About some notions of regularity for functions

Dissertation presented by

Laurent Loosveldt
for the degree of Doctor in Sciences

Advisor: Samuel Nicolay

10th March 2021

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if there exist $C>0$ and a polynomial $P_{x_{0}}$ of degree less than α s.t., for j large enough,

$$
\left\|f-P_{x_{0}}\right\|_{L^{\infty}\left(B\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

with

$$
\Delta_{h}^{1} f(x)=f(x+h)-f(x) \quad \text { and } \quad \Delta_{h}^{n+1}=\Delta_{h}^{1} \Delta_{h}^{n} f(x),
$$

and $B_{h}^{M}\left(x_{0}, 2^{-j}\right)=\left\{x:\left[x_{0}, x_{0}+(M+1) h\right] \subset B\left(x_{0}, 2^{-j}\right)\right\}$.

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

$$
|x|^{1 / 3}
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

$$
|x|^{1 / 3}, \sqrt{|x|},|x|^{0.8},|x|,|x|^{3 / 2} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

$$
h^{(\infty)}\left(x_{0}\right)=\sup \left\{\alpha: f \in \Lambda^{\alpha}\left(x_{0}\right)\right\} .
$$

Pointwise Hölder spaces

Let $x_{0} \in \mathbb{R}^{d}$; a function $f \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Hölder space $\Lambda^{\alpha}\left(x_{0}\right)$ $(\alpha>0)$ if

$$
\sup _{|h| \leq 2^{-j}}\left\|\Delta^{[\alpha]+1} f\right\|_{L^{\infty}\left(B_{h}^{[\alpha]}\left(x_{0}, 2^{-j}\right)\right)} \leq C 2^{-j \alpha} .
$$

$$
h^{(\infty)}\left(x_{0}\right)=\sup \left\{\alpha: f \in \Lambda^{\alpha}\left(x_{0}\right)\right\} .
$$

$$
D^{(\infty)}(h)=\operatorname{dim}_{\mathcal{H}}\left\{x: h^{(\infty)}(x)=h\right\} .
$$

Drawbacks

Drawbacks

Unadapted to study non-locally bounded functions

Drawbacks

Unadapted to study non-locally bounded functions

The Brjuno function

Drawbacks

Unadapted to study non-locally bounded functions

Unable to detect precise and particular pointwise behaviour

The Brjuno function

Drawbacks

Unadapted to study non-locally bounded functions

The Brjuno function

Unable to detect precise and particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

Drawbacks

Unadapted to study non-locally bounded functions

The Brjuno function

Jaffard and Mélot

propose to use the spaces of Calderón and Zygmund where the L^{∞} norm is replaced by a L^{p} norm ($p \in[1,+\infty]$).

Unable to detect precise and particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

palicular poitwise benaviour

Drawbacks

Unadapted to study non-locally bounded functions

The Brjuno function

Jaffard and Mélot

propose to use the spaces of Calderón and Zygmund where the L^{∞} norm is replaced by a L^{p} norm ($p \in[1,+\infty]$).

Unable to detect precise and
particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

Kreit and Nicolay

replace the dyadic sequence appearing in the definition by a more general sequence, called admissible.

Objectives

1. Define functional spaces which gather the two approaches.

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines

- Hölder spaces are a pointwise version of some Besov spaces.

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines

- Hölder spaces are a pointwise version of some Besov spaces.
- The multifractal formalism of Jaffard and Frayse is based on the belonging to some Besov spaces.

Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines

- Hölder spaces are a pointwise version of some Besov spaces.
- The multifractal formalism of Jaffard and Frayse is based on the belonging to some Besov spaces.
- Besov spaces were generalized using admissible sequences.

Some equivalent definitions of Besov spaces of generalized smoothness

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

$$
B_{p, q}^{s}=\left[H_{p}^{t}, H_{p}^{u}\right]_{\alpha, q},
$$

with $s=(1-\alpha) t+\alpha u$, where H_{p}^{t} and H_{p}^{u} are Sobolev spaces

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

$$
B_{p, q}^{s}=\left[H_{p}^{t}, H_{p}^{u}\right]_{\alpha, q},
$$

with $s=(1-\alpha) t+\alpha u$, where H_{p}^{t} and H_{p}^{u} are Sobolev spaces
or equivalently using Litllewood-Paley Theory

$$
\left.B_{p, q}^{s}=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right):\left(2^{j s} \| \mathcal{F}^{-1}\left(\varphi_{j} \mathcal{F} f\right)\right) \|_{\left.L^{p}\left(\mathbb{R}^{d}\right)\right)}\right)_{j} \in \ell^{q}\right\}
$$

where $\left(\varphi_{j}\right)_{j \in \mathbb{N}_{0}} \subset \mathcal{S}\left(\mathbb{R}^{d}\right)$ is a regular partition of unity.

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

$$
B_{p, q}^{s}=\left[H_{p}^{t}, H_{p}^{u}\right]_{\alpha, q},
$$

with $s=(1-\alpha) t+\alpha u$, where H_{p}^{t} and H_{p}^{u} are Sobolev spaces
or equivalently using Litllewood-Paley Theory

$$
\left.B_{p, q}^{s}=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right):\left(2^{j s} \| \mathcal{F}^{-1}\left(\varphi_{j} \mathcal{F} f\right)\right) \|_{\left.L^{p}\left(\mathbb{R}^{d}\right)\right)}\right)_{j} \in \ell^{q}\right\}
$$

where $\left(\varphi_{j}\right)_{j \in \mathbb{N}_{0}} \subset \mathcal{S}\left(\mathbb{R}^{d}\right)$ is a regular partition of unity.

$$
\operatorname{supp} \varphi_{j} \subseteq\left\{\xi \in \mathbb{R}^{d}: 2^{j-1} \leq|\xi| \leq 2^{j+1}\right\}
$$

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}_{0}}$ of real positive numbers is called admissible if there exists a positive constant C such that

$$
C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j},
$$

for any $j \in \mathbb{N}$.

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}_{0}}$ of real positive numbers is called admissible if there exists a positive constant C such that

$$
C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j},
$$

for any $j \in \mathbb{N}$.
One sets

$$
\underline{\sigma}_{j}:=\inf _{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_{k}} \quad \text { and } \quad \bar{\sigma}_{j}:=\sup _{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_{k}}
$$

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}_{0}}$ of real positive numbers is called admissible if there exists a positive constant C such that

$$
C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j},
$$

for any $j \in \mathbb{N}$.
One sets

$$
\underline{s}(\sigma)=\lim _{j} \frac{\log _{2}\left(\underline{\sigma}_{j}\right)}{j}, \quad \bar{s}(\sigma)=\lim _{j} \frac{\log _{2}\left(\bar{\sigma}_{j}\right)}{j},
$$

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}_{0}}$ of real positive numbers is called admissible if there exists a positive constant C such that

$$
C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j}
$$

for any $j \in \mathbb{N}$.
One sets

$$
\underline{s}(\sigma)=\lim _{j} \frac{\log _{2}\left(\underline{\sigma}_{j}\right)}{j}, \quad \bar{s}(\sigma)=\lim _{j} \frac{\log _{2}\left(\bar{\sigma}_{j}\right)}{j},
$$

so that for any $\varepsilon>0$, there exists $C>0$ s.t. for all j, k

$$
C^{-1} 2^{j(\underline{s}(\sigma)-\varepsilon)} \leq \frac{\sigma_{j+k}}{\sigma_{k}} \leq C 2^{j(\bar{s}(\sigma)+\varepsilon)} .
$$

Admissible sequences

Example
If $s \in \mathbb{R}, s=\left(2^{s j}\right)_{j}$ is admissible with $\underline{s}(s)=\bar{s}(s)=s$

Admissible sequences

Example

If $s \in \mathbb{R}, s=\left(2^{s j}\right)_{j}$ is admissible with $\underline{s}(s)=\bar{s}(s)=s$

Definition

A strictly positive function ψ is a slowly varying function if

$$
\lim _{t \rightarrow 0} \frac{\psi(r t)}{\psi(t)}=1
$$

for any $r>0$.

