits
if the modes shapes are aligned. Therefore, networks are expected to be able to exhibit
better (and in the worst case identical) performance than shunt circuits. This nonetheless
comes at the expense of more complex electrical interconnections.

Selecting relative scaling factors as proposed in Section 3.5.2.2 is not a trivial task, and
the optimality of a given choice depends on the orthogonality between the modes. A safe
choice is to pick equal relative scaling factors in general, i.e., dp,k = 1, k = 1, · · · , Ns.
The relation between modes orthogonality and scaling factors optimality is discussed
more in depth in Section D.3 with a simple example.

3.5.6.2 Coupling limit for passive networks

Performance limits in terms of attainable EEMCF with the network are demonstrated in
Section D.4. To summarize the results in this appendix, an electrical network can perform
at best equally to a case where all the patches are shunted to target a specific mode,
when the scaling factor associated to that mode is equal to one. This feature is similar
to what was derived for the shunt circuits (Sections 2.3.1.6 and 2.3.2.6). Furthermore,
when the best case of orthogonal optimal electrical mode shapes occurs, this performance
can be reached simultaneously on every targeted mode.

The patches location could be designed to enhance performance of passive networks
through the tailoring of Φ?

p. However, this problem would not be simple, because
these electrical modes have a non-trivial dependency on Φsc, Γp and Cε

p. Among
these characteristics, Φsc itself has a rather intricate dependency on the size and
placement of the piezoelectric patches. To find out the solution of such problem, the
optimization approach proposed in [158] could be a good candidate.

3.6 Examples

The modal-based synthesis is illustrated with three examples: a SDoF structure,
a free-free beam and a fully clamped plate. The SDoF example is used to gain
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intuition about the method. The free-free beam outlines the main aspects of the
method concerning multimodal vibration mitigation and discusses the influence of
the scaling factors. A comparison with an assembled analog network [153, 155] is
also made. Finally, the fully clamped plate example illustrates the method with
a structure featuring rather closely-spaced resonance frequencies, and reveals the
importance of accounting for background contributions of non-resonant modes. The
modal-based synthesis is also compared to the method in [158].

3.6.1 Single-degree-of-freedom structure

This illustrates simply the connection between the electrical mode amplitude,
performance and passivity. The system is governed by Equation (1.6). The
mass-normalized mechanical mode shape for this system is

φsc =
1√
m
. (3.77)

Since there is only a pair of mechanical and electrical modes, there is no background
contribution to be accounted for. The direct application of Equation (3.57)
yields the optimal electrical mode shape

φ?p =
1√

φscγp
1

Cε
p

γpφsc

1

Cε
p

γpφsc =
1√
Cε
p

. (3.78)

The actual electrical mode shape can be set with a given amplitude αp

φp = αpφ
?
p (3.79)

The passivity condition (Equation (3.49)) becomes

1

Cε
p

− α2
p

(
φ?p
)2

=
1

Cε
p

(
1− α2

p

)
≥ 0, (3.80)

i.e., αp ≤ 1 guarantees passivity. The EEMCF can be computed using Equation (3.45)

K̂2
c =

α2
pγ

2
pm

Cε
pω

2
sc

= α2
pK

2
c . (3.81)

Combining Equations (3.63) and (3.64), the electrical parameters (which are
equal to the electrical matrices) are given by

C =
Cε
p

α2
p

, G = 2ς
(
K̂c

)
ν
(
K̂c

)
ωsc

Cε
p

α2
p

, B = ν2
(
K̂c

)
ω2
sc

Cε
p

α2
p

. (3.82)

The capacitance matrix of the interconnecting network, which simply gives the
capacitance of a capacitor placed in parallel with the shunt, is given by

Ce = C − Cε
p =

1− α2
p

α2
p

Cε
p . (3.83)
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Figure 3.4: Application of the method to a SDoF case (Kc = 0.1) with a parallel RLC
circuit: αp = 0.5 ( ), αp = 1/parallel RL shunt ( ) and αp = 2 ( ). The receptance
is normalized by ksc, and the frequency is normalized by ωsc.

Several cases can be discriminated depending on the value of αp, and examples of the
receptance for each case are featured in Figure 3.4. Because the method does not make any
approximation in this case, two peaks of exact equal amplitude are observed in each case.

When αp < 1, the passivity condition is fulfilled, the capacitance Ce is positive and
thus the circuit is realizable with passive electrical components. The amplitude of the
electrical mode shape is suboptimal, the EEMCF is decreased and so is the vibration
reduction. This is in accordance with common knowledge about the detrimental effect
of a parallel capacitor on performance [85, 129, 133].

For αp = 1, the passivity condition is at its boundary, and Ce vanishes. The
circuit is still realizable with passive elements; this is actually the classical
parallel RL shunt case discussed in Section 1.2.

Cases with αp > 1 violate the passivity condition, and indeed a negative capacitance Ce is
needed. The EEMCF is boosted by this negative capacitance, which is one of the driving
motivation for using such active electrical elements [77, 89, 118].

3.6.2 Free-free beam

The free-free beam in [155] is used to demonstrate other features of the modal-based
approach and to compare it to methods based on electrical analogs. The beam is composed
of 20 identical cells where a pair of thin piezoelectric patches symmetrically bonded to
the structure and electrically connected in parallel, as shown in Figure 3.5, can be used
to damp the vibrations of the beam. The beam was modeled using the finite element
method [137] with ten elements per cell. This yielded the matrices M, Ksc and Γp.

3.6.2.1 Damping of the first four modes

A network targeting the first four flexible modes of the beam was synthesized with
the modal-based method described in Figure 3.3, choosing unit scaling factors for
each mode (dp,k = 1, k = 1, 2, 3, 4). The FRF of the beam transversely excited at
one end and whose transverse displacement is measured at the other end is shown
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f
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Figure 3.5: Schematic representation of a free-free beam (in gray) with twenty
piezoelectric patches (in orange) connected in parallel by pairs.

in Figure 3.6. It is observed that the electrical network can very effectively damp
out the resonant vibrations of the four targeted modes.
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Figure 3.6: Velocity FRF of the beam with short-circuited patches (—), with the
network synthesized with the modal-based approach ( ).

3.6.2.2 Relative scaling factors

The influence of the relative scaling factors can also be studied. To make things easier to
understand, the piezoelectric structure is simplified by grouping the 20 patches into two
groups of ten adjacent patches and connecting the groups in parallel. A first network
can be synthesized with unit relative scaling factors (dp,k = 1, k = 1, 2, 3, 4). The
resulting FRF is shown in Figure 3.7. Compared to Figure 3.6, the parallel connection
of the patches has reduced the control authority of the network, especially on mode
4. This can be understood by the fact that the parallel connection of the patches
makes this mode almost unobservable and uncontrollable because of charge cancellation.
This baseline case is compared in Figure 3.8 to every other investigated case studied
hereafter in terms of attenuation on each mode.

In an attempt to improve the control authority over mode 1, one may set dp,1 = 2 while
leaving the other relative scaling factors unchanged. In doing so, Figure 3.7 shows that the
vibration reduction on mode 1 can be improved by 2dB, but this is done at the expense
of vibration reduction on the other modes (by approximately 4dB for all of them). Thus,
the relative scaling factors can be used to favor vibration mitigation over some modes, as
expected. The vibration reduction improvement on mode 1 can be maximized if mode 3
is left uncontrolled. In this case, a further 1dB can be obtained on mode 1.

In addition to improving performance on mode 1, mode 2 can also be emphasized by
choosing dp,1 = dp,2 = 2 while leaving the other relative scaling factors equal to one. In
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Figure 3.7: Velocity FRF of the beam with grouped patches connected to a
network synthesized with the modal-based approach: [dp,1, dp,2, dp,3, dp,4] = [1, 1, 1, 1]
( ), [dp,1, dp,2, dp,3, dp,4] = [2, 1, 1, 1] ( ), [dp,1, dp,2, dp,3, dp,4] = [2, 1, 0, 1] ( ),
[dp,1, dp,2, dp,3, dp,4] = [2, 2, 1, 1] ( ) and [dp,1, dp,2, dp,3, dp,4] = [2, 2, 2, 1] ( ).
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Figure 3.8: Relative attenuation (compared to the baseline case) on each
mode: [dp,1, dp,2, dp,3, dp,4] = [1, 1, 1, 1] (�), [dp,1, dp,2, dp,3, dp,4] = [2, 1, 1, 1] (�),
[dp,1, dp,2, dp,3, dp,4] = [2, 1, 0, 1] (�), [dp,1, dp,2, dp,3, dp,4] = [2, 2, 1, 1] (�) and
[dp,1, dp,2, dp,3, dp,4] = [2, 2, 2, 1] (�).

this case, Figure 3.7 indicates that the vibration reduction on mode 2 can be improved
without affecting the performance on other modes. While this might seem in contradiction
with the previous observation, this result can be understood by looking at the modal

assurance criterion of the optimal dimensionless electrical mode shapes

∣∣∣∣(Φ?

p

)T
Φ

?

p

∣∣∣∣2
(auto MAC), indicating how correlated these modes are [157]. The dimensionless mode
shapes and auto MAC matrix are featured in Figure 3.9, which clearly shows that modes
are similar by pairs, as viewed by the connected patches: mode 1 is similar to mode
3 and mode 2 is similar to mode 4. These mode pairs are also orthogonal to each
other. Thus, the scaling factors dp,1 and dp,2 affect orthogonal directions and thus different

eigenvalues of Φ
?

pD
2

p

(
Φ

?

p

)T
. When dp,2 was equal to one, the largest eigenvalue was the

one associated to dp,1. Increasing dp,2 up to two does not change this fact, and according
to Equation (3.61) αp stays identical, and so do dp,1, dp,3 and dp,4, while dp,2 increases
(because dp,2 increases). Thus, performance on mode 2 (or mode 4) can be improved
without affecting mode 1, 3 and 4 (or mode 2) up to some point.
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Figure 3.9: Optimal dimensionless mode shape 1 (a), 2 (b), 3 (c), 4 (d) and auto MAC
of the optimal dimensionless electrical mode shapes (e).

A final example where mode 3 is also emphasized is shown in Figure 3.7, where dp,1 =
dp,2 = dp,3 = 2 and dp,4 = 1. In this case, performance of mode 1 is affected as expected,
because the dimensionless electrical modes 1 and 3 are not orthogonal. Performance

on modes 2 and 4 is also affected because the maximum eigenvalue of Φ
?

pD
2

p

(
Φ

?

p

)T
has increased and thus αp has decreased. Finally, setting all the relative scaling factors
equal to 2 would be identical to setting them to 1.

This analysis showed that the relative scaling factors can indeed be used to balance the
control authority over the modes, but they have to be assigned with care. The most

significant scaling factor is the one which affects the largest eigenvalue of Φ
?

pD
2

p

(
Φ

?

p

)T
.

Orthogonality of the dimensionless electrical mode shapes can be assessed with the auto
MAC in order to guide the choice of these scaling factors and to understand the trends
in the resulting FRFs. In general, starting by setting them all equal to one would be
advisable, and fine-tuning of these factors is possible if the analysis is made cautiously.

3.6.2.3 Comparison with an analog electrical network

An electrical cell having dynamics analog to those of the mechanical cell was
proposed by Porfiri et al [153]; it is shown in Figure 3.10(b). The electrical
matrices of this cell can be built as

Cc =



0
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(3.84)
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using the same ordering in the DoFs as in Figure 3.10(b) [159]. The localization

matrix in this cell is ET
p,c =

[
0 0 1 0 0

]
in this case. The characteristics of the

electrical cell are reported in Table 3.1, where the resistance was optimally tuned
to the first mode. The matrices of the overall network C, G, B and Ep can then
be built by standard finite element assembly procedures [140]. The analog network
features the same resonance frequencies and mode shapes as the beam. When the
two systems are coupled via the piezoelectric patches, as shown in Figure 3.10(a),
broadband damping in the structure is achieved.

(a)

a/2

1

a/2

1

ψc,4ψc,1

ψc,5ψc,2 R Rψc,3

2Cε
p

L

(b)

Figure 3.10: Schematic representation of a free-free beam (in gray) coupled to an
electrical network (in white) through piezoelectric patches (in orange) (a) and electrical
cell analog to the mechanical cell (b).

Parameter Cε
p R L a

Value 21.96nF 57.5Ω 161.1mH 1

Table 3.1: Characteristics of the electrical cell.

Figure 3.11 indicates that the modal-based approach yields a more accurate tuning
of the electrical network with respect to the H∞ norm. However, unlike the analog
network based on elementary cells, the electrical matrices do not have a band
structure, which means that there may exist a large number of interconnections
in the network. Thus, the network obtained with the proposed approach may
potentially be more difficult to realize practically.

It should be pointed out that since the piezoelectric patches are all identical, the
network synthesized with the modal-based approach is also an analog of the structure
in a prescribed frequency band, because it features identical resonance frequencies and
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Figure 3.11: Velocity FRF of the beam with short-circuited patches (—), with
a network assembled from analog electrical cells [155] ( ) and with a network
synthesized with the modal-based approach ( ).

mode shapes as the targeted ones. This is confirmed in Figure 3.12, where the first four
piezoelectric modal strain shapes and the first four electrical mode shapes obtained with
either method are displayed (the patches are numbered according to their position, from
one end of the beam to the other). The differences between the two methods come from
the differences in electrical resonance frequencies and damping ratios.
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Figure 3.12: Modal strain in the piezoelectric transducers (-+-), electrical mode shapes
of a network assembled from analog electrical cells [155] (-�-) and electrical mode
shapes of a network synthesized with the modal-based approach (-×-): mode 1 (a),
2 (b), 3 (c) and 4 (d).

3.6.3 Fully clamped plate

The second example is the fully clamped plate depicted in Figure 3.13(a) [158]. Five
pairs of piezoelectric patches are bonded symmetrically on either side of the plate, each
pair being electrically connected in parallel. The finite element model of the piezoelectric
structure in Figure 3.13(b) was developed in SAMCEF (see [136] for implementation
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details) and a reduced-order model was imported in MATLAB. The Craig-Bampton
technique was used with 20 retained modes [140]. The plate is subjected to a pointwise
force located on a node of the finite element mesh at 41% of the plate length and 30%
of the plate width from the lower left corner in Figure 3.13, in order to make it as
close as possible to what was used in [158]. Besides that, the characteristics of the
system were identical to those reported therein.

f

(a)
*

(b)

Figure 3.13: Schematic representation of a fully clamped plate (in gray) excited by a
point force (in red) to which are bonded piezoelectric patches (in orange) (a) and finite
element mesh of the plate (b).

3.6.3.1 Control of the first five modes

The driving-point FRF of the plate coupled to the electrical network obtained with a
modal-based synthesis targeting the first five modes of the plate is shown in Figure 3.14.
Identical scaling factors for the five modes were used. As for the beam, the electrical
network can very effectively damp out the resonant vibrations of the targeted modes.

The method in [158] was also used to synthesize an electrical network. The cornerstone of
that method is to find an orthogonal transformation matrix U for the P = Ns electrical
DoFs such that ψ = Uχ (where χ are the transformed electrical DoFs). The matrix U
is aimed to make the transformed piezoelectric coupling matrix as close as possible from
a diagonal matrix. The unknowns of this problem are the N2

s entries of U. A system
of N2

s quadratic equations is built to impose the orthogonality of U and the optimal
closeness of the transformed coupling matrix to a diagonal matrix. It can be solved
numerically to find the unknowns. Similarly to that method, the present paper uses a
transformation of the electrical DoFs with the electrical modes, ψ = Φeηe, but the matrix
Φe needs not be orthogonal. It is not explicitly set to diagonalize the piezoelectric coupling
matrix, and it can be computed directly. Moreover, the modal-based method does not
require the number of controlled modes Ns to be equal to the number of transducers P .
Figure 3.14 reveals that the performance of the resulting network is found to be close
to that of the modal-based synthesis. Despite the marked implementation differences
between the methods, they both aim at optimally using the control capability offered by
the transducers, which makes this result quite expectable in the end. The difference
in performance mainly comes from the account for the contribution of non-resonant
modes, as shall be shown in Section 3.6.3.2.
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Figure 3.14: Velocity FRF of the plate with short-circuited patches (—), with a
network synthesized with the method in [158] ( ) and with a network synthesized
with the modal-based approach ( ).

3.6.3.2 Influence of background contributions

The example of the plate features rather closely-spaced resonance frequencies, and
illustrates the relevance of accounting for non-resonant modes influence, and to make the
additional effort of developing models including effective characteristics as in Section 3.4.3.

100 150 200 250 300 350 400 450 500

Frequency (Hz)

-80

-60

-40

-20

0

20

M
o
b
ili

ty
 (

d
B

, 
re

f.
 m

/s
/N

)

Figure 3.15: Velocity FRF of the plate with short-circuited patches (—), with a
network synthesized with the method in [158] ( ) and with a network synthesized
with the modal-based approach neglecting background contributions ( ), accounting
for background contributions when tuning the frequencies and damping ratios,
without ( ) and with ( ) corrections for the electrical mode shapes.

Figure 3.15 features the FRFs of the plate with networks accounting for background
contributions of non-resonant modes in different ways. When the influence of non-resonant
modes is overlooked (setting ω̂sc,r = ωsc,r, γ̂Φ,rk = γΦ,rk and κ̂e,k = 0), the performance
of a network synthesized with a modal-based approach becomes nearly identical to that
synthesized with the method in [158]. Accounting for the background contributions when
tuning the resonance frequencies and damping ratios (Section 3.5.3) allows for a better
balance between the two peaks, and thus a better vibration reduction. Further accounting
for their influence when specifying the electrical mode shapes (following the method
described in Section D.2) leads to a nearly identical performance, although slightly worse.
This result may seem surprising at first, but can be explained. While the performance
index (Equation (D.12)) is slightly better using residual-corrected mode shapes, these
corrected mode shapes are less mutually orthogonal than the uncorrected ones, leading
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to smaller scaling factors (Equation (3.60)). The overall effect results in a slightly smaller
EEMCF, leading to a slightly worse performance in the end.

These results show that accounting for background contributions of non-resonant
modes is beneficial when tuning the frequencies and damping ratios of the overall
network. However, the electrical mode shapes did not appear to benefit from this
correction in this example. It is hard to generalize this last conclusion to any structure,
and the problem can be intricate due to the scaling factors being automatically
set to satisfy the passivity constraints. However, it can be conjectured that the
improvement brought by the correction will be rather marginal in general. The
method proposed in Section 3.5.2.1 being simpler than that proposed in Section D.2,
the former would thus be recommended for practicality.

3.6.3.3 Control of the first twelve modes

A network targeting more modes than the number of piezoelectric patches was also
designed. In order mitigate the vibration between 0 and 1000Hz, the first twelve modes
with identical scaling factors were considered. The network performance is compared
against that of the network targeting five modes in Figure 3.16. While vibration mitigation
is less effective for the first few modes, the higher-frequency modes are now damped with
the exception the 9th mode. This is explained by the fact that the electromechanical
coupling that the patches have with this mode is rather low, as shown in Figure 3.17. In
this plot, the EEMCFs were obtained by considering the resonance frequencies of the plate
when all the patches are shorted, and when all the patches are in open-circuit. Better
mitigation results could be obtained with more patches or with optimally-located patches.
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Figure 3.16: Velocity FRF of the plate with short-circuited patches (—) and with a
network synthesized with the modal-based approach targeting the first five ( ) and
twelve ( ) modes.

3.7 Centralized and decentralized networks

The approach proposed in this chapter consists in a centralized control approach,
because all the piezoelectric transducers are interconnected through the same overall
network. By contrast, the approach proposed in Chapter 2 could also be used with
each transducer individually connected to its own shunt circuit, and not to other
transducers. It would then be a decentralized control approach.
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Figure 3.17: EEMCF of the first fifteen modes of the plate obtained by short- and
open-circuiting all the patches.

The purpose of this section is to show that the theory presented in this chapter
encompasses that presented in Chapter 2 (up to some approximations on the
non-resonant modes). By imposing a certain topology of the electrical matrices, it is
possible to decentralize partially the network by separating it into smaller networks, or
totally by breaking it down to individual shunt circuits. The advantage of doing so is that
the obtained electrical networks or circuits would require less interconnections, making
their practical realization easier. The procedure to achieve this goal and its impact are
discussed, and the tuning approach is extended to cases where the network is decentralized.

3.7.1 Decentralized networks

The electrical DoFs can be separated into Ng groups in order to obtain Ng unconnected
networks of smaller size. From Section 3.3, the elements of the admittance matrix
(Equation (3.15)) associated to two DoFs of different networks should be zero. Then,
there exists an ordering that makes the electrical matrices of the interconnecting network
block diagonal (each block being associated to a network), i.e.,

Ce =



Ce,11 0 · · · 0

0 Ce,22
. . . 0

...
. . . . . .

...

0 0 · · · Ce,NgNg


, G =



G11 0 · · · 0

0 G22
. . . 0

...
. . . . . .

...

0 0 · · · GNgNg


,

B =



B11 0 · · · 0

0 B22
. . . 0

...
. . . . . .

...

0 0 · · · BNgNg


. (3.85)
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With this ordering, the piezoelectric localization matrix also exhibits a block diagonal
structure

Ep =



Ep,1 0 · · · 0

0 Ep,2
. . . 0

...
. . . . . .

...

0 0 · · · Ep,Ng


. (3.86)

The capacitance matrix of the overall network is still given by Equation (3.22) but it
should be noted that since Cε

p is diagonal, EpC
ε
pE

T
p is diagonal as well. Thus, the

matrix C also has a block diagonal character.

Localization matrices to each group of DoFs are also introduced

Eg =

[
Eg,1 Eg,2 · · · Eg,Ng

]
=



I 0 · · · 0

0 I
. . . 0

...
. . . . . .

...

0 0 · · · I


, (3.87)

and localization matrices relating the piezoelectric DoFs of a specific group to those
of the whole piezoelectric structure are introduced as

EpE
T
p =

[
Epg,1 Epg,2 · · · Epg,Ng

]
. (3.88)

3.7.2 Electrical modes of the decentralized networks

Owing to the block diagonal structure of the electrical matrices, the generalized eigenvalue
problems on each block are decoupled. Assuming that group g is used to resonate at Ns,g

frequencies indexed by a set k(g), this problem then reads

CggΦe,gk(g)Ω
2
e,k(g) = BggΦe,gk(g), (3.89)

where Φe,gk(g) contains the mode shapes of modes k(g) restricted to the DoFs of
group g. The group can then be assigned to a maximum number of modes equal
to its number of electrical DoFs. The generalized eigenvectors matrix of the overall
network then also has a block diagonal topology

Φe =



Φe,1k(1) 0 · · · 0

0 Φe,2k(2)
. . . 0

...
. . . . . .

...

0 0 · · · Φe,Ngk(Ng)


. (3.90)
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The number of DoFs of the network is equal to the sum of the number of DoFs of
each group. This means that the decentralized networks are still able to control the same
number of modes as the centralized one. In this case, each group would have to be assigned
to a distinct set of modes. However, by constraining the topology of the electrical matrices
in Equation (3.85), the maximum coupling reachable with these modes is also constrained,
since the mode shapes have to be zero on groups to which they are not assigned.

3.7.2.1 Modal characteristics

It is now considered that a specific set of Ng,k networks indexed by g(k) =[
g1(k) · · · gNg,k(k)

]
is associated with the kth electrical resonance that targets

the mechanical mode r(k). The resonant mode shapes at the piezoelectric
transducers are gathered in a mode shape matrix

Φp,g(k)k = ET
p

[
Eg,g1(k)φe,g1(k)k · · · Ee,gNg,k (k)φe,gNg,k (k)k

]
=[

Epg,g1(k)φp,g1(k)k · · · Epg,gNg,k (k)φp,gNg,k (k)k

]
, (3.91)

where φe,gi(k)k is the mode shape of group gi(k) on all its electrical DoFs, and φp,gi(k)k

is that mode shape on the electrical DoFs associated to the piezoelectric transducers in
that group. Figure 3.18 schematically represents an example of these mode shapes.

φp,g1(k)k

φp,g2(k)k

φp,g3(k)k

Group 1 Group 2 Group 3 Group 4 Group 5

Figure 3.18: Example of a structure with P = 10 transducers grouped into Ng = 5
groups (separated by thick black lines): modes associated to electrical resonance k,

with g(k) =

[
1 3 5

]
.

The electrical resonance frequencies (gathered in a diagonal matrix Ωe,g(k)k) and damping
ratios (gathered in a diagonal matrix Ze,g(k)k) associated to these mode shapes in the
resonant networks are generally close. Making the assumption that they are identical,

Ωe,g(k)k ≈ ωe,kI, Ze,g(k)k ≈ ζe,kI. (3.92)

Considering only the resonant modes, Equation (3.26) becomes
(
s2 + ω2

sc,r

)
ηsc,r + sφT

sc,rΓpΦp,g(k)kηe,g(k) = 0(
s2 + 2ζe,kωe,ks+ ω2

e,k

)
ηe,g(k) − sΦT

p,g(k)kΓ
T
pφsc,rηsc,r = 0

. (3.93)
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Expressing the resonant electrical modal amplitude as a function of the mechanical one
and inserting them into the mechanical equation yields(

s2 + ω2
sc,r +

s2

s2 + 2ζe,kωe,ks+ ω2
e,k

φT
sc,rΓpΦp,g(k)kΦ

T
p,g(k)kΓ

T
pφsc,r

)
ηsc,r = 0. (3.94)

The effective open-circuit resonance frequency for this system is obtained by setting ωe,k =
0, i.e.,

ω̂2
oc,r = ω2

sc,r +φT
sc,rΓpΦp,g(k)kΦ

T
p,g(k)kΓ

T
pφsc,r. (3.95)

An EEMCF for this system would thus be given by Equation (3.8) using the
effective open-circuit resonance frequency

K̂2
c,rk =

ω̂2
oc,r − ω2

sc,r

ω2
sc,r

=
1

ω2
sc,r

φT
sc,rΓpΦp,g(k)kΦ

T
p,g(k)kΓ

T
pφsc,r. (3.96)

3.7.2.2 Global and local electrical mode shapes

If there were only one electrical resonant mode targeting mode r, Equation (3.94) would be(
s2 + ω2

sc,r +
s2

s2 + 2ζe,kωe,ks+ ω2
e,k

φT
sc,rΓpφ̂p,kφ̂

T

p,kΓ
T
pφsc,r

)
ηsc,r = 0, (3.97)

which has the same form as Equation (3.94). A unique equivalent global electrical

mode shape φ̂p,k can be found which satisfies

φT
sc,rΓpΦp,g(k)kΦ

T
p,g(k)kΓ

T
pφsc,r = φT

sc,rΓpφ̂p,kφ̂
T

p,kΓ
T
pφsc,r =

(
φT
sc,rΓpφ̂p,k

)2

. (3.98)

This global mode shape is a combination of the local mode shapes

φ̂p,k = Φp,g(k)kck. (3.99)

Inserting this expression into Equation (3.98), the coefficients of this global mode shape
can be found as

ck =
1√

φT
sc,rΓpΦp,g(k)kΦT

p,g(k)kΓ
T
pφsc,r

ΦT
p,g(k)kΓ

T
pφsc,r (3.100)

and the global mode shape itself is thus given by

φ̂p,k =
1√

φT
sc,rΓpΦp,g(k)kΦT

p,g(k)kΓ
T
pφsc,r

Φp,g(k)kΦ
T
p,g(k)kΓ

T
pφsc,r. (3.101)

This global mode shape spans the same subspace as Φp,g(k)k since it is a linear
combination of these local modes.
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3.7.2.3 Effective characteristics with background contributions from the
mechanical and electrical modes

Following the exact same procedure as described in Section 3.4.3.3, the system
in Equation (3.26) simplifies to

(
s2 + ω̂2

sc,r

)
ηsc,r + sγ̂Φ,rkηe,g(k)k = 0(

(I + κ̂e,k) s
2 + 2Ze,g(k)kΩe,g(k)ks+ Ω2

e,g(k)k

)
ηe,g(k)k − sγ̂

T
Φ,rkηsc,r = 0

, (3.102)

were ηe,g(k)k are the modal amplitudes associated with the mode shapes given in
Equation (3.91), and the effective modal characteristics accounting for the background
contributions of non-resonant mechanical and electrical modes are given by

ω̂2
sc,r = ω2

sc,r + γΦ,r<kS
−1γTΦ,r<k, (3.103)

γ̂Φ,rk = γΦ,rk − γΦ,r<kS
−1ΓT

Φ,>r<kΩ
−2
sc,>rΓΦ,>rk, (3.104)

and

κ̂e,k = ΓT
Φ,>rk

(
Ω−2
sc,>r −Ω−2

sc,>rΓΦ,>r<kS
−1ΓT

Φ,>r<kΩ
−2
sc,>r

)
ΓΦ,>rk, (3.105)

using the following notation for the modal piezoelectric coupling matrix

ΓΦ =

φT
sc,r

ΦT
sc,>r

Γp

[
Φp,g(k) Φp,<k

]
=

 γΦ,rk γΦ,r<k

ΓΦ,>rk ΓΦ,>r<k

 . (3.106)

Similarly to Equation (3.96), an EEMCF can be defined from the characteristics
of the system in Equation (3.102) as

K̂2
c,rk =

1

ω̂2
sc,r

γ̂Φ,rk (I + κ̂e,k)
−1
γ̂
T
Φ,rk. (3.107)

3.7.3 Design of the decentralized networks

3.7.3.1 Passivity

Passivity constrains the electrical mode shapes amplitudes in a similar way to
Section 3.5.1, but each network has to be considered separately owing to the local nature
of the electrical modes. The network associated to that group is passive if(

ET
g,gC

ε
pEg,g

)−1 − ET
p,gΦe,gk(g)Φ

T
e,gk(g)Ep,g =

(
Cε
p,gg

)−1 −Φp,gk(g)Φ
T
p,gk(g) � 0, (3.108)

where Cε
p,gg = ET

g,gC
ε
pEg,g is the capacitance matrix at constant strain of the

Pg piezoelectric transducers connected to group g, and Φp,gk(g) is the electrical
mode shapes matrix on these transducers.
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3.7.3.2 Optimal electrical mode shapes

Similarly to Section 3.5.2.1, it is sought to maximize the EEMCF defined in
Equation (3.96) by maximizing the objective function(

φT
sc,rΓpφ̂p,k

)2

= φT
sc,rΓpΦp,g(k)kΦ

T
p,g(k)kΓ

T
pφsc,r =

Ng,k∑
i=1

(
φT
sc,rΓpEpg,gi(k)φp,gi(k)k

)2
.

(3.109)
This objective function features a sum of squared terms, and is maximized if these
terms are themselves maximized. Each of these terms is related to a specific
group, and can thus be optimized considering only that group. Moreover, the
passivity constraints given in Equation (3.108) also pertain to a single group at
a time. Thus, the global constrained optimization problem can be broken down
into smaller local constrained optimization problems

Maximize
φp,gi(k)k

φT
sc,rΓpEpg,gi(k)φp,gi(k)k

Subject to φT
p,gi(k)k

(
Cε
p,gi(k)gi(k)

)−1
φp,gi(k)k ≤ 1

, (3.110)

for each group targeting mode r(k), i.e., ∀i = 1, · · · , Ng,k. This problem was solved in
Section 3.5.2.1 and the optimal solution is given by

φ?
p,gi(k)k =

1√
φT
sc,rΓpEpg,gi(k)

(
Cε
p,gi(k)gi(k)

)−1
ET
pg,gi(k)Γ

T
pφsc,r

(
Cε
p,gi(k)gi(k)

)−1
ET
pg,gi(k)Γ

T
pφsc,r.

(3.111)

This optimal mode shape is a scaled version of the optimal mode shape in Section 3.5.2.1,
restricted to the piezoelectric DoFs of the considered group.

Once all the optimal electrical mode shapes of a group are determined, the actual
mode shapes can be computed so as to respect passivity. Assuming relative
scaling factors are given for each modes and each group, the set related to a
group g is gathered in a diagonal scaling matrix

Dp,g =


dp,gk1(g)

. . .

dp,gkNs,g (g),

 (3.112)

and the electrical mode shape matrix is given by

Φp,gk(g) =
1

λMax

((
Cε
p,gg

)1/2
Φ?
p,gk(g)D

2

p,g

(
Φ?
p,gk(g)

)T (
Cε
p,gg

)1/2
)Φ?

p,gk(g)Dp,g. (3.113)

3.7.3.3 Automatic selection of the local scaling factors

Setting the scaling factors for each group and each mode can be a tedious
task, and may result in a poor choice that undermines the performance of
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the decentralized networks. This section presents a procedure to choose them
automatically, based on global scaling factors.

According to Equations (3.96) and (3.109), the EEMCF of the network, which is a
scaled-down version of the EEMCF of the structure by a global factor dp,k, can be
expressed as

K̂2
c,rk = d2

p,kK
2
c,r =

1

ω2
sc,r

Ng,k∑
i=1

(
φT
sc,rΓpEpg,gi(k)φ

?
p,gi(k)k

)2
d2
p,gi(k)k. (3.114)

It is seen that every group involved with mode k has a positive participation
to the EEMCF, and the amount of increase is controlled by the local relative
scaling factor. Thus, a global scaling factor dp,k on mode k can be enforced
if the local scaling factors dp,gi(k)k verify

d2
p,k =

1

K2
c,rω

2
sc,r

Ng,k∑
i=1

(
φT
sc,rΓpEpg,gi(k)φ

?
p,gi(k)k

)2
d2
p,gi(k)k. (3.115)

This is in general an underconstrained system, and several combinations of the local
scaling factors can give the same global scaling factor. However, because the maximum
value of the scaling factors is one (see Section 3.5.6.1), the maximum global scaling factor
that can be enforced with the considered configuration of decentralized networks is thus

max
(
d2
p,k

)
=

1

K2
c,rω

2
sc,r

Ng,k∑
i=1

(
φT
sc,rΓpEpg,gi(k)φ

?
p,gi(k)k

)2
. (3.116)

Now, this limit is reached if there is only one targeted mode. When multiple
modes are considered, the local scaling factors should be optimally distributed so
as to maximize the attainable global scaling factors. In terms of relative scaling
factors, Equation (3.115) can be written

d
2

p,k = kTp,kd
2

pg,k. (3.117)

where

kTp,k =
1

K2
c,rω

2
sc,r

[(
φT
sc,rΓpEpg,g1(k)φ

?
p,g1(k)k

)2 · · ·
(
φT
sc,rΓpEpg,gNg,k (k)kφ

?
p,gNg,k (k)k

)2
]

(3.118)
and

d
2

pg,k =

[
d

2

p,g1(k)k · · · d
2

p,gNg,k (k)k

]
(3.119)

The kth global relative scaling factor in Equation (3.117) grows the fastest if the local
relative scaling factors are aligned with its gradient, i.e.,

d
2

pg,k = αp,kkp,k. (3.120)

Using this distribution for every local relative scaling factor and writing Equation (3.117)
for each controlled mode yields[

d
2

p,1 · · · d
2

p,Ns

]
=

[
αp,1k

T
p,1kp,1 · · · αp,Nsk

T
p,Nskp,Ns

]
. (3.121)
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In an attempt to set the desired relative magnitude between the global scaling
factors, the local ones can thus be chosen by

d
2

pg,k =
d

2

p,k

kTp,kkp,k
kp,k. (3.122)

It should be underlined that, because the scaling factors of different groups are
constrained by different passivity constraints, the local scaling factors may not be
proportional to the local ones given in Equation (3.122), and will not guarantee that
the global scaling factors will have the desired relative magnitudes. Solving this
problem exactly would probably require some iterations.