Admissible sequences

Example

If $s \in \mathbb{R}, s=\left(2^{s j}\right)_{j}$ is admissible with $\underline{s}(s)=\bar{s}(s)=s$

Definition

A strictly positive function ψ is a slowly varying function if

$$
\lim _{t \rightarrow 0} \frac{\psi(r t)}{\psi(t)}=1,
$$

for any $r>0$.

Example

If ψ is a slowly varying function and $u \in \mathbb{R}$, the sequence $\sigma=\left(2^{j u} \psi\left(2^{j}\right)\right)_{j}$ is admissible with $\underline{s}(\boldsymbol{\sigma})=\bar{s}(\boldsymbol{\sigma})=u$.

Generalized Besov spaces

Let γ be an admissible sequence such that $\underline{\gamma}_{1}>1$

Generalized Besov spaces

Let γ be an admissible sequence such that $\underline{\gamma}_{1}>1$, there exists $k_{0} \in \mathbb{N}$ such that

$$
2 \gamma_{j} \leq \gamma_{k} \forall j, k \in \mathbb{N} \text { s.t. } j+k_{0} \leq k
$$

Generalized Besov spaces

Let γ be an admissible sequence such that $\underline{\gamma}_{1}>1$, there exists $k_{0} \in \mathbb{N}$ such that

$$
2 \gamma_{j} \leq \gamma_{k} \forall j, k \in \mathbb{N} \text { s.t. } j+k_{0} \leq k
$$

$$
B_{p, q}^{\boldsymbol{\sigma}, \gamma}=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right):\left(\sigma_{j}\left\|\mathcal{F}^{-1}\left(\varphi_{j}^{\gamma, J} \mathcal{F} f\right)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}\right)_{j} \in \ell^{q}\right\}
$$

Generalized Besov spaces

Let γ be an admissible sequence such that $\underline{\gamma}_{1}>1$, there exists $k_{0} \in \mathbb{N}$ such that

$$
2 \gamma_{j} \leq \gamma_{k} \forall j, k \in \mathbb{N} \text { s.t. } j+k_{0} \leq k
$$

$$
B_{p, q}^{\boldsymbol{\sigma}, \gamma}=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right):\left(\sigma_{j}\left\|\mathcal{F}^{-1}\left(\varphi_{j}^{\gamma, J} \mathcal{F} f\right)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}\right)_{j} \in \ell^{q}\right\}
$$

- $\operatorname{supp}\left(\varphi_{j}^{\gamma, J}\right) \subseteq\left\{\xi \in \mathbb{R}^{d}:|\xi| \leq \gamma_{j+J k_{0}}\right\} \forall j \in\left\{0, \ldots, J k_{0}-1\right\}$,
$\bullet \operatorname{supp}\left(\varphi_{j}^{\gamma, J}\right) \subseteq\left\{\xi \in \mathbb{R}^{d}: \gamma_{j-J k_{0}} \leq|\xi| \leq \gamma_{j+J k_{0}}\right\} \forall j \geq J k_{0}$,

Generalized Besov spaces

Moura, 2007

Let $p, q \in[1, \infty], \sigma=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and $0<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\gamma)^{-1}$. For any $n \in \mathbb{N}$ such that $\bar{s}(\boldsymbol{\sigma}) \underline{s}(\gamma)^{-1}<n$, we have

$$
B_{p, q}^{\sigma, \gamma}=\left\{f \in L^{p}:\left(\sigma_{j} \sup _{|h| \leq \gamma_{j}^{-1}}\left\|\Delta_{h}^{n} f\right\|_{L^{p}}\right)_{j} \in \ell^{q}\right\}
$$

Generalized Besov spaces and convolution

Characterization of Generalized Besov spaces in terms of convolution L.L. \& S. Nicolay (2019)

Let $p, q \in[1, \infty], \boldsymbol{\sigma}=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and $\underline{s}(\boldsymbol{\sigma})>0$; we have

$$
B_{p, q}^{\sigma, \gamma}=\left\{f \in L^{p}: \exists \phi \in \mathcal{D} \text { such that }\left(\sigma_{j}\left\|f * \phi_{\gamma_{j}^{-1}}-f\right\|_{L^{p}}\right)_{j} \in \ell^{q}\right\}
$$

Generalized Besov spaces and derivatives

Characterization of Generalized Besov spaces in terms of derivatives L.L. \& S. Nicolay (2019)
 Let $p, q \in[1, \infty], \sigma=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$. Let the numbers $k, n \in \mathbb{N}_{0}$ be such that

$$
k<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\boldsymbol{\gamma})^{-1} \leq \bar{s}(\boldsymbol{\sigma}) \underline{s}(\boldsymbol{\gamma})^{-1}<n .
$$

We have

$$
B_{p, q}^{\sigma, \gamma}=\left\{f \in W_{p}^{k}:\left(\gamma_{j}^{-|\alpha|} \sigma_{j} \sup _{|h| \leq \gamma_{j}^{-1}}\left\|\Delta_{h}^{n-|\alpha|} D^{\alpha} f\right\|_{L^{p}}\right)_{j} \in \ell^{q} \quad \forall|\alpha|=k\right\} .
$$

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. \& S. Nicolay (2019)
Let $p, q \in[1, \infty], \sigma=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$. Let $n \in \mathbb{N}$ be such that $n<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\gamma)^{-1} \leq \bar{s}(\boldsymbol{\sigma}) \underline{s}(\gamma)^{-1}<n+1$; the following assertions are equivalent:

1. The function f belongs to $B_{p, q}^{\sigma, \gamma}$;

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. \& S. Nicolay (2019)
Let $p, q \in[1, \infty], \sigma=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$. Let $n \in \mathbb{N}$ be such that $n<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\gamma)^{-1} \leq \bar{s}(\boldsymbol{\sigma}) \underline{s}(\gamma)^{-1}<n+1$; the following assertions are equivalent:
2. The function f belongs to W_{p}^{n} and, for all $h \in \mathbb{R}^{d}$ and almost every $x \in \mathbb{R}^{d}$, we have

$$
f(x+h)=\sum_{|\alpha| \leq n} D^{\alpha} f(x) \frac{h^{\alpha}}{|\alpha|!}+R_{n}(x, h) \frac{|h|^{n}}{n!},
$$

where

$$
\left(\sigma_{j} \gamma_{j}^{-n} \sup _{|h| \leq \gamma_{j}^{-1}}\left\|R_{n}(\cdot, h)\right\|_{L^{p}}\right)_{j} \in \ell^{q} ;
$$

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of

 polynomials L.L. \& S. Nicolay (2019)Let $p, q \in[1, \infty], \sigma=\left(\sigma_{j}\right)_{j}$ and $\gamma=\left(\gamma_{j}\right)_{j}$ be two admissible sequences such that $\underline{\gamma}_{1}>1$. Let $n \in \mathbb{N}$ be such that $n<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\gamma)^{-1} \leq \bar{s}(\boldsymbol{\sigma}) \underline{s}(\gamma)^{-1}<n+1$; the following assertions are equivalent:
3. If, given $j \in \mathbb{N}_{0}, \pi_{j}$ is a net of \mathbb{R}^{d} made of cubes of diagonal γ_{j}^{-1}, then for all $j \in \mathbb{N}_{0}$, there exists $g_{\pi_{j}}$ such that

- the trace of $g_{\pi_{j}}$ in each cube of π_{j} is a polynomial of degree at most n,
- one has $\left(\sigma_{j}\left\|f-g_{\pi_{j}}\right\|_{L^{p}}\right)_{j} \in \ell^{q}$.