3.7.3.4 Electrical frequencies and damping ratios

Once the electrical mode shapes are determined over all groups, the electrical frequencies
and damping ratios can be specified. They are tuned so as to enforce the global
mode shape given in Equation (3.101), accounting for the background contributions
of non-resonant modes. In the basis of the resonant modes, this global mode shape is
expressed by its coefficients (Equation (3.100)). Using the system with the effective
characteristics in Equation (3.102), the global mode shape is a resonant mode shape
of the overall network at a frequency ωe,k if it satisfies(

Ω2
e,g(k)k − ω2

e,k (I + κ̂e,k)
)
ck = 0 (3.123)

With the effective short-circuit resonance frequency in Equation (3.103) and the EEMCF
in Equation (3.107), the optimal global electrical resonance frequency ωe,k and damping
ratio ζe,k can be computed from Equations (1.45) and (1.46) as

ω2
e,k = ν2

(
K̂c,rk

)
ω̂2
sc,r, ζe,k = ς

(
K̂c,rk

)
. (3.124)

By contrast with Equation (3.63), the background-corrected capacitance has
not yet been accounted for here. Ωe,g(k)k should be set in order to enforce
Equation (3.123). Because it is a diagonal matrix,

ω2
e,k (I + κ̂e,k) ck = Ω2

e,g(k)kck = diag (ck)ω
2
e,g(k)k (3.125)

where diag(·) is an operator that turns a vector into a diagonal matrix (whose diagonal is
that vector) and ω2

e,g(k)k is a vector containing the squared electrical resonance frequencies

on the diagonal of Ω2
e,g(k)k. This vector is determined as

ω2
e,g(k)k = ω2

e,kdiag−1 (ck) (I + κ̂e,k) ck, (3.126)

which now accounts for the background-corrected capacitance, and finally

Ω2
e,g(k)k = diag

(
ω2
e,g(k)k

)
. (3.127)

As for the damping ratio matrix, it is simply set by

Ze,g(k)k =
ζe,k
ωe,k

Ωe,g(k)k. (3.128)

It can be noted that, since ck ∼ O (1) and κ̂e,k ∼ O
(
K2
c,r

)
(by comparison of

Equations (3.30) and (3.105)), Equation (3.126) indicates that each element in ω2
e,g(k)k is

proportional to ω2
e,k with a factor of order O

(
1 +K2

c,r

)
. Together with Equation (3.128),

this justifies the approximation made in Equation (3.92).
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3.7.3.5 Modal-based synthesis for decentralized networks

System characteristics: Cε
p, ΦT

scΓp, Ωsc

Modes to be controlled r(k) and associated global scaling factors dp,k (k = 1, · · · , Ns)
Piezoelectric transducers in the groups Epg,g and modes targeted by the group k(g)
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Figure 3.19: Flowchart of the proposed modal-based synthesis for decentralized
networks.

The modal-based synthesis for decentralized networks is summarized in Figure 3.19.
Compared to the centralized case, the user must also specify how the piezoelectric
transducers are allocated to each group, and which modes are targeted by each group.
The second step (determination of the local relative scaling factors) can be bypassed
if the user submits them as an input to the algorithm.
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3.8 Examples

The control of a piezoelectric structure with multiple decentralized networks is illustrated
with the free-free beam example of Section 3.6.2.

3.8.1 Multiple RL shunts targeting one mode

The first example illustrates the decentralized control approach by shunting each
pair of patches of the beam with simple parallel RL shunts. In this case, the
matrices featured in Equation (3.85) are diagonal, and each entry on the diagonal
corresponds to a capacitance, a conductance or a reluctance depending on the matrix
at hand. All shunts are first assumed to target the same mode, and four cases are
considered in which the first four modes are targeted.

Tuning multiple RL shunts targeting the same modes is not an easy task: the frequency
to which they should be tuned is not clear, and neither is the method to compute their
EEMCF to use Equations (1.45) and (1.46). By contrast, the proposed decentralized
modal-based approach automatically tunes these shunts without ambiguity about these
parameters, and accounts for the interaction between the shunts.
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Figure 3.20: Velocity FRF of the beam with parallel RL shunts targeting mode 1 ( ),
2 ( ), 3 ( ) and 4 ( ), and with the centralized network synthesized with the
modal-based approach ( ).

Figure 3.20 features the FRFs obtained with the parallel RL shunts and compares it to the
centralized network analyzed in Section 3.6.2.1. When all patches are assigned to a given
frequency, the associated resonance is mitigated in the same fashion as the single-mode
resonant RL shunt discussed in Section 1.2.2. The other modes remain largely undamped.
With the centralized network, nearly the same performance is obtained on all the targeted
modes simultaneously. This is possible because the optimal electrical mode shapes in this
network are orthogonal, as discussed in Section 3.5.6. Looking closely at the FRFs, the
RL shunts slightly outperform the centralized network on their targeted mode, especially
for higher-frequency modes. This comes from the detrimental capacitive influence of
non-resonant modes in the centralized network (see Section D.4.1).
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3.8.2 Multiple RL shunts targeting several modes

The patches are now individually shunted with a single parallel RL shunt, but the shunts
now target different modes. Figure 3.21 depicts two considered distributions of the first
four modes among the shunts: adjacent (Figure 3.21(a)) and alternate (Figure 3.21(b))
distributions. In general, choosing to assign specific modes to specific patches is not
a trivial task and could constitute an interesting extension to the proposed method,
but is beyond the scope of the present chapter.

The tuning problem for multiple RL shunts targeting several modes is not trivial
either, because the shunts may interact either resonantly or through quasi-static
responses. A calibration procedure was proposed by Toftekær and Høgsberg [139],
where the electrical boundary conditions on the patches associated with non-resonant
shunts were considered either as a short- or open-circuit, depending on whether the
shunt targets a higher- or lower-frequency mode, respectively. This method proved
efficient, but has the downside that a potentially large eigenvalue problem has to be
solved with the considered electrical boundary conditions for each resonant mode.
The proposed modal-based approach implicitly applies this procedure in the case of
multiple RL shunts, because a patch associated with only capacitively-dominated mode
is effectively in open circuit. However, the approach does not require the solution of
an eigenvalue problem because this solution is accurately approximated accounting
for the background contributions of non-resonant modes.

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

(a)

1 1 1 1 12 2 2 2 23 3 3 3 34 4 4 4 4

(b)

Figure 3.21: Schematic representation of a free-free beam (in gray) coupled to multiple
RL shunts (in white) through piezoelectric patches (in orange) with adjacent (a)
or alternate (b) distribution. The number inside the boxes representing RL shunts
indicates the mode that the shunt targets.

Figure 3.22 compares the performance of the RL shunts to that of the centralized network.
This time, both control strategies mitigate simultaneously the targeted modes. However,
the price to pay for the simplifications in electrical interconnections in the RL shunts
compared to the centralized network is a global decrease in performance. The distribution
of patches among the modes also has a strong impact on performance. The adjacent
distribution’s performance is particularly poor on mode 1. This is due to the relatively
small modal strain incurred by the first mode shapes on the patches close to the edge
that are assigned to mode 1 (see Figure 3.21(a)).
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Figure 3.22: Velocity FRF of the beam with parallel RL shunts targeting mode 1 to 4
with adjacent ( ) and alternate ( ) distributions, and with the centralized network
synthesized with the modal-based approach ( ).

3.8.3 Multiple multimodal shunt circuits

The last example featuring individually-shunted patches is the case of multiple shunt
circuits having themselves multiple resonance frequencies. The extra feature brought by
the method proposed in this chapter compared to that of Chapter 2 is the account for
the interaction between the different shunt circuits.
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Figure 3.23: Velocity FRF of the beam with shunt circuits targeting mode 1 to 4 and
with local relative scaling factors all equal to one ( ) or optimized ( ), and with the
centralized network synthesized with the modal-based approach ( ).

Figure 3.23 compares the FRFs of the multiple shunt circuits to that of the network. We
note that such comparison was made in [58, 59]. It was not completely fair, because in
these two references the CF shunt circuit was used with rather small capacitances, which
means on the account of the example in Section 2.10.3 that the performance of this circuit
was substantially worse than what can be expected from multi-branch shunt circuits.

In Figure 3.23, two strategies were used to set the local relative scaling factors
for each shunt circuit. The first one arbitrarily set them all to one, whereas the
second one used the optimization approach outlined in Section 3.7.3.3. The latter
strategy offers a globally better performance than the former, which stresses the
importance of adequately choosing the distribution of control authority over the
modes among the transducers. The decentralized approach nonetheless exhibits a
lower performance than its centralized counterpart.
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Figure 3.24: Equivalent global electrical mode shapes of the shunt circuits with local
relative scaling factors all equal to one (-�-) or optimized (-×-): mode 1 (a), 2 (b),
3 (c) and 4 (d).

In order to better understand why the procedure presented in Section 3.7.3.3 exhibits
a better performance than choosing the local relative scaling factors all equal to ones,
the equivalent global electrical mode shapes can be analyzed in Figure 3.24. It can be
observed that the procedure amplifies the mode shapes associated to a specific mode
in regions where the other mode shapes are small in amplitude, thereby exploiting the
mode shape at hand to its maximum. The global scaling factors are thus higher, as
exhibited in Figure 3.25. However, because the passivity constraints on each group affect
the local scaling factors non-uniformly, the relative magnitude between the global scaling
factors cannot be exactly enforced with this method.
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Figure 3.25: Global scaling factors attained by the shunt circuits with local relative
scaling factors all equal to one (�) or optimized (�).
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3.8.4 Multiple decentralized networks

The last example briefly investigates the impact of partial or total decentralization, by
considering decentralized networks interconnecting a decreasing number of transducers.
The case where there is only one transducer per group of electrical DoFs boils down
to the above example of the multiple shunt circuits.
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Figure 3.26: Velocity FRF of the beam shunt circuits targeting mode 1 to 4 ( ) and
with networks targeting mode 1 to 4 and interconnecting five ( ), ten ( ) and twenty
( ) pairs of adjacent patches.

Figure 3.26 shows the FRFs obtained by creating groups of various sizes of adjacent
piezoelectric patches that target the first four modes. The patches numbers used in
the networks are given in Table 3.2. It can again be seen that decentralization plays
a detrimental role on performance. In this case, this is due to the fact that the mode
shapes are far from being orthogonal, which undermines performance and makes it close
to that of shunt circuits, as discussed in Section 3.5.6.1.

10
2

10
3

Frequency (Hz)

-60

-50

-40

-30

-20

-10

M
o
b
ili

ty
 (

d
B

, 
re

f.
 m

/s
/N

)

Figure 3.27: Velocity FRF of the beam shunt circuits targeting mode 1 to 4 ( ) and
with networks targeting mode 1 to 4 and interconnecting five ( ), ten ( ) and twenty
( ) pairs of alternated patches.

Using another arrangement where the patches are alternately connected to the networks
(as given in Table 3.2), Figure 3.27 shows that decentralization now has a much weaker
impact on performance. This is due to the near-orthogonality that the mode shapes now
exhibit under this alternate distribution. Once again, this highlights the importance of
adequately distributing the transducers among the networks.
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Group 1 Group 2 Group 3 Group 4

4 groups, adjacent 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 16,17,18,19,20

4 groups, alternate 1,5,9,13,17 2,6,10,14,18 3,7,11,15,19 4,8,12,16,20

2 groups, adjacent
1,2,3,4,5,

6,7,8,9,10

11,12,13,14,15,

16,17,18,19,20
/ /

2 groups, alternate
1,3,5,7,9,

11,13,15,17,19

2,4,6,8,10,

12,14,16,20
/ /

Table 3.2: Patches distribution among the decentralized networks for different cases.

3.9 Conclusion

Aiming to provide a simple and systematic design strategy to mitigate multiple
resonances of complex structures, this chapter leveraged the concept of passive electrical
networks interconnecting piezoelectric transducers. By tailoring the electrical modal
properties, effective multimodal damping can be obtained. Specifically, the electrical
mode shapes were optimized in order to maximize performance while guaranteeing the
passivity of the network. Passivity was formally interpreted as a performance limiter
which restricts the maximal amplitude attainable by the mode shapes. The resonance
frequencies and damping ratios of the electrical modes were then tuned to make the
action of the network equivalent to that of a resonant shunt at multiple frequencies.
The electrical matrices of the network could eventually be retrieved from these modal
properties. The proposed modal-based synthesis was applied in various numerical
example and demonstrated its ability to provide broadband damping.

In order to reduce the potentially numerous interconnections in the electrical network,
partially or totally decentralized electrical networks were investigated. The modal-based
synthesis was adapted to these cases, and it was demonstrated that this would either
lead to a lower performance or a lower number of controlled modes than the centralized
network. This decentralization procedure also allowed to bridge the three commonly used
approaches for multimodal piezoelectric shunt damping, namely multiple piezoelectric
shunts, multimodal circuits, and electrical networks. These strategies were compared with
a piezoelectric free-free beam, and the superior performance of a centralized electrical
network was demonstrated. However, practical operational considerations may lead to
favor the other solutions because of their simplicity.

The examples developed in this chapter highlighted several possible areas to explore as
a continuation of this work. A first aspect would be the impact of patches distributions
among the networks. It was shown that the mutual orthogonality of the optimal mode
shapes played a prominent role in the performance of the networks. However, the
transducers selection was made on an empirical basis, and it could be interesting to
develop an automatic selection procedure. Specifying other mode shapes than those
optimal for the case where the network controls a single mode could also be beneficial.

Another question to be addressed concerns the practical realization of the networks.
This was partially answered in the second part of this chapter, where decentralization
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was brought up to the point where the networks boil down to mere shunt circuits. In
case of RL shunts, the electrical parameters are directly given by the diagonal elements
of the electrical matrices. For multimodal shunt circuits, the characteristics obtained
in this chapter are the scaling factors (whose squares are in this case identical to the
residues in Chapter 2), the resonance frequencies and damping ratios. This gives all the
specifications necessary to tune passive shunt circuits, as in the second part of Chapter 2.
The realization of a network interconnecting multiple transducers remains nevertheless
unsolved for now, and a procedure should be designed in order to deduce the topology
and electrical constituents of the network. If this problem is solved, the impact of some
variables that are underconstrained (such as when the electrical mode shape matrix is
rank-deficient) on topology and on the parameters could also be investigated.

Finally, this theoretical work should be experimentally validated. If the network is to
be realized with passive elements, the previous perspective is a prerequisite. DVAs could
constitute a potentially simple and efficient solution to implement these networks, and the
correspondence of the network with an assembly of passive components would no longer
be an issue. Special precautions would however have to be taken with respect to what
was presented in Chapter 1. The first one is that the circuits would have to be adapted
to multiple piezoelectric transducers. The DVA would also have to act as an impedance,
because the admittance matrix (Equation (3.15)) is improper.





4 Numerical optimization of
piezoelectric vibration absorbers

Abstract

This chapter presents a computational method for the purpose of multimodal
vibration mitigation with piezoelectric vibration absorbers. The goal of the
proposed algorithm is to simultaneously minimize the maximum amplitude of
the problematic resonances. To circumvent the issues associated with direct
H∞ optimization, a norm-homotopy optimization approach is developed. The
algorithm aims to minimize norms of increasing order of a transfer function.
Starting from a low order for which the cost function is smooth, the norm order
is gradually increased, which numerically stiffens the problem but makes it closer
to the H∞ one. The outcome of the algorithm is termed all-equal-peak design
because all controlled peaks are equal in amplitude. This all-equal-peak design is
illustrated on a two-degree-of-freedom structure, two beams and a plate.

4.1 Introduction

Chapters 2 and 3 presented techniques to control multiple modes of a structure. The
tuning approaches proposed therein approximated the dynamics of the electromechanical
system at hand by considering pairs of resonant modes, and the non-resonant modes were
cast as background contributions, as proposed by Høgsberg and Krenk [119]. However,
this approximation can be challenged for structures with closely-spaced modes, or when
these non-resonant modes substantially contribute to the response in comparison with the
resonant ones. This is generally observable by the presence of unbalanced peaks.

When the performance associated with the initial tuning is unsatisfactory, it may be
complex and time-consuming to manually adapt the parameters of the shunt circuit.
This can nonetheless be done automatically through numerical optimization, wherein the
characteristics of the shunt circuit are adapted in order to minimize a given quantity,
e.g., the H∞ norm of a particular transfer function.

Numerical optimization for vibration mitigation was largely used with TMDs (see [162]
for a short review). Its use with piezoelectric damping is less widespread. Steffen and
Inman [163] used a genetic algorithm to optimize the parameters of multiple piezoelectric
shunt circuits. Fleming et al [147] resorted to gradient-based optimization to minimize the
H2 norm of a transfer function in order to determine the resistances of multiple-branch
shunt circuits. Jeon [164] used particle swarm optimization to tune a series-parallel
impedance-type circuit whereas Cigada et al [146] also exploited gradient-based algorithms
to tune a current flowing shunt circuit. Beradengo et al [165] obtained the optimal
impedance of a passive circuit through optimization based on linear matrix inequalities.
An interesting feature of this work is that the circuit topology is not assumed beforehand,
but it is rather an outcome of the optimization process. Gardonio et al [166] proposed a
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tuning strategy for the parameters of a CF shunt circuit using Newton’s method based
on the maximization of the power dissipated in the shunt. This approach holds promises,
as it is potentially implementable for real-time tuning of the absorbers.

Numerical optimization can also be used to place the transducers on a structure in an
effort to maximize the EEMCF with specific modes. For instance, Ducarne et al [76] used
an extensive parameter space exploration to optimize the characteristics of piezoelectric
patches placed on a cantilever beam. Giorgio et al [58, 158] optimized the placement of
multiple piezoelectric patches on a plate in order to maximize the norm of the coupling
matrix. The placement of the transducers is an important and challenging aspect of
piezoelectric damping, but is not addressed in this work.

Despite its versatility, numerical optimization suffers from important drawbacks. First, it
generally requires an accurate model of the structure to be controlled, which is not often
available in practice. Second, the cost function may be nonsmooth and non-convex,
and the global minimum can be difficult to reach.

To address these issues, a new kind of optimization algorithm is proposed in this
chapter. The developed algorithm attempts to minimize the norms of different orders
of a transfer function. It starts with a low-order norm, which is smooth and can easily
be numerically optimized. Based on the optimal solution with lower-order norms, it
then progressively increases the order, which makes the problem numerically stiffer1,
but closer to the H∞ optimization problem. The outcome of the algorithm generally
is a so-called all-equal-peak design, i.e., all the peaks of the controlled resonances
are equal in amplitude. The algorithm can directly work with experimental FRFs,
thereby bypassing the need to build a model of the structure.

Section 4.2 highlights the challenges associated with a direct optimization of the H∞ norm.
The norm-homotopy (NH) approach is introduced to address these issues in Section 4.3,
and an optimization algorithm for piezoelectric vibration absorbers is presented. It is
then illustrated with several examples in Section 4.4.

4.2 Challenges associated to H∞ optimization

The parameters of vibration absorbers are usually optimized with respect to a specific
metric. Figure 4.1 features contours of typical metrics, the H2 and H∞ norms of the
receptance, for various resistances and inductances of a series RL shunt in the case of a
SDoF structure (see Section 1.2.2.2). The parameters minimizing these norms are close
but not identical. A notable difference can be observed, i.e., the H2 norm is smooth
whereas the H∞ norm is not. In particular, a sharp corner in the contour lines of the
H∞ norm can be observed around L ≈ LRLSopt for R . RRLS

opt .

This nonsmooth character can be understood by looking at the receptance for a
fixed resistance and a varying inductance, as illustrated in Figure 4.2. When L
is too small, the leftmost peak has the highest amplitude and determines the H∞
norm. As L is increased, this peak decreases while the rightmost peak increases,
up to the point where this latter becomes more prominent. The point where they
are equal is where the H∞ norm is nonsmooth.

1Numerical stiffness refers to the tendency of a problem to exhibit a solution largely sensitive to the
parameters of this problem, and is not to be confused with mechanical stiffness.
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Figure 4.1: Contours of the H2 (a) and H∞ (b) norms of the receptance of a SDoF
oscillator with a series RL piezoelectric shunt (contour levels are not evenly spaced).
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Figure 4.2: H∞ norm of the receptance of a SDoF oscillator with a series RL
piezoelectric shunt, with R = 0.75RRLSopt . Plots of the receptance for L = 0.95LRLSopt ,L =

1.005LRLSopt (corresponding to the minimum H∞ norm) and L = 1.05LRLSopt are inset.

To illustrate the difficult convergence of a gradient-based method applied to a nonsmooth
cost function [167], the parameters of the series RL shunt were numerically optimized
for various initial guesses of resistance and inductance. Two types of cost functions
were considered, namely the H2 and H∞ norms of the receptance. The parameters were
optimized with MATLAB’s fmincon routine. In this simple case, the numerical solutions
can be compared to the analytical ones [81]. The numerical optimizations are assessed
through their number of iterations and the relative error of their optimal cost functions
with respect to the analytical one. The resulting maps are presented in Figure 4.3.

The H2-norm optimization consistently finds the optimal solution (the maximum relative
error being 3×10−14) and takes at most 11 iterations. By contrast, the output of the H∞
optimization can reach a relative error as high as 17.7% at the cost of up to 80 iterations.

Looking at an example where R0 = 0.5RRLS
opt and L0 = LRLSopt in Figure 4.4 shows that the

optimizer struggles at the discontinuity of the cost function surface and zigzags around this
region, taking smaller and smaller steps up to the point where it terminates prematurely.

An alternate approach is to use fminimax, specialized for optimization problems aiming



4.2. Challenges associated to H∞ optimization 164

0.8 0.9 1 1.1 1.2

L
0
/L

opt

RLS

0.5

1

1.5
R

0
/R

o
p
t

R
L
S

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a)

0.8 0.9 1 1.1 1.2

L
0
/L

opt

RLS

0.5

1

1.5

R
0
/R

o
p
t

R
L
S

0

10

20

30

40

50

60

70

80

(b)

0.8 0.9 1 1.1 1.2

L
0
/L

opt

RLS

0.5

1

1.5

R
0
/R

o
p
t

R
L
S

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(c)

0.8 0.9 1 1.1 1.2

L
0
/L

opt

RLS

0.5

1

1.5

R
0
/R

o
p
t

R
L
S

0

10

20

30

40

50

60

70

80

(d)

Figure 4.3: Relative error of the H2 (a) and H∞ (c) optimizations, and number of
iterations of theH2 (b) andH∞ (d) optimizations of the receptance of a SDoF oscillator
with a series RL piezoelectric shunt, with initial resistance R0 and inductance L0.
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Figure 4.4: Optimization variables history of the H2 (a) and H∞ (b) (− ◦ −:
fmincon,−×−: fminimax) optimizations of the receptance of a SDoF oscillator with
a series RL piezoelectric shunt with initial guess R0 = 0.5RRLSopt and L0 = LRLSopt .

to minimize the maximum value of a given set of functions. In this case, the set of
functions is the set of values of the FRF sampled at different frequencies. As testified
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by Figure 4.4(b), the output of this optimizer is much closer to the optimal solution
than that of fmincon. However, examples in Section 4.4 will show that it is not as
robust when multiple resonances are targeted.

4.3 A norm-homotopy approach for H∞
optimization

4.3.1 General principles

The strategy proposed herein relies on a NH optimization during which problems of
increasing complexity are solved sequentially using the previously-obtained parameters
as an initial guess for the next problem. Specifically, the p-norm of the receptance
is minimized, and p is sequentially increased so as to approach the H∞ norm, as
schematically presented in Fig. 4.5. A low value of p puts more weight on the
parts of the transfer function with lower amplitudes and makes the optimization
problem less stiff, whereas the subsequent increase in p ensures that resonances
with high amplitudes are penalized enough.

Initial tuning

Compute p-norm

Minimum p-norm?

Update absorber(s)
parameters

Performance
convergence?

Increase p

End

No

No

Yes

Yes

Figure 4.5: Conceptual flowchart of the proposed norm-homotopy optimization
algorithm.

4.3.2 p-norm of a transfer function

The p-norm of a function f is given by

Hp{f} =

(∫ ∞
0

|f(ω)|pdω
)1/p

. (4.1)
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In practice, the p-norm can be estimated with a quadrature formula using a finite set
of samples at frequencies ωn (n = 1, · · · , Nω) as

Hp{f} ≈ χ

(
Nω∑
n=1

∣∣∣∣f(ωn)

χ

∣∣∣∣pwn
)1/p

, (4.2)

where wn are quadrature weights and χ is a strictly positive scaling factor that
does not affect the p-norm. χ improves numerical conditioning for high values
of p, and a typical choice would be

χ = max
n∈[1,Nω ]

|f(ωn)|. (4.3)

In [162], it was proposed to use the p-norm of the vector containing the peaks amplitudes
of the receptance. This requires to locate them using numerical search algorithms. In this
thesis, it is rather proposed to approximate directly the p-norm of the transfer function
with quadrature formulas. This has two main advantages. The first is that the algorithm is
often more robust. The sampling points are set in the beginning of the algorithm, which
allows to define precisely the frequency bands of interest. By contrast, a peak-finding
algorithm may converge to a peak which is not of interest. The second advantage is the
ability of the proposed approach to work directly with experimental measurements without
the need to fit any model. As shall be shown hereafter, the only required information
comes from the frequency responses of the host system.

4.3.3 Frequency response of the controlled structure

Starting either from Equation (3.1) or Equation (3.2), the dynamics of the controlled
electromechanical system can be put into the generic form

M0s
2x + C0sx + K0x + B0xe = f

(HA(s) + HA0) xe −BT
0 x = 0

, (4.4)

where xe is a vector of electrical DoFs (charge or voltage), HA(s) is a matrix characterizing
the dynamics of the absorbers, HA0 is the piezoelectric capacitance or elastance matrix
at constant strain, and B0 is a piezoelectric coupling matrix. Subscript 0 is used to refer
to the host system. If a Norton-type model is used, by comparison with Equation (3.1),

K0 := Ksc, B0 := Γp, xe := V, HA0 := Cε
p, HA(s) :=

1

s
Ys(s), (4.5)

where Ys(s) is the admittance matrix of the circuits/networks connected
to the piezoelectric transducers, and if a Thévenin-type model is used, by
comparison with Equation (3.2),

K0 := Koc, B0 := −Θp, xe := q, HA0 := −Eε
p, HA(s) := −sZs(s),

(4.6)
where Zs(s) is the impedance matrix of the circuits/networks connected to the
piezoelectric transducers. Going back to the generic model in Equation (4.4), the
electrical DoFs can be deduced from the second line of this equation as

xe = (HA(s) + HA0)−1 BT
0 x. (4.7)
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Inserting this relation into the first line of Equation (4.4) gives(
M0s

2 + C0s+ K0 + B0 (HA(s) + HA0)−1 BT
0

)
x

=
(
H0(s) + B0 (HA(s) + HA0)−1 BT

0

)
x = Hc(s)x = f , (4.8)

where H0(s) and Hc(s) are the dynamic stiffness matrices of the uncontrolled and
controlled structures, respectively. The latter is thus obtained from the former with a
low-rank update representing the feedback action of the absorbers. Using the SMW
formula (Equation (A.2)), the inverse of Hc can be expressed as

H−1
c (s) = H−1

0 (s)−H−1
0 (s)B0

(
HA(s) + HA0 + BT

0 H−1
0 (s)B0

)−1
BT

0 H−1
0 (s). (4.9)

In practice, one is often interested in a particular transfer function. If the forcing can
be described by a spatial distribution wf and amplitude f such that f = wff , and if
the output is a combination of the generalized DoFs of the structure given by wu, the
uncontrolled and controlled receptances are respectively given by

h0(s) = wT
uH−1

0 (s)wf , hc(s) = wT
uH−1

c (s)wf . (4.10)

Hence, using Equation (4.9), the controlled receptance can also be expressed as

hc(s) = h0(s)−wT
uH−1

0 (s)B0

(
HA(s) + HA0 + BT

0 H−1
0 (s)B0

)−1
BT

0 H−1
0 (s)wf . (4.11)

We note that the only FRFs of the host system that need to be known to use
Equation (4.11) are contained in the matrix0 0

0 HA0

+

[
wu B0

]T
H−1

0 (s)

[
wf B0

]
=

 h0(s) wT
uH−1

0 (s)B0

BT
0 H−1

0 (s)wf HA0 + BT
0 H−1

0 (s)B0

 ,
(4.12)

which can either be computed from a model, or directly measured from an experimental
setup. This is an incentive for using the SMW formula [168] in addition to the advantage it
brings in terms of computational cost when evaluating the controlled receptance. Indeed,
a direct resolution of Equation (4.8) would require the resolution of a large-size linear
system, whereas Equation (4.11) only requires the factorization of a matrix whose size is
equal to the number of piezoelectric transducers, i.e., of small size.

4.3.4 p-norm optimization

The goal of the optimization algorithm is to find the optimal electrical parameters of
the absorbers through the nonlinear programming problem

Minimize
ξ

Hp

{
|hc|2

}
Subject to c (ξ) ≤ 0

(4.13)

where ξ is the vector containing the absorber parameters. The squared amplitude of the
transfer function at hand |hc|2 is used rather than the transfer function itself to make
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the optimization problem smooth. Constraints c can be added to guarantee the passivity
of the absorber, usually through the positivity of some parameters. This problem can
be solved numerically with standard optimization routines.

The gradients of the p-norm are computed analytically to increase the speed and accuracy
of the proposed algorithm. From Equation (4.2), the lth element of the gradient of the
p-norm with respect to the absorbers parameter ξl is given by

∂Hp

{
|hc|2

}
∂ξl

=

(
Nω∑
i=1

(
1

χ
|hc(jωi, ξ)|2

)p−1
∂ |hc(jωi, ξ)|2

∂ξl

)(
Nω∑
i=1

(
1

χ
|hc(jωi, ξ)|2

)p) 1
p
−1

.

(4.14)
The derivative of the squared receptance is simply

∂ |hc(jωi, ξ)|2

∂ξl
=

∂

∂ξl
(h∗c(jωi, ξ)hc(jωi, ξ)) = 2<

{
h∗c(jωi, ξ)

∂hc(jωi, ξ)

∂ξl

}
. (4.15)

The derivative of the receptance with respect to ξl is computed thanks to Equation (4.11)
as

∂hc(jωi, ξ)

∂ξl
= wT

uG(jωi)
∂HA(jωi)

∂ξl
GT (jωi)wf (4.16)

where
G(jωi) = H−1

0 (jωi)B0

(
HA(jωi) + HA0 + BT

0 H−1
0 (jωi)B0

)−1
. (4.17)

Despite the rather complicated structure of Equations (4.16) and (4.17), computing the
gradient of the cost function is not cumbersome for two reasons. First, each element in
Equation (4.17) is known from the computation of hc(jωi, ξ). Second, the derivative of
HA with respect to ξl can be computed analytically. The procedure to compute them
depends on the type of absorber at hand (circuits or networks), and is detailed hereafter.

4.3.4.1 Derivatives for shunt circuits

Multi-branch shunt circuits can be modeled using their transfer functions (with
Equations (2.115), (2.122), (2.136) and (2.141) for Hollkamp’s, the CF, SFCF and
SPIS shunt circuits, respectively), and their derivative with respect to the electrical
parameters can readily be computed. It is the same for the circuits with ideal
Norton’s admittance and ideal Thévenin’s impedance (Equations (2.60) and (2.92),
respectively) when using the residues, frequencies and damping ratios. For the CB
shunt circuit, working with transfer matrices can be somewhat impractical, and a
convenient alternative is to work with its state-space model, as developed in Section C.1.
In this case, the immittance of the circuit has the form

CA (sI−AA)−1 BA + DA. (4.18)

The derivative of this immittance with respect to a given parameter ξl can then be
computed by

∂CA

∂ξl
(sI−AA)−1 BA + CA (sI−AA)−1 ∂AA

∂ξl
(sI−AA)−1 BA

+ CA (sI−AA)−1 ∂BA

∂ξl
+
∂DA

∂ξl
. (4.19)
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If the shunt admittance is modeled, the electrical DoFs should be the voltages,
and the absorber’s transfer matrix is

HA(s) =
Ys(s)

s
, (4.20)

whereas if the shunt impedance is modeled, the electrical DoFs should be the
charges, and the absorber’s transfer matrix is

HA(s) = −sZs(s). (4.21)

4.3.4.2 Derivatives for networks

The electrical DoFs for a network are the nodal voltages, and the transfer matrix for
a network is given by (using Equation (3.15))

HA(s) =
1

s
Y(s) = Ce +

1

s
G +

1

s2
B. (4.22)

According to Section 3.5.1, the matrices Ce, G and B need to be symmetric positive
semidefinite in order for the network to be realizable with passive elements. It is possible
to parametrize these matrices based on their eigenstructure and Givens parametrization
in such a way that this condition is enforced. This rather technical aspect is discussed
in Section E.1. The derivative of the transfer matrix is given by

∂HA(s)

∂ξl
=
∂Ce

∂ξl
+

1

s

∂G

∂ξl
+

1

s2

∂B

∂ξl
. (4.23)

4.3.5 Norm-homotopy optimization procedure

Once the optimization has converged for a given value of p, p is then increased in order
to penalize high-amplitude peaks more strongly and approach the H∞ optimum. The
optimization problem in Equation (4.13) is solved starting from the previously-obtained
optimal solution. A heuristic scheme for p given by the double exponential progression

p = 22k , k ∈ N (4.24)

is considered. The value of k starts from zero and is incremented by one after convergence.
This NH algorithm may be terminated when no significant change is observed in the
absorbers parameters and/or in the value of the p-norm.

Figure 4.6 summarizes schematically the proposed NH optimization algorithm.

4.4 Examples

This section presents several examples to illustrate typical outputs of the NH optimization
algorithm. The p-norm is evaluated using a trapezoidal quadrature with sampling
frequencies uniformly distributed in frequency bands around the targeted resonances.
These bands and the number of samples within them were chosen empirically. A
small number of sampling points makes the optimization faster but less accurate.
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Host system FRFs: h0(s), wT
uH−1

0 (s)B0, BT
0 H−1

0 (s)wf , HA0 + BT
0 H−1

0 (s)B0,
Initial tuning ξ(0)

Sampling frequencies ωn and associated quadrature weights wn

k := 0, p := 2

Controlled FRF hc and derivatives
∂hc
∂ξl

Equations (4.11), (4.16) and (4.17)

p-norm Hp

{
|hc|2

}
and derivatives

∂Hp

{
|hc|2

}
∂ξl

Equations (4.2), (4.14) and (4.15)

Minimum p-norm?

Update ξ

Performance
convergence?

k := k + 1, p = 22k

ξ(0) = ξ

ξopt = ξ

No

No

Yes

Yes

Figure 4.6: Flowchart of the proposed norm-homotopy optimization algorithm.