Interpolation methods

Let A_{0}, A_{1} be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces.

Interpolation methods

Let A_{0}, A_{1} be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces. We say that $a \in\left[A_{0}, A_{1}\right]_{\alpha, q}(0<\alpha<1$ and $1 \leq q \leq \infty)$ if

- $\exists\left(u_{j}\right)_{j \in \mathbb{Z}} \subset A_{0} \cap A_{1}$ such that

$$
a=\sum_{j \in \mathbb{Z}} u_{j} \text { with convergence in } A_{0}+A_{1}
$$

and

$$
\left(2^{-\alpha j} \max \left\{\left\|u_{j}\right\|_{A_{0}}, 2^{j}\left\|u_{j}\right\|_{A_{1}}\right\}\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

Interpolation methods

Let A_{0}, A_{1} be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces. We say that $a \in\left[A_{0}, A_{1}\right]_{\alpha, q}(0<\alpha<1$ and $1 \leq q \leq \infty)$ if

- $\exists\left(u_{j}\right)_{j \in \mathbb{Z}} \subset A_{0} \cap A_{1}$ such that

$$
a=\sum_{j \in \mathbb{Z}} u_{j} \text { with convergence in } A_{0}+A_{1}
$$

and

$$
\left(2^{-\alpha j} \max \left\{\left\|u_{j}\right\|_{A_{0}}, 2^{j}\left\|u_{j}\right\|_{A_{1}}\right\}\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

OR

- $\forall j \in \mathbb{Z}$, there exist $a_{0, j} \in A_{0}$ and $a_{1, j} \in A_{1}$ such that $a=a_{0, j}+a_{1, j}$ and

$$
\left(2^{-\alpha j}\left(\left\|a_{0, j}\right\|_{A_{0}}+2^{j}\left\|a_{1, j}\right\|_{A_{1}}\right)\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

Interpolation methods

Let A_{0}, A_{1} be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces. We say that $a \in\left[A_{0}, A_{1}\right]_{\alpha, q}(0<\alpha<1$ and $1 \leq q \leq \infty)$ if

- $\exists\left(u_{j}\right)_{j \in \mathbb{Z}} \subset A_{0} \cap A_{1}$ such that

$$
a=\sum_{j \in \mathbb{Z}} u_{j} \text { with convergence in } A_{0}+A_{1}
$$

and

$$
\left(2^{-\alpha j} \max \left\{\left\|u_{j}\right\|_{A_{0}}, 2^{j}\left\|u_{j}\right\|_{A_{1}}\right\}\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

OR

- $\forall j \in \mathbb{Z}$, there exist $a_{0, j} \in A_{0}$ and $a_{1, j} \in A_{1}$ such that $a=a_{0, j}+a_{1, j}$ and

$$
\left(2^{-\alpha j}\left(\left\|a_{0, j}\right\|_{A_{0}}+2^{j}\left\|a_{1, j}\right\|_{A_{1}}\right)\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

Generalized interpolation methods

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
r<\min \left\{\underline{s}(\sigma) \underline{s}(\gamma)^{-1}, \underline{s}(\sigma) \bar{s}(\gamma)^{-1}\right\} \leq \max \left\{\bar{s}(\sigma) \underline{s}(\gamma)^{-1}, \bar{s}(\sigma) \bar{s}(\gamma)^{-1}\right\}<s .
$$

Generalized interpolation methods

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
\begin{aligned}
& r<\min \left\{\underline{s}(\sigma) \underline{s}(\gamma)^{-1}, \underline{s}(\sigma) \bar{s}(\gamma)^{-1}\right\} \leq \max \left\{\bar{s}(\sigma) \underline{s}(\gamma)^{-1}, \bar{s}(\sigma) \bar{s}(\gamma)^{-1}\right\}<s . \\
& \theta_{j}:=\left\{\begin{array}{ll}
\gamma_{-j}^{-r} \sigma_{-j} & \text { if }-j \in \mathbb{N}_{0} \\
\gamma_{j}^{r} \sigma_{j}^{-1} & \text { if } j \in \mathbb{N}
\end{array} \quad \psi_{j}:= \begin{cases}\gamma_{-j}^{-(s-r)} & \text { if }-j \in \mathbb{N}_{0} \\
\gamma_{j}^{(s-r)} & \text { if } j \in \mathbb{N}\end{cases} \right.
\end{aligned}
$$

Generalized interpolation methods

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
r<\min \left\{\underline{s}(\sigma) \underline{s}(\gamma)^{-1}, \underline{s}(\sigma) \bar{s}(\gamma)^{-1}\right\} \leq \max \left\{\bar{s}(\sigma) \underline{s}(\gamma)^{-1}, \bar{s}(\sigma) \bar{s}(\gamma)^{-1}\right\}<s .
$$

- $a \in\left[A_{0}, A_{1}\right]_{J, q}^{\theta, \psi}$ if there exists $\left(u_{j}\right)_{j \in \mathbb{Z}} \subset A_{0} \cap A_{1}$ such that $a=\sum_{j \in \mathbb{Z}} u_{j}$, with convergence in $A_{0}+A_{1}$ and

$$
\left(\theta_{j} \max \left\{\left\|u_{j}\right\|_{A_{0}}, \psi_{j}\left\|u_{j}\right\|_{A_{1}}\right\}\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

- $a \in\left[A_{0}, A_{1}\right]_{K, q}^{\theta, \psi}$ if $\forall j \in \mathbb{Z}$, there exist $a_{0, j} \in A_{0}$ and $a_{1, j} \in A_{1}$ such that $a=a_{0, j}+a_{1, j}$ and

$$
\left(\theta_{j}\left(\left\|a_{0, j}\right\|_{A_{0}}+\psi_{j}\left\|a_{1, j}\right\|_{A_{1}}\right)\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

Generalized interpolation methods

fn's

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
r<\min \left\{\underline{s}(\sigma) \underline{s}(\gamma)^{-1}, \underline{s}(\sigma) \bar{s}(\gamma)^{-1}\right\} \leq \max \left\{\bar{s}(\sigma) \underline{s}(\gamma)^{-1}, \bar{s}(\sigma) \bar{s}(\gamma)^{-1}\right\}<s .
$$

- $a \in\left[A_{0}, A_{1}\right]_{J, q}^{\theta, \psi}$ if there exists $\left(u_{j}\right)_{j \in \mathbb{Z}} \subset A_{0} \cap A_{1}$ such that $a=\sum_{j \in \mathbb{Z}} u_{j}$, with convergence in $A_{0}+A_{1}$ and

$$
\left(\theta_{j} \max \left\{\left\|u_{j}\right\|_{A_{0}}, \psi_{j}\left\|u_{j}\right\|_{A_{1}}\right\}\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

- $a \in\left[A_{0}, A_{1}\right]_{K, q}^{\theta, \psi}$ if $\forall j \in \mathbb{Z}$, there exist $a_{0, j} \in A_{0}$ and $a_{1, j} \in A_{1}$ such that $a=a_{0, j}+a_{1, j}$ and

$$
\left(\theta_{j}\left(\left\|a_{0, j}\right\|_{A_{0}}+\psi_{j}\left\|a_{1, j}\right\|_{A_{1}}\right)\right)_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}) .
$$

L.L. \& S. Nicolay (2019)

$$
\left[A_{0}, A_{1}\right]_{J, q}^{\theta, \psi}=\left[A_{0}, A_{1}\right]_{K, q}^{\theta, \psi}=:\left[A_{0}, A_{1}\right]_{q}^{\sigma, \gamma}
$$

Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized interpolation L.L. \& S. Nicolay (2019)
Let $p, q \in[1, \infty], r, s \in \mathbb{R}$, and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
r<\min \left\{\underline{s}(\boldsymbol{\sigma}) \underline{s}(\boldsymbol{\gamma})^{-1}, \underline{s}(\boldsymbol{\sigma}) \bar{s}(\boldsymbol{\gamma})^{-1}\right\} \leq \max \left\{\bar{s}(\boldsymbol{\sigma}) \underline{s}(\boldsymbol{\gamma})^{-1}, \bar{s}(\boldsymbol{\sigma}) \bar{s}(\boldsymbol{\gamma})^{-1}\right\}<s ;
$$

we have

$$
B_{p, q}^{\sigma, \gamma}=\left[H_{p}^{r}, H_{p}^{s}\right]_{q}^{\sigma, \gamma} .
$$

Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized interpolation L.L. \& S. Nicolay (2019)
Let $p, q \in[1, \infty], r, s \in \mathbb{R}$, and σ, γ be two admissible sequences such that $\underline{\gamma}_{1}>1$ and

$$
k<\underline{s}(\boldsymbol{\sigma}) \bar{s}(\gamma)^{-1} \leq \bar{s}(\boldsymbol{\sigma}) \underline{s}(\boldsymbol{\gamma})^{-1}<n,
$$

we have

$$
B_{p, q}^{\sigma, \gamma}=\left[W_{p}^{k}, W_{p}^{n}\right]_{q}^{\sigma, \gamma} .
$$

Pointwise spaces of generalized smoothness

The space $T_{p, q}^{\sigma}\left(x_{0}\right)$

fn's

Let $p, q \in[1, \infty], \boldsymbol{\sigma}=\left(\sigma_{j}\right)_{j}$ be an admissible sequence such that $\underline{s}(\boldsymbol{\sigma})>-\frac{d}{p}$, $f \in L_{\text {loc }}^{p}$ and $x_{0} \in \mathbb{R}^{d} ; f$ belongs to $T_{p, q}^{\sigma}\left(x_{0}\right)$ whenever

$$
\left(\sigma_{j} 2^{j d / p} \sup _{|h| \leq 2^{-j}}\left\|\Delta_{h}^{\lfloor\bar{s}(\sigma)\rfloor+1} f\right\|_{L^{p}\left(B_{h}\left(x_{0}, 2^{-j}\right)\right)}\right)_{j} \in \ell^{q},
$$

where, given $r>0$, if $\bar{s}(\boldsymbol{\sigma})>0$, we have

$$
B_{h}\left(x_{0}, r\right)=\left\{x:[x, x+(\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor+1) h] \subset B\left(x_{0}, r\right)\right\},
$$

and $B_{h}\left(x_{0}, r\right)=B\left(x_{0}, r\right)$ otherwise.

The space $T_{p, q}^{\sigma}\left(x_{0}\right)$

Let $p, q \in[1, \infty], \boldsymbol{\sigma}=\left(\sigma_{j}\right)_{j}$ be an admissible sequence such that $\underline{s}(\boldsymbol{\sigma})>0$, $f \in L_{\text {loc }}^{p}$ and $x_{0} \in \mathbb{R}^{d} ; f$ belongs to $T_{p, q}^{\sigma}\left(x_{0}\right)$ whenever there exists a sequence of polynomials $\left(P_{j, x_{0}}\right)_{j}$ of degree less than or equal to $\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor$ such that

$$
\left(\sigma_{j} 2^{j d / p}\left\|f-P_{j, x_{0}}\right\|_{L^{p}\left(B\left(x_{0}, 2^{-j}\right)\right)}\right)_{j} \in \ell^{q} .
$$

The space $T_{p, q}^{\sigma}\left(x_{0}\right)$

Let $p, q \in[1, \infty], \boldsymbol{\sigma}=\left(\sigma_{j}\right)_{j}$ be an admissible sequence such that $\underline{s}(\boldsymbol{\sigma})>0$, $f \in L_{\text {loc }}^{p}$ and $x_{0} \in \mathbb{R}^{d} ; f$ belongs to $T_{p, q}^{\sigma}\left(x_{0}\right)$ whenever there exists a sequence of polynomials $\left(P_{j, x_{0}}\right)_{j}$ of degree less than or equal to $\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor$ such that

$$
\left(\sigma_{j} 2^{j d / p}\left\|f-P_{j, x_{0}}\right\|_{L^{p}\left(B\left(x_{0}, 2^{-j}\right)\right)}\right)_{j} \in \ell^{q} .
$$

L.L. \& S. Nicolay (2020)

Moreover, if $0 \leq n:=\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor<\underline{s}(\boldsymbol{\sigma})$, there exists a unique polynomial $P_{x_{0}}$ of degree less than or equal to n such that

$$
\left(\sigma_{j} 2^{j d / p}\left\|f-P_{x_{0}}\right\|_{L^{p}\left(B\left(x_{0}, 2^{-j}\right)\right)}\right)_{j} \in \ell^{q}
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p} .
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p} .
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p}
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p}
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p}
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p} .
$$

Wavelet leaders

Given a dyadic cube $\lambda \in \Lambda_{j}$ at scale j, the p-wavelet leader of $\lambda(p \in[1, \infty])$ is defined by

$$
d_{\lambda}^{p}=\sup _{j^{\prime} \geq j}\left(\sum_{\lambda^{\prime} \in \Lambda_{j^{\prime}}, \lambda^{\prime} \subset \lambda}\left(2^{\left(j-j^{\prime}\right) d / p}\left|c_{\lambda^{\prime}}\right|\right)^{p}\right)^{1 / p} .
$$

Given $x_{0} \in \mathbb{R}^{d}$, we set

$$
d_{j}^{p}\left(x_{0}\right)=\sup _{\lambda \in 3 \lambda_{j}\left(x_{0}\right)} d_{\lambda}^{p}
$$

L.L. \& S. Nicolay (2020)

If f belongs to the space $T_{p, q}^{\sigma}\left(x_{0}\right)$, then

$$
\left(\sigma_{j} d_{j}^{p}\left(x_{0}\right)\right)_{j} \in \ell^{q} .
$$

Conversely, if $2^{-j d / p} \sigma_{j}^{-1}$ tends to 0 as j tends to ∞ and $\underline{\sigma}_{1}>2^{-d / p}$, if f belongs to $B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ for some $s>0$, then $\left(\sigma_{j} d_{j}^{p}\left(x_{0}\right)\right)_{j} \in \ell^{q}$ implies $f \in T_{p, q, \log }^{\sigma}\left(x_{0}\right)$.

Wavelet leaders

Let $p, q \in[1, \infty], x_{0} \in \mathbb{R}^{d}$ and f be a function from $L_{\text {loc }}^{p}$; if σ is an admissible sequence such that $2^{-j d / p} \sigma_{j}^{-1}$ tends to 0 as j tends to ∞, we say that f belongs to $T_{p, q, \log }^{\sigma}\left(x_{0}\right)$ if there exists $J \in \mathbb{N}$ for which

$$
\left(\frac{2^{j d / p} \sigma_{j}}{\left|\log _{2}\left(2^{-j d / p} \sigma_{j}^{-1}\right)\right|} \sup _{|h| \leq 2^{-j}}\left\|\Delta_{h}^{\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor+1} f\right\|_{L^{p}\left(B_{h}\left(x_{0}, 2^{-j}\right)\right)}\right)_{j \geq J} \in \ell^{q} .
$$