While a finite number of samples does not guarantee to capture the maximum of
a FRF exactly, it can be well-approximated with a sufficient resolution because
the FRF varies slowly in the vicinity of its maximum. In general, 50 points were
chosen per frequency band encompassing the two peaks associated to a controlled
resonance. A more automatic selection procedure could be devised based e.g. on
the EEMCF (because it governs the bandwidth of RL shunts).

The optimization problem (4.13) is solved in MATLAB thanks to the fmincon routine.
This routine is called for each p-norm optimization step with an initial guess given by
the optimal solution computed by the previous p-norm optimization (except for the
first optimization, where the initial guess is formed using the methods in Chapters 2
and 3 for circuits and networks, respectively).

Some results were compared to the output of fminimax. To make the approaches
comparable, fminimax was given FRFs of the controlled structure computed in
the same way as in the NH algorithm, namely with the SMW formula at the
sampling frequencies used in the NH algorithm.

4.4.1 Two-degree-of-freedom structure

The first example used to demonstrate the NH optimization algorithm is the
two-degree-of-freedom structure depicted in Figure 4.7 with the characteristics given
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m1 m1
k1 k2

f

x

Zs

Figure 4.7: Two-degree-of-freedom structure with a piezoelectric stack shunted with a
circuit of impedance Zs.

in Table 4.1. Modal damping of 0.1% was added to the structure.

Parameter m1 m2 k1 k2 kp,sc γp Cε
p

Value 1kg 1kg 1N/m 1N/m 0.96N/m 0.2N/V 1F

Table 4.1: Characteristics of the two-degree-of-freedom structure.

Hollkamp’s shunt circuit [126] and the CB circuit with series RL shunts [127] were
considered to demonstrate the approach. Their initial tuning was performed with the
method outlined in Chapter 2 (Sections 2.7 and 2.9, respectively), using a balanced
control authority over the two modes (i.e., r1 = r2 = 0.5). Figure 4.8 depicts the
driving-point receptance at the second mass. It can be observed that the initial tuning
results in FRFs with slightly unbalanced peaks.
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Figure 4.8: FRF of the two-degree-of-freedom system: short-circuited patches (—)
and controlled with Hollkamp’s circuit ( ) and a current blocking circuit with series
RL shunts ( ): initial tuning (a) and optimal tuning (b).

Upon optimizing the circuits’ characteristics with the NH algorithm, FRFs where all
peaks have the same amplitude are obtained in both cases. Because of this salient
feature, this design is called all-equal-peak design. It appears to be a generalization of
the equal-peak design for the SDoF case [83]. The optimal H∞ norms obtained with
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both shunt circuits are almost identical, although it can be observed in the insets of
Figure 4.8 that the CB circuit slightly outperforms Hollkamp’s circuit. This difference
is nonetheless quite insignificant, which supports the statement made in Chapter 2 that
passive shunts can exhibit at their best similar performance.
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Figure 4.9: Different steps of the NH optimization on the FRF of the
two-degree-of-freedom system with Hollkamp’s shunt circuit near the first (a) and
second (b) resonance: initial tuning ( ), k = 1 ( ), k = 2 ( ), k = 3 ( ), k = 4
( ) and k = 5 ( ).

Figure 4.9 analyzes the different steps of the NH optimization. For low-order p-norms,
the algorithm reduces the global imbalance existing between the peaks. As p is increased,
the higher-amplitude peaks are more and more penalized, and the design converges to
an all-equal-peak one when p = 4.29 × 109 (k = 5).

In spite of the rather marginal change in vibration attenuation between the initial and
optimal tunings in Figure 4.8, the electrical parameters of both circuits underwent
significant changes during the optimization, as testified in Tables 4.2 and 4.3.

R0 L0 C1 R1 L1

Initial value 0.0843Ω 0.6718H 0.2538F 0.2371Ω 1.9752H

Optimal value 0.1354Ω 0.8373H 0.1113F 0.2775Ω 3.5598H

Table 4.2: Initial and NH optimal parameters of Hollkamp’s shunt circuit for the
two-degree-of-freedom structure.

Lastly, the results of the NH optimization were compared to those obtained with
fminimax. The comparison is presented in Figure 4.10. With Hollkamp’s shunt circuit,
both optimizers converged to the same optimal solution. However, this is not the case for
the CB circuit. The optimal solution of fminimax is also an all-equal-peak design, but is
slightly worse than that of the NH algorithm. Comparing Tables 4.3 and 4.4, the optimal
parameters obtained with the two approaches are markedly different. This advocates for
the presence of multiple local minima in the H∞ norm even for this simple example, and
shows that the all-equal-peak property is not sufficient to guarantee a global optimum.
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R1 L1 R2 L2 C̃1 L̃1

Initial value 0.247Ω 0.9792H 0.1193Ω 1.0066H 1F 1.0102H

Optimal value 5.5596Ω 3.7073H 0.0929Ω 0.7321H 2.6971F 0.1865H

Table 4.3: Initial and NH optimal parameters of the current blocking circuit with series
RL shunts for the two-degree-of-freedom structure.
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Figure 4.10: FRF of the two-degree-of-freedom system: short-circuited patches (—)
and controlled with Hollkamp’s circuit (a) and a CB circuit with series RL shunts (b):
NH optimal solution ( ) and fminimax’s optimal solution ( ).

R1 L1 R2 L2 C̃1 L̃1

Optimal value 0.1769Ω 0.921H 0.2405Ω 2.5296H 0.2215F 6.1282H

Table 4.4: fminimax’s optimal parameters of the current blocking circuit with series
RL shunts for the two-degree-of-freedom structure.

4.4.2 Cantilever piezoelectric beam

The piezoelectric cantilever beam introduced in [137] and studied in Section 2.5 is
considered again to illustrate peculiar features of the algorithm. A shunt circuit
yielding ideal Norton’s admittance (see Section 2.4) is used.

The NH optimization is first used to mitigate the first two resonances of the beam’s tip
driving-point receptance. Despite the similarity with the two-degree-of-freedom example,
the optimal result in Figure 4.11(a) is not an all-equal-peak design, yet it exhibits a
lower H∞ norm than the initial design. The reason for the absence of the all-equal-peak
feature can be understood by looking at the FRF obtained with a parallel RL shunt
circuit tuned to the first mode in Figure 4.11(b). In this case, the mere single-mode
shunt yields a significant reduction of the second mode, whose controlled amplitude is
lower than that of the first mode. This stems from both the ability of parallel RL shunts
to damp higher-frequency modes, and the comparatively low modal amplitude of the
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Figure 4.11: FRF of the cantilever beam with short-circuited patches (—) and
controlled with an ideal Norton’s admittance circuit ( : initial tuning, : NH
optimal tuning) (a) and a parallel RL shunt circuit targeting the first mode ( ) (b).

second mode at the beam tip. The two-mode circuit can thus perform at best like an
single parallel RL shunt targeting the first mode.
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Figure 4.12: FRF of the cantilever beam with short-circuited patches (—) and
controlled with an ideal Norton’s admittance circuit ( : initial tuning, : NH
optimal tuning with scaled FRF): true FRF (a) and scaled FRF (b). The gray
area indicates the frequency region where the FRF is multiplied by 10 in the NH
optimization.

In a similar spirit to the use of residues in Chapter 2 and relative scaling factors in
Chapter 3, the FRF can be scaled differently at different frequencies to put more
emphasis on certain modes. Figure 4.12(a) displays a result obtained by multiplying
the receptance of the beam by 10 at frequencies near that of the second mode. In
this case, peaks associated to the same modes have the same amplitude, but peaks
associated to different modes have an amplitude difference of 20dB. The NH algorithm
retrieves the all-equal-peak design, as shown in Figure 4.12(b).

The algorithm can work with other transfer functions than receptances. Figure 4.13
presents the accelerance of the beam, for which an all-equal-peak design is also obtained.
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Figure 4.13: Accelerance of the cantilever beam with short-circuited patches (—) and
controlled with an ideal Norton’s admittance circuit ( : initial tuning, : NH
optimal tuning with scaled FRF).

4.4.3 Free-free piezoelectric beam

The free-free beam in [155] and studied in Section 3.6.2 is used to assess the
ability of the NH algorithm to tune networks.

A fully centralized network is considered first, as in Section 3.6.2.1. Applying the NH
algorithm to the mobility of the beam yields an all-equal-peak design (Figure 4.14). The
control performance on the first mode is slightly improved but largely at the expense
of the vibration reduction of higher-frequency modes. The arguable inability of the NH
algorithm to improve performance is not surprising, because the network is in giving
near-optimal control on all modes simultaneously.
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Figure 4.14: Velocity FRF of the beam with short-circuited patches (—), with a
network synthesized with the modal-based approach ( ) and tuned with the NH
optimization ( ).

A peculiar outcome obtained around the first mode is shown in the inset of Figure 4.14.
The optimization algorithm splits and distributes the electrical resonance frequencies
around that of the structure with the result that the controlled FRF exhibits three peaks
instead of a traditional pair of peaks. This strategy was recently shown to provide better
vibration reduction than a mere single-resonance-frequency shunt [169].

The control of higher-frequency modes could be improved by e.g. weighting the mobility.
A sensible choice to scale the FRF around a specific mode is to evaluate it when all patches
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are shunted targeting a single mode, as it would represent a near best-case reduction. The
inverse of this transfer function’s amplitude evaluated at the (short-circuit) resonance
frequency of the uncontrolled structure could then be used as a scaling factor near this
resonance. Doing so for every resonance would yield a more ”natural” way of scaling
the transfer function for a network (a FRF scaled this way is hereafter referred to as
naturally-scaled FRF). Figure 4.15 presents the results obtained with such a scaling on
the first four modes. The performance is hardly affected, and the NH optimization simply
fine-tunes the electrical parameters to obtain perfectly balanced peaks (as indicated in
the inset). This marginal improvement seems to indicate that the network is already
performing nearly-optimally, which supports the theory developed in Chapter 3.
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Figure 4.15: Velocity FRF of the beam with short-circuited patches (—), with a
network synthesized with the modal-based approach ( ) and tuned with the NH
optimization using a naturally-scaled FRF ( ).

Decentralized networks are now considered. In Section 3.8.4, it was shown that the
distribution of patches among the networks has a strong impact on performance. This
result may seem surprising, because the same number of piezoelectric transducers is
used, which should intuitively lead to the same control authority on the modes of the
structure. The four networks interconnecting five patches in adjacent and alternate
ways (see Table 3.2) are thus reconsidered. Their characteristics are optimized with
the NH algorithm using a naturally-scaled FRF.
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Figure 4.16: Velocity FRF of the beam with short-circuited patches (—), with a
network synthesized with the modal-based approach ( ) and tuned with the NH
optimization using a naturally-scaled FRF ( ).
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Starting off with the adjacent patch distribution, Figure 4.16 shows that the algorithm is
able to slightly improve the vibration attenuation by distributing the electrical frequencies
of the networks around the targeted structural frequency, similarly to [169]. The third
resonance of the host even exhibits four peaks.

10
2

10
3

Frequency (Hz)

-60

-50

-40

-30

-20

-10

M
o
b
ili

ty
 (

d
B

, 
re

f.
 m

/s
/N

)

Figure 4.17: Velocity FRF of the beam with short-circuited patches (—), with a
network synthesized with the modal-based approach ( ) and tuned with the NH
optimization using a naturally-scaled FRF ( ).

Figure 4.17 features the FRF of the beam using the same strategy with an alternate patch
distribution; the electrical resonance frequencies are even more distributed around the host
resonance, which leads to five peaks per controlled mode. It would thus appear that more
distributed electrical resonances provide better vibration reduction, in the limits of the
number of possible resonances (i.e., the number of electrical DoFs of the networks). The
relative improvement brought by the optimization is similar to that with adjacent patch
distribution. By comparison of Figures 4.16 and 4.17, it can be seen that the performance
is still better with the alternate distribution. A further insight into the dynamics and
coupling of networks may be needed to understand why the distribution is so impactful.
The possibility that the optimizer reached a local minimum should also be investigated.

4.4.4 Simply-supported plate

The simply-supported piezoelectric plate in Figure 4.18(a) is the last example to
demonstrate the algorithm in a more challenging case. The geometrical and material
properties of the setup are reported in Tables 4.5 and 4.6, respectively. A near-square
plate was chosen to feature closely-spaced resonance frequencies [140]. A pair of
symmetrically-bonded patches are placed on the structure to ensure good coupling
with the lowest-frequency modes, and the forcing point (xf , yf ) = (155mm, 335mm)
was chosen to excite those modes. The patches are connected in parallel and used
as an equivalent transducer to be connected to a shunt cicuit. They are made of
PIC 255, and the material characteristics were taken from [138]. The FE model
of the plate in Figure 4.18(b) was built with SAMCEF [136]. Modal damping of
0.1% was assigned to all modes of the model.

A CB circuit with series shunts was considered to mitigate the first four modes
of the plate. The initial tuning was performed using a balanced control authority
over the modes (r1 = r2 = r3 = r4 = 0.25). The parameters are reported in
Table 4.7(a). The frequencies of the second and third modes are quite close, and
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Figure 4.18: Schematic representation of a simply-supported plate (in gray) excited
by a point force (in red) to which are bonded piezoelectric patches (in orange) (a) and
finite element mesh of the plate (b).

Parameter ls ws ts xp yp lp wp tp

Value 500mm 480mm 1mm 295mm 95mm 100mm 100mm 0.25mm

Table 4.5: Geometrical characteristics of the simply-supported piezoelectric plate as
indicated in Figure 4.18(a) (ts and tp are the thickness of the plate and one patch,
respectively).

Parameter Es νs ρs

Value 68GPa 0.36 2.7×103kg/m3

(a)

Parameter EEp EEp,z νp νp,z νz,p ρp d31 εσ33

Value 62.1GPa 48.3GPa 0.32 0.3 0.39 7.8×103kg/m3 -180pC/V 15.4nF/m

(b)

Table 4.6: Material characteristics of the simply-supported piezoelectric plate
(aluminum (a) and PIC 255 (b)).

this results in an initial tuning with unbalanced peaks but nonetheless able to reduce
the amplitudes of the four targeted resonances. Another issue is that this initial
tuning yields a negative resistance in the third shunt.

The NH algorithm is again able to output an all-equal-peak design; the performance
on the first mode is improved at the expense on performance on the three other
modes. The parameters of this configuration are given in Table 4.7(b). The same
optimization performed with fminimax is shown in Figure 4.20. This tuning is
substantially worse than the initial one. This surprising outcome was explained by
a detailed look at the optimization process: fminimax takes a large step early on in
the optimization process which seriously detunes the absorber. The optimizer does
not seem to be able to recover from this inadequate step afterwards, and terminates
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Figure 4.19: FRF of the simply-supported plate with short-circuited patches (—) and
controlled with a CB circuit with series RL shunts ( : initial tuning, : NH optimal
tuning).

early when only two peaks are equated in amplitude.
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Figure 4.20: FRF of the simply-supported plate with short-circuited patches (—) and
controlled with a CB circuit with series RL shunts ( : initial tuning, : fminimax’s
optimal tuning).

The performance degradation on modes 3 and 4 in Figure 4.19 is rather large when
comparing the initial and optimized cases. Figure 4.21 displays the receptance when
a naturally-scaled FRF is considered, and Table 4.7(c) lists the associated parameters.
While the H∞ norm is worse than in Figure 4.19, the overall reduction of the resonances
is better in this case, which makes it a practical alternative to pure H∞ optimization. We
note that the optimized circuit controls modes 2 and 3 with a single electrical resonance,
whereas another resonance has been assigned to the first mode, featuring a triple peak in
the controlled FRF. Finally, the improvement in the controlled FRF comparing the initial
tuning to the optimized one in Figure 4.21 appears quite marginal. However, it should
be noted that the initial tuning requires a negative resistance, whereas the optimal one
does not and is thus realizable with passive electrical elements.

4.5 Conclusion

Fine-tuning of the parameters of a piezoelectric vibration absorber for optimal
performance can be a tedious task if performed manually. For this purpose, numerical
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Parameter Ri Li C̃i L̃i

i = 1 2.36kΩ 64.77H 2.66µF 22.88H

i = 2 1.95kΩ 17.21H 1.33µF 7.71H

i = 3 -19.47kΩ 101.83H 443.7µF 20.31H

i = 4 2kΩ 30.31H / /

(a)

Parameter Ri Li C̃i L̃i

i = 1 0.9GΩ 789.32H 1.14µF 12.46H

i = 2 89.7mΩ 70.03H 8.47µF 1.11H

i = 3 225.6kΩ 5.69mH 424.5nF 10.13H

i = 4 6.554kΩ 97.55H / /

(b)

Parameter Ri Li C̃i L̃i

i = 1 632.9mΩ 36.43H 6.52µF 11.24H

i = 2 3.08kΩ 22.79H 8.23µF 8.75H

i = 3 453.6MΩ 38.83H 1.07µF 5.44H

i = 4 1.28kΩ 17.91H / /

(c)

Table 4.7: Parameters of a CB shunt controlling the simply-supported plate: initial
tuning (a), NH optimal tuning (b) and NH optimal tuning with naturally-scaled
FRF (c).
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Figure 4.21: FRF of the simply-supported plate with short-circuited patches (—) and
controlled with a CB circuit with series RL shunts ( : initial tuning, : NH optimal
tuning with naturally-scaled FRF).

optimization can be used. However, when the cost function is the H∞ norm of a
transfer function, gradient-based numerical optimizers can struggle to find an optimal
tuning. The encountered issues mainly stem from the presence of multiple local
minima, and the nonsmooth character of the cost function.

To partly remedy these problems, a NH optimization procedure was proposed in this
chapter. In this approach, a sequence of optimization problems is solved. Starting
with the optimization of low-order norms of transfer functions, the problem becomes
less numerically stiff and each peak in the FRF influences the cost function. As the order
of the norm increases, the problem becomes closer to a H∞ optimization problem, and
the high-amplitude peaks of the transfer function are more penalized. Most of the time,
the outcome of the algorithm is an all-equal-peak design, in which all controlled peaks
feature the same amplitude. This approach appears to provide a numerically robust
way to perform H∞ optimization. It should however be emphasized that there is no
theoretical guarantee that it reaches the global minimum.

The approach was formulated using the SMW formula to allow for a reduction in
the computational burden, and the possibility to work directly with experimental
measurements. The algorithm is also quite versatile. Indeed, it is possible to work
with classical transfer functions such as the receptance, mobility or accelerance, and to
weight some frequency bands to put more emphasis on specific modes.

The proposed optimization method was applied to various piezoelectric structures and
demonstrated its ability to efficiently minimize the H∞ norm of transfer functions with
passive vibration absorbers. Furthermore, the findings it provided further support the
general statements made in the previous chapters. For structures with closely-spaced
resonance frequencies, the algorithm can bring real enhancement in the initial tuning.
Hence, it constitutes an additional tuning tool for electrical circuits or networks, but its
outcome should be verified and assessed with the engineering judgment of the designer.

The algorithm in its present form is focused toward the optimization of single-input
single-output (SISO) transfer functions but it could be generalized to MIMO
transfer functions by simple concatenation of the different transfer functions in
the NH optimization. More efficient quadrature formulas than the trapezoidal
rule used in the examples herein could be exploited. This would probably allow
for a reduction of the number of sampling frequencies, thereby speeding up the
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algorithm. An interesting extension would be to concurrently optimize the size and
position of piezoelectric transducers; this would however probably require a lot more
information from the host structure. The outcome of the proposed optimization
approach could also be experimentally validated.



5 Mitigation of nonlinear vibrations

Abstract

Nonlinear structural behaviors can be particularly detrimental to tuned vibration
absorbers, owing mainly to the dependency of the resonance frequency of the host
on the amplitude of vibration. Properly-tuned nonlinear absorbers can overcome
this difficulty. Specifically, if they are tuned according to a nonlinear principle
of similarity, i.e., the functional form of their nonlinearity is identical to that of
their host, they can outperform their linear counterparts by working efficiently in a
broader forcing amplitude range. This chapter illustrates this fact experimentally
using a digital vibration absorber. The approach is also theoretically extended to
the control of multiple nonlinear resonances, building upon the developments in the
previous chapters.

5.1 Introduction

Resonant piezoelectric vibration absorbers can be used to mitigate structural vibrations,
but they rely on a precise tuning of the electrical resonance frequency according to that
of the host structure. The latter may be variable due to, e.g., time-varying characteristics
or structural nonlinearities. Hence, resonant piezoelectric vibration damping is often
considered as lacking robustness. Vibration absorbers purposely including nonlinear
elements were thought of as a possible solution against this lack of robustness, because
the presence of nonlinearities can broaden the bandwidth of the absorber [170]. Reviews
on these techniques with mechanical absorbers can be found in [171, 172].

Focusing on applications with smart materials, Agnes [173] and Agnes and Inman [174]
investigated the effect of adding nonlinear elements in the shunt circuit of a piezoelectric
absorber. They found that its bandwidth could be increased; however, undesirable
nonlinear phenomena such as quasiperiodic (QP) and chaotic motions could also
be observed. Along the same lines, Richard et al utilized continuous switching
of a piezoelectric shunt to realize a nonlinear absorber [92]. In [175], Zhou et
al explored a piezoelectric NES comprising an essential nonlinearity made of a
ferroelectric capacitor and a negative capacitance circuit. Because this absorber has
no preferential resonance frequency, it can pump the energy from the host structure
in an irreversible fashion [28]. This energy transfer is, however, conditioned upon
an energy threshold. In other words, the transfer does not occur if the vibrational
energy of the host structure is not large enough [176].

In order to provide effective vibration mitigation in a wide range of forcing amplitudes,
Viguié and Kerschen [177] derived a qualitative tuning rule for a nonlinear tuned
vibration absorber (NLTVA), i.e., the frequency-energy dependence of the absorber
should be identical to that of the host structure. More recently, Habib et al [178]
introduced a nonlinear principle of similarity to develop NLTVAs whose performance
is much less sensitive to forcing amplitude. This principle states that the functional
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form of the NLTVA’s nonlinearity should be identical to that of the host structure. If
the nonlinear coefficient of the absorber is tuned adequately, the equal-peak method
can be generalized to nonlinear regimes of motion, at least up to the merging of an
isolated resonance [179]. Detroux et al. [180] studied the associated adverse dynamics
and how the NLTVA parameters can be adapted to prevent such undesirable phenomena.
Soltani and Kerschen [181] extended this concept to a nonlinear piezoelectric tuned
vibration absorber (NPTVA). The absorber contains a nonlinear electrical element
whose nonlinearity is similar to that present in the host structure. The principle of
similarity also proved efficient to modify multiple nonlinear resonances in [182] and
to design nonlinear active control schemes in [36, 183]. Techniques going beyond
this principle of similarity to tailor the behavior of systems in strongly nonlinear
regimes of motion were recently proposed in [184, 185].

Focusing now on experimental demonstrations, a nonlinear absorber relying on the
saturation phenomenon was realized through digital control in [186] and [187]. The first
practical implementation of a NPTVA was achieved in [104] whereas Silva et al [188]
realized a piezoelectric NES using analog electronics. An interesting feature of [104] is
that the use of synthetic inductors (and, thus, of a power supply) was avoided, leading
to a fully passive piezoelectric absorber. Different nonlinear absorbers, including an
NES and an NLTVA were realized experimentally using a tunable magnetic vibration
absorber [189]. Zhao et al [36] also experimentally demonstrated the efficiency of an
active nonlinear positive position feedback (NPPF) to mitigate nonlinear vibrations.

A more challenging scenario is when multiple resonances are to be mitigated. The
design methods presented in Chapters 2, 3 and 4 rely on a precise frequency tuning,
and nonlinear resonances can deteriorate performance as well. Several studies addressed
the case where an NES is used for mitigating sequentially several linear resonances,
see, e.g., [190, 191]. An example of a multimodal NLTVA is given in [192], where an
analog electrical network augmented with a nonlinear capacitor (being analog itself to the
structural nonlinearity) was used to maintain performance of the network in nonlinear
regimes of motion. Besides this work, there are very few studies dealing with multimodal
nonlinear absorbers attached to a nonlinear host.

The practical realization of a passive nonlinear absorber is not easily achievable, be it
with mechanical or electrical elements. By contrast, the full flexibility of the DVA can
be exploited to implement arbitrarily complex nonlinear laws, hence, paving the way for
a more widespread use of nonlinear absorbers in real-world applications. This is what is
pursued in the first part of this chapter and in [193–195]. The second part of this chapter
introduces a tuning methodology for NPTVAs that mitigate several nonlinear resonances
simultaneously. Specifically, the objective is to maintain equal peaks in the frequency
response for all controlled resonances in both linear and nonlinear regimes of motion. The
problem is similar to that in [196, 197] but is extended to piezoelectric absorbers [145].

This chapter first reviews a series of important concepts associated with nonlinear
vibrations in Section 5.2. Section 5.3 explains the working principles of the NPTVA.
Section 5.4 then presents a DVA used to experimentally mitigate a nonlinear resonance
of a clamped-free beam. It demonstrates how a linear absorber loses its efficiency
after being detuned, whereas a NPTVA is able to maintain performance over a
broader range of forcing amplitudes. Section 5.5 discusses how this concept can
be extended to the simultaneous control of multiple nonlinear resonances, using
nonlinear versions of the shunt circuits studied in Chapter 2. This approach is
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numerically demonstrated in Section 5.6.

5.2 Important features of nonlinear vibrations

Nonlinearity is the rule rather than the exception, and nonlinear systems can exhibit
a rich and complex dynamical behavior [198]. In structural dynamics, nonlinearities
are categorized based on their origin: material or constitutive, geometric, inertia,
body forces and friction [199]. Geometric nonlinearities occur because of the nonlinear
strain-displacement relation. In piezoelectric structures, geometric nonlinearities
may have a significant impact on coupling [200]. Material nonlinearities due to the
nonlinearity of a given material’s constitutive equations are also common. Piezoelectric
materials are often subject to hysteresis [101, 201, 202] coming from the reorientation
of the polarization of ferroelectric domains due to extreme events, such as large strains
or strong electric fields. In this thesis, the focus is placed on geometric nonlinearities,
although material nonlinearities are also encountered in Section 5.4.

5.2.1 The Duffing oscillator

A celebrated example in nonlinear vibrations is the Duffing oscillator [203], governed by

mẍ+ cẋ+ kx+ k3x
3 = f, (5.1)

where k3 is the nonlinear stiffness coefficient. As an illustrative example, the Duffing
oscillator with parameters given in Table 5.1 is briefly studied in this section.

Parameter m (kg) c (kg/s) k (N/m) k3 (N/m3)

Value 1 0.05 1 0.1

Table 5.1: Parameters of the Duffing oscillator.

Figure 5.1 features the nonlinear frequency responses (NFRs) of the system for two
excitation amplitudes. The method to compute these NFRs will be explained in
Section 5.2.2. The first forcing amplitude is 0.01N, and is low enough so as to make
the nonlinear forces in the system negligible. Hence, the NFR is virtually identical to
the FRF of a SDoF oscillator governed by Equation (5.1) with k3 = 0.

For a forcing amplitude of 1N, the regime is strongly nonlinear. A first striking feature
is the change in the resonance frequency of the system. This illustrates the salient
frequency-energy dependence in nonlinear systems, i.e., the resonance frequency of a
nonlinear structure depends on the forcing amplitude.

Another peculiar feature is the existence of multiple solutions for some frequencies, which
is why an NFR is not a function. Some of them are unstable, meaning in this context
that they cannot be observed because an infinitesimal perturbation to the equilibrium of
these unstable solutions would drive the system toward another stable solution. Stability
changes occur through bifurcations (in this case, fold bifurcations), which indicate a
qualitative change in the dynamics of the system as a parameter (in this case, the forcing
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Figure 5.1: NFR of the Duffing oscillator excited by a forcing amplitude of 0.01N ( )
and 1N ( ). —: stable solution, - - : unstable solution, •: fold bifurcation, �: stable
attractors at 1N and ω=1.5rad/s.

frequency) is varied [204]. Whether the system is on the high- or low-amplitude branch
(as depicted in Figure 5.1) depends on its initial state. This can be assessed with basins of
attraction (BoAs), as in Figure 5.2. These BoAs were obtained by the time integration of
Equation (5.1) starting from different initial conditions. They represent the attractor to
which the system converges with these initial conditions. This confirms the coexistence of
two attractors when the Duffing oscillator is forced at ω=1.5rad/s at an amplitude of 1N.

Figure 5.2: BoAs (represented with the steady-state motion amplitude) of the Duffing
oscillator harmonically-forced at 1N and ω=1.5rad/s for various initial positions (x0)
and velocities (v0). The corresponding attractors in the NFR are given in Figure 5.1:
�: |x/f | = 0.83m/N, �:|x/f | = 4.49m/N.

Finally, another resonance can be observed at ω=0.33rad/s in the inset of Figure 5.1. This
resonance is due to the third harmonic of the displacement generated by the cubic stiffness.
This harmonic component coincides with the resonance frequency of the underlying linear
system, which thus resonates in a so-called 3:1 superharmonic resonance.

5.2.2 The harmonic balance

In this thesis, the harmonic balance method (HBM) is used to solve the governing
equations in the frequency domain. This method has gained wide acceptance in structural
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dynamics, see, e.g., [205–207]. It has also be extended to piezoelectric structures [208].

The governing equations of a piezoelectric system can generically be cast into the set of
nonlinear first-order ordinary differential equations (see, e.g., Section F.1)

ẋs = Asxs + Bsf + fnl(xs), (5.2)

where As is the state-evolution matrix, Bs is the state-input matrix, f is the external
forcing and fnl(xs) gathers the nonlinearities of the system. A classical HBM formalism is
used to express the vector of Nx state variables xs with a truncated Fourier series with Nh

harmonics. In the frequency domain, the vector of generalized DoFs can be characterized
by a column vector of length Nz = (2Nh + 1)Nx gathering the harmonic coefficients z

xs(t) = (Q(ωt)⊗ INx) z (5.3)

where Q(ωt) is a vector of 2Nh + 1 harmonic functions

Q(ωt) =

[
1√
2

sin(ωt) cos(ωt) · · · sin(Nhωt) cos(Nhωt)

]
, (5.4)

and ⊗ denotes the Kronecker tensor product. Using a Galerkin procedure, Equation (5.2)
may be expressed in the frequency domain as

[(I2Nh+1 ⊗As)− (∇(ω)⊗ INx)] z + b(z) = AL(ω)z + b(z) = bext, (5.5)

where AL(ω)z, b(z) and bext are the frequency-domain expressions of the generalized
loads in the underlying linear system, the nonlinear loads fnl(xs) and the external loads
−Bsf , respectively. The frequency-domain differential operator ∇(ω) is given by

∇(ω) =



0 0

0


1

. . .

Nh

⊗
0 −ω

ω 0




. (5.6)

Expressing the nonlinear forces in the frequency domain can be achieved using the
alternating frequency–time domain (AFT) method [205, 209]. With this method,
the harmonic coefficients are used to compute the state variables in the time domain
using Equation (5.3). The nonlinear forces can then easily be computed in the time
domain. Finally, the frequency-domain expression of the nonlinear forces is derived
with an inverse Fourier transform of the obtained time series.

For a given set of parameters, Equation (5.5) can be solved for the harmonic coefficients
z using, e.g., a Newton-Raphson procedure. A branch of solutions can then be computed
through numerical continuation [204], thereby giving the NFRs.

Stability changes and bifurcations can be characterized by monitoring the Floquet
exponents of the system [206]. They are estimated by the eigenvalues (with the smallest
absolute imaginary parts) of the frequency-domain Jacobian matrix, namely

J(ω, z) = [(I2Nh+1 ⊗As)− (∇(ω)⊗ INx)] +
∂b

∂z
. (5.7)

The solution is unstable if any of these eigenvalues has a positive real part, and is stable
otherwise.



5.3. The nonlinear piezoelectric vibration absorber 188

5.3 The nonlinear piezoelectric vibration absorber

The performance of piezoelectric vibration absorbers controlling nonlinear structures is
now investigated.
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Figure 5.3: Nonlinear SDoF piezoelectric structure controlled by a series RL and
nonlinear capacitor shunt.

Figure 5.3 features a NPTVA, where a nonlinear capacitor is connected in series to
the RL shunt in order to counteract the detuning effect of the structural nonlinearity.
The functional form of this nonlinear electrical element is chosen according to a
principle of similarity [178, 181], i.e., it should be identical to that of the host
structure. The governing equations thus read

mẍ+ cẋ+ kocx+ k3x
3 − θpq = f

Lq̈ +Rq̇ +
1

Cε
p

q + C3q
3 − θpx = 0

. (5.8)

where C3 is the cubic elastance coefficient (C3 = 0 for a linear shunt circuit). This
coefficient can be determined from the parameters of the system using the simplified
formula in [104]:

C3 =
2L2

m2
k3, (5.9)

Figure 5.4 shows the NFRs of the Duffing oscillator controlled by either a linear absorber
(Figure 5.4(a)) or a NPTVA (Figure 5.4(b)). The parameters of these systems are those
of the experimental setup studied in Section 5.4 and are given in Tables 5.2 and 5.3.
As the forcing amplitude increases, the linear absorber becomes severely detuned,
which generates detrimental vibrations. The apparition of Neimark-Sacker bifurcations
indicate the presence of QP oscillations in the response of the structure [206]. QP
oscillations feature the presence of frequency components in the structural response
which are not integer multiples of the forcing frequency [210]. By contrast with
damped linear systems, QP oscillations can persist in the steady-state response of
harmonically-forced nonlinear systems. An example of such a response is given in the
inset of Figure 5.4(a), where the second frequency component acts as a slow modulation
of the motion amplitude. Conversely to its linear counterpart, the NPTVA performance
remains practically unchanged for the different forcing amplitudes.

The working range of the NPTVA is not endless. Figure 5.5(a) depicts the NFR
of the system controlled by the NPTVA for higher forcing amplitudes. Together
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Figure 5.4: NFRs of a Duffing oscillator controlled by a linear absorber (a) and a
NPTVA (b): 0.2N ( ), 0.4N ( ), 0.6N ( ), 0.8N ( ). —: stable periodic solution, - -
: unstable periodic solution, - · -: QP solution, •: fold bifurcation, H: Neimark-Sacker
bifurcation. In (a), the inset depicts the time series of the displacement in the controlled
structure at the marked point of the QP branch (◦).

with the main response appears a high-amplitude isolated response called a detached
resonance curve (DRC). DRCs are another peculiarity of nonlinear systems. Their
presence is clearly undesirable in vibration mitigation applications, because they are
not detected by classical continuation procedures, being detached from the main NFR.
Unsuspected stable, high-amplitude attractors may thus exist for some combinations
of forcing frequencies and amplitudes. When the forcing amplitude reaches 1.2N, this
DRC coalesces with the main NFR at the rightmost peak, dramatically increasing its
amplitude and marking the end of the working range of the NPTVA.
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Figure 5.5: NFRs of a Duffing oscillator controlled by a NPTVA (a): 1N ( ), 1.1N
( ) and 1.2N ( ), and loci of resonant peaks (b) for the linear absorber ( ) and
the NPTVA ( ). —: stable solution, - - : unstable solution, •: fold bifurcation, H:
Neimark-Sacker bifurcation.