Wavelet leaders

f belongs to $T_{p, q, \log }^{\sigma}\left(x_{0}\right)$ if there exists $J \in \mathbb{N}$ for which

$$
\begin{gathered}
\left(\frac{2^{j d / p} \sigma_{j}}{\left|\log _{2}\left(2^{-j d / p} \sigma_{j}^{-1}\right)\right|} \sup _{|h| \leq 2^{-j}}\left\|\Delta_{h}^{\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor+1} f\right\|_{L^{p}\left(B_{h}\left(x_{0}, 2^{-j}\right)\right)}\right)_{j \geq J} \in \ell^{q} . \\
E_{\infty}^{\varepsilon}\left(x_{0}\right)=\left\{f \in B_{\infty, \infty}^{\varepsilon}\left(\mathbb{R}^{d}\right):\left(\sigma_{j} d_{j}^{\infty}\left(x_{0}\right)\right)_{j} \in \ell^{\infty}\right\},
\end{gathered}
$$

equipped with the norm

$$
\|\cdot\|_{E_{\infty}^{\varepsilon}\left(x_{0}\right)}: E_{\infty}^{\varepsilon}\left(x_{0}\right) \rightarrow[0,+\infty): f \mapsto\|f\|_{B_{\infty, \infty}^{\varepsilon}}+\left\|\left(\sigma_{j} d_{j}^{\infty}\left(x_{0}\right)\right)_{j}\right\|_{\ell^{\infty}} .
$$

Wavelet leaders

f belongs to $T_{p, q, \log }^{\sigma}\left(x_{0}\right)$ if there exists $J \in \mathbb{N}$ for which

$$
\left(\frac{2^{j d / p} \sigma_{j}}{\left|\log _{2}\left(2^{-j d / p} \sigma_{j}^{-1}\right)\right|} \sup _{|h| \leq 2^{-j}}\left\|\Delta_{h}^{\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor+1} f\right\|_{L^{p}\left(B_{h}\left(x_{0}, 2^{-j}\right)\right)}\right)_{j \geq J} \in \ell^{q} .
$$

$$
E_{\infty}^{\varepsilon}\left(x_{0}\right)=\left\{f \in B_{\infty, \infty}^{\varepsilon}\left(\mathbb{R}^{d}\right):\left(\sigma_{j} d_{j}^{\infty}\left(x_{0}\right)\right)_{j} \in \ell^{\infty}\right\}
$$

equipped with the norm

$$
\|\cdot\|_{E_{\infty}^{\varepsilon}\left(x_{0}\right)}: E_{\infty}^{\varepsilon}\left(x_{0}\right) \rightarrow[0,+\infty): f \mapsto\|f\|_{B_{\infty, \infty}^{\varepsilon}}^{\varepsilon}+\left\|\left(\sigma_{j} d_{j}^{\infty}\left(x_{0}\right)\right)_{j}\right\|_{\ell^{\infty}}
$$

L.L. \& S. Nicolay (2020)

If $x_{0} \in \mathbb{R}^{d}$, for all $0<\varepsilon<\frac{s}{4}(\boldsymbol{\sigma})$, from the the prevalence point of view, almost every function of $E_{\infty}^{\varepsilon}\left(x_{0}\right)$ belongs to $T_{\infty, \log }^{\sigma}\left(x_{0}\right) \backslash T_{/ s}^{\sigma, \log }\left(x_{0}\right)$.

Wavelet leaders

f belongs to $T_{p, q, \log }^{\sigma}\left(x_{0}\right)$ if there exists $J \in \mathbb{N}$ for which

$$
\begin{gathered}
\left(\frac{2^{j d / p} \sigma_{j}}{\left|\log _{2}\left(2^{-j d / p} \sigma_{j}^{-1}\right)\right|} \sup _{|h| \leq 2^{-j}}\left\|\Delta_{h}^{\lfloor\bar{s}(\boldsymbol{\sigma})\rfloor+1} f\right\|_{L^{p}\left(B_{h}\left(x_{0}, 2^{-j}\right)\right)}\right)_{j \geq J} \in \ell^{q} . \\
E_{1}^{\varepsilon}\left(x_{0}\right)=\left\{f \in B_{1, \infty}^{\varepsilon}\left(\mathbb{R}^{d}\right):\left(\sigma_{j} d_{j}^{1}\left(x_{0}\right)\right)_{j} \in \ell^{\infty}\right\},
\end{gathered}
$$

equipped with the norm

$$
\|\cdot\|_{E_{1}^{s}\left(x_{0}\right)}: E_{1}^{\varepsilon}\left(x_{0}\right) \rightarrow[0,+\infty): f \mapsto\|f\|_{B_{1, \infty}^{s}}+\left\|\left(\sigma_{j} d_{j}^{1}\left(x_{0}\right)\right)_{j}\right\|_{\ell^{\infty}} .
$$

L.L. \& S. Nicolay (2020)

If $x_{0} \in \mathbb{R}^{d}$, for all $0<\varepsilon<\frac{s}{4}(\boldsymbol{\sigma})+d$, from the the prevalence point of view, almost every function of $E_{1}^{\varepsilon}\left(x_{0}\right)$ belongs to $T_{1, \log }^{\sigma}\left(x_{0}\right) \backslash T_{/ s \log }^{\sigma, 1}\left(x_{0}\right)$.

Generalized Hölder exponent

Decreasing family of admissible sequences

Let $p, q \in[1, \infty]$; if, given $h>-d / p, \boldsymbol{\gamma}^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \boldsymbol{\gamma}^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}\left(\boldsymbol{\gamma}^{(h)}\right)>$ $-d / p, \underline{\gamma}_{1}^{(h)}>2^{-d / p}$ for any $h>-d / p$ and if $-d / p<h<h^{\prime}$ implies

$$
T_{p, q}^{\gamma^{\left(h^{\prime}\right)}}\left(x_{0}\right) \subset T_{p, q}^{\gamma^{(h)}}\left(x_{0}\right) .
$$

Generalized Hölder exponent

Decreasing family of admissible sequences and associated exponent Let $p, q \in[1, \infty]$; if, given $h>-d / p, \gamma^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \boldsymbol{\gamma}^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}\left(\boldsymbol{\gamma}^{(h)}\right)>$ $-d / p, \underline{\gamma}_{1}^{(h)}>2^{-d / p}$ for any $h>-d / p$ and if $-d / p<h<h^{\prime}$ implies

$$
\begin{gathered}
T_{p, q}^{\gamma^{\left(h^{\prime}\right)}}\left(x_{0}\right) \subset T_{p, q}^{\gamma^{(h)}}\left(x_{0}\right) . \\
h_{p, q}\left(x_{0}\right):=\sup \left\{h>-d / p: f \in T_{p, q}^{\gamma^{(h)}}\left(x_{0}\right)\right\} .
\end{gathered}
$$

Generalized Hölder exponent

Decreasing family of admissible sequences and associated exponent and spectrum
Let $p, q \in[1, \infty]$; if, given $h>-d / p, \boldsymbol{\gamma}^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \boldsymbol{\gamma}^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}\left(\boldsymbol{\gamma}^{(h)}\right)>$ $-d / p, \underline{\gamma}_{1}^{(h)}>2^{-d / p}$ for any $h>-d / p$ and if $-d / p<h<h^{\prime}$ implies

$$
\begin{gathered}
T_{p, q}^{\gamma^{\left(h^{\prime}\right)}}\left(x_{0}\right) \subset T_{p, q}^{\gamma^{(h)}}\left(x_{0}\right) . \\
h_{p, q}\left(x_{0}\right):=\sup \left\{h>-d / p: f \in T_{p, q}^{\gamma^{(h)}}\left(x_{0}\right)\right\} . \\
D_{p, q}(h):=\operatorname{dim}_{\mathcal{H}}\left(\left\{x_{0} \in \mathbb{R}^{d}: h_{p, q}\left(x_{0}\right)=h\right\}\right) .
\end{gathered}
$$