Figure 5.5(b) summarizes the performance of the linear and nonlinear absorbers, by
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tracing the locus of resonant peaks (computed with the method proposed in [211]) in
the forcing amplitude - response amplitude plane. In both cases, the peak amplitudes
are equal for low forcing. The rightmost peak amplitude grows and eventually turns
back when the DRC merges with the main NFR, at 0.75N and 1.18N for the linear and
nonlinear absorbers, respectively. At this point, the unstable response tracked by the
numerical method corresponds to the local minimum of the DRC. A second turn-back
occurs at a lower forcing amplitude but at a higher response amplitude, and beyond
this point the numerical method tracks the local maximum of the DRC. This turn-back
where the local minimum and maximum join signals the birth of the DRC. The NPTVA
does not appear to substantially modify the DRC onset compared to the linear absorber,
but outperforms it before 1.18N by maintaining peaks of near-equal amplitude, and by
delaying the DRC coalescence with the main NFR. Beyond that point, the worst-case
amplitudes are similar for the linear and nonlinear absorbers.

5.4 Digital nonlinear piezoelectric vibration

absorber

5.4.1 A digital piezoelectric vibration absorber

A challenge pertaining to the implementation of a NPTVA is the tailoring of the
nonlinear behavior of the electrical components so as to obey the principle of
similarity. Even if this problem was addressed for cubic nonlinearities through the
use of saturable inductors [104], there is not much variety in the functional forms
that can be realized with electrical components. The DVA solves this issue, since
the realization of an arbitrary impedance possible.

5.4.1.1 Hardware

The DVA used in this chapter is similar to that used in Chapter 1 and mostly
follows what was described in Section 1.3.1. The schematic of the digital absorber
is depicted in Figure 5.6. The voltage references ∆Vin and ∆Vout are generated by
shunt voltage regulators. OA4 now implements a differential amplifier with unity
gain. OpAmps 1 to 4 are powered with low voltages, whereas OA5, a PA78 power
operational amplifier from APEX Microtechnology [212], is separately powered with
high voltages. This makes it able to cope with the high voltages generated by the
piezoelectric transducer, which went up to ± 150V.

5.4.1.2 Software

As in Section 1.3.2, the MCU (Arduino Due) can easily be programmed to implement
an arbitrary I/O relation with MATLAB Simulink. This section explains how a simple
nonlinear feedback can be used to emulate a NPTVA.

The nonlinear voltage can be computed if the charge flowing through the piezoelectric
transducer is known. It can be retrieved from the output voltage since

Vout = Riq̇ (5.10)
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Figure 5.6: Layout of the digital absorber used to emulate a NPTVA.

Moreover, from the second line of Equation (5.8),

αV = αVL + αVNL, (5.11)

where VL = Lq̈ + Rq̇ is the voltage across the RL circuit, VNL = C3q
3 is the voltage

across the nonlinear capacitor, and V is the voltage across the electrodes of the
piezoelectric transducer (Equation (1.11)). Then, Equations (5.10) and (5.11) suggest
that the nonlinear shunt circuit may be implemented by adding a nonlinear feedback
to the block diagram in Figure 1.13, as depicted in Figure 5.7.

ADC –
+

∆Vin

gin
αV αVL

Ys(s) g
Riq̇

gout++

∆Vout

DAC

1

Ri

∫
·dt

q
VNL(q)α

–
+

αVNL

Figure 5.7: Block diagram of the synthesized NPTVA.

Small signal offsets are unavoidable in practice. This causes a drift of the integrator and
an eventual clipping of the signals. As a remedy, a lossy integrator (i.e., a first-order
lowpass filter) or a bandpass filter can replace the integrator. The passband of such
filters should be in a low frequency range, such that the filter behaves as an integrator
in the frequency range of interest. The advantage of using a bandpass filter over a
lossy integrator is its ability to completely reject DC offsets, preventing asymmetric
AC signal distortion due to the nonlinearity.

5.4.1.3 Stability

Similarly to Section 1.6, delay-induced instabilities must be suppressed before using
a DVA to control nonlinear structures. For a digital NPTVA, the underlying linear
system must be stabilized by modification of its linear characteristics such as proposed
in Section 1.6.5. Its nonlinear characteristics can be left unchanged, and this is
sufficient to guarantee the stability of the controlled nonlinear system for low enough
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forcing amplitudes1. Indeed, the action of the nonlinearities would just be equivalent
to small perturbations applied to a stable system.

For the experimental validation treated in this chapter, delay-induced instabilities
were not an issue because the sampling frequency of 10kHz was large enough to avoid
instabilities, and the adverse dynamical phenomena described in Section 5.3 were
encountered before any potential issue with sampling. For other cases, a more thorough
closed-loop stability analysis could be carried out based on power considerations, by
analogy to Section 1.6.2.2. This is the basic idea of Lyapunov’s analysis [213]. A
challenge associated with this method would be to find a suitable Lyapunov function.
Alternatively, describing functions could be used to approximately assess the stability
of the controlled system by analyzing an open-loop transfer function formed with these
describing functions for multiple values of the external forcing amplitude [213].

5.4.2 Linear absorber controlling a nonlinear structure

5.4.2.1 Experimental setup

The structure under investigation is identical to that presented in Section 1.3.3. A picture
of the experimental setup is featured in Figure 5.8. This time, the electrodynamic shaker
is placed near the free end of the beam attached to the thin lamina, where the structure
is the most compliant in order to trigger its nonlinear behavior.

Electrodynamic shaker

Impedance head

LV power supply

HV power supplyLamina Beam

Digital absorber

Figure 5.8: Picture of the experimental setup.

The digital absorber connected to the patches is powered by a high-voltage (HV) power
supply with ±150V (to power the operational amplifier OA5 in Figure 5.6) and with a
low-voltage (LV) power supply with ±10V (to power the interface with the microcontroller
unit). The MCU is programmed and powered via USB.

The voltage division ratio α = 0.0109 was set so that a maximum input voltage at
the MCU (± 1.65V) corresponds nearly to a maximum output voltage of OA5 (±

1In this section, stability is understood as the ability of the DVA to reproduce stable equilibria similar
to those of a purely passive nonlinear shunt circuit. In case of instability, the system would undergo limit
cycle oscillations whose amplitudes are solely limited by the saturation of the OpAmp.
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150V). The current injector resistance Ri=152.9Ω was measured with a multimeter
(FLUKE 177), and the gain g = 14, 021 was deduced from Equation (1.56). The
voltage offsets ∆Vin and ∆Vout were both set to 1.65V, so that the full ADC
and DAC ranges of the MCU could be used.

5.4.2.2 System identification

The first step to tune the shunt circuit is to identify the parameters of the host system.
The piezoelectric capacitance was measured with a multimeter. The linear mechanical
parameters were determined from a low-level broadband excitation. A first test was
performed with open-circuited patches (q = 0). The obtained FRF was fitted to obtain a
minimum least-squares error between the model and the measurements, giving an estimate
of the parameters m, c and koc. The process was repeated with short-circuited patches,
giving an estimation of ksc, the structural stiffness when the piezoelectric patches are
short-circuited (V = 0). From Equations (1.10) and (1.12), the following relation holds:

ksc = koc − θ2
pC

ε
p (5.12)

so that θp can be deduced from the estimated quantities. The system has a
generalized electromechanical coupling factor Kc=12.43%. Table 5.2 contains
the identified parameters. Figure 5.9(a) shows an excellent agreement between
the experimental and predicted FRFs.
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Figure 5.9: Frequency responses of the experimental setup: (a) experimental and
predicted FRFs: model (sc: , oc: ) and measurements (sc: , oc: ), (b)
nonlinear frequency response at 0.2N: step up ( ) and step down ( ).

The nonlinear stiffness of the thin lamina was estimated by exciting the system with
short-circuited patches at higher forcing amplitudes. The excitation was a stepped
sine with a controlled amplitude of 0.2N between 28 and 32Hz. Figure 5.9(b) shows
the frequency response of the structure, when the frequency is stepped up or down.
The uncontrolled structure exhibits multistability at this forcing amplitude, which is a
signature of its nonlinear behavior. Following [104], the recorded force and acceleration
signals were digitally bandpass filtered and gathered in vectors f and ẍ, respectively.
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The velocity and displacement vectors were estimated by time integration. Rewriting
the first line of Equation (5.8) (under short-circuit conditions)

x3k3 = f − [ẍ, ẋ,x]


m

c

ksc

 (5.13)

shows that the nonlinear force vector x3k3 can be calculated from the knowledge of
the linear parameters at each time instant. It is represented by the black dots in
Figure 5.10. Eventually, the nonlinear coefficient k3 in Table 5.2 was identified through
simple least-squares fitting of the nonlinear force with a cubic law.
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Figure 5.10: Nonlinear stiffness curve: measurement (•) and fitted cubic law ( ).

Parameter m c koc k3 Cεp θp

Value 0.446kg 0.569Ns/m 1.521×104N/m 2.505×109N/m3 250nF 3.042×104N/C

Table 5.2: Identified parameters of the experimental setup.

5.4.2.3 Synthesized admittance

Based on the previous system identification, the parameters of the digital linear
shunt in Table 5.3 were computed using Equations (1.37) and (1.38). The slight
variability of the results from one test to another led to adaptations of the inductance
L of the order of 1% of the theoretical value. This adaptation was carried out
to obtain equal peaks at the lowest forcing amplitude, namely f=0.2N. The shunt
circuit admittance was synthesized in the MCU after transforming the continuous
admittance (Equation (1.32)) into a discrete transfer function using Tustin’s method
with a sampling frequency of the MCU set to 10kHz.

The input and output signals were measured by the MCU and recorded by a computer.
The piezoelectric charge and current time derivative were estimated by time integration
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Parameter L R C3

Value 117.42H 3 295Ω 3.4022×1014V/C3

Table 5.3: Parameters of the linear and nonlinear piezoelectric tuned vibration
absorbers.

and time derivation of the output signal, respectively. Figures 5.11(a) and 5.11(b), which
compare the theoretical and post-processed voltages across the resistor and inductor,
respectively, confirm that the MCU implements the desired input-output transfer function.
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Figure 5.11: Voltage across the resistor (a) and the inductor (b): theoretical law ( )
and measurements (•).

5.4.2.4 Performance of the linear absorber

The experimental NFRs for forcing levels ranging from 0.2N to 0.8N are presented in
Figure 5.12(a). At 0.2N, the nonlinearity of the thin lamina is not activated; the linear
absorber gives rise to two equal peaks in the response. As the forcing level is increased,
a clear detuning of the linear absorber is observed. The comparison with the theoretical
NFRs in Figure 5.4(a) reveals that the detuning is in fact more important than predicted.
After detailed investigations, this detuning was attributed to the nonlinear behavior of
the piezoelectric patches, as in [104]. The model in Equation (5.8) was thus upgraded
using a negative cubic elastance Cp,3 and a positive cubic resistance Rp,3, so that

V = θpx−
1

Cε
p

q − Cp,3q3 −Rp,3q̇
3, (5.14)

with values given in Table 5.4. The NFRs predicted through this updated model in
Figure 5.12(b) are now in close agreement with the experimental NFRs in Figure 5.12(a).
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Figure 5.12: Experimental (a) and theoretical (updated) NFRs (b) of the nonlinear
beam with a linear DVA: 0.2N ( ), 0.4N ( ), 0.6N ( ), 0.8N ( ). —: stable
solution, - - : unstable solution, • : fold bifurcation, H: Neimark-Sacker bifurcation.

Parameter Cp,3 Rp,3

Value -2.3629×1014V/C3 1.5352×107V/A3

Table 5.4: Identified nonlinear parameters of the piezoelectric transducer.

5.4.3 Experimental demonstration of a digital NPTVA

5.4.3.1 Synthesized nonlinear admittance

To address the detuning of the linear absorber, a cubic elastance was introduced in the
synthetic admittance (αVNL in Figure 5.7). Accounting for the nonlinear behavior of
the piezoelectric transducer, the value of the nonlinear elastance was calculated to be
C3 − Cp,3 ≈ 1.7C3. The measured voltage of the nonlinear capacitor in Figure 5.13 was
found to closely follow the law prescribed by the design.

We note that, to fully comply with the theoretical work of [181], a negative cubic
resistance should also have been added to the synthesized shunt circuit to compensate
for the positive cubic resistance in Equation (5.14), but this was avoided to prevent
any risk of instability caused by such an active component. The linear resistance
was nevertheless diminished by 10% in an attempt to limit the dissipation in the
circuit at high forcing amplitudes. As shall be shown in Section 5.4.3.4, this has a
limited impact on the performance of the digital NPTVA.

5.4.3.2 Performance of the NPTVA

Figure 5.14(a) displays the experimental NFRs for forcing levels ranging from 0.2N
to 0.8N. Clearly, the NPTVA is able to maintain equal peaks in the frequency
response for all forcing levels considered, confirming its superior performance over
its linear counterpart. Furthermore, these experimental curves are in excellent
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Figure 5.13: Voltage across the nonlinear capacitor: theoretical law ( ), direct
measurements of Vnl (•) and post-processed measurements from the input and output
signals (•).

agreement with the theoretical NFRs in Figure 5.14(b).
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Figure 5.14: Experimental (a) and theoretical (updated) NFRs (b) of the nonlinear
beam with a digital NPTVA: 0.2N ( ), 0.4N ( ), 0.6N ( ), 0.8N ( ).

A series of tests at higher forcing amplitudes were performed to investigate the potentially
adverse dynamics brought by the NPTVA. Because of the detuning of the linear absorber,
these tests were not performed with this latter absorber in order to avoid the rupture of
the thin lamina. Figure 5.15(a) depicts that the NPTVA starts to be slightly detuned at
1N, with a more pronounced detuning at 1.2N. The theoretical response in Figure 5.15(b)
indicates that a detached resonance curve merges with the main response, marking the
end of the working range of the NPTVA [181].

The digital NPTVA suffers from another limitation depicted in Figure 5.16. At 1.2N,
the input signal of the MCU reaches its saturation limits, meaning that the operational
amplifier OA5 in Figure 5.6 saturates correspondingly. The output signal saturates as
well. This issue can be resolved by decreasing Ri, thereby decreasing g by virtue of
Equation (1.56), and thus the magnitude of the output signal, but this was not attempted
in this work since the input voltage saturates anyway.
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Figure 5.15: Experimental NFRs (a) and theoretical (updated) NFRs (b) of the
nonlinear beam with a digital NPTVA: 0.8N ( ), 1.0N ( ), 1.1N ( ), 1.2N ( ).
—: stable solution, - - : unstable solution, • : fold bifurcation, H: Neimark-Sacker
bifurcation.
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Figure 5.16: Signals recorded in the MCU for a NPTVA at f=1.2N: input voltage ( )
and its saturation limits at ±1.65V ( ), output voltage ( ) and its saturation limits
at ±1.1V ( ).

5.4.3.3 Validation of the principle of similarity

Quadratic, C2sign(q)q2, and quintic, C5q
5, nonlinear elastances were also considered

separately in the MCU. After fitting the cubic nonlinear restoring force of the
thin lamina with quadratic and quintic laws, as shown in Figure 5.17, the
coefficient of the nonlinear elastance was computed based on this assumed
restoring force using the formulas from [178].

Figure 5.18 displays the corresponding NFRs. In both cases, a clear detuning is
observed compared to Figure 5.14, which confirms the fact that a cubic elastance
is the optimal choice for a cubic nonlinearity in the host structure, which, in turn,
validates the adopted principle of similarity. The detuning can be understood from
Figure 5.17, where the stiffness is first overestimated (resp. underestimated) and then
underestimated (resp. overestimated) for a quadratic (resp. quintic) nonlinearity,
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Figure 5.17: Fitting the cubic nonlinearity of the thin lamina with a quadratic (a) or
a quintic (b) nonlinearity: measurements (•) and fitted model ( ).

leading to the same trend for the absorber frequency.
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Figure 5.18: Experimental NFRs of the nonlinear beam with a digital NPTVA with
quadratic (a) or quintic (b) elastance: 0.2N ( ), 0.4N ( ), 0.6N ( ), 0.8N ( ), and
1.0N ( ).

5.4.3.4 Parametric study

Given the ease with which the parameters of a digital absorber can be modified, performing
a parametric study was relatively straightforward. At 0.6N, Figure 5.19(a) shows that
the nominal nonlinear elastance (i.e., without the correction for the nonlinearity of the
piezoelectric transducer) cannot enforce equal peaks. It is only when the nominal value
is multiplied by 2 that equal peaks are obtained. A too large nonlinear elastance is
also detrimental to performance. Finally, Figure 5.19(b) shows what happens when the
resistance is varied in a nonlinear regime of motion. As announced in Section 5.4.3.2,
decreasing the resistance by 10% has almost no effect on the maximum amplitude
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Figure 5.19: Experimental NFRs of the nonlinear beam with a NPTVA at f=0.6N:
(a) nominal nonlinear elastance multiplied by 1.0 ( ), 2.0 ( ) and 3.0 ( ), and (b)
nominal resistance multiplied by 0.8 ( ), 0.9 ( ), 1.0 ( ) and 1.1 ( ).

5.5 Multimodal nonlinear piezoelectric vibration

absorber

The principle of similarity can be used to tailor multiple nonlinear resonances [182].
This aspect is exploited herein to design multimodal NPTVAs. This section presents
the adaptation of what was proposed in [197] to piezoelectric vibration absorbers, in
a more general way than exposed in [145].

It is assumed that the design of the linear absorbers has been carried out (Chapters 2, 3
and 4) and that the controlled FRF exhibits pairs of peaks of (nearly) equal amplitude
in place of the targeted resonances. These linear absorbers can be augmented with
nonlinear elements in order to counteract the detuning effect of the nonlinearities in the
host structure. In what follows, the nonlinearities are assumed to be odd polynomials of
order p > 1, and a nonlinear principle of similarity is used to ensure that the nonlinear
absorbers are effective in a larger range of forcing amplitudes.

The nonlinear forces are separated into contributions from the nonlinearities in the host
system b0 and those in the absorber. Each of the latter Nnl nonlinerities is characterized
by a coefficient ba,n and a vector function ba,n depending both on its spatial distribution
and its functional form. In the frequency domain, the nonlinear forces thus read

bnl(z) = b0(z) +

Nnl∑
n=1

ba,nba,n(z). (5.15)

The external forcing can be scaled with an amplitude parameter f such that bext =
fbext (where · denotes in the sequel a parameter normalized by the external forcing).
Normalizing the harmonic coefficients in the same way, z = fz, the governing equations
in Equation (5.5) become upon division by f

AL(ω)z + ε

(
b0(z) +

Nnl∑
n=1

ba,nba,n(z)

)
= bext, (5.16)
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where ε = fp−1 is a parameter that quantifies the strength of the nonlinearities. When ε→
0, the nonlinear forces vanish and the system tends to its underlying linear counterpart.

Equation (5.16) can be solved numerically. The amplitude of the nonlinear motion
can then be inferred, and optimization algorithms can be used to tune the nonlinear
coefficients of the absorbers according to the objectives at hand, following, e.g., an
approach similar to [185]. Owing to the nonlinear nature of these equations, this process
may be time-consuming and end up in a local minimum.

5.5.1 Nonlinear frequency response approximation

Following the approach in [178], an approximate solution to Equation (5.16) can be
derived. It is first assumed that the Fourier series expansion used in the HBM only
contains fundamental harmonics of the forcing frequency. In this case, the vector of
harmonic coefficients only contains sine (zs) and cosine (zc) harmonic coefficients

zT =

[
zTs zTc

]
(5.17)

and Equation (5.3) becomes

xs(t)

f
=

([
sin (ωt) cos (ωt)

]
⊗ INx

)
z = sin (ωt) zs + cos (ωt) zc. (5.18)

The normalized harmonic coefficients are then expanded in powers of ε

z =
+∞∑
i=0

εiz(i) (5.19)

Inserting this ansatz into Equation (5.16), expanding this equation in powers of ε and
equating like powers of ε leads to a hierarchy of linear equations

z(0) = A−1
L bext, (5.20)

and

z(1) = −A−1
L

(
b0(z(0)) +

Nnl∑
n=1

ba,nba,n(z(0))

)
= z

(1)
0 +

Nnl∑
n=1

ba,nz
(1)
a,n, (5.21)

to zeroth- and first-order of ε, respectively. Equation (5.20) is the exact solution of
Equation (5.16) when ε = 0; it expresses that the zeroth-order motion is the response of
the underlying linear system. The proposed method may thus be seen as a perturbation
method around the equilibrium of the underlying linear structure. Equation (5.21) shows
that the first-order nonlinear motion is due to the nonlinear forces triggered by the
zeroth-order motion. Moreover, the contribution from each nonlinearity on this first-order
motion can be separated explicitly. Because these two equations are linear, they can
readily be solved with standard linear algebra methods.

If the response at a particular dof localized by wu is to be computed, the sine and
cosine coefficients associated with it are given by

q(i)
s = [wT

u ,0]z(i), q(i)
c = [0,wT

u ]z(i), (5.22)
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The squared motion amplitude to first order in ε is given by

H =
(
q(0)
s

)2
+
(
q(0)
c

)2
+ 2ε

(
q(0)
s q

(1)
s,0 + q(0)

c q
(1)
c,0

)
+ 2ε

Nnl∑
n=1

ba,n
(
q(0)
s q(1)

s,a,n + q(0)
c q(1)

c,a,n

)
= H

(0)
+ εH

(1)

0 + ε

Nnl∑
n=1

ba,nH
(1)

a,n

,

(5.23)
where the subscripts in the sine and cosine coefficients correspond to those of the harmonic
coefficiens (Equation (5.21)). Equation (5.23) shows that the effects of the different
nonlinearities can once again be separated. In some sense, the nonlinear coefficients of
the absorbers can be used to shape the first-order effects of all nonlinearities on the NFR.

5.5.2 Peaks of the nonlinear frequency response

In this section, it is demonstrated that the frequency-energy dependence is not relevant
to first order in ε. Properties imposed on the peaks of the NFR can thus be imposed
considering the linear resonance frequency ωi and not its nonlinear counterpart ωnl,i

In order to locate a resonance, the necessary condition [178]

∂H

∂ω

∣∣∣∣
ω=ωnl,i

= 0 (5.24)

is considered. The deviation of the nonlinear resonance frequency from its
linear counterpart is defined as

∆ωi = ωnl,i − ωi. (5.25)

Equation (5.24) can be doubly expanded as a Maclaurin series in ∆ωi and a power series in
ε as

∂H

∂ω

∣∣∣∣
ω=ωnl,i

=
+∞∑
k=0

(∆ωi)
k

k!

∂k+1H

∂ωk+1

∣∣∣∣
ω=ωi

=
+∞∑
k=0

(∆ωi)
k

k!

(
+∞∑
l=0

εl
∂k+1H

(l)

∂ωk+1

)∣∣∣∣∣
ω=ωi

= 0. (5.26)

By definition of the linear resonance frequencies and by interpreting H
(0)

as the linear
(squared) FRF amplitude, the term corresponding to (k, l) = (0, 0) vanishes. The terms
corresponding to (k, l) = (1, 0) and (k, l) = (0, 1) then indicate that ∆ωi ∼ O (ε).

The squared amplitude evaluated at the nonlinear resonance frequency is then itself doubly
expanded as

H
∣∣
ω=ωnl,i

=
+∞∑
k=0

(∆ωi)
k

k!

(
+∞∑
l=0

εl
∂kH

(l)

∂ωk

)∣∣∣∣∣
ω=ωi

(5.27)

which becomes, if only terms up to first order in ε are considered,

H
∣∣
ω=ωnl,i

= H
(0)
∣∣∣
ωi

+ ∆ωi
∂H

(0)

∂ω

∣∣∣∣∣
ωi

+ ε H
(1)
∣∣∣
ωi

+O
(
ε2
)

(5.28)

Because the second term in the right hand side of Equation (5.28) vanishes by
definition of the linear resonance frequencies, there is no remaining term depending
on ∆ωi. Equation (5.28) thus indicates that, to first order in ε, the nonlinear
shift of the resonance frequencies has no effect.
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5.5.3 Enforcing equal peaks in nonlinear regimes of motion

The condition to maintain equal peaks around a specific nonlinear resonance i is

H(ωnl,i,1)−H(ωnl,i,2) = 0, (5.29)

where ωnl,i,1 and ωnl,i,2 are the frequencies of the two peaks in the NFR of the
controlled structure near the ith host resonance frequency. Because of the results
in Section 5.5.2, this equation can equivalently be expressed using ωi,1 and ωi,2, the
linear counterparts of ωnl,i,1 and ωnl,i,2, respectively, as

H(ωi,1)−H(ωi,2) = 0. (5.30)

Combining this result with Equations (5.23) and (5.30) yields

H
(0)

(ωi,1)−H(0)
(ωi,2)+ε

(
H

(1)

0 (ωi,1)−H(1)

0 (ωi,2) +

Nnl∑
n=1

ba,n

(
H

(1)

a,n(ωi,1)−H(1)

a,n(ωi,2)
))

= 0

(5.31)
Since the linear FRF is assumed to already exhibit equal peaks, the first two terms in
Equation (5.31) cancel out. Equation (5.31) then becomes independent of ε, which sets
one condition on the nonlinear coefficients. Enforcing Equation (5.31) for each controlled
resonance i = 1, ..., Ns, one eventually obtains the linear system of equations

∆1H
(1)

a,1 ∆1H
(1)

a,2 · · · ∆1H
(1)

a,Nnl

∆2H
(1)

a,1 ∆2H
(1)

a,2 · · · ∆2H
(1)

a,Nnl
...

...
. . .

...

∆NsH
(1)

a,1 ∆NsH
(1)

a,2 · · · ∆NsH
(1)

a,Nnl




ba,1
...

ba,Nnl

 = −


∆1H

(1)

0

...

∆NsH
(1)

0

 (5.32)

with the shorthand notation

∆iH
(1)

l = H
(1)

l (ωi,1)−H(1)

l (ωi,2). (5.33)

The system (5.32) can be solved to find the nonlinear coefficients that impose equal peaks
for all controlled nonlinear resonances. If the number of nonlinearities in the absorber
is equal to the number of controlled resonances (Nnl = Ns) and assuming the system is
non-singular, these coefficients are uniquely determined. A graphical interpretation of the
counterbalancing action of the absorbers’ nonlinearities is displayed in Figure 5.20.

The assumption of equality of the peaks amplitude in the linear FRF can be relaxed.
Indeed, Equation (5.32) can be interpreted as requiring a cancelling nonlinear action
of the absorbers on the imbalance brought by the nonlinearities of the host structure,
to first order. Approximately equal peaks in the linear regime will therefore remain
approximately equal in nonlinear regimes.

5.5.4 Enforcing the all-equal-peak property in nonlinear
regimes of motion

The all-equal-peak design introduced in Chapter 4 can also be extended to nonlinear
regimes of motion. The same amplitude is imposed on every peak, i.e.,

H(ω1,1)−H(ωi,l) = 0, ∀i ∈ [1, Ns],∀l ∈ [1, 2]. (5.34)
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Figure 5.20: Action of the nonlinearities on the frequency response: underlying linear

structure H
(0)

( ), nonlinear structure with linear absorbers ( ) and nonlinear
structure with nonlinear absorbers ( ).

If the FRF of the underlying linear structure exhibits an all-equal-peak property, then,
following the same developments as in Section 5.5.3, Equation (5.34) translates to the
linear system

∆1,2H
(1)

a,1 ∆1,2H
(1)

a,2 · · · ∆1,2H
(1)

a,Nnl

∆2,1H
(1)

a,1 ∆2,1H
(1)

a,2 · · · ∆2,1H
(1)

a,Nnl
...

...
. . .

...

∆Ns,2H
(1)

a,1 ∆Ns,2H
(1)

a,2 · · · ∆Ns,2H
(1)

a,Nnl




ba,1
...

ba,Nnl

 = −


∆1,2H

(1)

0

...

∆Ns,2H
(1)

0

 (5.35)

with the shorthand notation

∆i,kH
(1)

l = H
(1)

l (ω1,1)−H(1)

l (ωi,k). (5.36)

This time, the nonlinear coefficients can be exactly determined if the number of
nonlinearities in the absorber is equal to the number of peaks minus one, i.e.
Nnl = 2Ns − 1 (assuming there are two peaks per controlled resonance).

5.5.5 Nonlinear shunt circuits

In order to create tunable nonlinear circuits for nonlinear multimodal piezoelectric
damping, the multi-branch shunt circuits seen in Chapter 2 can be endowed with
nonlinear electrical elements. By extension of [181], nonlinear capacitors can be placed
in series with every series RL shunt. For instance, Figure 5.21 depicts a nonlinear version
of Hollkamp’s shunt circuit, and Figure 5.22(a) features a nonlinear current blocking
(NCB) shunt circuit. These two circuits provide Ns additional design DoFs, that can
be tuned to secure pairs of equal peaks in the NFR of a controlled structure.

Figure 5.22(b) displays an augmented nonlinear current blocking (ANCB), where
nonlinear capacitors are placed in series with the filter capacitors. These Ns − 1
additional design DoFs yield a total of 2Ns − 1 design DoFs for the ANCB circuit,
allowing it to enforce the all-equal-peak property in the NFR of the controlled structure.
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Figure 5.21: Nonlinear Hollkamp’s shunt circuit.
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Figure 5.22: Nonlinear CB (a) and augmented nonlinear CB (b) shunt circuits.

The models of these nonlinear shunt circuits are developed in Section F.2. Other
arrangements could be envisioned. For instance, nonlinear inductors could be used
instead of nonlinear capacitors [104]. Circuits with parallel RL shunts could also be
made nonlinear. Finally, the ideal Norton’s admittance and Thévenin’s impedance
circuits, as well as the networks studied in Chapters 2 and 3, respectively, could also
be augmented with nonlinear elements. However, it is not yet completely clear how
passivity would be enforced in these nonlinear circuits/networks.

5.6 Examples of multimodal nonlinear vibration

mitigation

5.6.1 Two-degree-of-freedom structure

The structure studied in Section 4.4.1 with the adjunction of a cubic spring (with
coefficient knl = 1 × 10−3N/m3) between the second mass and ground, as depicted in
Figure 5.23, is considered as a first example. The performance of Hollkamp’s, an NCB
and an ANCB shunt circuits are compared with this host structure.



5.6. Examples of multimodal nonlinear vibration mitigation 206
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Figure 5.23: Nonlinear two-degree-of-freedom structure with a piezoelectric stack
shunted with a circuit of impedance Zs.

5.6.1.1 Nonlinear Hollkamp’s shunt circuit

Starting off with Hollkamp’s shunt circuit, Equation (5.32) was solved using the optimal
parameters in Table 4.2, yielding the coefficients listed in Table 5.5. Figure 5.24 compares
the NFR of the structure controlled by the linear and nonlinear Hollkamp’s shunt circuits
in weakly to moderately nonlinear regimes of motion. The imbalance in the peaks
signals the quick detuning of the linear absorber due to the hardening nonlinearity in the
structure. By contrast, the nonlinear absorber is able to track the changes in resonance
frequencies and maintain balanced peaks, similarly to a NPTVA.

Parameter Cnl,0 Cnl,1

Value 4.17×10−4V/C3 7.83×10−3V/C3

Table 5.5: Values of the nonlinear elastances in the nonlinear version of Hollkamp’s
shunt circuit controlling the two-degree-of-freedom structure.
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Figure 5.24: NFRs of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) Hollkamp’s shunt circuits: f=1N (a) and f=1.5N (b).

The dynamics in strongly nonlinear regimes of motion are illustrated in Figure 5.25. The
nonlinear absorber is able to maintain performance at f=1.7N, whereas a DRC has merged
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Figure 5.25: NFRs of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) Hollkamp’s shunt circuits: f=1.7N (a) and f=2N (b). —: stable
solution, - - : unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation.

with the main NFR with linear absorbers. However, a DRC can also be encountered with
the nonlinear absorber at f=2N. The reason for the failure of the nonlinear absorber
in these strongly nonlinear regimes of motion stems from the approximations made by
truncating Equation (5.19) to a first order in ε, which makes the method only able to
accurately represent the dynamics of the structure in weakly nonlinear regimes of motion.

The performance of both absorbers is summarized in Figure 5.26, which shows the peaks
loci in the forcing amplitude-response amplitude plane. Noting the similarity between
Figures 5.5(b) and 5.26(d), the performance of both multimodal absorbers on mode
2 is qualitatively similar to that of their respective counterparts in the single-mode
case. No DRC seems to be present near the first mode, where the vibration levels
remain comparatively low. Geometrically, the action of the absorbers nonlinearities in
Equation (5.32) imposes the tangency between the two peaks loci around ε=0 (i.e., f=0),
which can be observed in Figures 5.26(a) and 5.26(b).

The apparent inability of Hollkamp’s shunt circuit to mitigate the DRC can be understood
in terms of its action on the structure through the amplitude of the charge at the
piezoelectric transducer in Figure 5.27. For the rightmost peak associated with the
first host resonance, Figure 5.27(a) shows that both linear and nonlinear absorbers are
activated in all forcing ranges but the nonlinear one is the most efficient. Paradoxically,
the structure controlled with nonlinear absorbers exhibits a behavior which appears more
linear, owing to the canceling action of the absorber’s nonlinearities. As for the rightmost
peak associated with the second host resonance, Figure 5.27(b) outlines the behavior
of the absorber on the DRC. Slightly after the DRC coalescence with the main NFR
(indicated by the first fold bifurcation), linearity between the motion and piezoelectric
charge amplitudes no longer holds, and the piezoelectric charge amplitude decreases with
the motion amplitude. On the maximum amplitude of the DRC (attained after the
second fold bifurcation), the absorber is essentially inactivated, as its charge amplitude
is low. Because of this low amplitude, the nonlinearities in the nonlinear version of
Hollkamp’s circuit have a small effect compared to the linear electrical components, and
the nonlinear circuit behaves similarly to its linear counterpart.

Finally, Figure 5.25(b) features Neimark-Sacker bifurcations which are at the onset of QP
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Figure 5.26: Peaks loci of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) Hollkamp’s shunt circuits: peaks associated with the first and second
host resonances at low (a,b) and high (c,d) forcing amplitudes. —: stable solution, - -
: unstable solution, •: fold bifurcation.
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Figure 5.27: Charge amplitude in the transducer vs motion amplitude at the peaks of
the NFR of the two-degree-of-freedom structure with linear ( ) and nonlinear ( )
Hollkamp’s shunt circuits: rightmost peaks associated with the first (a) and second (b)
host resonance. —: stable solution, - - : unstable solution, •: fold bifurcation.



5.6. Examples of multimodal nonlinear vibration mitigation 209

oscillations. QP responses cannot be assessed with classical HBM because the motion
is no longer periodic, but it is possible to compute them using the method proposed
in [210]. The stability of the solution was assessed with the method in [214].
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Figure 5.28: NFR of the two-degree-of-freedom structure with nonlinear Hollkamp’s
shunt circuit at f=2N: periodic solutions ( ) and QP solutions ( ). —: stable
solution, - - : unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation, ×:
unclassified bifurcation.

The QP regime exhibits a more complicated frequency response than the harmonic
one, as displayed in Figure 5.28. A forcing amplitude f=2N was considered, i.e.,
slightly after the DRC coalescence with the main NFR. Two branches emanate from
the Neimark-Sacker bifurcations but do not join. They are only partially stable, and
the lowest- and highest-amplitude branches lose stability through fold bifurcations
and an unclassified bifurcation, respectively. Thus, the DRC does not seem to be
connected to the main NFR by any fully stable branch.