Generalized Hölder exponent

Decreasing family of admissible sequences and associated spectrum If $\left(\boldsymbol{\gamma}^{(h)}\right)_{h}$ is a (p, q)-decreasing family of admissible sequences

$$
D_{p, q}(h):=\operatorname{dim}_{\mathcal{H}}\left(\left\{x_{0} \in \mathbb{R}^{d}: h_{p, q}\left(x_{0}\right)=h\right\}\right) .
$$

L.L. \& S. Nicolay (2020)

It $\boldsymbol{\sigma}$ is an admissible sequence such that $\underline{s}(\boldsymbol{\sigma})-\frac{d}{r}>-\frac{d}{p}$ and if $s \leq q$ then, for all $f \in B_{r, s}^{\sigma}$, we have

$$
\operatorname{dim}_{\mathcal{H}}\left(\left\{x_{0} \in \mathbb{R}^{d}: h_{p, q}\left(x_{0}\right)<h\right\}\right) \leq d+r \bar{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right) .
$$

Multifractal formalism

Compatibility conditions

An admissible sequence σ and a family of admissible sequences $\gamma^{(\cdot)}$ are compatible for $p, q, r, s \in[1, \infty]$ with $s \leq q$ if

- $\underline{s}(\sigma)>0$,
- $\underline{s}(\boldsymbol{\sigma})-d / r>-d / p$,
- the function ζ defined on $(-d / p, \infty)$ by

$$
\zeta(h):=\underline{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)=\bar{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)
$$

is non decreasing, continuous and such that

$$
\{h>-d / p: \zeta(h)<-d / r\} \neq \emptyset .
$$

We call ζ the ratio function and set $h_{\min }(r):=\sup \{h>-d / p: \zeta(h)<-d / r\}$.

Multifractal formalism

$$
\zeta(h):=\underline{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)=\bar{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)
$$

Multifractal formalism

$$
\zeta(h):=\underline{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)=\bar{s}\left(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}\right)
$$

L.L. \& S. Nicolay (2020)

Let $p, q, r, s \in[1, \infty]$ with $s \leq q, \sigma$ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ. From the prevalence point of view, for almost every $f \in B_{r, s}^{\sigma}, D_{p, q}$ is defined on $I=\left[\zeta^{-1}(-d / r), \zeta^{-1}(0)\right]$ and

$$
D_{p, q}(h)=d+r \zeta(h),
$$

for any $h \in I$.
Moreover, for almost every $x_{0} \in \mathbb{R}^{d}$, we have $h_{p, q}\left(x_{0}\right)=\zeta^{-1}(0)$.

Multifractal formalism

L.L. \& S. Nicolay (2020)

Let $p, q, r, s \in[1, \infty]$ with $s \leq q, \sigma$ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ. From the prevalence point of view, for almost every $f \in B_{r, s}^{\sigma}, D_{p, q}$ is defined on $I=\left[\zeta^{-1}(-d / r), \zeta^{-1}(0)\right]$ and

$$
D_{p, q}(h)=d+r \zeta(h),
$$

for any $h \in I$.
Moreover, for almost every $x_{0} \in \mathbb{R}^{d}$, we have $h_{p, q}\left(x_{0}\right)=\zeta^{-1}(0)$.

If $p=q=\infty,\left(\boldsymbol{\gamma}^{(h)}\right)_{h>0}$ is the usual family $\left(2^{j h}\right)_{h>0}$ and $\sigma=\left(2^{s j}\right)_{j}$

$$
\zeta(h)=\underline{s}\left(\left(2^{(h-s) j}\right)_{j}\right)=h-s
$$

Multifractal formalism

L.L. \& S. Nicolay (2020)

Let $p, q, r, s \in[1, \infty]$ with $s \leq q, \sigma$ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ. From the prevalence point of view, for almost every $f \in B_{r, s}^{\sigma}, D_{p, q}$ is defined on $I=\left[\zeta^{-1}(-d / r), \zeta^{-1}(0)\right]$ and

$$
D_{p, q}(h)=d+r \zeta(h),
$$

for any $h \in I$.
Moreover, for almost every $x_{0} \in \mathbb{R}^{d}$, we have $h_{p, q}\left(x_{0}\right)=\zeta^{-1}(0)$.

If $p=q=\infty,\left(\boldsymbol{\gamma}^{(h)}\right)_{h>0}$ is the usual family $\left(2^{j h}\right)_{h>0}$ and $\sigma=\left(2^{s j}\right)_{j}$

$$
\forall h \in\left[s-\frac{d}{r}, s\right]: D(h)=d+r(h-s)
$$

About the results of Calderón and Zygmund

Let $x_{0} \in \mathbb{R}^{d}, p \in[1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi)>-d / p$. A function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ belongs to the space $T_{\phi}^{p}\left(x_{0}\right)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant $C>0$ such that

$$
r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \leq C \phi(r) \quad \forall r>0 .
$$

About the results of Calderón and Zygmund

Let $x_{0} \in \mathbb{R}^{d}, p \in[1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi)>-d / p$. A function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ belongs to the space $T_{\phi}^{p}\left(x_{0}\right)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant $C>0$ such that

$$
r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \leq C \phi(r) \quad \forall r>0 .
$$

A function $\phi:(0,+\infty) \rightarrow(0,+\infty)$ is a Boyd function if $\phi(1)=1, \phi$ is continuous and, for all $x \in(0,+\infty)$,

$$
\begin{equation*}
\bar{\phi}(x):=\sup _{y>0} \frac{\phi(x y)}{\phi(y)}<\infty . \tag{1}
\end{equation*}
$$

About the results of Calderón and Zygmund

Let $x_{0} \in \mathbb{R}^{d}, p \in[1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi)>-d / p$. A function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ belongs to the space $T_{\phi}^{p}\left(x_{0}\right)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant $C>0$ such that

$$
r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \leq C \phi(r) \quad \forall r>0 .
$$

A sequence $\sigma=\left(\sigma_{j}\right)_{j}$ of real positive numbers is admissible if and only if there exists a Boyd function ϕ such that, for any $j, \phi\left(2^{j}\right)=\sigma_{j}$.

About the results of Calderón and Zygmund

Let $x_{0} \in \mathbb{R}^{d}, p \in[1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi)>-d / p$. A function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ belongs to the space $T_{\phi}^{p}\left(x_{0}\right)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant $C>0$ such that

$$
r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \leq C \phi(r) \quad \forall r>0 .
$$

Uniqueness of the polynomial

About the results of Calderón and Zygmund

Let $x_{0} \in \mathbb{R}^{d}, p \in[1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi)>-d / p$. A function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ belongs to the space $T_{\phi}^{p}\left(x_{0}\right)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant $C>0$ such that

$$
r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \leq C \phi(r) \quad \forall r>0 .
$$

Uniqueness of the polynomial

Equipped with this norm, $T_{\phi}^{p}\left(x_{0}\right)$ is a Banach space
$\|f\|_{T_{\phi}^{p}\left(x_{0}\right)}:=\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}+\sum_{|\alpha|<\underline{b}(\phi)} \frac{\left|D^{\alpha} P\left(x_{0}\right)\right|}{\alpha!}+\sup _{r>0} \phi(r)^{-1} r^{-d / p}\|f-P\|_{L^{p}\left(B\left(x_{0}, r\right)\right)}$.

Elliptic partial differential equations

An elliptic partial differential equation at $x_{0} \in \mathbb{R}^{d}$ of order $m \in \mathbb{N}$ is a partial differentiable equation of the form

$$
\mathcal{E} f=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} f=g
$$

where for all $|\alpha| \leq m, a_{\alpha}$ is an $s \times r$ matrix of functions, f and g are vector valued functions with $f_{j} \in W_{m}^{p}\left(\mathbb{R}^{d}\right)$ for all $j \in\{1, \ldots, r\}$ and

$$
\mu\left(x_{0}\right):=\inf _{|\xi|=1} \operatorname{det}\left[\left(\sum_{|\alpha|=m} a_{\alpha}^{*}\left(x_{0}\right) \xi^{\alpha}\right)\left(\sum_{|\alpha|=m} a_{\alpha}\left(x_{0}\right) \xi^{\alpha}\right)\right]>0
$$

is the ellipticity constant of \mathcal{E} at x_{0}.