5.6.1.2 Nonlinear current blocking shunt circuit

Considering now an NCB, Equation (5.32) was solved using the optimal parameters in
Table 4.3, yielding the coefficients listed in Table 5.6. We note that the first nonlinear
elastance features a relatively large, negative parameter.

Parameter Cnl,1 Cnl,2

Value -0.62V/C3 1.13×10−3V/C3

Table 5.6: Values of the nonlinear elastances in the NCB controlling the
two-degree-of-freedom structure, with the linear characteristics of Table 4.3.

Figure 5.29(a) shows a NFR at f=1N of the controlled systems. The NCB is able
to maintain equal peaks in the NFR, but the latter is unstable in most of the
frequency range. This issue stems from the negative nonlinear elastance, which
makes the first branch unstable. For large enough amplitudes, this instability
propagates to the whole system. Thus, the proposed method is mathematically
successful, but this NCB is useless in this case.
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Figure 5.29: NFRs of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) CB shunt circuits at f=1N (a) and influence matrix of the nonlinearities
on the peaks imbalance (in logarithmic scale of absolute values) (b). —: stable solution,
- - : unstable solution, �: bifurcation point.

The origin of the negative nonlinear elastance can be explained by looking at the matrix
in Equation (5.32), as depicted in Figure 5.29(b). It can be observed that the second
nonlinear coefficient has a strong impact on the balance of the peaks pairs associated
to both modes. By contrast, the first nonlinear coefficient has only limited influence
near pair 1 and almost no influence on pair 2. In a similar manner to what has been
seen in Section 2.10.1 with the resistances of Hollkamp’s shunt circuit, the numerical
resolution sets the second nonlinear coefficient to satisfy the requirements on pair 2,
and then adjusts first nonlinear coefficient to satisfy those on pair 1. In this case, this
unfortunately results in a large, negative value.

The issue thus mainly comes from the influence of the second shunt branch on the first
pair. The original purpose of the current blocking filters of the CB shunt circuit was
precisely to solve this issue [127]. However, the filter was detuned from the frequency of
the first mode during the NH optimization process: it can be seen in Table 4.3 that the
frequency of the current blocking filter is 1.41rad/s, i.e., rather far from the frequency of
the first mode. To retrieve the desirable independence between the shunt branches, the
NH optimization was run again but this time the filter was forced to remain tuned at its
original frequency. The parameters of this new optimal CB are gathered in Table 5.7,
and the associated receptance is similar to that of Hollkamp’s shunt circuit.

Parameter R1 L1 R2 L2 C̃1 L̃1

Optimal value 0.1964Ω 0.9777H 0.2243Ω 2.1666H 0.3019F 3.3462H

Table 5.7: NH optimal parameters of the current blocking circuit with series RL shunts
for the two-degree-of-freedom structure (forcing the resonance frequency of the current
blocking filter to its initial value).

Solving Equation (5.32) with the parameters in Table 5.7 yields the coefficients listed in
Table 5.8. This time, all nonlinear coefficients are positive.
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Parameter Cnl,1 Cnl,2

Value 8.13×10−4V/C3 5.36×10−3V/C3

Table 5.8: Values of the nonlinear elastances in the NCB controlling the
two-degree-of-freedom structure, with the linear characteristics of Table 5.7.

Examples of NFRs of the structure controlled by this NCB are given in Figure 5.30. The
dynamics of the controlled system are quite similar to those with Hollkamp’s shunt circuit.
It may be noted in Figure 5.30(b) that the DRC is not merged with the main NFR at
f=2N, but is close to be. This is confirmed by the peaks loci in Figure 5.31.
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Figure 5.30: NFRs of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) CB shunt circuits: f=1N (a) and f=2N (b). —: stable solution, -
- : unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation.
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Figure 5.31: Peaks loci of the two-degree-of-freedom structure with linear ( ) and
nonlinear ( ) CB shunt circuits: peaks associated with the first (a) and second (b)
host resonances. —: stable solution, - - : unstable solution, •: fold bifurcation.
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5.6.1.3 Augmented nonlinear current blocking shunt circuit

To maintain the all-equal-peak property in nonlinear regimes of motion, a ANCB
circuit is now considered. Using the optimal CB with parameters in Table 5.7,
the nonlinear elastances obtained by solving Equation (5.35) are reported in
Table 5.9. The nonlinear elastance coefficient in the filter is moderately negative,
which does not provoke any instability.

Parameter Cnl,1 Cnl,2 C̃nl,1

Value 9.23×10−4V/C3 6.65×10−2V/C3 -1.21×10−2V/C3

Table 5.9: Values of the nonlinear elastances in the NCB controlling the
two-degree-of-freedom structure, with the linear characteristics of Table 5.7.
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Figure 5.32: NFRs of the two-degree-of-freedom structure with linear ( ) and
augmented nonlinear ( ) CB shunt circuits: f=1N (a) and f=2N (b). —: stable
solution, - - : unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation.

The NFR of the controlled system at f=1N is depicted in Figure 5.32(a). Unlike the
two other circuits, the ANCB causes the leftmost peak associated with the second
resonance to be detuned. This is due to the adverse effect of the nonlinear filter
capacitor. The leftmost peak eventually merges with a DRC and at f=2N, and the
system controlled by a ANCB exhibits a NFR with maximum amplitude similar to
those of the other cases. The DRC merged with the NFR has a complex structure
whose detailed description is beyond the scope of the present example. Figure 5.33
features the peaks loci of the structure controlled by a ANCB.

The early advantage of the ANCB compared to an NCB can be observed in Figure 5.34.
While the solution of Equation (5.32) forces a pair-by-pair tangency at the origin,
Equation (5.35) enforce a tangency between all pairs, thereby exhibiting a lower
maximum amplitude for weakly nonlinear regimes of motion.
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Figure 5.33: Peaks loci of the two-degree-of-freedom structure with linear ( ) and
augmented nonlinear ( ) CB shunt circuits: peaks associated with the first (a) and
second (b) host resonances. —: stable solution, - - : unstable solution, •: fold
bifurcation.
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Figure 5.34: Peaks loci of the two-degree-of-freedom structure with NCB ( ) and
ANCB ( ) shunt circuits.

5.6.1.4 Comparison between the circuits

Figure 5.35 summarizes the results obtained with the different nonlinear shunt circuits
controlling the two-degree-of-freedom structure by featuring the highest-amplitude peak
in each case. In weakly nonlinear regimes of motions, the ANCB exhibits the best
performance, since it balances the peaks amplitude. However, the nonlinearity in the
filter induces adverse dynamics on the system, and makes this solution less efficient in
strongly nonlinear regimes of motions, where the nonlinear version of Hollkamp’s circuit
and the NCB exhibit the best performance. All nonlinear shunt circuits are however
subject to the apparition of a DRC which appears similar in each case.

5.6.2 Simply-supported plate

The simply-supported plate studied in Section 4.4.4 is used as a second example. A cubic
spring of coefficient knl = 91.26× 104N/m3 is connected to the plate at the forcing point
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Figure 5.35: Peaks loci of the highest-amplitude peak of the two-degree-of-freedom
structure with a nonlinear version of Hollkamp’s circuit ( ), an NCB ( ) and a
ANCB ( ): weakly to moderately (a) and strongly (b) nonlinear regimes of motion.
—: stable solution, - - : unstable solution, •: fold bifurcation.

location. To counteract the effects of this nonlinearity, an NCB circuit is used.

The nonlinear coefficients obtained using the CB parameters in Table 4.7(b) are listed in
Table 5.10. A large, negative nonlinear elastance is obtained in the third branch. This
stems from the same reasons as in the two-degree-of-freedom example. An extremely large
nonlinear elastance is also obtained in the first branch, because it has to compensate for
the large series resistance which has the tendency to hinder any nonlinear behavior by
limiting the charge flow. These issues are solved by running the NH algorithm with forced
current blocking filters frequencies, yielding the linear parameters reported in Table 5.11.
The nonlinear elastances obtained with this setup are shown in Table 5.10; they are all
positive and more homogeneous in terms of orders of magnitude.

Parameter Cnl,1 Cnl,2 Cnl,3 Cnl,4

CB in Table 4.7(b) 1.36×1031V/C3 2.1×1010V/C3 -3.82×1015V/C3 4.35×1012V/C3

CB in Table 5.11 5.37×109V/C3 4.9×1011V/C3 3.62×1015V/C3 2.04×1013V/C3

Table 5.10: Values of the nonlinear elastances in the NCB controlling the
simply-supported plate.

Figure 5.36 displays several NFRs of the plate controlled with CB and NCB
shunt circuits. Similar trends to the two-degree-of-freedom example can be
observed. The hardening nonlinearity first detunes the linear absorber resulting
in high-amplitude resonances, whereas the nonlinear absorber is able to maintain
equal peaks in a broader range of forcing amplitudes. For high enough forcing
amplitudes, it eventually becomes detuned as well.

The performance of a ANCB was also investigated, but it essentially features the same
issues as in the two-degree-of-freedom case, i.e., it is efficient for weakly nonlinear regimes
of motion, but the adverse dynamics induced by the nonlinearities in the current blocking
filters result in the appearance of DRC that quickly merge with the main NFR.
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Parameter Ri Li C̃i L̃i

i = 1 1.04kΩ 60.69H 70.13nF 868.76H

i = 2 3.75kΩ 190.99H 24.83nF 413.38H

i = 3 127.71kΩ 5.33kH 8.2nF 1.1kH

i = 4 10.517kΩ 1.18kH / /

Table 5.11: NH optimal parameters of the CB circuit with series RL shunts for the
simply-supported plate (forcing the resonance frequency of the current blocking filters
to their initial values).

5.7 Conclusion

Linear tuned vibration absorbers generally exhibit good performance when their frequency
matches that of their host. Nonlinear structural behaviors can change the resonance
frequencies of structures with increasing forcing amplitudes, which eventually leads to
inefficient vibration mitigation. Hopefully, it is possible to augment linear absorbers with
nonlinear elements so as to extend their forcing amplitude working range. Specifically,
by choosing the absorbers’ nonlinearities according to a principle of similarity, they are
able to track the frequency changes in the host structure and stay efficient over a broader
range of forcing amplitudes than their linear counterpart.

After briefly reviewing some aspects associated with nonlinear vibrations and NLTVAs,
this chapter presented the experimental realization of a digital NPTVA. Due to its inherent
flexibility, this absorber can synthesize linear and nonlinear shunt circuits (with arbitrary
mathematical forms for the nonlinearity). The experimental demonstration on a structure
with hardening nonlinear behavior showed the superiority of the digital nonlinear absorber
over its linear counterpart. It also served to validate the adopted principle of similarity.

A tuning methodology for nonlinear vibration absorbers that mitigate several nonlinear
resonances simultaneously was then proposed. The nonlinear absorbers were shown to be
able to maintain equal peaks in the frequency response over a broader range of forcing
amplitudes than their linear counterparts.

Adverse attractors, including detached resonance curves and QP responses were studied,
highlighting that the coupled system can exhibit complex and potentially detrimental
dynamics. However, these attractors were observed whether or not nonlinearities were
used in the absorbers. The all-equal-peak property was also extended to nonlinear
absorbers, but was only effective for weakly nonlinear regimes of motion.

The approach proposed to control multiple nonlinear resonances should also be
experimentally validated. It could be extended to ideal immittance circuits and networks
as well.
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Figure 5.36: NFRs of the simply-supported plate controlled by linear ( ) and
nonlinear ( ) CB shunt circuits: f=1.5N (a), f=2N (b) and f=2.5N (c). —: stable
solution, - - : unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation.



6 Damping of bladed structures

Abstract

The purpose of this chapter is to apply and adapt the control strategies proposed in
the previous chapters to integrally bladed structures. They possess a large number
of degrees of freedom, and exhibit complex dynamics with frequency regions with
high modal density. A model-order reduction technique is thus first proposed to
reduce the burden associated with the computation of frequency responses. A hybrid
strategy is developed to allow for the control of multiple families of modes with
closely-spaced resonance frequencies. Effective vibration mitigation of a bladed rail
and a bladed drum is then demonstrated using various shunt damping techniques.

6.1 Introduction

6.1.1 Vibration mitigation of turbomachines

Bladed structures of turbomachines are submitted to harsh loading conditions, and the
advent of integrally bladed structures, mainly motivated by weight reduction, raised
new issues linked to their low inherent damping. For this reason, vibration mitigation
means are used to ensure safety and durability.

The most popular approach by far is friction damping. By incorporating a contact surface
between vibrating parts, energy can be dissipated through friction [51, 215]. There
exist multiple ways to create such contact surfaces: either at the root of the blades,
between the blades themselves, or at the shrouds. Figure 6.1(a) schematically depicts
an example, where damping is provided through friction at the blades roots, as well as
by underplatform dampers. For BLISKs and BluMs, the absence of interfaces limits
the possibilities, but friction may be introduced by placing the contact surface at the
underside of the blades support, using friction rings [52] (as depicted in Figure 6.1(b)) or
friction fingers [216]. An approach combining the concept of friction damper and TMD
was recently proposed in Lupini et al [217]. Friction damping has the merit of being a very
simple solution to implement. However, friction is an inherently nonlinear phenomenon,
and the damper’s performance thus depends on the vibration level. There exist mature
techniques to model it on a macro-scale level [51, 52, 218, 219], but these are significantly
involved. Moreover, some parameters of the dampers, such as the friction coefficient,
are not easily controllable and may exhibit a strong time-varying character owing to e.g.
normal load, temperature [220] and wear [221, 222]. These variations are complex to
control and their effects remain challenging to characterize experimentally [223].

Another approach to mitigate the vibrations of bladed structures consists in using
viscoelastic materials having greater damping than the bladed part’s constituent. In
classical assemblies, a viscoelastic material can be placed at the interface between the
blade root and the disk [53]. This simple solution has the advantage of being easily
integrable in bladed assemblies and does not disrupt the aerodynamic flow. This is no
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(a)

(b)

Figure 6.1: Friction damping of bladed structures: bladed assembly with friction
damping at the blade roots and with underplatform dampers (a) and integrally bladed
structure with a friction ring (b). Friction surfaces/devices are indicated in red.

longer an option for BLISKs and BluMs, but other approaches were proposed, such as
polymeric, metallic or ceramic oxide coating [224, 225]. Coatings are sensitive to erosion
and foreign object damage, and put limits on the finish on the aerodynamic surfaces of the
blades, which is why coating on the internal sides of a hollow blade was proposed in [226].
This approach however substantially complexifies the manufacturing process of the blades.

Piezoelectric damping was also considered for passive damping of bladed structures,
but in contrast to the two previous solutions, this technology is not mature enough
to be considered industrial state of the art. Tang and Wang [227] proposed to
bond a piezoelectric patch to each blade (as in Figure 6.2(a)) and to shunt each of
them with a series RL shunt. They augmented this passive system with charge and
current feedback to optimally control multiple spatial harmonics. A passive realization
of this concept, wherein capacitors were used instead of the charge feedback, was
proposed by Yu and Wang [228] and later experimentally validated on a bladed disk
mock-up [229]. This control strategy was also shown to be robust with respect to
mistuning and non-engine-order excitation [230]. Interestingly, the concept proposed
in these studies appears to be very similar to the analog network concept reported
in the introduction of Chapter 3, although they were both independently proposed.
Networks implemented only with capacitive and resistive elements were studied in [231]
to avoid using inductors with impractically large inductance. Bladed structures with
multiple individually-shunted piezoelectric patches were studied in [232, 233]. Kauffman
and Lesieutre [234] proposed a frequency-detuning scheme switching a piezoelectric
transducer between its short- and open-circuit state in order to set the structural
resonance frequency away from that of a harmonic excitation.

An issue with the aforementioned works is that they require to place piezoelectric patches
on the surface of the blade. This is unacceptable for the engine manufacturer, because such
protrusion would lead to important perturbation in the aerodynamic flow. Schwarzendahl
et al [235] proposed to incorporate a piezoelectric transducer on the inside of each blade.
In this way, any vibration straining the blade would also strain the piezoelectric material
and hence be controllable without disrupting the airflow. While this ambitious solution
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holds promises, it may not be suitable for industrial application for the time being given
its involved manufacturing difficulty [236]. Alternatively, Zhou et al [237], Viguié et
al [238] and Mokrani et al [239] placed piezoelectric patches under the blades root on the
underside of the wheel of the disk, as shown in Figure 6.2(b). This placement exhibits
the maximum strain energy on the wheel when the blades vibrate. Because the patch is
not directly on the blade, electromechanical coupling is sacrificed to some extent in order
to satisfy the integration constraints. With this setup, Mokrani [54] proposed to use
modal filters to target specific modes by an ingenious parallel connection of piezoelectric
patches. In addition, the parallel connection had the advantage of having a larger
equivalent capacitance, thereby requiring a smaller shunt inductance. Unfortunately,
this approach is not very robust to mistuning [240]. Piezoelectric NES were also proposed
in [175] as a robust control solution, but the added complexity of this essentially nonlinear
control approach makes it uneasy to tune.

(a) (b)

Figure 6.2: Piezoelectric damping of integrally bladed structures: piezoelectric patches
on the blades (a) and on the underside of the support, under the blades (b).

The performance of friction rings was compared to that obtained using synchronized
switch damping on negative capacitor (SSDNC) in [241] with a simplified spring-mass
model of a BLISK. The SSDNC approach showed comparable performance to friction
damping on a single mode, while exhibiting a globally less nonlinear behavior, and
outperformed friction rings when multiple modes were excited. Dampers combining both
friction and piezoelectric damping were recently proposed in [242], where piezoelectric
patches were distributed on a friction ring placed in the wheel of the disk. This hybrid
damper was numerically demonstrated to always exhibit better performance, up to 30%
more vibration reduction than a mere friction ring. Piezoelectric damping allowed to
outperform pure friction damping at low excitation levels. At higher forcing amplitudes,
friction was able to provide a substantial increase in damping. Finally, for high enough
levels, the piezoelectric friction ring was in a full-sliding state, losing its efficiency and
preventing the piezoelectric transducers from acting on the structure, thereby showing
similar performance to the mere friction ring.

Among other possible solutions, eddy current dampers were investigated in [243] and
showed performance comparable to that of a TMD but the device integration within the
bladed part was not discussed in this preliminary study. Impact dampers were proposed
in [244], wherein a rolling ball placed inside a cavity within a blade dissipates energy
through impacts on the cavity walls. The ABH concept was used in [245] with blade
trailing edges tapered with a power-law profile. These two latter solutions are promising,
but would again require substantial manufacturing efforts.
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6.1.2 Motivation and chapter outline

The goal of this chapter is to assess the previously proposed control strategies on an
industrial bladed structure. This structure is a BluM produced by Safran Aero Boosters
and is used in low-pressure compressors of aircraft engines. It is shown in Figure 6.3(a).
As in [54], it comprises 76 (nominally) identical blades, and 28 piezoelectric patches
are distributed circumferentially inside the rim, under the blades root as shown in
Figure 6.3(b) in order to provide the possibility for piezoelectric damping.

(a)

(b)

Figure 6.3: BluM of a low-pressure compressor: general view (a) and view of the
piezoelectric patches (b).

This chapter starts by briefly reviewing the main dynamical feature of bladed structures
in Section 6.2. They generally have complex geometries and numerous fine details,
which results in FE models with a large number of DoFs. To make the analysis of
the controlled systems tractable, a model-order reduction procedure for piezoelectric
structures is presented in Section 6.3. A hybrid control strategy for structures with
closely-spaced resonance frequencies is proposed in Section 6.4. The techniques presented
in this thesis are then illustrated on two bladed structures. The first one, a bladed rail, is
studied in Section 6.5. This bladed rail exhibits dynamical features of bladed structures,
such as frequency bands with high modal density, while being simpler than a typical
turbomachine part. The second structure, the industrial BluM, is studied in Section 6.6.

6.2 Dynamics of bladed structures

The description made in this section is rather qualitative and the interested reader can
find more details in, e.g., [49, 50, 54, 246, 247].
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The bladed structures studied in this thesis consist of flexible blades attached to a
comparatively stiff support. In a nominal structure, blades are identical and are weakly
coupled via the support, which leads to natural structural frequencies close to those of
the cantilevered blade. The more blades, the more modes of this type. Consequently,
structures with numerous blades can exhibit high modal density in frequency regions
near the natural frequencies of the cantilevered blade.

6.2.1 Cyclic symmetric bladed structures

6.2.1.1 Mode shapes

Reference sector

Figure 6.4: Cyclic symmetry of the BluM.

BLISKs and BluMs are nominally cyclic symmetric, i.e., they can be generated as the
repetition of a reference sector, as illustrated in Figure 6.4 (the BluM without piezoelectric
patches is considered in this section). As a consequence, the mode shapes of the structure
are identical on each sector, up to a phase difference [50, 246]. These modes are thus
modulated by a spatial harmonic in the circumferential direction. The relative phase of
a sector is governed by its relative position on the structure and by NND, the number
of nodal diameters exhibited by a mode. In a cyclic symmetric structure with NSec

sectors, NND takes integer values ranging from 0 to NND,max = NSec/2 (NND,max =
(NSec − 1)/2) for even (odd) values of NSec. When NND does not assume its minimum
or maximum value, there are two orthogonal modes associated to the same frequency
(usually called the sine and cosine modes).

Modes with different number of nodal diameters but involving a similar deformation of the
blades form a mode family. A common way to represent the numerous natural frequencies
of a bladed structure is via the nodal diameter vs. frequency diagram, as featured in
Figure 6.5. Every frequency given in this chapter is normalized with the first natural
frequency of the cantilevered blade, and this normalization is indicated with an overline (·).
Modes with a low number of nodal diameters involve the participation of the drum
and the blades. It can also be noted that there are numerous frequency veerings in
these regions. Eventually, at high numbers of nodal diameters, the support participation
becomes negligible and the mode family features blade-alone modes, recognizable by the
horizontal lines in the nodal diameter vs. frequency diagram. The structure thus has a
large number of modes around these frequency regions. Lines are drawn in Figure 6.5 to
help the visualization of drum-dominated and blade-dominated modes.
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Figure 6.5: Nodal diameters vs frequencies diagram of the BluM.

For illustration, the lowest-frequency mode shapes of a cantilevered blade of the
BluM, comprising the first (1B) and second (2B) bending modes and the first
torsion mode (1T), are shown in Figure 6.6.

(a) (b) (c)

Figure 6.6: First (1B, ω = 1) (a), second (1T, ω = 2.59) (b) and third (2B, ω = 4.05) (c)
cantilevered blade modes.

Figure 6.7 features various mode shapes of the full BluM. The qualitative correspondence
between a mode family and its associated cantilevered blade mode, as well as the
sector-to-sector phase difference can clearly be observed. In the extreme cases NND = 0
and NND = 38 the sectors are all vibrating in-phase and out-of-phase, respectively.

Figure 6.8 shows the three lowest-frequency modes of the BluM. The drum participation
in the two first mode shapes is clearly visible, and it becomes smaller (yet still visible)
for the third one which has a higher number of nodal diameters.

We note that, regarding vibration mitigation with piezoelectric patches placed
under the rim, the modal participation of the drum is an important element.
Indeed, if a mode is almost exclusively located on the blades without straining
the drum, the piezoelectric patches are not strained, which eventually results in
low electromechanical coupling with that mode.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Mode shapes of the BluM: 1B-type modes (NND = 0 (a), NND = 2 (b),
NND = 38 (c)), 1T-type modes (NND = 0 (d), NND = 2 (e), NND = 38 (f)).

(a)
(b)

(c)

Figure 6.8: Lowest-frequency mode shapes of the BluM with 3 (a), 2 (b) and 4 (c)
nodal diameters.

6.2.1.2 Engine-order excitation

One of the main sources of excitation for bladed structures comes from the aerodynamic
forces. Typically, the stator blades in front of the rotor creates stationary circumferential
pressure fluctuations, as schematized in Figure 6.9. In the rotating frame, these
fluctuations are perceived as a periodic rotating excitation.

The pressure distribution can be described by circumferential harmonics using
Fourier decomposition. In the frame linked to the rotor rotating at an angular
speed Ωrot, a harmonic NEO provokes NEO full cycles of excitation in a complete
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Stator Rotor

θ
p(θ)

Figure 6.9: Schematic representation of the aerodynamic excitation on a rotor from a
stator.

rotation, and thus induces an excitation frequency of

ω(NEO) = NEOΩrot. (6.1)

The excitation frequency is a multiple of the engine rotation speed. This type of excitation
is thus called an engine-order excitation, and NEO is called the engine order. A mode
can resonate if this excitation frequency is equal to its resonant frequency, which gives a
frequency matching condition. The engine order should also be able to spatially excite
the considered mode. It should thus satisfy the relation

NEO =


NND + kNSec, k ∈ Z

−NND + kNSec, k ∈ Z
. (6.2)

The appearance of a term with an integer k is due to the aliasing of the spatial harmonic
NEO on the NSec sectors [247]. Alternatively, the modes with nodal diameters excited
by a given engine order can be expressed in a compact way as

NND(NEO) =
NSec

π

∣∣∣∣arcsin

(
sin

(
π
NEO

NSec

))∣∣∣∣ . (6.3)

The nodal diameter-engine order correspondence yields a shape matching condition.
Computing the frequencies in Equation (6.1) and the nodal diameters in Equation (6.3)
shows the effect of the engine order NEO at the rotation speed Ωrot. If for any value
of NEO a pair matches one of the points of the frequency vs nodal diameters diagram,
resonance may occur. Figure 6.10 shows an example where the rotation speed is
such that the mode with NND = 17 of the 1B family is resonant under the action
of the 17th engine order. It can also be noted that other resonances are potentially
excited by higher engine orders at this rotation speed.

The natural frequencies of a bladed disk change in operation due to, e.g., temperature
and rotation. This latter effect is generally assessed with a Campbell diagram, and the
conditions for resonant excitation are predicted with a nodal diameter vs fequency diagram
that depends on the rotation speed [247]. In this thesis, these effects were not considered.
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Figure 6.10: Nodal diameters vs frequencies diagram of the BluM: resonance of the
1B-type mode with NND = 17. − • −: engine-order excitation, ×: resonant modes.

6.2.2 Mistuned bladed structures

Real bladed structures depart from their idealized cyclic-symmetric counterparts due
to unavoidable sector-to-sector differences. These differences may occur because of
manufacturing tolerances, or in-operation wear, for instance. Even when small, mistuning
can have a drastic effect on the dynamics of a bladed disk. In particular, a mistuned
structure exhibits modes which are no longer spatial harmonics but a combination of them.

An undesirable consequence of mistuning is the localization of a mode to a few blades.
Modes in the veering regions are particularly sensitive to this because they allow for
interblade coupling via the support. Localization concentrates the vibratory energy on a
few blades which can accelerate their failure due to high-cycle fatigue.

Another issue with mistuning is the excitation of unexpected modes: because the mistuned
modes are composed of multiple spatial harmonics, an engine order may excite several of
them [248]. This can be critical, because modes which were not expected to be excited
during the design phase can be excited during tests or operation.

The case of a BluM where all blades but one are identical is used to illustrate the
localization phenomenon. Young’s modulus of the marginal blade was decreased by 5%
from its nominal value. Such a mistuning pattern could represent a damaged blade.
Figure 6.11 shows that some modes tend to localize to that blade, which in this case
could accelerate its failure even more. In practice, mistuning also occurs randomly
throughout the bladed structure’s circumference.

6.3 Reduced-order modeling of piezoelectric

structures

Bladed structures require a fine discretization of the structure to accurately represent
its dynamics. In order to use models of tractable size that nonetheless reproduce the
dynamics of the structure faithfully, a reduced-order model (ROM) can be built. Two
types of model-order reduction techniques are often used with bladed structures

1. Classical model-order reduction techniques, such as Craig-Bampton reduction [249].
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(a) (b)

Figure 6.11: Mode shapes localization to a blade due to mistuning: 1B-type mode (a)
and 1T-type mode (b). The marginal blade is indicated by a red arrow.

2. Exact model-order reduction techniques exploiting the cyclic symmetry of bladed
structures [246].

In this section, the focus will be put on the first approach, but it could also be used
in conjunction with the other approach, such as in [250].

A structure with bonded piezoelectric transducers is considered. The vector of generalized
mechanical DoFs is partitioned into boundary and internal DoFs indicated by subscripts
b and i, respectively. With this partition, Equation (3.1) reads

Mbb Mbi 0

Mib Mii 0

0 0 0




ẍb

ẍi

V̈

+


Kbb Kbi Γb

Kib Kii Γi

ΓT
b ΓT

i −Cε
p




xb

xi

V

 =


fb

fi

q

 . (6.4)

Following the classical Craig-Bampton reduction procedure [140, 249], the boundary
and electrical DoFs are retained, while the internal DoFs are assumed unforced
(fi = 0) and are approximated by

xi ≈ Φcxb + Φc,pV + Φiηi, (6.5)

where the constraint modes are given by

Φc = −K−1
ii Kib, (6.6)

the piezoelectric constraint modes are given by

Φc,p = −K−1
ii Γi, (6.7)

and the retained mass-normalized component normal modes (CNMs) are defined as the
modes of the structures when the boundary DoFs are blocked

KiiΦi = MiiΦiΩ
2
i , ΦT

i MiiΦi = I, ΦT
i KiiΦi = Ω2

i , (6.8)
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where Ωi is a diagonal matrix containing the CNM angular frequencies and ηi is the
vector of associated modal coordinates. Equation (6.5) defines a reduction matrix by

xb

xi

V

 =


I 0 0

Φc Φi Φc,p

0 0 I




xb

ηi

V

 = RCB


xb

ηi

V

 . (6.9)

The reduced mass matrix is

MCB = RT
CBMRCB =


M̃bb M̃bi M̃be

M̃ib I M̃ie

M̃eb M̃ei M̃ee

 , (6.10)

where
M̃bb = Mbb −MbiK

−1
ii Kib −KbiK

−1
ii Mib + KbiK

−1
ii MiiK

−1
ii Kib, (6.11)

M̃ib = M̃T
bi = ΦT

i

(
Mib −MiiK

−1
ii Kib

)
, (6.12)

M̃ee = ΓT
i K−1

ii MiiK
−1
ii Γi (6.13)

and
M̃ie = M̃T

ei = ΦT
i MiiK

−1
ii Γi. (6.14)

The reduced stiffness matrix is

KCB = RT
CBKscRCB =


K̃bb 0 K̃be

0 Ω2
i 0

K̃eb 0 K̃ee

 , (6.15)

where
K̃bb = Kbb −KbiK

−1
ii Kib, (6.16)

K̃be = K̃T
eb = Γb −KbiK

−1
ii Γi (6.17)

and
K̃ee = −Cε

p − ΓT
i K−1

ii Γi. (6.18)

Equation (6.10) indicates that piezoelectric coupling is no longer represented with static
coupling terms (as in Equation (3.1)), but also features non-trivial inertial coupling terms
in the reduced model. To retrieve a static coupling, the following transformation matrix
that modifies the CNM coordinates ηi to υi is introduced

RMCB =


I 0 0

0 I −M̃ie

0 0 I

 ,


xb

ηi

V

 = RMCB


xb

υi

V

 (6.19)
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and the modified Craig-Bampton (MCB) reduced mass and stiffness matrices are obtained
as

MMCB = RT
MCBMCBRMCB, KMCB = RT

MCBKCBRMCB. (6.20)

It can be shown that these matrices contain the following entries

MMCB =
M̃bb M̃bi (ΦT

c Mii −Mbi)
(
M−1

ii −ΦiΦ
T
i

)
MiiΦc,p

M̃ib I 0

ΦT
c,pMii

(
M−1

ii −ΦiΦ
T
i

)
(MiiΦc −Mib) 0 ΦT

c,pMii

(
M−1

ii −ΦiΦ
T
i

)
MiiΦc,p


(6.21)

and

KMCB =

 K̃bb 0 Γb + ΦT
c Γi

0 Ω2
i ΦT

i Γi

ΓT
b + ΓT

i Φc ΓT
i Φi −Cε

p − ΓT
i

(
K−1
ii −ΦiΩ

−2
i ΦT

i

)
Γi

 . (6.22)

Upon performing the transformation given by Equation (6.20), part of the inertial coupling
terms have been transformed back to static coupling terms. As shown by the mass matrix
in Equation (6.21), there remains non-zero entries associated with the electrical DoFs. To
remove these terms, the following assumption is made

M−1
ii −ΦiΦ

T
i ≈ 0. (6.23)

Equation (6.8) shows that this equation consists in the mass matrix associated to the
internal DoFs minus its spectral expansion trucated to the set of retained CNMs [140],
which justifies the approximation in the framework of a ROM. Hence, the approximation
made on the MCB reduced mass matrix reads

MMCB ≈

 M̃bb M̃bi 0

M̃ib I 0

0 0 0

 (6.24)

so that no generalized inertia load acts on the electrical DoFs. A ROM with the same
form as Equation (3.1) can thus be obtained.

It was assumed that all electrical DoFs are retained. This is generally the case if
these DoFs are associated with electrodes. Piezoelectric FEs may also have internal
electrical DoFs that may not be retained. Upon applying a Craig-Bampton reduction
retaining the desired boundary mechanical DoFs and the electrodes DoFs, the same
MCB transformation can nonetheless be applied (see Section G.1).

In this thesis, geometrical and meshing operations of the bladed structures were carried
out using Siemens NX. To make computations tractable on a personal computer,
these structures were modeled using shell-type (Mindlin) FEs. The inclusion of
piezoelectric patches and the modal analysis were carried out with SAMCEF [136]. A
Craig-Bampton reduction was performed to yield the reduced matrices (Equations (6.10)
and (6.15)). These matrices were imported in MATLAB and the MCB transformation
(Equations (6.19), (6.20) and (6.24)) could then be executed.
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6.4 Hybrid strategy for piezoelectric structures

with closely-spaced resonance frequencies

6.4.1 Mean shunt with series RL shunts

To tackle the complexity associated with the control of multiple modes with
closely-spaced resonance frequencies, Mokrani [54] proposed to use a mean shunt
strategy. In this approach, it is considered that R mechanical modes indexed by r have
closely-spaced resonance frequencies. They are targeted by an array of transducers
shunted with series RL shunts tuned to a single frequency. This frequency is the
average of the targeted resonant short-circuit frequencies

ω̂sc,r =
1

R

∑
r∈r

ωsc,r. (6.25)

The overall EEMCF of all transducers over all targeted modes is evaluated by

K̂2
c,r =

P∑
p=1

1

R

∑
r∈r

ω2
oc,rp − ω2

sc,r

ω2
oc,rp

, (6.26)

where ωoc,rp is the rth resonance frequency of the structure when transducer p is in
open-circuit and every other transducer is in short-circuit (i.e., the frequency of a zero of
the pth diagonal entry of the dynamic capacitance matrix). We note that this frequency
squared is used at the denominator to normalize the EEMCF, because a different
convention is used in [54]. Finally, the static capacitance of transducer p is given by the
pth diagonal entry of the dynamic capacitance matrix at s = 0 (Equation (3.6))

Cp,static = (Cp(0))pp . (6.27)

With these quantities, the mean shunt tuning rules read [54]

Lp =
1

ω̂2
sc,rCp,static

, Rp =
2K̂c,r

ω̂sc,rCp,static
, p ∈

[
1 · · · P

]
. (6.28)

6.4.2 Hybrid strategy

Given its simplicity and its robustness, the mean shunt strategy is an attractive option
for bladed structures. However, this approach is ineffective if the targeted modes do
not all have closely-spaced frequencies. To take the best out of this approach while also
enabling the control of widely-spaced modes, the mean shunt and multimodal absorber
strategies developed in Chapter 3 can be combined. Namely, a multimodal circuit/network
can be devised, with a part of electrical resonances that single-handedly control a set
of closely-spaced resonant mechanical modes exploiting the mean shunt strategy, and
another part of electrical resonances that control isolated mechanical modes. Such a
tuning strategy is called hybrid strategy in the sequel. By contrast, the strategy where all
the targeted mechanical modes are considered independently when applying the method
of Chapter 3 is called isolated-mode strategy.
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Starting from Equation (3.26) with R resonant mechanical modes,
(
s2I + Ω2

sc,r

)
ηsc,r + sΓΦ,rkηe,k = 0(

s2I + 2sZe,kΩe,k + Ω2
e,k

)
ηe,k − sΓT

Φ,rkηsc,r = 0

, (6.29)

where the background contribution from non-resonant modes has been neglected for now,
since Chapter 3 showed that they are not relevant when tuning the electrical mode shapes.
Assuming a modal open-circuit (Ωe,k = 0) and substituting the electrical equations into
the mechanical ones, the open-circuit modal stiffness matrix reads

Ω̂2
oc,r = Ω2

sc,r + ΓΦ,rkΓT
Φ,rk. (6.30)

The eigenvalues of this matrix are the squared open-circuit resonance frequencies, but
its non-diagonal character makes their direct evaluation uneasy. However, its trace,
which is equal to the sum of the eigenvalues, reads

R∑
r=1

ω̂2
oc,r =

R∑
r=1

(
ω2
sc,r +φT

sc,rΓpΦp,kΦT
p,kΓT

pφsc,r

)
=

R∑
r=1

(
ω2
sc,r +

K∑
k=1

(
φT
sc,rΓpΦp,k

)2

)
.

(6.31)
The aim is to maximize the overall EEMCF, given as the sum of the EEMCFs
with every resonant mode, given by

K̂2
c,rk =

R∑
r=1

ω̂2
oc,r − ω2

sc,r

ω2
sc,r

=
R∑
r=1

K∑
k=1

1

ω2
sc,r

(
φT
sc,rΓpΦp,k

)2

=
K∑
k=1

φT
p,kΓ

T
p Φsc,rΩ

−2
sc,rΦ

T
sc,rΓpφp,k. (6.32)

The optimal electrical mode shapes of a passive network are thus the solution of the
optimization problem

Maximize
Φp,k

K∑
k=1

φT
p,kΓ

T
p Φsc,rΩ

−2
sc,rΦ

T
sc,rΓpφp,k

Subject to
(
Cε
p

)−1 −Φp,kΦT
p,k � 0

. (6.33)

Using the dimensionless electrical mode shapes (Equation (3.50)), this problem is
rewritten

Maximize
Φp,k

K∑
k=1

ϕT
p,k

(
Cε
p

)−1/2
ΓT
p Φsc,rΩ

−2
sc,rΦ

T
sc,rΓp

(
Cε
p

)−1/2
ϕp,k

Subject to I−Φp,kΦ
T

p,k � 0

. (6.34)

The passivity constraint indicates that there can be at most K = P orthogonal unit
dimensionless electrical mode shapes. Hence, the solution to this optimization problem
is to select the dimensionless electrical mode shapes as the eigenvectors of(

Cε
p

)−1/2
ΓT
p Φsc,rΩ

−2
sc,rΦ

T
sc,rΓp

(
Cε
p

)−1/2
.
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If the rank of this matrix is smaller than P (which is the case when R < P ), this matrix
has less than P strictly positive eigenvalues. The other eigenvalues are zero and would
not increase the overall EEMCF if set as an electrical mode shape. Hence, only the
eigenvectors associated to strictly positive eigenvalues should be assigned as electrical
dimensionless mode shapes. When the rank of this matrix is equal to P , the whole set of
eigenvectors should be retained, leading to P electrical modes controlling R mechanical
resonances. In this case, the set of dimensionless electrical mode shapes spans RP , and
can equivalently be chosen as Φp = I for simplicity.

Once the mode shapes are determined, the global EEMCF can be computed
(Equation (6.32)). The optimal effective frequency and damping ratio for
electrical mode k are thus given by

ω2
e,k = ν2

(
K̂c,rk

)
ω̂2
sc,avg, ζe,k = ς

(
K̂c,rk

)
, (6.35)

where ω̂2
sc,avg is the average of the squared resonant short-circuit frequencies accounting

for the background contribution of non-resonant modes, i.e.,

ω̂2
sc,avg =

1

R
trace

(
Ω2
sc,r + ΓΦ,r<kS

−1ΓT
Φ,r<k

)
, (6.36)

where S is given by Equation (3.38).

Finally, to account for the effect of background contributions when tuning the electrical
frequencies and damping ratios, a procedure similar to Section 3.7.3.4 is followed. If
the number of resonant electrical mode shapes is less than P , the modal coordinates
of equivalent global mode shapes are computed using

Ck = ΦT
p,kΓT

p Φsc,r (6.37)

and normalizing each column of this matrix to have unit vectors. When the
number of resonant electrical mode shapes is equal to P , Ck = I can be chosen
without loss of generality. Similarly to Equation (3.123), it is sought to impose
the global electrical mode shapes(

Ω2
e,k − ω2

e,k (I + κ̂e,k)
)
Ck = 0. (6.38)

This equation cannot be solved exactly if there are more than one resonant electrical
mode, but can be solved in the least-squares sense, yielding

ω2
e,k = mdiag

(
CkCT

k

)
mdiag (ω̂e,k (I + κ̂e,k) Ck) , (6.39)

where mdiag is an operator giving a vector equal to the diagonal of its argument and
mdiag (·) = diag (mdiag (·)). Finally, the electrical resonance frequencies are

Ω2
e,k = diag

(
ω2
e,k

)
(6.40)

and the electrical damping ratios are

Ze,k =
ζe,k
ωe,k

Ωe,k. (6.41)
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6.5 Damping of a bladed rail

The bladed rail with five blades depicted in Figure 6.12 was used as a transition
between academic structures and the BluM, similarly to [54]. This simpler structure
exhibits several dynamical features similar to those of a BluM, and in particular,
closely-spaced resonant modes grouped as families. To approach the same control
strategy as that of the BluM, five patches are placed on the underside of the rail,
under the blades root, as depicted in Figure 6.12(b). A superelement was created
with the method described in Section 6.3, retaining mechanical DoFs on the blades tip
at the leading edge, the piezoelectric voltages of the patches, and 50 CNMs. Modal
damping of 0.01% was added to each mode of this ROM.

◦ ◦ ◦ ◦ ◦

(a)

(b)

Figure 6.12: Overall (a) and bottom (b) views of the bladed rail with piezoelectric
patches. The red circles indicate the position of the retained DoFs.

6.5.1 Dynamics of the bladed rail

Figure 6.13 shows the natural frequencies of the bladed rail with short-circuited
patches. Three plateaus are observable among the first twenty frequencies, and they
correspond to a mode family. Modes with frequencies in between these plateaus
involve the participation of the support. For illustration, Figure 6.14 depicts modes
in the 1B (Figure 6.14(a)), 1T (Figure 6.14(b)) and 2B (Figure 6.14(d)) families,
as well as a support-dominated mode (Figure 6.14(c)).

6.5.2 Control of the first family of modes

Four control strategies are considered to mitigate the vibrations of the first family of
modes:

1. Individual series RL shunts tuned according to the mean shunt strategy proposed
in [54].

2. Individual parallel RL shunts tuned with the isolated-mode strategy.

3. Individual multimodal shunt circuits with ideal Norton’s admittance targeting all
modes tuned with the isolated-mode strategy.
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Figure 6.13: Natural frequencies of the bladed rail with short-circuited patches.

(a) (b)

(c) (d)

Figure 6.14: Mode shapes of the third (a), eighth (b), eleventh (c) and fifteenth (d)
modes of the bladed rail.

4. A network interconnecting the patches targeting all modes tuned with the
isolated-mode strategy.

In strategies 2 to 4, the relative control authority on each mode is balanced, i.e., unit
(global) relative scaling factors were assigned to each mode.

Figure 6.15(a) features FRFs of the first blade tip controlled by these strategies. Globally,
they are equally effective. The mean shunt and network exhibit similar performance with
a rather flat FRF, whereas the optimal circuits (RL shunts or multimodal circuits) tend
to attenuate the vibrations near the center of the controlled bandwidth more, at the
expense of vibration amplitude near its boundaries.

The robustness of the four control strategies is now investigated. The circuits and
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Figure 6.15: Driving-point receptance (a) and maximum receptance magnitude (b) of
the first blade tip with patches in short circuit (—), connected to individual RL shunts
tuned with the mean shunt strategy [54] ( ), optimal RL shunts ( ), multimodal
shunts ( ) and network ( ).

network are tuned based on the characteristics of the nominal host structure, and
the frequencies of the actual host are modified by multiplication with a scalar factor.
Figure 6.15(b) displays the maximum receptance as a function of the frequency factor.
All strategies are close to being optimal near the nominal case, which confirms the
effectiveness of the proposed tuning rules. However, because they all are resonant
absorbers, performance is deteriorated as the frequencies move away from their nominal
values. It can however be noted that the mean shunt offers better robustness than
the other approaches, whose robustness is somewhat similar.

The better robustness of the mean shunt strategy can be explained by the fact that
it is the approach with the highest electrical damping (hence the highest bandwidth)
because it adds up the electromechanical coupling with all targeted modes. By contrast,
the other strategies only exploit the electromechanical coupling of a single mode at a
time, yielding an electrical circuit or network with distributed frequencies but with less
electrical damping, resulting overall in a narrower bandwidth.

6.5.3 Control of the three first families of modes

More than one family of modes could be problematic. In this case, Figure 6.16 features
the FRFs of the first blade tip when the bladed rail is controlled by multimodal circuits
or a network targeting the three first families of modes as well as the two isolated modes
between family two and three with an isolated-mode strategy. Individual RL shunts were
not considered owing to the difficulty of attributing them to a specific modes. With both
strategies, effective vibration reduction on all target modes is observable.

We note that the multimodal shunt circuits require seventeen electrical resonances per
shunt. This number can however be brought down if the hybrid strategy is adopted.
Figure 6.17 shows FRFs with multimodal circuits or a network targeting the same set of
modes, but using mean shunts targeting each of the three families of modes. Performance
is slightly degraded, but all targeted resonances are again mitigated. The order of the
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Figure 6.16: Driving-point receptance of the first blade tip with patches in short circuit
(—), connected to multimodal shunts ( ), and connected to a network ( ).

network is identical in both cases with seventeen resonances. However, the order of each
shunt circuit goes from seventeen to five when the hybrid strategy is used.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Normalized frequency (-)

-100

-50

0

50

100

N
o
rm

a
liz

e
d
 r

e
c
e
p
ta

n
c
e
 (

d
B

)

Figure 6.17: Driving-point receptance of the first blade tip with patches in short
circuit (—), connected to multimodal shunts tuned with the hybrid strategy ( ), and
connected to a network tuned with the hybrid strategy ( ).

The robustness of each strategy can be assessed in Figure 6.18. The isolated-mode
and hybrid strategies allow for better performance and robustness, respectively. In
Figure 6.18(c), the dip appearing near a frequency factor of 0.93 is due to the action
of the electrical resonance tuned to the twelfth (isolated) mechanical mode.

Finally, it should be noted that an approach with similar performance was proposed
in [251]. The approach proposed herein is substantially simpler and implementable
experimentally since it does not require the decomposition of the structure into multiple
sectors. It also accurately captures the dynamics of the host which allows for the control
of support-dominated modes, unlike the ROM-based method therein.



6.6. Damping of a bladed drum 236

0.9 0.95 1 1.05 1.1

Host frequency factor (-)

25

30

35

40

45

50

55

60
N

o
rm

a
liz

e
d
 r

e
c
e
p
ta

n
c
e
 m

a
x
im

u
m

 (
d
B

)

(a)

0.9 0.95 1 1.05 1.1

Host frequency factor (-)

30

35

40

45

50

55

60

N
o
rm

a
liz

e
d
 r

e
c
e
p
ta

n
c
e
 m

a
x
im

u
m

 (
d
B

)

(b)

0.9 0.95 1 1.05 1.1

Host frequency factor (-)

10

15

20

25

30

35

40

45

N
o
rm

a
liz

e
d
 r

e
c
e
p
ta

n
c
e
 m

a
x
im

u
m

 (
d
B

)

(c)

Figure 6.18: Maximum driving-point receptance magnitude of the first blade tip
near the first (a), second (b) and third (c) modes families with patches connected
to multimodal shunts tuned with the isolated-mode ( ) and hybrid ( ) strategies,
and patches connected to a network tuned with the isolated-mode ( ) and hybrid
( ) strategies.

6.6 Damping of a bladed drum

6.6.1 BluM with piezoelectric patches

As stated in Section 6.1.2, the BluM can be endowed with 28 piezoelectric patches
distributed on the rim, on the underside of the blades, as in [54]. A superelement was
created from a FE model of the BluM, retaining mechanical DoFs on the blades tip at
the leading edge (similarly to Figure 6.12(a)), the piezoelectric voltages, and 160 CNMs.
Modal damping of 0.01% was added to each mode of this ROM.

The introduction of the patches disrupts the cyclic symmetry of the BluM. The
piezoelectric structure is still cyclic symmetric, but the reference sector with patches is
now one quarter of the structure. Because the mass and stiffness properties of the patches
are small compared to those of the BluM, the former may be seen as a perturbation of the
latter. Thus, some of the modes of the piezoelectric structure may be seen as perturbed
versions of the modes with nodal diameters of the BluM alone (cf. Section 6.2). For
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modes with a high number of nodal diameters in the nominal structure, this disruption
is more pronounced and the introduction of patches has a more significant impact.

Figure 6.19: FE mesh of a quarter of the BluM’s rim (in gray) with piezoelectric
patches (in orange). The blade roots are indicated in red.

It should also be noted that the FE mesh and algorithm for modal analysis introduce
mistuning by themselves. Indeed, the mesh needs to adapt to the geometry of the
patches and the blades, which makes it significantly irregular in some regions, as shown
in Figure 6.19. As a consequence, the cyclic symmetry of the structure with 78 sectors
is lost when using this mesh, even when the piezoelectric patches are not incorporated
in the model. This numerical effect is a signature of the strong sensitivity of cyclic
symmetric structures to mistuning. The algorithm for modal analysis (a block Lanczos
algorithm [140]) also struggles with the numerous close eigenvalues. Since it is rather
difficult to remedy this numerical issue and since it can be used to represent unintentional
mistuning, it was decided to keep this effect in the model.

6.6.2 Blade tip receptance

At first the driving-point receptance of a blade tip at the leading edge is used to
analyze the dynamics of the structure and assess the effectiveness of the control
system. It is shown in Figure 6.20 when the patches are all short-circuited. At low
frequencies, isolated modes that correspond to the drum-dominated modes illustrated
in Figure 6.8 are visible, whereas a zone of high modal density is observable near
ω = 0.9, which corresponds to the 1B family of modes.
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Figure 6.20: Driving-point receptance of a blade tip with patches in short circuit.

The driving-point receptance is not the most representative for an operational excitation
of the structure, but would be easier to obtain experimentally (because it requires the
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excitation of a single blade). Moreover, nearly all modes are excited by this configuration,
which eases the assessment of the control strategy.

To mitigate the resonances of the BluM, three control strategies are considered:

1. 28 individual shunts with ideal Norton’s admittance.

2. 7 decentralized networks interconnecting 4 patches distributed in an alternate way.

3. A centralized network interconnecting the 28 patches.

The second strategy was considered because the third one would require a MCU with
28 analog I/O pins, which may not be easy to find. From the results of Section 3.8.4,
decentralized networks with an alternate patch distribution may be advantageous as they
could exhibit better performance than mere shunts. Moreover, this could be a practical
alternative where the MCUs have a realistic number of I/O pins and are in limited
number. The patches interconnections for each strategy are depicted in Figure 6.21. In
each strategy, the relative control authority on each mode is balanced, i.e., unit (global)
relative scaling factors were assigned to each mode.
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Figure 6.21: Connection of the patches to the circuits/networks used in strategies 1 (a),
2 (b) and 3 (c) (numbers indicate the circuit/network a patch is connected to).

The modes with frequencies lower than or equal to that of the last mode of the 1B family
are targeted for vibration mitigation. It should be noted that this may not be a choice that
would be made in practice, and only a subset of these modes would probably be targeted,
as will be made in Section 6.6.3. The results of this section are therefore presented to
demonstrate what one can do but not necessarily what one should do.

A hybrid strategy is adopted in order to simplify the circuits/networks. The first
four peaks in Figure 6.20 (which correspond to modes with 3, 2, 4 and 5 nodal
diameters) are targeted as isolated modes, and the resonances in the high modal
density frequency region are targeted with a mean shunt.

Figure 6.22 features the driving-point receptance of the blade with the different
control strategies. They all are effective on the isolated modes, and, as expected,
the centralized network exhibits the best performance, followed by the decentralized
networks. In the high modal density region, all three approaches are globally equivalent
and control remarkably well most of the resonances with limited controller complexity
thanks to the hybrid strategy. Near the highest frequencies, performance degrades
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Figure 6.22: Driving-point receptance of a blade tip with patches in short circuit (—)
and connected to multimodal shunt circuits ( ), decentralized networks ( ) and a
centralized network ( ) tuned with a hybrid strategy.

because the associated modes have a high number of nodal diameters, imparting
partial charge cancellation on the 28 patches. This results in low EEMCFs with
those modes and eventually limited vibration reduction.
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Figure 6.23: Maximum normalized driving-point receptance (a) and normalized H2

norm (b) with patches connected to multimodal shunt circuits ( ), decentralized
networks ( ) and a centralized network ( ) tuned with a hybrid strategy.

Figure 6.23(a) assesses the robustness of the proposed strategies when the frequencies
of the host are modified by multiplication with a scalar factor ffr. The small effect
of this factor is due to the fact that the receptance maximum is determined by the
highest-amplitude peak which is near the end of the region of high modal density (cf.
Figure 6.22). Since the peaks around these frequencies are associated to modes exhibiting
small electromechanical couplings, the receptance amplitudes in the uncontrolled and
controlled systems are close, and the controllers have a small influence on these amplitudes.

To obtain a clearer picture of the robustness of the proposed strategies in terms of
broadband control, the H2 norm evaluated in the frequency range ω = [0.5ffr, 0.95ffr]
can be analyzed. This H2 norm divided by that of the uncontrolled structure is shown in
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Figure 6.23(b). The asymmetric character of this function with respect to the frequency
factor is due to the ability of parallel RL shunts to partially control higher-frequency modes
(as discussed in Chapters 2 and 4). Hence, when the host frequency is underestimated in
the tuning procedure (ffr > 1), the controllers are able to maintain (and even enhance in
the centralized network case) performance in terms of the H2 norm. This norm is mostly
determined by control performance in the high modal density region, and the apparent
robustness is due to the robustness of the mean shunt approach. However, it should be
noted that the robustness concerning isolated modes is similar to the case of a single
parallel RL shunt (i.e., the controllers can quickly be detuned from these modes).

6.6.3 Engine order excitation

A more representative excitation is the engine order one. In a cylindrical reference frame
linked to the axis of rotation with radial, circumferential and axial coordinates rc, θc
and zc, respectively, it can be expressed as

fNEO(rc, θc, zc, t) = f0(rc, zc) cos(NEO (θc − Ωrott))

= f0(rc, zc) (cos(NEOθc) cos(NEOΩrott) + sin(NEOθc) sin(NEOΩrott)) , (6.42)

where f0(rc, zc) is an arbitrary force field which is circumferentially modulated. This
relation indicates that the rotating excitation can equivalently be represented by the
sum of two orthogonal spatial harmonic distributions, respectively modulated by two
harmonic time signals in quadrature. The harmonic response of the BluM to a rotating
excitation can thus be evaluated with the sum of two FRFs.

The responses of a blade to an engine order excitation NEO varying from 6 to 9 were
assessed. The frequencies of the modes with compatible number of nodal diameters
(Equation (6.3)) are all in the high modal density region, and can thus be targeted by
a mean shunt. In this case, all three strategies yield identical results.

Figure 6.24 shows the results. The fact that multiple, closely-spaced resonances appear
in these responses comes from the mistuning in the structure, but a dominant mode is
clearly observable in each case. This dominant mode is the counterpart of the modes
in the cyclic symmetric structure with 6 to 9 nodal diameters. When the patches are
shunted with a mean shunt, these resonances are effectively mitigated.

In an experimental setup, if the mistuning present in the BluM is large enough
to make these engine orders excite isolated modes, the hybrid strategy adopted in
Section 6.6.2 can be used to mitigate them as well.

The satisfactory performance exhibited by the mean shunt strategy on all these engine
orders is due to the electromechanical coupling with the targeted modes. With an
experimental setup, this coupling may be lower since the assumptions of the FE model
may not be respected, e.g. regarding the material properties or imperfect adhesion to
the structure due to the bonding layer [79]. To investigate the effect of a potential
overestimation of the EEMCFs, the piezoelectric coupling matrix was multiplied by
a factor smaller than one (resulting on the same factor applied to the EEMCFs) to
artificially decrease the electromechanical coupling. Figure 6.25 features the response
of the blade using arbitrary factors 0.25 and 0.5. As can be expected, performance is
deteriorated if the EEMCFs are smaller than the nominal case. Thus, if the experimental
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Figure 6.24: Normalized response of a blade tip under an engine order excitation
(NEO = 6 (a), NEO = 7 (b), NEO = 8 (c), NEO = 9 (d)) with patches in
short-circuit (—) and shunted with a mean shunt ( ).

setup exhibits very low EEMCFs, an active control strategy with a negative capacitance
to enhance electromechanical coupling could be considered.

6.7 Conclusion

The main dynamical features of bladed assemblies, namely modes with nodal diameters,
engine-order excitation, and mistuning, were first briefly reviewed. In view of the
complexity of the structures at hand, a modified model-order reduction technique
tailored to piezoelectric structures was proposed, yielding a ROM of similar type as the
original model. The mean shunt strategy was integrated into the approach proposed in
Chapter 3 into a hybrid strategy to allow for the control of multiple families of modes.

Piezoelectric vibration damping of bladed structures was then studied with two examples.
The first one is a bladed rail with five blades. With this structure, the hybrid strategy
proved effective, simple and robust. Next, an industrial BluM was considered. Vibration
mitigation of the resonances observed in a driving-point receptance of a blade was obtained
using the hybrid strategy. Finally, the response of the structure under engine-order
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Figure 6.25: Normalized response of a blade tip under an engine order excitation
(NEO = 6 (a), NEO = 7 (b), NEO = 8 (c), NEO = 9 (d)) with patches shunted with
a mean shunt, multiplying the EEMCF by 1 ( ), 0.5 ( ) and 0.25 ( ).

excitation was damped using a mean shunt strategy.

Effective piezoelectric vibration mitigation was thus demonstrated numerically. The next
step would be the experimental validation on real bladed structures. This perspective
is discussed in the conclusion of this thesis.



Conclusion

This thesis focused on developing vibration mitigation means for complex structures.
The core of this work is constituted by tuning methods for multimodal piezoelectric
vibration mitigation. These techniques can be implemented either with circuits/networks
made up of passive electrical elements, or DVAs, and proved effective on various
numerical and experimental examples.

Chapter 1 presented the general architecture of a DVA and demonstrated its equivalence
with a piezoelectric shunt. The power consumption of the realized DVA is about
1W, and is mostly determined by quiescent power. Sampling delays were shown
to be responsible for instabilities due to the generation of true power in the digital
shunt. This aspect is most critical for systems with low electromechanical coupling.
A stabilization approach was proposed to solve this issue with simple modifications
of the coefficients of the implemented transfer function.

Chapter 2 proposed a three-step passivity-based tuning approach for circuits connected
to a single transducer. After identifying the structure, specifications of ideal immittances
were derived. These immittances can directly be programmed in a DVA, or used to
tune shunt circuits previously proposed in the literature. The method provides effective
vibration mitigation of multiple modes and requires limited experimental data.

Chapter 3 extended these concepts to multiple transducers, and proposed a modal-based
synthesis of networks interconnecting them. It also established a theoretical framework
to compare the three approaches generally used for multimodal piezoelectric damping.
One important conclusion of Chapters 2 and 3 is that passive networks can optimally
use the control authority of all piezoelectric transducers on all modes simultaneously.
By contrast, shunt circuits need to compromise between the modes. At their best,
passive shunts achieve the same performance as the case where all transducers are
connected to RL shunts targeting a specific mode.

Chapter 4 proposed an efficient algorithm for H∞ optimization. The approach relies on
solving a sequence of problems of increasing complexity through optimization of norms
of increasing order. The typical outcome of this algorithm is an all-equal-peak design.
Different transfer functions, such as the receptance, mobility, accelerance or even scaled
versions of these transfer functions can be optimized.

The detrimental effects of structural nonlinear behaviors on tuned vibration absorbers
were studied in Chapter 5. The versatility of the DVA was exploited to develop
an experimental piezoelectric nonlinear tuned vibration absorber featuring different
nonlinear mathematical forms. This nonlinear absorber was shown to outperform its
linear counterpart when acting on a nonlinear structure. The control strategy was
also extended to the control of multiple nonlinear resonances.

Chapter 6 then focused on bladed structures. A modified model-order reduction technique
tailored for piezoelectric structures was proposed. A new hybrid strategy combining the
mean shunt concept with the approach of Chapter 3 was developed. Effective vibration
mitigation was finally numerically demonstrated on a bladed rail and an industrial BluM.
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This thesis thus contributes to the development of advanced piezoelectric vibration
mitigation strategies which can be readily used by practitioners. Specifically, the
main achievements of this research work are:

1. A DVA, with linear or nonlinear tuning laws made robust to delay-induced
instabilities, was implemented.

2. Four innovative approaches for multimodal vibration damping were developed,
namely a passivity-based tuning of piezoelectric shunts, a modal-based synthesis of
networks, a fine-tuning methodology based on norm-homotopy optimization and a
tuning strategy dedicated to nonlinear systems.

3. The effective control of multiple families of modes of bladed assemblies was realized
using a hybrid methodology combining the modal-based synthesis of networks
with previous developments in the technical literature. In this context, a modified
Craig-Bampton model-order reduction method for piezoelectric structures was also
proposed.

Perspectives for future research

Four research directions could be followed to build on the achievements of this thesis.
They are based on the limitations highlighted throughout this manuscript.

Placement, sizing and distribution of piezoelectric transducers

Most structures studied in this thesis were either existing experimental setups or
numerical structures proposed in the literature, which is why placing and sizing
piezoelectric transducers was not tackled herein. It remains nonetheless important and
can be quite challenging when multiple transducers are used to target multiple modes.
In this regard, an interesting extension to the proposed norm-homotopy algorithm would
be to concurrently optimize the position and size of piezoelectric transducers.

Moreover, Chapter 3 briefly discussed the relevance of an appropriate choice of the
piezoelectric transducers interconnected with a network, and how this choice could
affect performance. The discussion was not carried out in depth, and only exploratory
results were shown. A quantitative method guiding the user for the most advantageous
interconnections and control emphasis on specific modes could be very helpful. Moreover,
the link between the local and global scaling factors should be clarified.

Adaptivity of the absorber

Chapters 1, 5 and 6 underlined the lack of robustness of piezoelectric tuned vibration
absorbers, and showed that changes in the resonance frequency of the host could have
a dramatic effect on performance. Varying operational conditions such as temperature,
wear or boundary conditions can strongly impact the resonance frequencies of a structure.

The methods proposed in Chapters 2 and 3 only require the measurement of the
dynamic capacitance or elastance. Since the DVA is endowed with a voltage sensor
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and a current source, it is able to measure these transfer functions on its own.
Coupled with adequate signal processing, the DVA could therefore be able to achieve
offline adaptivity. In other words, a DVA connected to an unforced structure before
operation could run an initialization routine where it identifies the structural properties
by injecting a small current, computes the parameters of its admittance, and then
runs as a regular shunt circuit. However, in-operation structural changes would
not be detectable with this offline adaptive approach.

Several works proposed to make piezoelectric shunts semi-active, by updating their
electrical parameters to stay tuned to the host frequency. For instance, Fleming and
Moheimani [252] used a DVA with an adaptation scheme based on the minimization
of the root-mean square (RMS) strain in the piezoelectric transducer. Niederberger
et al [253] used a relative phase adaptation scheme to guarantee a phase quadrature
between the current in the shunt and the velocity of the structure. This technique was
shown to be faster than the RMS strain minimization, but it requires an additional
sensor on the structure. Recently, Gardonio et al [166] proposed a scheme based on the
maximization of dissipated power in the shunt. This approach was also implemented
with a DVA, and its advantage is that it only requires the voltage and current in
the transducer, which are local and readily-available measurements, especially with a
DVA. Thus, an interesting research direction would be to adapt this law to the ideal
immittance circuits and even to networks in order to provide the DVA with online
adaptivity, making the control strategy much more robust.

If provided with the ability to detect structural changes (either offline or online), the
DVA could also be used to perform structural health monitoring. In particular, it
could deduce the structural resonance frequencies (or equivalent indicators) to inform
the operator about the state of the structure.

Active digital vibration absorber

The introduction highlighted three advantages of passive control, namely the absence of
power requirements, its fail-safe character, and the guaranteed stability of the controlled
system. As shown in Chapter 1, the DVA requires power for operation and thus is not
fail safe, and can potentially be unstable. Therefore, the relevance of implementing a
passive control law with a DVA for operation may be questionable.

Most of this thesis was focused on passive control, and conditions for the circuits or
networks to be realizable as an assembly of passive electrical components were derived.
In Chapters 2 and 3, they were shown to limit the extent to which the control authority
on several modes could be raised. In particular, it was shown in an example of Chapter 3
(Section 3.6.1) that violating this passivity constraint led to the appearance of an active
electrical component, the negative capacitance.

Going beyond the passivity limits in order to increase the performance of a DVA is
conceivable, and was pursued in [109]. Nothing seems to prevent the application of
the tuning formulas developed in Chapters 2 and 3 without respecting the passivity
constraints. This would constitute a tuning approach for a resonant active controller.
The passivity constraint would be replaced by other concerns, such as the stability of the
closed-loop system or its power consumption and control effort. Unlike in [109], numerical
optimization would not be required to tune such an active controller.
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The piezoelectric transducer connected to a DVA acts simultaneously as a sensor and
as an actuator, and thus allows for a perfect collocated control. This configuration
has advantages in terms of closed-loop stability [4]. Another way in which the
developments in this thesis could be used in the active control of structures could
come from the strong similarity between a series RL piezoelectric shunt and a
PPF controller, as noted e.g. in [173].

Development and integration of the absorber in bladed
structures

The final milestone of the Maveric project mentioned in the introduction of this thesis is
the experimental demonstration of smart vibration absorbers on a BluM. To achieve this,
several tasks still need to be undertaken. The first one is the experimental realization
of a DVA able to control multiple piezoelectric transducers, or multiple (and potentially
interconnected) DVAs. As in Chapter 6, the first candidate host for such a demonstration
would be a bladed rail rather than a BluM to deal with complexity incrementally.

Turning now to a possible deployment of such vibration mitigation approaches, the ideal
control system should exhibit high performance while being robust, easily integrable
and fail-safe. Performance was numerically demonstrated in Chapter 6 but remains
to be experimentally validated. If unsatisfactory, an active DVA could be conceived.
Robustness issues could be addressed using real-time adaptivity. Regarding the
integration, a DVA could be made much smaller and lighter than the two realizations
presented in this thesis. It would thus fit easily inside the BluM, but special care would
have to be taken to connect it to the piezoelectric patches with strong wires, and to make
the whole system balanced. Power consumption would also be an important aspect of
the DVA integration. For the application at hand, it was demonstrated by collaborators
of the Maveric project that a significant amount of power could be extracted from
the rotation with an electromagnetic energy harvesting system. Finally, the DVA is
not fail-safe. To remedy this, several options could be explored. An electronic switch
which connects the patches to a DVA when power is on, and to a simpler shunt such
as a properly-tuned resistor when power is off could be a simple, fail-safe solution.
Alternatively, an active DVA could be coupled with a passive shunt to form a fail-safe
hybrid control system. Finally, it should be noted that this kind of control strategy could
only be applied to the cold parts of the engine (such as the low-pressure compressor)
because of the temperature limitations incurred by the use of piezoceramic elements.
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Acronyms

ABH acoustic black hole.

ADC analog-to-digital converter.

AFT alternating frequency–time domain.

ANCB augmented nonlinear current blocking.

BLISK bladed disk.

BluM bladed drum.

BoAs basins of attraction.

CB current blocking.

CF current flowing.

CNM component normal mode.

DAC digital-to-analog converter.

DoFs degrees of freedom.

DRC detached resonance curve.

DVA digital vibration absorber.

EEMCF effective electromechanical coupling factor.

FE finite element.

FEM finite element method.

FRF frequency response function.

HBM harmonic balance method.

HV high-voltage.

I/O input-output.

KCL Kirchhoff’s current law.

KVL Kirchhoff’s voltage law.

LV low-voltage.



Acronyms 250

MCB modified Craig-Bampton.

MCU microcontroller unit.

MDoF multiple-degree-of-freedom.

MIMO multiple-input multiple-output.

NCB nonlinear current blocking.

NES nonlinear energy sink.

NFR nonlinear frequency response.

NH norm-homotopy.

NLTVA nonlinear tuned vibration absorber.

NPPF nonlinear positive position feedback.

NPTVA nonlinear piezoelectric tuned vibration absorber.

OpAmp operational amplifier.

PCB printed circuit board.

PPF positive position feedback.

PWM pulse width modulation.

QP quasiperiodic.

RMS root-mean square.

ROM reduced-order model.

SDoF single-degree-of-freedom.

SFCF second Foster canonical form.

SHC sample-and-hold circuit.

SISO single-input single-output.

SMW Sherman-Morrison-Woodbury.

SPIS series-parallel impedance structure.

SSDNC synchronized switch damping on negative capacitor.

TMD tuned mass damper.

TRL technology readiness level.

ZOH zero-order hold.

ZPK zero-pole-gain.