Operators

$$
\mathcal{J}^{s} f:=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{-s / 2} \mathcal{F} f\right) \quad\left(s \in \mathbb{R}, f \in \mathcal{S}^{\prime}\right)
$$

and

$$
\mathcal{K} f=p \cdot v \cdot \int k(\cdot-y) f(y) d y
$$

Operators

$$
\mathcal{J}^{s} f:=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{-s / 2} \mathcal{F} f\right) \quad\left(s \in \mathbb{R}, f \in \mathcal{S}^{\prime}\right)
$$

and

$$
\begin{aligned}
\mathcal{K} f & =p \cdot v \cdot \int k(\cdot-y) f(y) d y . \\
& \begin{array}{c}
\bigcup_{\mathcal{K}}^{p}\left(x_{0}\right) \\
\bigcup_{\mathcal{K}}^{p}
\end{array} \\
\xrightarrow{\mathcal{J}^{s}} & T_{\phi_{s}}^{q}\left(x_{0}\right)
\end{aligned}
$$

Operators

$$
\mathcal{J}^{s} f:=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{-s / 2} \mathcal{F} f\right) \quad\left(s \in \mathbb{R}, f \in \mathcal{S}^{\prime}\right)
$$

and

$$
\mathcal{K} f=p \cdot v \cdot \int k(\cdot-y) f(y) d y
$$

If $\bar{b}(\phi)+s<0$ or $\exists n \in \mathbb{N}$ s.t. $n<\underline{b}(\phi)+s \leq \bar{b}(\phi)+s<n+1$ and $p \in(1, \infty]$.

$$
T_{\substack{\mathcal{K}}}^{p}\left(x_{0}\right) \quad \xrightarrow{\mathcal{J}^{s}} T_{\phi_{s}}^{q}\left(x_{0}\right)
$$

where $\phi_{s}:(0,+\infty) \rightarrow(0,+\infty) \quad x \mapsto \phi(x) x^{s}$ and

- $1 / p \geq 1 / q \geq \frac{1}{p}-\frac{s}{d} \quad$ if $p<d / s$,
- $p \leq q \leq \infty \quad$ if $d / s<p \leq \infty$,
- $p \leq q<\infty \quad$ if $d / s=p$

Operators

$$
\mathcal{J}^{s} f:=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{-s / 2} \mathcal{F} f\right) \quad\left(s \in \mathbb{R}, f \in \mathcal{S}^{\prime}\right)
$$

and

$$
\mathcal{K} f=p \cdot v \cdot \int k(\cdot-y) f(y) d y .
$$

If $k \in C^{\infty}\left(\mathbb{R}^{d} \backslash\{0\}\right)$ is homogeneous of degree $-d$ with mean value zero on the sphere $\Sigma, \bar{b}(\phi)<0$ or $\exists n \in \mathbb{N}$ s.t. $n<\underline{b}(\phi) \leq \bar{b}(\phi)<n+1$ and $p \in(1, \infty)$

$$
{\underset{\mathcal{K}}{\mathcal{K}}}_{T_{\phi}^{p}\left(x_{0}\right)}^{\xrightarrow{\mathcal{J}^{s}}} \quad T_{\phi_{s}}^{q}\left(x_{0}\right)
$$

with

$$
\|\mathcal{K} f\|_{T_{\phi}^{p}\left(x_{0}\right)} \leq C_{\phi, p}\left(\sup _{\substack{|x|=1 \\ 0 \leq|\alpha| \leq \bar{b}(\phi)]_{\mathbb{N}}}}\left|D^{\alpha} k(x)\right|\right)\|f\|_{T_{\phi}^{p}\left(x_{0}\right)},
$$

Generalization of the main result of Calderón and Zygmund

Generalization of the main result of Calderón and Zygmund

Our variant

- Considering generalized pointwise regularity.

Generalization of the main result of Calderón and Zygmund

Our variant

- Considering generalized pointwise regularity.
- Assuming L^{q} conditions for the coefficients of the equation instead of L^{∞}.

Generalization of the main result of Calderón and Zygmund

Our variant

- Considering generalized pointwise regularity.
- Assuming L^{q} conditions for the coefficients of the equation instead of L^{∞}.

Generalization of the main result of Calderón and Zygmund

Our variant

- Considering generalized pointwise regularity.
- Assuming L^{q} conditions for the coefficients of the equation instead of L^{∞}.

Let, $p \in(1, \infty), \phi, \varphi \in \mathcal{B}$ be such that $0<\underline{b}(\phi),-d / p<\underline{b}(\varphi)$ and such that there exists $n \in \mathbb{Z}$ such that $n<\underline{b}(\varphi) \leq \bar{b}(\varphi)<n+1$; let us define k_{p} as follows:

- if $\underline{b}(\varphi)=\bar{b}(\varphi), \quad k_{p}(\phi, \varphi):=\min \left\{k \in \mathbb{N}: \frac{1}{k}\left(\underline{b}(\varphi)+\frac{d}{p}\right)<\min \{1, \underline{b}(\phi)\}\right\}$,
- if $n<\underline{b}(\varphi)<\bar{b}(\varphi)<n+1$,

$$
k_{p}(\phi, \varphi):=k_{p}(\phi, \cdot \underline{b}(\varphi))+\min \left\{k \in \mathbb{N}: \frac{\bar{b}(\varphi)-\underline{b}(\varphi)}{k}<\min \{1, \underline{b}(\phi)\}\right\} .
$$

Calderón \& Zygmund (1960)

Let $p \in] 1, \infty\left[, x_{0} \in \mathbb{R}^{d}, u>0\right.$ and v be a non integer such that $-\frac{d}{p} \leq v \leq u$. Let $\mathcal{E} f=g$ be an elliptic differentiable equation of order m at x_{0} such that $f \in W_{m}^{p}\left(\mathbb{R}^{d}\right)$, the coefficients of \mathcal{E} are functions in $T_{u}^{\infty}\left(x_{0}\right)$ and $g \in T_{v}^{p}\left(x_{0}\right)$. Then, for all $|\alpha| \leq m, D^{\alpha} f \in T_{v+m-|\alpha|}^{q}\left(x_{0}\right)$ with

$$
\left\|D^{\alpha} f\right\|_{T_{v+m-|\alpha|}^{q}\left(x_{0}\right)} \leq C\left(\|g\|_{T_{v}^{p}\left(x_{0}\right)}+\|f\|_{W_{m}^{p}\left(\mathbb{R}^{d}\right)}\right)
$$

where q is determined by p, m and α

Calderón \& Zygmund (1960)

Let $p \in] 1, \infty\left[, x_{0} \in \mathbb{R}^{d}, u>0\right.$ and v be a non integer such that $-\frac{d}{p} \leq v \leq u$. Let $\mathcal{E} f=g$ be an elliptic differentiable equation of order m at x_{0} such that $f \in W_{m}^{p}\left(\mathbb{R}^{d}\right)$, the coefficients of \mathcal{E} are functions in $T_{u}^{\infty}\left(x_{0}\right)$ and $g \in T_{v}^{p}\left(x_{0}\right)$. Then, for all $|\alpha| \leq m, D^{\alpha} f \in T_{v+m-|\alpha|}^{q}\left(x_{0}\right)$ with

$$
\left\|D^{\alpha} f\right\|_{T_{v+m-|\alpha|}^{q}\left(x_{0}\right)} \leq C\left(\|g\|_{T_{v}^{p}\left(x_{0}\right)}+\|f\|_{W_{m}^{p}\left(\mathbb{R}^{d}\right)}\right)
$$

where q is determined by p, m and α

L.L. \& S. Nicolay (2020)