Nomenclature

Subscripts

·b Boundary

·d Discrete

·e Electrical

·g Group

·i Internal

·p Piezoelectric

·s Shunt

·0 Host system characteristic

·<k Non-resonant electrical modes with frequencies lower than that of mode k

·>r Non-resonant mechanical modes with frequencies higher than that of mode r

·avg Average

·a Absorber

·CC Negative-voltage power supply

·EE Positive-voltage power supply

·in Input

·Max Maximal

·nl Nonlinear

·oc Open-circuit

·opt Optimal

·out Output

·Q Quiescent

·sc Short-circuit

Superscripts

·ε Quantity at constant strain

·σ Quantity at constant stress
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·E Quantity at constant electric field

·R Resistive shunt

·? Optimal

·RLP Parallel RL shunt

·RLS Series RL shunt

Operators

∠· Complex argument

· � 0 Positive semidefinite matrix

·∗ Complex conjugate

·† Pseudoinverse

·H Matrix Hermitian transpose

·T Matrix transpose

·̇ Time derivative

={·} Imaginary part

λMax {·} Maximum eigenvalue

<{·} Real part

Hp {·} p-norm of a transfer function

General notation

0 Zero vector/matrix

1 Vector/matrix filled with ones

I Identity matrix

· Dimensionless/normalized quantity

·̂ Effective characteristic around a resonance frequency

t Time

Single-degree-of-freedom piezoelectric structure

∆x Residual deformation

εεkl Entry k,l of the permittivity matrix at constant strain

γp Piezoelectric coupling coefficient (Norton’s model)

ωoc Open-circuit resonance frequency
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ωsc Short-circuit resonance frequency

ψ Piezoelectric flux linkage

σk Component k of Voigt’s stress vector

θp Piezoelectric coupling coefficient (Thévenin’s model)

εl Component l of Voigt’s strain vector

A Area of a piezoelectric rod

Cp(s) Dynamic capacitance

Cσ
p Piezoelectric capacitance at constant stress

Cε
p Piezoelectric capacitance at constant strain

ckl Entry k,l of the Hooke’s matrix

Dk Component k of the electric displacement field vector

Ep Component p of the electric field vector

Ep(s) Dynamic elastance

ekp Entry k,p of the material piezoelectric coupling matrix

Eoc Stored energy under open-circuit condition

Esc Stored energy under short-circuit condition

f External forcing

fp Force across a piezoelectric rod

h Height of a piezoelectric rod

i Piezoelectric current

Kc Effective electromechanical coupling factor

koc Stiffness of a piezoelectric structure with open-circuited electrodes

kp,oc Piezoelectric stiffness with open-circuited electrodes

kp,sc Piezoelectric stiffness with short-circuited electrodes

ksc Stiffness of a piezoelectric structure with short-circuited electrodes

q Piezoelectric charge

V Piezoelectric voltage

x Displacement

Piezoelectric shunts
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δ Frequency ratio of a series RL shunt

ν Frequency ratio of a parallel RL shunt

ωe Electrical resonance frequency

ς Electrical damping ratio of a parallel RL shunt

ζ Electrical damping ratio of a series RL shunt

B Reluctance

G Conductance

L Inductance

Ns Number of targeted modes

p (with subscript) pole of a transfer function

R Resistance

r (with subscript) residue

Y Electrical admittance

yl Influence of capacitively-dominated modes (admittance model)

YN Norton’s equivalent admittance

yu Influence of inductively-dominated modes (admittance model)

Z Electrical impedance

z (with subscript) zero of a transfer function

zl Influence of capacitively-dominated modes (impedance model)

ZT Thévenin’s equivalent impedance

zu Influence of inductively-dominated modes (impedance model)

Digital vibration absorber

α Voltage division ratio of the DVA

τ Sampling period

g Gain of the DVA

NADC ADC output value

NDAC DAC input value

P (with subscript) power

Ri Current injector resistance
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V (with subscript) voltage

z z transform variable

Transfer functions

ω Angular frequency

f (with subscript) frequency

GM Gain margin

K Gain of a transfer function

PM Phase margin

s Laplace’s variable

Multiple-degree-of-freedom piezoelectric structure

η Modal coordinates vector

γp Piezoelectric coupling vector (Norton’s model)

θp Piezoelectric coupling vector (Thévenin’s model)

γφ,k kth modal piezoelectric coupling coefficient (Norton’s model)

κr Influence of higher-frequency mechanical modes

Γp Piezoelectric coupling matrix (Norton’s model)

Ωoc Mechanical resonance frequencies matrix with open-circuited transducers

Ωsc Mechanical resonance frequencies matrix with short-circuited transducers

Φoc Mechanical mode shapes matrix with open-circuited transducers

Φsc Mechanical mode shapes matrix with short-circuited transducers

Θp Piezoelectric coupling matrix (Thévenin’s model)

Cp(s) Dynamic capacitance matrix

Cε
p Piezoelectric capacitance matrix at constant strain

Ep(s) Dynamic elastance matrix

Eε
p Piezoelectric elastance matrix at constant strain

f External forcing

H Transfer matrix

Koc Structural stiffness matrix with open-circuited transducers

Ksc Structural stiffness matrix with short-circuited transducers
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M Structural mass matrix

x Generalized DoFs

θφ,k kth modal piezoelectric coupling coefficient (Thévenin’s model)

Networks

αp Scaling factor of an electrical mode for passivity

ΓΦ Modal piezoelectric coupling matrix

ηe Electrical modal coordinates vector

ψ Flux linkages vector

ϕp Dimensionless electrical mode shape

Ωe Electrical resonance frequencies matrix

Φe,gk(g) Electrical mode shapes matrix of group g

Φe Electrical mode shapes matrix

Φp,g(k)k Electrical mode shapes of all resonant groups on all piezoelectric transducers
around the frequency of electrical mode k

B Reluctance matrix

C Capacitance matrix (of the overall network)

Ce Capacitance matrix (of the interconnecting network)

Dp Scaling factors matrix

Eg Localization matrix to a group of electrical DoFs

Ep Piezoelectric localization matrix

Epg Localization matrix relating the piezoelectric DoFs of a group to those of the whole
piezoelectric structure

G Conductance matrix

g(k) Vector of resonant groups around the frequency of electrical mode k

k(g) Electrical resonances vector of group g

S Schur complement of the short-circuit resonance frequencies matrix

V Orthogonal basis of the kernel of ΦT
p

W Orthogonal basis of the kernel of Φp

Y Admittance matrix

Ze Electrical damping ratios matrix



Nomenclature 257

Φp Dimensionless electrical mode shapes matrix

Dp Relative scaling factors matrix

dp Relative scaling factor

dp Scaling factor

I Number of internal electrical DoFs

Ne Number of electrical DoFs

Ng Number of groups of electrical DoFs

P Number of piezoelectric transducers

Pg Number of piezoelectric transducers connected to group g

Norm-homotopy optimization

ξ Vector of optimization variables

χ Scaling factor for a transfer function

c Set of inequality constraints

wf Spatial forcing distribution

wu Localization vector

Nω Scaling factor for a transfer function

Nonlinear systems

∇ Frequency-domain differential operator

·(i) Quantity at order i of a series expansion

ε Series expansion parameter

b Generalized loadings in the frequency domain

z Vector of harmonic coefficients

C2 Quadratic elastance coefficient

C3 Cubic elastance coefficient

C5 Quintic elastance coefficient

Cp,3 Cubic piezoelectric elastance coefficient

k3 Cubic stiffness coefficient

qc Fundamental cosine coefficient

qs Fundamental sine coefficient
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Rp,3 Cubic piezoelectric resistance coefficient

Bladed structures

ηi CNMs modal coordinates

υi Modified CNMs modal coordinates

Ωi Component normal modes resonance frequencies matrix

Ωi CNMs resonant frequencies matrix

Φc,p Piezoelectric constraint modes

Φc Constraint modes

Φi CNMs mode shapes matrix

RCB Craig-Bampton reduction matrix

RMCB Modified Craig-Bampton reduction matrix

Ωrot Angular rotation speed

θc Circumferential cylindrical coordinate

ω̂sc,r Average short-circuit resonance frequency (mean shunt strategy)

ω̂2
sc,avg Average of the squared resonant short-circuit frequencies

Cp,static Static capacitance of the pth transducer

ffr Frequency factor of the host structure

NEO Engine order

NND Number of nodal diameters

NSec Number of sectors

rc Radial cylindrical coordinate

zc Axial cylindrical coordinate



A Linear algebra

This appendix recapitulates non-trivial linear algebra formulas and properties used
throughout this thesis. In each of the formulas used herein, it is assumed that A, B, C, D,
U and V are matrices and u and v are vectors. They are of conformable size in the context
in which they are used. The inverted matrices are implicitly assumed to be regular.

A.1 Inverse of rank-updated matrices

A.1.1 Sherman-Morrison formula

The Sherman-Morrison formula allows to compute the inverse of a rank-one updated
matrix from the inverse of the non-updated matrix [254], provided it is regular. It is given
by (

A + uvT
)−1

= A−1 − 1

1 + vTA−1u
A−1uvTA−1. (A.1)

A.1.2 Sherman-Morrison-Woodbury formula

The SMW formula is a generalization of the Sherman-Morrison formula for
rank-k updates [255]. It is given by(

A + UDVT
)−1

= A−1 −A−1U
(
D−1 + VTA−1U

)−1
VTA−1. (A.2)

A.2 Determinants of rank-updated matrices

The matrix determinant lemma for a rank-one update of a matrix [256] results in

det
(
A + uvT

)
=
(
1 + vTA−1u

)
det (A) . (A.3)

A rank-k counterpart can also be derived. First, by noting that the determinant of a
matrix product is equal to the product of the determinants,

det
(
A + UDVT

)
= det

(
A1/2

(
I + A−1/2UDVTA−1/2

)
A1/2

)
= det

(
A1/2

)
det
(
I + A−1/2UDVTA−1/2

)
det
(
A1/2

)
= det

(
I + A−1/2UD1/2D1/2VTA−1/2

)
det (A) .

According to the Weinstein-Aronszajn formula ([257], Equation (5.47)),

det
(
I + A−1/2UD1/2D1/2VTA−1/2

)
= det

(
I + D1/2VTA−1/2A−1/2UD1/2

)
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Thus,

det
(
A + UDVT

)
= det

(
I + D1/2VTA−1/2A−1/2UD1/2

)
det (A)

= det
(
D1/2

(
D−1 + VTA−1U

)
D1/2

)
det (A)

= det
(
D1/2

)
det
(
D−1 + UTA−1V

)
det
(
D1/2

)
det (A) .

Performing one last simplification on the determinants of D1/2, the rank-k
counterpart of Equation (A.3) is obtained as:

det
(
A + UDVT

)
= det

(
D−1 + VTA−1U

)
det (A) det (D) . (A.4)

A.3 Block inversion

A regular matrix defined by blocks can be inverted followingA B

C D


−1

=

A−1 + A−1B
(
D−CA−1B

)−1
CA−1 −A−1B

(
D−CA−1B

)−1

−
(
D−CA−1B

)−1
CA−1

(
D−CA−1B

)−1

 .
(A.5)

The matrix

D−CA−1B (A.6)

is called the Schur complement of the block A, and is assumed to be invertible in
Equation (A.5).

A.4 Properties of positive definite and positive

semidefinite matrices

Property 1 An n × n symmetric matrix A which satisfies

uTAu ≥ 0, ∀u ∈ Rn (A.7)

is said to be positive semidefinite (A � 0). If the equality only holds for u = 0, the
matrix is then positive definite (A � 0).

Property 2 A positive semidefinite (definite) matrix has positive eigenvalues (strictly
positive eigenvalues).

Property 3 Every positive definite matrix is invertible, and its inverse is also positive
definite.
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Property 4 The sum of two positive semidefinite matrices is also positive semidefinite.
The sum of a positive semidefinite and a positive definite matrices is positive definite.

Property 5 If the matrix A � 0, so is

UTAU (A.8)

provided that U has more rows than columns or is square, and is full-rank.
It is positive semidefinite otherwise.

Property 6 If two matrices A and B are such that

A−B � 0, (A.9)

then their inverses verify

B−1 −A−1 � 0. (A.10)

This can be proven by simultaneously diagonalizing matrices A and B. Let V and D be
such that

AV = BVD, VTAV = I, VTBV = D. (A.11)

Pre- and postmultiplying Equation (A.9) by VT and V, respectively, yields

I−D � 0, (A.12)

which means that the elements on the diagonal of D should be less than or equal to
one. Using the spectral expansion of the inverse matrices

A−1 = VVT , B−1 = VD−1V−T (A.13)

and pre- and postmultiplying Equation (A.10) by V−1 and V−T , respectively, gives

D−1 − I � 0, (A.14)

which is satisfied if Equation (A.12) is satisfied (because the elements on the diagonal
of D−1 are then larger than or equal to one).





B Appendix to Chapter 1

B.1 Initial estimates for the roots of a delayed

system’s characteristic equation

Equation (1.102) is recalled here:

1 +H(s)
1− e−sτ

sτ
= 0. (B.1)

The goal of this appendix is to find roots of this equation for a given small but finite
value of τ , other than those close to the roots of 1 + H(s). The nominal open-loop
transfer function is expressed as a rational function of s as

H(s) =

∑M
m=0 bms

m∑N
n=0 ans

n
. (B.2)

When this transfer function is proper (N ≥ M), roots emanate from −∞, where
the asymptotic behavior of H is given by

H(s)
|s|→∞→ bM

aN
sM−N (B.3)

The solutions of Equation (B.1) thus satisfy

e−sτ −
(

sτ

H(s)
+ 1

)
= 0

|s|→∞→ e−sτ −
(
aN
bM

sN−M+1τ + 1

)
= 0. (B.4)

When N − M + 1 > 0 (i.e., for proper H(s)), the constant 1 becomes negligible,
and this equation can be rewritten

e−sτ = Ksp, (B.5)

with K = τaN/bM and p = N −M + 1. This equation is simpler but still transcendental
and still challenging to solve as such. We note that

(i) If p is odd and K < 0 or if p is even and K > 0, this equation has a negative real
root.

(ii) If p is even and K < 0 or if p is odd and K < 0, this equation does not have a
negative real root.

Assuming s = sr + jsi, Equation (B.5) is satisfied in magnitude if

e−srτ = |K|
(
s2
r + s2

i

)p/2
. (B.6)
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It is first attempted to locate the roots on or close to the real axis, by assuming that |si| �
|sr|, i.e.,

e−srτ ≈ |K| |sr|p . (B.7)

The logarithm of this equation yields

srτ + log |K|+ p log |sr| = 0, (B.8)

and since a negative value of sr is sought, this expression can also be rewritten as

srτ + log |K|+ p log (−sr) = 0. (B.9)

The derivative of this expression is

τ +
p

sr
, (B.10)

which shows that it only has one extremum at

sr = −p
τ
, (B.11)

and that it is a concave function. Therefore, if Newton’s method is used to solve
Equation (B.9) with an initial guess smaller than this value, the method is guaranteed
to find the desired root. Expanding Equation (B.9) in a second-order Taylor series
around sr = −p/τ and taking the smallest root gives an initial guess

s(0)
r = −p

τ

[
1−

√
2 log

p

τ
+

2

p
log |K| − 1

2

]
(B.12)

which can be iteratively corrected with Newton’s method

s(k+1)
r = s(k)

r −
s

(k)
r τ + log |K|+ p log

(
−s(k)

r

)
τ +

p

s
(k)
r

. (B.13)

The iterations can stop once Equation (B.9) is solved up to a prescribed tolerance value.
The resulting value, noted sr,0 gives an estimate of the magnitude of the roots.

Using the estimate sr,0 in Equation (B.6) and neglecting the polynomial spr term in front
of the exponential one, the following simplified magnitude equation is obtained

e−τsr ≈ |K|
(
s2
r,0 + s2

i

)p/2
, (B.14)

which allows to express the real part of the roots as an explicit function of their imaginary
part

sr(si) = −1

τ

[
log |K|+ p

2
log
(
s2
r,0 + s2

i

)]
. (B.15)

To find a suitable initial guess for si, the point sr(si) + jsi should be chosen
such that Equation (B.5) is satisfied in phase:

− τsi = ∠ (K(sr(si) + jsi)
p) (B.16)
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In case (i)

tan

(
−τsi + 2kπ

p

)
=

si
sr(si)

, k ∈ Z, (B.17)

whereas in case (ii)

tan

(
−τsi + π + 2kπ

p

)
=

si
sr(si)

, k ∈ Z. (B.18)

It can be noted that Equations (B.17) and (B.18) are both odd functions of si.
Substituting si for −si for simplicity, these equations can be solved approximately using
series expansions around specific points, in a similar spirit to [258]. The procedure
to solve case (i) is explained hereafter, and a similar approach can be followed for
case (ii). Since −si/sr(−si) > 0, the tangent function must be positive, and thus its
argument must be in the interval [0, π/2[. In these intervals, the tangent function can be
approximated by its linearized version around 0 or its linearized inverse around π/2 as

tan

(
τsi + 2kπ

p

)
≈


τsi + 2kπ

p
,

τsi + 2kπ

p
∈
[
0,
π

4

[
(
π

2
− τsi + 2kπ

p

)−1

,
τsi + 2kπ

p
∈
[π

4
,
π

2

[ . (B.19)
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Figure B.1: tan(x) ( ), its approximation for x ∈ [0, π/4[ ( ) and for x ∈ [π/4, π/2[
( ).

Figure B.1 depicts these two possible approximations. To choose which one
best represents the tangent function around the sought root, the value of the
right-hand side of Equation (B.17) or (B.18) can be computed when the argument
of the tangent function is equal to π/4, i.e.,

τsi,0 =
pπ

4
+ 2kπ. (B.20)

Then, depending on the value of the right-hand side, the tangent approximation and point
si,1 around which the linearization is made are determined by the following conditions:
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(a) If −si,0/sr(−si,0) < tan(π/4) = 1, the first approximation is the best and one sets
τsi,1 = 2kπ.

(b) If −si,0/sr(−si,0) > tan(π/4) = 1, the second approximation is the best and one
sets τsi,1 = pπ/2 + 2kπ.

The right-hand side of Equation (B.17) can also be linearized. To be consistent with
the tangent approximation, a linearized approximation of −si/sr(−si) (or sr(−si)/si)
around si,1 is chosen in case (a) (case (b)).

− si
sr(−si)

≈


− si,1
sr(−si,1)

+ (si − si,1)
∂

∂si

(
− si
sr(−si)

)∣∣∣∣
si=si,1

, case (a)(
−sr(−si,1)

si,1
+ (si − si,1)

∂

∂si

(
−sr(−si)

si

)∣∣∣∣
si=si,1

)−1

, case (b)

.

(B.21)
By equating Equations (B.19) and (B.21), an initial guess can be found for si.

To sum up, the procedure to find an initial guess of the first Nr roots of Equation (B.5)
(with positive imaginary parts) goes as follows. For each value of k in [0, · · · , Nr − 1],

1. Set

τsi,0 =


pπ

4
+ 2kπ, case (i)

pπ

4
+ π + 2kπ, case (ii).

(B.22)

2. Compute f0 = −si,0/sr(−si,0) (Equation (B.15)).

a) If f0 < 1 (case (a)), set

τsi,1 =


2kπ, case (i)

π + 2kπ, case (ii).

, (B.23)

compute −si/sr(−si) and its derivative at si = si,1, equate Equations (B.19)
and (B.21) and solve for si

si = si,1 −
si,1

sr(−si,1)

1

1 +
∂

∂si

(
si

sr(−si)

)∣∣∣∣
si=si,1

(B.24)

b) If f0 > 1 (case (b)),set

τsi,1 =


pπ

2
+ 2kπ, case (i)

pπ

2
+ π + 2kπ, case (ii).

, (B.25)

compute −sr(−si)/si and its derivative at si = si,1, equate Equations (B.19)
and (B.21) and solve for si

si = si,1 +
sr(−si,1)

si,1

1

1− ∂

∂si

(
sr(−si)
si

)∣∣∣∣
si=si,1

(B.26)
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3. Compute sr(si) and set s = sr + jsi.

4. If needed, correct the initial guess numerically with root-finding techniques, such as
the Newton-Raphson method.

Figure B.2 features two examples comparing the initial estimates of the roots obtained
with the proposed method to their values obtained by numerically solving Equation (B.5)1.
These examples show that Equation (B.15) is an excellent approximation to find the real
part of the roots. As for the imaginary part, the main source of error comes from the
approximation made in Equation (B.19). It is excellent for small and high imaginary
parts. For intermediate values, the initial guess is not as accurate, but can nonetheless
be corrected with a Newton-Raphson procedure.
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Figure B.2: Ten roots (with smallest absolute imaginary part) of the transcendental
equations e−sτ = Ksp for K = 1, τ = 10−2 and p = 1 (a) and p = 2 (b). :
Equation (B.15), +: approximate roots, ×: exact roots.

1The logarithm of this equation was solved to avoid bad numerical conditioning.





C Appendix to Chapter 2

C.1 State-space models of multiple-branch circuits

The state variables are chosen as the voltages or flux linkages across the capacitors
and the currents through the inductors. Depending on the considered circuit, either
an admittance model (voltage input and current output) or an impedance model (current
input and voltage output) can be derived.

C.1.1 Hollkamp’s circuit

L0

R0

L1

R1

C1

LNs−1

RNs−1

CNs−1

I

V

i0

i1

VC1

iNs−1

VCNs−1

· · ·

· · ·

Figure C.1: Hollkamp’s shunt circuit.

Figure C.1 depicts the quantities used to build the state-space model of Hollkamp’s shunt
circuit. The application of KVL to branches 0 and k > 0 respectively yields

i̇0 =
1

L0

(V −R0i0) (C.1)

and

i̇k =
1

Lk
(V −Rkik − VC,k) , k = 1, · · · , Ns − 1. (C.2)

The voltage across capacitor k is governed by

V̇C,k =
1

Ck
ik, k = 1, · · · , Ns − 1. (C.3)

The output current is finally given by

I =
Ns−1∑
i=0

ik (C.4)
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Introducing the matrices of electrical parameters

LH =


L0

. . .

LNs−1

 , RH =


R0

. . .

RNs−1

 , EH =



0

1

C1

. . .

1

CNs−1


(C.5)

and the vector of electrical charges

qT =

[
q0 q1 · · · qNs−1

]
, (C.6)

the state evolution equations becomeq̇

q̈

 =

 0 I

−L−1
H EH −L−1

H RH


q

q̇

+

 0

L−1
H 1Ns×1

V (C.7)

and the output equation is

I =

[
01×Ns 11×Ns

]q

q̇

 . (C.8)

This circuit does not have a state-space impedance model because its impedance
is an improper transfer function.

C.1.2 Current flowing circuit

L1

R1

C1

LNs

RNs

CNs

I

V

i1

VC1

iNs

VCNs

· · ·

· · ·

Figure C.2: Current flowing shunt circuit.

Figure C.2 depicts the quantities used to build the state-space model of the
CF shunt circuit. Following the same lines as for Hollkamp’s shunt circuit,
KVL applied to branch k gives

i̇k =
1

Lk
(V −Rkik − VC,k) , k = 1, · · · , Ns, (C.9)
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and the voltage across capacitor k is governed by

V̇C,k =
1

Ck
ik, k = 1, · · · , Ns. (C.10)

The output current is finally given by

I =
Ns∑
i=1

ik (C.11)

Introducing the matrices of electrical parameters

LCF =


L1

. . .

LNs

 , RCF =


R1

. . .

RNs

 , ECF =


1

C1

. . .

1

CNs

 (C.12)

and the vector of electrical charges

qT =

[
q1 · · · qNs

]
, (C.13)

the state evolution equations areq̇

q̈

 =

 0 I

−L−1
CFECF −L−1

CFRCF


q

q̇

+

 0

L−1
CF1Ns×1

V (C.14)

and the output equation is

I =

[
01×Ns 11×Ns

]q

q̇

 . (C.15)

This circuit does not have a state-space impedance model because its impedance
is an improper transfer function.

C.1.3 Second Foster canonical form

C.1.3.1 Impedance model

Based on Figure C.3, the application of KCL to the parallel RL circuit gives

I =
1

L0

∫
V0dt+

1

R0

V0 =
1

L0

ψ0 +
1

R0

ψ̇0, (C.16)

and the application of KCL to the parallel RLC circuits yields

I =
1

Lk

∫
Vkdt+

1

Rk

Vk + CkV̇k =
1

Lk
ψk +

1

Rk

ψ̇k + Ckψ̈k, k = 1, · · · , Ns − 1. (C.17)
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Figure C.3: Second Foster canonical form shunt circuit.

The output voltage is eventually obtained as the sum of all voltages across the parallel
circuits as

V =
Ns−1∑
k=0

Vk =
Ns−1∑
k=0

ψ̇k. (C.18)

Introducing the matrices of electrical parameters

BSFCF =


1

L1

. . .

1

LNs−1

 , GSFCF =


1

R1

. . .

1

RNs−1

 ,

CSFCF =


C1

. . .

CNs−1

 (C.19)

and the vector of flux linkages

ψT =

[
ψ1 · · · ψNs−1

]
, (C.20)

the state evolution equations become
ψ̇

ψ̇0

ψ̈

 =


0 0 I

0 −R0

L0

0

−C−1
SFCFBSFCF 0 −C−1

SFCFGSFCF




ψ

ψ0

ψ̇

+


0

R0

C−1
SFCF1(Ns−1)×1

 I
(C.21)
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and the output equation is

V =

[
01×(Ns−1) −

R0

L0

11×(Ns−1)

]

ψ

ψ0

ψ̇

+R0I. (C.22)

C.1.3.2 Admittance model

An admittance model can be derived directly from the impedance model, using the same
state variables. From Equation (C.22), the output current is expressed as

I =

[
01×(Ns−1)

1

L0

− 1

R0

11×(Ns−1)

]

ψ

ψ0

ψ̇

+
1

R0

V, (C.23)

which gives the output equation. The state evolution equation can be found by
inserting this relation in Equation (C.21), yielding

ψ̇

ψ̇0

ψ̈

 =




0 0 I

0 −R0

L0

0

−C−1
SFCFBSFCF 0 −C−1

SFCFGSFCF

+


0

R0

C−1
SFCF1(Ns−1)×1




0(Ns−1)×1

1

L0

− 1

R0

1(Ns−1)×1



T



ψ

ψ0

ψ̇

+


0

1

1

R0

C−1
SFCF1(Ns−1)×1

V. (C.24)

C.1.4 Series-parallel impedance structure

Following the same lines as for the impedance model of the SFCF circuit, the application
of KCL to the parallel RLC circuits yields

I =
1

Lk

∫
Vkdt+

1

Rk

Vk + CkV̇k =
1

Lk
ψk +

1

Rk

ψ̇k + Ckψ̈k, k = 1, · · · , Ns, (C.25)

and the output voltage is obtained as the sum of all voltages across the parallel circuits as

V =
Ns∑
k=1

Vk =
Ns∑
k=1

ψ̇k. (C.26)
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Figure C.4: Series-parallel impedance structure shunt circuit.

Introducing the matrices of electrical parameters

BSPIS =


1

L1

. . .

1

LNs

 , GSPIS =


1

R1

. . .

1

RNs

 , CSPIS =


C1

. . .

CNs


(C.27)

and the vector of flux linkages

ψT =

[
ψ1 · · · ψNs

]
, (C.28)

the state evolution equation becomes

ψ̇
ψ̈

 =

 0 I

−C−1
SPISBSPIS −C−1

SPISGSPIS


ψ
ψ̇

+

 0

C−1
SPIS1Ns×1

 I (C.29)

and the output equation is

V =

[
01×Ns 11×Ns

]ψ
ψ̇

 . (C.30)

This circuit does not have a state-space admittance model because its admittance
is an improper transfer function.
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Figure C.5: Current blocking circuit with series RL shunts.

C.1.5 Current blocking circuit

C.1.5.1 Circuit with series RL shunts

The currents flowing through the filter inductors are governed by

i̇L̃k =
1

L̃k
VC̃k (C.31)

while the voltages across the filter capacitors are governed by

V̇C̃k =
1

C̃k

(̃
ik − iL̃k

)
, (C.32)

where ĩk is the total current going through the filter. The currents flowing
through the shunt inductors are given by

i̇k = −Rk

Lk
ik +

1

Lk
Vk (C.33)

Using KVL, the voltage across each shunt is given by

Vk = V −
k−1∑
i=1

VC̃i (C.34)

and using KCL, the currents through the filters are found as

ĩk =
N∑

i=k+1

ii. (C.35)

Finally, the output equation is

I =
N∑
i=1

ii. (C.36)

Introducing the vectors of electrical charges and currents

qT =

[
q1 · · · qNs

]
, qT

C̃
=

[
qC̃1

· · · qC̃Ns−1

]
, q̇T

L̃
=

[
q̇L̃1

· · · q̇L̃Ns−1

]
,

(C.37)
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the matrices of electrical parameters

LCB =


L1

. . .

LNs

 , RCB =


R1

. . .

RNs

 , (C.38)

L̃CB =


L̃1

. . .

L̃Ns−1

 , ẼCB =



1

C̃1

. . .

1

C̃Ns−1


, (C.39)

and the upper triangular matrix TCB given by

TCB =



0 1 1 · · · 1

0 0 1 · · · 1

...
...

. . . . . .
...

0 0 0 · · · 1


, (C.40)

the state evolution equations read

q̇

q̈

q̇C̃

q̈L̃


=



0 I 0 0

0 −L−1
CBRCB −L−1

CBTT
CBẼCB 0

0 TCB 0 −I

0 0 L̃−1
CBẼCB 0





q

q̇

qC̃

q̇L̃


+



0

L−1
CB1Ns×1

0

0


V (C.41)

and the output equation reads

I =

[
01×Ns 11×Ns 01×(Ns−1) 01×(Ns−1)

]


q

q̇

qC̃

q̇L̃


. (C.42)

This circuit does not have a state-space impedance model because its impedance
is an improper transfer function.
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Figure C.6: Current blocking circuit with parallel RL shunts.

C.1.5.2 Circuit with parallel RL shunts

Similarly to the CB with series RL shunts, the filters dynamics are governed by

i̇L̃k =
1

L̃k
VC̃k (C.43)

and

V̇C̃k =
1

C̃k

(̃
ik − iL̃k

)
, (C.44)

where ĩk is the total current going through the filter. Using KVL, the voltage across each
shunt is given by

Vk = V −
k−1∑
i=1

VC̃i , (C.45)

and the current in the shunt inductor is this time governed by

i̇k =
Vk
Lk

=
1

Lk

(
V −

k−1∑
i=1

VC̃i

)
. (C.46)

The total current going through the shunts can also be determined by

ik +
Vk
Rk

= ik +
1

Rk

(
V −

k−1∑
i=1

VC̃i

)
(C.47)

Using KCL, the currents through the filters are found as

ĩk =
Ns∑

i=k+1

(
ii +

1

Ri

(
V −

i−1∑
l=1

VC̃l

))
. (C.48)

Combining these relations, the state evolution equations read

q̇

q̈

q̇C̃

q̈L̃


=



0 I 0 0

0 0 −L−1
CBTT

CBẼCB 0

0 TCB −TCBR−1
CBTT

CBẼCB −I

0 0 L̃−1
CBẼCB 0





q

q̇

qC̃

q̇L̃


+



0

L−1
CB1Ns×1

TCBR−1
CB1Ns×1

0


V (C.49)
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and the output equation reads

I =

[
01×Ns 11×Ns 11×NsR

−1
CBTT

CBẼCB 01×(Ns−1)

]


q

q̇

qC̃

q̇L̃


+ 11×NsR

−1
CB1Ns×1V. (C.50)

An impedance model can also be derived directly from this admittance model
following the same procedure as in Section C.1.3.2. The global resistance of the
CB circuit with parallel shunts is expressed as

RCBP =
1

11×NsR
−1
CB1Ns×1

(C.51)

From Equation (C.50) the output voltage is expressed as

V = −RCBP

[
01×Ns 11×Ns 11×NsR

−1
CBTT

CBẼCB 01×(Ns−1)

]


q

q̇

qC̃

q̇L̃


+RCBP I. (C.52)

Inserting this relation in Equation (C.49) eventually yields

q̇

q̈

q̇C̃

q̈L̃


=





0 I 0 0

0 0 −L−1
CBTT

CBẼCB 0

0 TCB −TCBR−1
CBTT

CBẼCB −I

0 0 L̃−1
CBẼCB 0



−RCBP



0

L−1
CB1Ns×1

TCBR−1
CB1Ns×1

0





0Ns×1

1Ns×1

ẼCBTCBR−1
CB1Ns×1

0(Ns−1)×1



T




q

q̇

qC̃

q̇L̃


+RCBP



0

L−1
CB1Ns×1

TCBR−1
CB1Ns×1

0


I.

(C.53)



D Appendix to Chapter 3

D.1 Evaluation of the electromechanical coupling

factor

Often, the resonance frequencies of one type only (short-circuit or open-circuit) are
known. It would thus be interesting to derive the other type of frequencies without
performing another eigenvalue analysis or a measurement of the dual electrical transfer
function. It is now assumed that the short-circuit modal characteristics are known.
They can be split into a resonant mode (identified by the subscript r) and non-resonant
modes (identified by the subscript nr) as

ηTsc =
[
ηsc,r η

T
sc,nr

]
, Φsc =

[
φsc,r Φsc,nr

]
. (D.1)

For an unforced structure and imposing open-circuit conditions on the transducers,
Equation (3.4) becomes

(
s2 + ω2

sc,r

)
ηsc,r +φT

sc,rΓpV = 0(
s2I + Ω2

sc,nr

)
ηsc,nr + ΦT

sc,nrΓpV = 0

ΓT
p Φsc,nrηsc,nr + ΓT

pφsc,rηsc,r −Cε
pV = 0

. (D.2)

If the non-resonant modes are neglected, i.e., if ηsc,nr = 0, Equation (D.2) becomes
equivalent to Equation (1.6). Approximations of the open-circuit resonance frequency
and of the EEMCF are thus given by

ω2
oc,r ≈ ω2

sc,r +φT
sc,rΓp

(
Cε
p

)−1
ΓT
pφsc,r (D.3)

and

K2
c,r ≈

1

ω2
sc,r

φT
sc,rΓp

(
Cε
p

)−1
ΓT
pφsc,r, (D.4)

respectively. The approximation for the EEMCF is classically made in the literature [137,
259]. A more accurate estimate can be obtained by expressing the non-resonant modal
amplitudes as a sole function of the voltages

ηsc,nr = −
(
s2I + Ω2

sc,nr

)−1
ΦT
sc,nrΓpV. (D.5)

Inserting this relation into the electrical equation,

ΓT
pφsc,rηsc,r =

[
ΓT
p Φsc,nr

(
s2I + Ω2

sc,nr

)−1
ΦT
sc,nrΓp + Cε

p

]
V. (D.6)

The right-hand side of this equation features a frequency-dependent matrix, which means
that the voltages are dynamically related to the resonant modal coordinate. To simplify
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the problem, a simple relation can be retrieved if only the static contribution from
non-resonant modes is retained. For s ≈ jωsc,r, the diagonal matrix

(
s2I + Ω2

sc,nr

)−1 ≈

0 0

0 Ω−2
sc,>r

 , (D.7)

where Ωsc,>r is a diagonal matrix containing the short-circuit frequencies greater
than ωsc,r. Inserting this approximation into Equation (D.6) and back into the
resonant mechanical part of Equation (D.2), approximations of the open-circuit
resonance frequency and of the EEMCF are obtained as

ω2
oc,r ≈ ω2

sc,r +φT
sc,rΓp

[
ΓT
p Φsc,>rΩ

−2
sc,>rΦ

T
sc,>rΓp + Cε

p

]−1
ΓT
pφsc,r (D.8)

and

K2
c,r ≈

1

ω2
sc,r

φT
sc,rΓp

[
ΓT
p Φsc,>rΩ

−2
sc,>rΦ

T
sc,>rΓp + Cε

p

]−1
ΓT
pφsc,r, (D.9)

respectively.

If instead the open-circuit modal characteristics are known, the short-circuit
resonance frequencies can be approximated by

ω2
sc,r ≈ ω2

oc,r −φ
T
oc,rΘp

[
Eε
p −ΘT

p Φoc,>rΩ
−2
oc,>rΦ

T
oc,>rΘp

]−1
ΘT
pφoc,r, (D.10)

and the EEMCF is approximated by

K2
c,r ≈

φT
oc,rΘp

[
Eε
p −ΘT

p Φoc,>rΩ
−2
oc,>rΦ

T
oc,>rΘp

]−1
ΘT
pφoc,r

ω2
oc,r −φ

T
oc,rΘp

[
Eε
p −ΘT

p Φoc,>rΩ
−2
oc,>rΦT

oc,>rΘp

]−1
ΘT
pφoc,r

. (D.11)

A similar approximation was proposed by Fan et al [260], where the static contribution
from all modes was taken into account (through the inversion of the stiffness matrix).

D.2 Optimal electrical mode shapes accounting for

background contributions

From Equation (3.34) and using Equation (3.50), the EEMCF is expresed as

K̂2
c,rk =

(
φT
sc,rΓp

(
Cε
p

)−1/2
ϕp

)2(
1 +ϕT

p

(
Cε
p

)−1/2
(
Ĉε
p,r −Cε

p

) (
Cε
p

)−1/2
ϕp

)
ω2
sc,r

=

(
uTrϕp

)2(
1 +ϕT

p Arϕp

)
ω2
sc,r

,

(D.12)
where

Ĉε
p,r = Cε

p + ΓT
p Φsc,>rΩ

−2
sc,>rΦ

T
sc,>rΓp. (D.13)

is the effective capacitance matrix accounting for the influence of non-resonant mechanical
modes.

When Ar = 0, the optimal solution is given in Section 3.5.2.1 as

ϕ?
p =

ur
||ur||

(D.14)



D.2. Optimal electrical mode shapes accounting for background contributions 281

When Ar → ∞, the EEMCF in Equation (D.12) can be approximated by

K̂2
c,rk ≈

(
uTrϕp

)2

ϕT
p Arϕpω2

sc,r

=
ϕT
p uru

T
rϕp

ϕT
p Arϕpω2

sc,r

, (D.15)

which is a Rayleigh quotient. This quotient is stationary if ϕp is given by

ϕ?
p = vr, (D.16)

where vr is an eigenvector of the generalized eigenvalue problem

λrArvr = uru
T
r vr, ||vr|| = 1. (D.17)

To maximize the EEMCF, this vector should be associated with the maximum generalized
eigenvalue λr.

To simplify the optimization problem, it is proposed to consider that the optimal solution
for finite Ar is a combination of these two asymptotic solutions

ϕ?
p = c1

ur
||ur||

+ c2vr. (D.18)

The constants c1 and c2 should be chosen to optimize the EEMCF, but should also
verify the passivity constraint (Equation (3.53))

c2
1 + c2

2 + 2c1c2
uTr vr
||ur||

≤ 1. (D.19)

This constrained optimization problem can be solved using Lagrangian methods for
constrained optimization [167]. The Lagrangian can be formed as

L =

(
uTr

(
c1

ur
||ur||

+ c2vr

))2

(
1 +

(
c1

ur
||ur||

+ c2vr

)T
Ar

(
c1

ur
||ur||

+ c2vr

))
ω2
sc,r

− µr
(
c2

1 + c2
2 + 2c1c2

uTr vr
||ur||

− 1

)
=
nr (c1, c2)

dr (c1, c2)
− µrcr (c1, c2) , (D.20)

where µr is a Lagrangian multiplier. The optimal solution is given by the
stationary points of the Lagrangian.

∂L
∂c1

=

∂nr (c1, c2)

∂c1

dr (c1, c2)− nr (c1, c2)
∂dr (c1, c2)

∂c1

d2
r (c1, c2)

− µr
∂cr (c1, c2)

∂c1

= 0 (D.21)

∂L
∂c2

=

∂nr (c1, c2)

∂c2

dr (c1, c2)− nr (c1, c2)
∂dr (c1, c2)

∂c2

d2
r (c1, c2)

− µr
∂cr (c1, c2)

∂c2

= 0 (D.22)

∂L
∂µr

= cr (c1, c2) = 0 (D.23)
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The Lagrangian multiplier µr can be eliminated by combining Equations (D.21)
and (D.22), yielding the relation(

∂nr (c1, c2)

∂c1

dr (c1, c2)− nr (c1, c2)
∂dr (c1, c2)

∂c1

)
∂cr (c1, c2)

∂c2

=

(
∂nr (c1, c2)

∂c2

dr (c1, c2)− nr (c1, c2)
∂dr (c1, c2)

∂c2

)
∂cr (c1, c2)

∂c1

. (D.24)

From there on, the procedure only consists in a series of basic algebraic operations and
the use of Equation (D.23) to simplify the expressions. This equality can be shown
to yield the following relation between c1 and c2:

c2 =

cos (θr)

(
br −

1

λr

)
(1− cos (θr)) ar

c1, (D.25)

where

cos (θr) =
uTr vr
||ur||

, ar =
1

||ur||2
, br =

uTr Arur
||ur||4

. (D.26)

Inserting this relation in Equation (D.23) leads to the optimal value of c1

c1 =
(1− cos (θr)) ar√

(1− cos (θr))
2 a2

r + cos2 (θr)

(
br −

1

λr

)2

+ 2 cos2 (θr) (1− cos (θr)) ar

(
br −

1

λr

) ,
(D.27)

which inserted into Equation (D.25) gives the optimal value of c2, and eventually the
optimal dimensionless electrical mode shape using Equation (D.18).

D.3 Dimensionless modes orthogonality and scaling

factors

In the case where there are two piezoelectric transducers and two targeted modes, a
necessary condition to satisfy Equation (3.72) is

det




1

d2
p,1

− 1 − cos θ

− cos θ
1

d2
p,2

− 1


 ≥ 0 (D.28)

where θ is the angle between the two dimensionless electrical mode shapes. Considering
the equality yields a relation between the scaling factors

d2
p,2

(
d2
p,1

)
=

1− d2
p,1

1− (1− cos2 θ) d2
p,1

. (D.29)

This relation is plotted in Figure D.1 for various values of cos θ. The values of scaling
factors satisfying the passivity constraint are not unique, but can be chosen to optimize
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some metric. For instance, it can be sought to optimize the sum of their squares. A
necessary condition to find the optimum is then

∂

∂d2
p,1

(
d2
p,1 + d2

p,2

(
d2
p,1

))
= 0. (D.30)

This equation is satisfied if the scaling factors are equal and satisfy

d2
p,1 = d2

p,2 =
1

1 + |cos θ|
. (D.31)

Figure D.1 depicts this optimal solution for various values of cos θ.
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Figure D.1: Passivity constraint on the scaling factors: cos θ = 0 ( ), cos θ = 0.1
( ), cos θ = 0.25 ( ), cos θ = 0.5 ( ), cos θ = 0.75 ( ) and cos θ = 1 ( ). The
corresponding optimal scaling factors are indicated as well (◦). Black lines indicate
d2
p,2 = 0.5d2

p,1, d2
p,2 = d2

p,1 and d2
p,2 = 2d2

p,1.

Choosing identical scaling factors is the optimal solution for each value of θ is this case. It
can be observed in Figure D.1 that when the modes are almost aligned (cos θ close to one),
the objective function is not largely affected by choosing a scaling factor different than
the other one. In the limit case when they are aligned, this objective function is constant
whatever their relative values. However, for nearly-orthogonal modes (cos θ close to zero),
choosing different scaling factors can seriously impact the objective function. For instance,
in the case cos θ = 0.1, the optimal solution is d2

p,1 = d2
p,2 = 0.91. Choosing d2

p,1 = 0.5d2
p,2

while respecting the passivity constraint leads to d2
p,1 = 0.495 and d2

p,2 = 0.99, i.e., a
substantial decrease in dp,1 and a marginal increase in dp,2. In the limit case where
the modes are truly orthogonal, the two scaling factors can be chosen independently,
but the optimal choice is still dp,1 = dp,2 = 1.

For more than two modes and/or two transducers, the relations are more complicated.
Nevertheless, this simple example highlights two guidelines that should be respected
when choosing the scaling factors.

1. Choosing identical scaling factors leads to a solution which optimizes or nearly
optimizes the sum of scaling factors squared.

2. When modes are nearly orthogonal, choosing different relative scaling factors can
drastically reduce the objective function. For modes which are nearly aligned,
these relative scaling factors can be chosen with more freedom without significantly
affecting the objective function.
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D.4 Limits on the electromechanical coupling

factors attainable with passive networks

Using ET
pφe,k = φp,k = dp,kφ

?
p,k (Equation (3.57)), the EEMCF given in Equation (3.30)

becomes

K̂2
c,rk =

d2
p,kφ

T
sc,rΓpφ

?
p,k

(
φ?
p,k

)T
ΓT
pφsc,r

ω2
sc,r

= d2
p,k

φT
sc,rΓp

(
Cε
p

)−1
ΓT
pφsc,r

ω2
sc,r

, (D.32)

which is exactly identical to that given in Equation (D.4) when dp,k = 1. Thus, the
network can attain an EEMCF as high as that of the structure only when the scaling
factor of the electrical mode is equal to one, and may have a lower performance when
passivity requirement constrains this scaling factor to be smaller than one.

D.4.1 Comparison of the coupling factors accounting for
background contributions

It can also be shown that

K2
c,r − K̂2

c,rk ≥ 0 (D.33)

when these EEMCFs are evaluated accounting for the background contribution of
non-resonant modes (Equations (D.9) and (3.45)), and when the considered mode shape is
optimized, i.e.,

φp,k = φ?
p,k, (D.34)

as defined by Equation (3.57). Considering the discussion in Section 3.5.6.1,
the dimensionless mode shapes associated to non-resonant electrical modes have
to be orthogonal to the resonant one

ϕT
p,lϕp,k = 0, ∀l 6= k. (D.35)

In terms of capacitance-normalized electrical mode shapes, using Equation (3.50), this
means that the non-resonant electrical mode shapes should also verify

φT
p,lC

ε
pφp,k = 0, ∀l 6= k. (D.36)

Using Equation (3.57), this translates to

φT
p,lΓ

T
pφsc,r = 0, (D.37)

which means that, using the notations of Section 3.4.3.3,

γΦ,r<k = 0, (D.38)

and hence, with Equations (3.41) and (3.42)

ω̂2
sc,r = ω2

sc,r, . (D.39)
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and
γ̂Φ,rk = γΦ,rk =

(
φT
sc,rΓ

T
pφp,k

)2
= φT

sc,rΓp

(
Cε
p

)−1
ΓT
pφsc,r. (D.40)

Using the SMW formula (Equation (A.2)) in Equation (D.9), the EEMCF
of the structure is expressed as

K2
c,r =

1

ω2
sc,r

[
γ2

Φ,rk − uTr

(
Ω−2
sc,>r + ΦT

sc,>rΓp

(
Cε
p

)−1
ΓT
p Φsc,>r

)−1

ur

]
, (D.41)

where ur is given by

ur = ΦT
sc,>rΓp

(
Cε
p

)−1
ΓT
pφsc,r. (D.42)

The EEMCF of the network, as given by Equation (3.45), is not easy to work with
in this proof. Alternatively, it can be obtained by considering the effective open-circuit
resonance frequency of the system in Equation (3.35). This effective frequency is obtained
by imposing ωe,k = 0, making the dynamics of the resonant electrical mode identical to
the non-resonant ones. These dynamics are thus described by Ω2

sc,>r ΓΦ,>r≤k

−ΓT
Φ,>r≤k I


ηsc,>r
sηe,≤k

 =

 0

γTΦ,r≤kηsc,r

 , (D.43)

where the subscript ≤ k indicates electrical modes with index i ≤ k. Only sηe,≤k has
to be solved for, as it is the only term that appears in the first line of Equation (3.35).
Using a block inversion formula (Equation (A.5)), it is given by

sηe,≤k =
(
I + ΓT

Φ,>r≤kΩ
−2
sc,>rΓΦ,>r≤k

)−1
γTΦ,r≤kηsc,r. (D.44)

Reinserting this relation into the first line of Equation (3.35) gives the effective
open-circuit resonance frequency

ω̂2
oc,r = ω2

sc,r + γΦ,r≤k
(
I + ΓT

Φ,>r≤kΩ
−2
sc,>rΓΦ,>r≤k

)−1
γTΦ,r≤k (D.45)

An EEMCF can thus be estimated by

K̂2
c,rk =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
sc,r

=
1

ω2
sc,r

γΦ,r≤k
(
I + ΓT

Φ,>r≤kΩ
−2
sc,>rΓΦ,>r≤k

)−1
γTΦ,r≤k. (D.46)

It is possible (but tedious) to show that this expression is identical to that given in
Equation (3.45), because they were both obtained with the same assumptions. Using
the SMW formula (Equation (A.2)), this equation becomes

K̂2
c,rk =

1

ω2
sc,r

φT
sc,rΓ

T
p

[
Φp,≤kΦ

T
p,≤k −Φp,≤kΦ

T
p,≤kΓ

T
p Φsc,>r(

Ω−2
sc,>r + ΦT

sc,>rΓpΦp,≤kΦ
T
p,≤kΓ

T
p Φsc,>r

)−1
ΦT
sc,>rΓpΦp,≤kΦ

T
p,≤k

]
ΓT
pφsc,r (D.47)

Equation (D.37) implies that

φT
sc,rΓ

T
p Φp,≤kΦ

T
p,≤k = φT

sc,rΓ
T
pφp,kφ

T
p,k, (D.48)
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which allows for a simplification of Equation (D.47)

K̂2
c,rk =

1

ω2
sc,r

[
γ2

Φ,rk − uTr
(
Ω−2
sc,>r + ΦT

sc,>rΓpΦp,≤kΦ
T
p,≤kΓ

T
p Φsc,>r

)−1
ur

]
. (D.49)

By comparing Equations (D.41) and (D.49), it is observed that the EEMCFs are given
by a sum of two terms. In both equations, the first term is identical. The second term,
which represents the background contributions from non-resonant modes, is a quadratic
form. The difference of the EEMCFs is thus given by

K2
c,r − K̂2

c,rk =
1

ω2
sc,r

uTr

[(
Ω−2
sc,>r + ΦT

sc,>rΓpΦp,≤kΦ
T
p,≤kΓ

T
p Φsc,>r

)−1

−
(
Ω−2
sc,>r + ΦT

sc,>rΓp

(
Cε
p

)−1
ΓT
p Φsc,>r

)−1
]

ur (D.50)

The matrix involved in this quadratic form is positive semidefinite. To demonstrate this, it
can be observed that

Ω−2
sc,>r + ΦT

sc,>rΓp

(
Cε
p

)−1
ΓT
p Φsc,>r −

(
Ω−2
sc,>r + ΦT

sc,>rΓpΦp,≤kΦ
T
p,≤kΓ

T
p Φsc,>r

)
= ΦT

sc,>rΓp

((
Cε
p

)−1 −Φp,≤kΦ
T
p,≤k

)
ΓT
p Φsc,>r � 0 (D.51)

because of the passivity constraints (Equation (3.49)). Thus, by Property 6
of positive semidefinite matrices,(
Ω−2
sc,>r + ΦT

sc,>rΓpΦp,≤kΦ
T
p,≤kΓ

T
p Φsc,>r

)−1−
(
Ω−2
sc,>r + ΦT

sc,>rΓp

(
Cε
p

)−1
ΓT
p Φsc,>r

)−1

� 0,

(D.52)
which means that the difference in the EEMCFs is positive or zero, i.e., that
Equation (D.33) is verified. Therefore, the background contributions from non-resonant
modes can limit the EEMCF of the network to a lower value than that of the structure,
but in no case can the former be larger than the latter with a passive network.



E Appendix to Chapter 4

E.1 Parametrization of electrical matrices

A parametrization of the electrical matrices Ce, G and B is detailed here. These matrices
need to be symmetric positive semidefinite. The symmetry constraint reduces the number
of free parameters for each matrix to Ne(Ne + 1)/2 (which is the number of entries on
its upper triangular part). These parameters are constrained by Ne inequalities on the
eigenvalues of the matrix, which should be positive.

Working directly with the entries of the matrices is not efficient, because the constraints
on the eigenvalues leads to complex nonlinear inequalities. This is why a parametrization
based on the eigenstructure of these matrices is proposed here. The Ne eigenvalues
are explicitly taken as parameters, which allows for the use of simple linear inequality
constraints. The remaining Ne(Ne − 1)/2 free parameters are Givens rotation angles,
which are used to parametrize the eigenvectors.

In the sequel, Ce is taken as an example, and the extension to G and B is straightforward.

E.1.1 Direct parametrization

Ce is guaranteed to be symmetric if it is built using its eigenvalue decomposition, i.e.,

Ce = UCΛCUT
C , (E.1)

where UC and ΛC are the orthogonal matrix of eigenvectors and diagonal matrix of
eigenvalues of Ce, respectively. Every element on the diagonal of ΛC must be equal to
or greater than zero. The eigenvalues constitute a set of Ne parameters. The remaining
Ne(Ne − 1)/2 free parameters of Ce can be used to parametrize UC .

A simple way to build an orthogonal matrix UC is to use Givens rotations [261]. For
a set of Ne(Ne − 1)/2 rotation angles θC,i, it is built by

UC =

Ne(Ne−1)/2∏
i=1

Gi(θC,i), (E.2)

where Gi(θi) are Givens rotation matrices

Gi(θi) = I +

[
ei1(i) ei2(i)

]cos θC,i − 1 − sin θC,i

sin θC,i cos θC,i − 1

[ei1(i) ei2(i)

]T
. (E.3)

ek is a unit column vector filled with zeros except for its kth entry which is one.

The numbers i1(i) and i2(i) are found by taking each i1 ∈
[
1 · · · Ne

]
and

i2 ∈
[
i1 + 1 · · · Ne

]
, and incrementing i each times the index i1 or i2 is changed.
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The matrix Ce is thus parametrized by the set of Ne(Ne + 1)/2 parameters

ξC =

[
λC,1 · · · λC,Ne θC,1 · · · θC,Ne(Ne−1)/2

]T
(E.4)

The derivative of the matrix with respect to the parameters can also be computed.
For the eigenvalues, it is simply given by

∂Ce

∂λi
= UCeie

T
i UT

C . (E.5)

For the Givens rotation angles, the derivative of the eigenvectors is first computed as

∂UC

∂θk
=

(
k∏
i=1

Gi(θC,i)

)
∂Gk(θC,k)

∂θC,k

Ne(Ne−1)/2∏
i=k+1

Gi(θC,i)

 , (E.6)

where

∂Gk(θC,k)

∂θC,k
=

[
ei1(i) ei2(i)

]− sin θC,i − cos θC,i

cos θC,i − sin θC,i

[ei1(i) ei2(i)

]T
. (E.7)

The derivative of Ce is finally found as

∂Ce

∂θi
=
∂UC

∂θi
ΛCUT

C + UCΛC
∂UT

C

∂θi
. (E.8)

For decentralized networks, the block-diagonal structure of the matrices in Equation (3.85)
enforces some angles to zero. These angles are associated to line and column indices (i1
and i2, respectively) of elements that to not belong to the blocks on the diagonal. These
elements should thus be forced to zero during the optimization process.

E.1.2 Inverse parametrization

An initial guess of electrical matrices is required to start the NH optimization algorithm.
To find the parameters associated to these matrices, it is first required to compute their
eigenvalues and eigenvectors (Equation (E.1)). The diagonal elements of ΛC are the
eigenvalues, which constitute the first Ne parameters. For the Givens rotation angles,
the construction algorithm of UC must be run backward. The algorithm is initialized
by taking U

(1)
C = UC . The indices i1 and i2 are covered by taking an inverse order,

i1 ∈
[
Ne · · · 1

]
and i2 ∈

[
Ne · · · i1 + 1

]
. The rotation angle θi can be found as

θi = arctan

(
eTi2U

(i)
C ei1

eTi2U
(i)
C ei2

)
. (E.9)

An inverse rotation is performed to update the matrix UC ,

U
(i+1)
C = U

(i)
C

I +

[
ei1(i) ei2(i)

]cos θC,i − 1 sin θC,i

− sin θC,i cos θC,i − 1

[ei1(i) ei2(i)

]T (E.10)



E.1. Parametrization of electrical matrices 289

and i can be incremented, until it reaches Ne(Ne − 1)/2.

It should be noted that this parametrization works if the eigenvectors matrix is
equivalent to a compound rotation matrix, i.e., if it has a unit determinant. General
eigenvalues calculators do not guarantee this, and eigenvectors matrices with negative
unit determinant are also possible. This case can easily be treated, either by swapping
two columns of the eigenvectors matrix (and swapping the associated eigenvalues
correspondingly), or by multiplying one of the eigenvectors by -1.





F Appendix to Chapter 5

F.1 State-space models of nonlinear piezoelectric

structures

The equations of motion of a nonlinear piezoelectric structure can generally be expressed
by [205]

M0ẍ + C0ẋ + K0x−Θq + fnl(x) = f . (F.1)

This set of nonlinear second-order ordinary differential equations can be cast
to the equivalent first-order systemẋ

ẍ

 =

 0 I

−M−1
0 K0 −M−1

0 C0


x

ẋ

+

 0 0

M−1
0 M−1

0 Θ


f

q

+

 0

−M−1
0 fnl(x)

 , (F.2)

and the voltages across the electrodes of the piezoelectric transducers are given by

V = ΘTx− Eε
pq. (F.3)

The electrical circuits or networks that are connected to the piezoelectric transducers are
assumed to be governed by the following state-space model

ẋe = Aexe + BeV + fnl,e(xe) (F.4)

and the output equation

q = Cexe. (F.5)

Inserting Equation (F.5) into Equation (F.3), and inserting this back into Equation (F.4)
allows for the elimination of the voltages in the electrical state-space equation:

ẋe = Aexe + Be

(
ΘTx− Eε

pCexe
)

+ fnl,e(xe). (F.6)

Combining Equations (F.2), (F.5) and (F.6) yields the state-space evolution equation
of the nonlinear coupled electromechanical system

ẋ

ẍ

ẋe

 =
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0 I 0

−M−1
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0 C0 M−1
0 ΘCe

BeΘ
T 0 Ae −BeE

ε
pCe


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x

ẋ
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+
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0

M−1
0

0


[
f

]
+


0

−M−1
0 fnl(x)

fnl,e(xe)

 ,
(F.7)

which is in the form of Equation (5.2).
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F.2 Models of nonlinear shunt circuits

F.2.1 Nonlinear Hollkamp’s shunt circuit

L0

R0

Cnl,0

L1

R1

C1

Cnl,1

LNs−1

RNs−1

CNs−1

Cnl,Ns−1

q̇

V

q̇0

q̇1

C1q1

q̇Ns−1

CNs−1qNs−1

· · ·

· · ·

Figure F.1: Nonlinear Hollkamp’s shunt circuit.

The current in the inductors and the charges in the linear capacitors are used
as state variables. From Figure F.1, the application of KVL to branches
0 and k > 0 respectively yields

q̈0 =
1

L0

(
V −R0q̇0 − Cnl,0q3

0

)
(F.8)

and

q̈k =
1

Lk

(
V − 1

Ck
qk −Rkq̇k − Cnl,kq3

k

)
. (F.9)

Using the same notation as Section C.1.1 and introducing the vector of nonlinear voltages

Vnl =


Cnl,0q

3
0

...

Cnl,Ns−1q
3
Ns−1

 , (F.10)

the state evolution equations becomeq̇

q̈

 =

 0 I

−L−1
H EH −L−1

H RH


q

q̇

+

 0

L−1
H 1Ns×1

V +

 0

−L−1
H Vnl

 (F.11)

and the output equation is

q =

[
1 0

]q

q̇

 . (F.12)
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F.2.2 Nonlinear and augmented nonlinear current blocking
shunt circuit
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Figure F.2: Augmented nonlinear current blocking circuit with series RL shunts.

The model of an ANCB circuit is derived hereafter, and that of an NCB circuit can readily
be derived from it. The charges and currents through the shunts, the currents through
the filter inductors and the charge through the filter capacitors are used as state variables.
From Figure F.2, the currents flowing through the filter inductors are governed by

q̈L̃k =
1

L̃k

(
1

C̃k
qC̃k + C̃nl,kq

3
C̃k

)
(F.13)

while the current through the filter capacitors are given by

q̇C̃k = ˙̃qk − q̇L̃k , (F.14)

where ˙̃qk is the total current going through the filter. The current flowing
through the shunt inductor is governed by

q̈k = −Rk

Lk
q̇k −

Cnl,k
Lk

q3
k +

1

Lk
Vk. (F.15)

Using KVL, the voltage across each shunt is given by

Vk = V −
k−1∑
i=1

(
1

C̃i
qC̃i + C̃nl,iq

3
C̃i

)
(F.16)

and using KCL, the currents through the filter are found as

˙̃qk =
N∑

i=k+1

q̇i. (F.17)

Using the same notations as Section C.1.5.1 and introducing the vectors of nonlinear
voltages

Vnl =


Cnl,1q

3
1

...

Cnl,Nsq
3
Ns

 , Ṽnl =


C̃nl,1q

3
C̃1

...

C̃nl,Ns−1q
3
C̃Ns−1

 , (F.18)
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the state evolution equations read

q̇

q̈

q̇C̃

q̈L̃


=



0 I 0 0

0 −L−1
CBRCB −L−1

CBTT ẼCB 0

0 T 0 −I

0 0 L̃−1
CBẼCB 0





q

q̇

qC̃

q̇L̃



+



0

L−1
CB1Ns×1

0

0


V +



0

−L−1
CB

(
Vnl + TT Ṽnl

)
0

L̃−1
CBṼnl


, (F.19)

and the output equation reads

q =

[
1 0 0 0

]


q

q̇

qC̃

q̇L̃


. (F.20)

The model of the NCB can be obtained by setting Ṽnl = 0.

The state evolution matrix in Equation (F.19) is singular (this stems from the fact that
the charges in the shunts are not uniquely defined under a static voltage). Depending on
the implementation of the solver for the nonlinear equations, this may be an issue. In
this case, the second line of this system of equations may be replaced by

q̈ = −L−1
CBECBq− L−1

CBRCBq̇− L−1
CBTT ẼCBqC̃ + L−1

CB1Ns×1V − L−1
CB

(
Vnl + TT Ṽnl

)
,

(F.21)
where ECB is a diagonal regularization matrix. Physically, it is equivalent to adding
capacitors in series with the RL shunts. The values on the diagonal should be small
with respect to 1/Cε

p (typically, ECB = 10−6I/Cε
p can be used) in order to accurately

represent the dynamics of the CB circuit.



G Appendix to Chapter 6

G.1 Modified Craig-Bampton reduced-order model

Accounting for internal electrical DoFs, Equation (6.4) reads

Mbb Mbi 0 0

Mib Mii 0 0

0 0 0 0

0 0 0 0





ẍb

ẍi

V̈b

V̈i


+



Kbb Kbi Γbb Γbi

Kib Kii Γib Γii

ΓT
bb ΓT

ib −Cε
p,bb −Cε

p,bi

ΓT
bi ΓT

ii −Cε
p,ib −Cε

p,ii





xb

xi

Vb

Vi


=



fb

fi

qb

qi


, (G.1)

where Vb (qb) and Vi (qi) are the voltage (charges) associated to electrode DoFs and
internal electrical DoFs, respectively. Assuming fi = 0 and qi = 0, the internal voltages
are statically determined by the other variables. Since the Craig-Bampton reduction
method is statically exact, the effect of the internal voltages is exactly represented in the
ROM whatever the retained internal DoFs. This statement is further supported by the
fact that the CNM shape matrix (obtained by solving the generalized eigenvalue problem
associated to Equation (G.1) with xb = Vb = 0) is given by Φi 0(

Cε
p,ii

)−1
ΓT
iiΦi Φe,i

 (G.2)

where (
Kii + Γii

(
Cε
p,ii

)−1
ΓT
ii

)
Φi = MiiΦiΩ

2
i . (G.3)

and Φe,i can be chosen arbitrarily to span the full space of internal electrical
DoFs. Hence, if a classical Craig-Bampton approach is used, the internal DoFs
can be expressed with the boundary DoFs and the CNM modal coordinates ηi
(associated to the first block of columns in Equation (G.2)) and ηe,i (associated
to the second block of columns in Equation (G.2)) as

xb

Vb

xi

Vi


=



I 0 0 0

0 I 0 0

Φc Φc,p Φi 0(
Cε
p,ii

)−1
Γib −

(
Cε
p,ii

)−1
Cε
p,ib

(
Cε
p,ii

)−1
ΓT
iiΦi Φe,i





xb

Vb

ηi

ηe,i


= RCB



xb

Vb

ηi

ηe,i


(G.4)
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With this transformation matrix, it can be shown that the reduced mass matrix becomes

MCB = RT
CBMRCB =



M̃bb M̃bi M̃be 0

M̃ib I M̃ie 0

M̃eb M̃ei M̃ee 0

0 0 0 0


. (G.5)

The non-zero block is identical to the reduced mass matrix in Equation (6.10). Identical
transformations and approximations to Section 6.3 can thus be used to retrieve a ROM
having matrices with the same structure as Equation (3.1). Furthermore, the reduction
approach does not need to retain purely electrical CNMs (Φe,i), because they only have a
static effect and their influence is thus captured exactly by the Craig-Bampton reduction
method. This is naturally performed when the CNMs are selected in ascending order of
frequency, since the frequencies associated to these purely electrical CNMs are infinite.
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[137] O. Thomas, J.-F. Deü, and J. Ducarne, “Vibrations of an elastic structure with shunted
piezoelectric patches: efficient finite element formulation and electromechanical coupling
coefficients,” International Journal for Numerical Methods in Engineering, vol. 80, no. 2,
pp. 235–268, oct 2009.

[138] E. Balmes and A. Deraemaeker, “Modeling structures with piezoelectric materials. Theory
and SDT turorial,” p. 71, 2014.

[139] J. F. Toftekær and J. Høgsberg, “Multi-mode piezoelectric shunt damping with residual
mode correction by evaluation of modal charge and voltage,” Journal of Intelligent
Material Systems and Structures, vol. 31, no. 4, pp. 570–586, mar 2020.
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“A multimodal nonlinear piezoelectric vibration absorber,” in Proceedings of ISMA
2018 - International Conference on Noise and Vibration Engineering and USD 2018 -
International Conference on Uncertainty in Structural Dynamics, 2018, pp. 63–77.

[146] A. Cigada, S. Manzoni, M. Redaelli, and M. Vanali, “Optimization of the current flowing
technique aimed at semi-passive multi-modal vibration reduction,” Journal of Vibration
and Control, vol. 18, no. 2, pp. 298–312, feb 2012.

[147] A. Fleming, S. Behrens, and S. Reza Moheimani, “Optimization and implementation
of multimode piezoelectric shunt damping systems,” IEEE/ASME Transactions on
Mechatronics, vol. 7, no. 1, pp. 87–94, mar 2002.

[148] C. Davis and G. Lesieutre, “A modal strain energy approach to the prediction of resistively
shunted piezoceramic damping,” Journal of Sound and Vibration, vol. 184, no. 1, pp.
129–139, jul 1995.

[149] K. M. Guo and J. Jiang, “Independent modal resonant shunt for multimode vibration
control of a truss-cored sandwich panel,” International Journal of Dynamics and Control,
vol. 2, no. 3, pp. 326–334, sep 2014.

[150] F. Dell’Isola and S. Vidoli, “Continuum modelling of piezoelectromechanical truss beams:
an application to vibration damping,” Archive of Applied Mechanics (Ingenieur Archiv),
vol. 68, no. 1, pp. 1–19, feb 1998.

[151] S. Vidoli and F. Dell’Isola, “Modal coupling in one-dimensional electromechanical
structured continua,” Acta Mechanica, vol. 141, no. 1-2, pp. 37–50, mar 2000.

[152] C. Maurini, F. Dell’Isola, and D. Del Vescovo, “Comparison of piezoelectronic networks
acting as distributed vibration absorbers,” Mechanical Systems and Signal Processing,
vol. 18, no. 5, pp. 1243–1271, sep 2004.

[153] M. Porfiri, F. Dell’Isola, and F. M. Frattale Mascioli, “Circuit analog of a beam

https://doi.org/10.1002/nme.2632
https://doi.org/10.1002/nme.2632
https://doi.org/10.1002/nme.2632
https://doi.org/10.1002/nme.2632
http://www.sdtools.com/pdf/piezo.pdf
http://www.sdtools.com/pdf/piezo.pdf
https://doi.org/10.1177/1045389X19891646
https://doi.org/10.1177/1045389X19891646
https://doi.org/10.1177/1045389X19891646
https://doi.org/10.1002/j.1538-7305.1924.tb01358.x
https://doi.org/10.1002/j.1538-7305.1924.tb01358.x
https://doi.org/10.1201/9781315219141
https://doi.org/10.1109/TCST.2004.824318
https://doi.org/10.1109/TCST.2004.824318
https://doi.org/10.1109/TCST.2004.824318
https://doi.org/10.1177/1045389X20988090
https://doi.org/10.1177/1045389X20988090
https://doi.org/10.1177/1045389X20988090
http://hdl.handle.net/2268/230000
http://hdl.handle.net/2268/230000
http://hdl.handle.net/2268/230000
http://hdl.handle.net/2268/230000
https://doi.org/10.1177/1077546311407537
https://doi.org/10.1177/1077546311407537
https://doi.org/10.1177/1077546311407537
https://doi.org/10.1109/3516.990891
https://doi.org/10.1109/3516.990891
https://doi.org/10.1109/3516.990891
https://doi.org/10.1006/jsvi.1995.0308
https://doi.org/10.1006/jsvi.1995.0308
https://doi.org/10.1006/jsvi.1995.0308
https://doi.org/10.1007/s40435-013-0036-7
https://doi.org/10.1007/s40435-013-0036-7
https://doi.org/10.1007/s40435-013-0036-7
https://doi.org/10.1007/s004190050142
https://doi.org/10.1007/s004190050142
https://doi.org/10.1007/s004190050142
https://doi.org/10.1007/BF01176806
https://doi.org/10.1007/BF01176806
https://doi.org/10.1016/S0888-3270(03)00082-7
https://doi.org/10.1016/S0888-3270(03)00082-7
https://doi.org/10.1016/S0888-3270(03)00082-7
https://doi.org/10.1002/cta.273
https://doi.org/10.1002/cta.273
https://doi.org/10.1002/cta.273


Bibliography 306

and its application to multimodal vibration damping, using piezoelectric transducers,”
International Journal of Circuit Theory and Applications, vol. 32, no. 4, pp. 167–198, jul
2004.
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[156] B. Lossouarn, J.-F. Deü, M. Aucejo, and K. A. Cunefare, “Multimodal vibration damping
of a plate by piezoelectric coupling to its analogous electrical network,” Smart Materials
and Structures, vol. 25, no. 11, p. 115042, nov 2016.
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