Let $p \in] 1, \infty[, q \in] 1, \infty], x_{0} \in \mathbb{R}^{d}$ and $\phi, \varphi \in \mathcal{B}$ be such that $-\frac{d}{p}<\underline{b}(\varphi), 0<\underline{b}(\phi)$ and there exists $n \in \mathbb{Z}$ such that $n<\underline{b}(\varphi)<\bar{b}(\varphi)<n+1$. Let $\mathcal{E} f=g$ be an elliptic differentiable equation of order m at x_{0} such that the coefficients of \mathcal{E} are functions in $T_{\phi}^{q}\left(x_{0}\right)$ whose x_{0} is a Lebesgue point. Let us suppose that:

- $g \in T_{\varphi}^{p_{1}}\left(x_{0}\right)$ with $\frac{1}{p_{1}}:=\frac{1}{p}+\frac{1}{q}$
- $\phi \leqslant \varphi$ and $\bar{b}(\varphi) \leq \underline{b}(\phi)$ or $\bar{b}(\varphi)-\underline{b}(\varphi) \leq \min \{1, \underline{b}(\phi)\}$,
- $f \in W_{m}^{s}\left(\mathbb{R}^{d}\right)$ for all $s \in\left[p^{\prime}, p\right]$ with $0<\frac{1}{p^{\prime}}:=\frac{k_{p}(\phi, \varphi)}{q}+\frac{1}{p}<1$

L.L. \& S. Nicolay (2020)

There exists $C_{p^{\prime}, \phi, \varphi, m}$ such that for all $|\alpha| \leq m, D^{\alpha} f \in T_{\varphi_{m-|\alpha|}}^{q^{\prime}}\left(x_{0}\right)$ for all $q^{\prime} \geq 1$ such that

- $\frac{1}{p^{\prime}} \geq \frac{1}{q^{\prime}} \geq \frac{1}{p^{\prime}}-\frac{m-|\alpha|}{d}$ if $\frac{1}{p^{\prime}}>\frac{m-|\alpha|}{d}$,
- $p^{\prime} \leq q^{\prime} \leq \infty$ if $\frac{1}{p^{\prime}}<\frac{m-|\alpha|}{d}$,
- $p^{\prime} \leq q^{\prime}<\infty$ if $\frac{1}{p^{\prime}}=\frac{m-|\alpha|}{d}$.

Moreover, we have

$$
\begin{aligned}
& \left\|D^{\alpha} f\right\|_{T_{\varphi m-|\alpha|}^{q^{\prime}}\left(x_{0}\right)} \leq C_{p^{\prime}, \phi, \varphi}\left(M(1+M N)^{k_{p}(\phi, \varphi)-1}\|g\|_{T_{\varphi}^{p_{1}}\left(x_{0}\right)}\right. \\
& +k_{p}(\phi, \varphi)(1+M N)^{k_{p}(\phi, \varphi)}\left(\|f\|_{W_{m}^{p}\left(\mathbb{R}^{d}\right)}+\|f\|_{W_{m}^{p^{\prime}}\left(\mathbb{R}^{d}\right)}\right)
\end{aligned}
$$

Continuously differentiable functions on compact sets

Defining continuously differentiable functions on compact sets

Defining continuously differentiable functions on compact sets

- By restriction

Defining continuously differentiable functions on compact sets

- By restriction

Whitney (1934)

A function f is the restriction to K of a continuously differentiable function on \mathbb{R}^{d}, with continuous derivative $d f$, if and only if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

uniformly on $x \in K$.

Defining continuously differentiable functions on compact sets

- By restriction

Whitney (1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$, with continuous derivative $d f$, if and only if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

uniformly on $x \in K$.

Defining continuously differentiable functions on compact sets

- By restriction

Whitney (1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$, with continuous derivative $d f$, if and only if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

uniformly on $x \in K$.

- If the compact set K is topologically regular (the closure of its interior)

Defining continuously differentiable functions on compact sets

- By restriction

Whitney (1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$, with continuous derivative $d f$, if and only if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

uniformly on $x \in K$.

- If the compact set K is topologically regular (the closure of its interior)

$$
C_{\mathrm{int}}^{1}(K)=\left\{f \in C(K):\left.f\right|_{K} ^{\circ} \in C^{1}(\stackrel{\circ}{K}) \text { and } d f \text { extends continuously to } K\right\} .
$$

Our proposition

$C^{1}(K)$
A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

Our proposition

$C^{1}(K)$

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

Our proposition

$C^{1}(K)$

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

Our proposition

$C^{1}(K)$
A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

Our proposition

$C^{1}(K)$
A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

In general, a derivative need not be unique. For this reason, a good tool to study $C^{1}(K)$ is the jet space

$$
\mathcal{J}^{1}(K)=\{(f, d f): d f \text { is a continuous derivative of } f \text { on } K\}
$$

endowed with the norm

$$
\|(f, d f)\|_{\mathcal{J}^{1}(K)}=\|f\|_{K}+\|d f\|_{K},
$$

Our proposition

$C^{1}(K)$
A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

In general, a derivative need not be unique. For this reason, a good tool to study $C^{1}(K)$ is the jet space $\mathcal{J}^{1}(K)$ for which

$$
C^{1}(K)=\pi\left(\mathcal{J}^{1}(K)\right) \text { for the projection } \pi(f, d f)=f
$$

and we equip $C^{1}(K)$ with the norm

$$
\|f\|_{C^{1}(K)}=\|f\|_{K}+\inf \left\{\|d f\|_{K}: d f \text { is a continuous derivative of } f \text { on } K\right\} .
$$

Banach space?

Banach space?

L. Frerick, L. L., J. Wengenroth (2020)

If K is a compact set with infinitely many connected components, then $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is incomplete.

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

If, for all $x \in A, V_{x}=A$ and C_{x} is uniform, A is (Whitney) regular.

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

If, for all $x \in A, V_{x}=A$ and C_{x} is uniform, A is (Whitney) regular.

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

For all $x \in K$, there exists $C_{x}>0$ such that $\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.
$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

$$
\begin{gathered}
\text { For all } x \in K \text {, there exists } \\
C_{x}>0 \text { such that } \\
\sup _{\substack{y \in K \\
y \neq x}}^{|f(y)-f(x)|}| | y-x \mid \\
\mid y-C_{x}\|f\|_{C^{1}(K)}
\end{gathered} \quad \Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right) \text { B.S. }
$$

Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exist a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

For all $x \in K$, there exists $C_{x}>0$ such that
$\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.

$$
\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}
$$

Banach space?

L. Frerick, L. L., J. Wengenroth (2020)
$\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is complete if and only if K has finitely many components which are pointwise Whitney regular.

$C_{\text {int }}^{1}(K)$ and $C^{1}(K)$

If K is topologically regular, $C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)$.

$C_{\text {int }}^{1}(K)$ and $C^{1}(K)$

If K is topologically regular, $C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)$.

Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.

$C_{\text {int }}^{1}(K)$ and $C^{1}(K)$

If K is topologically regular, $C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)$.

Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.
Whitney conjecture: What can be said about the reverse implication?
$C_{\text {int }}^{1}(K)$ and $C^{1}(K)$
If K is topologically regular, $C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)$.

Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.
Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let K be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_{x}>0$ and a neighbourhood V_{x} of x in K such that each $y \in V_{x}$ can be joined from x by a rectifiable path in $K \cup\{x, y\}$ of length bounded by $C_{x}|x-y|$. Then $C_{\text {int }}^{1}(K)=C^{1}(K)$.

$C_{\text {int }}^{1}(K)$ and $C^{1}(K)$

If K is topologically regular, $C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)$.

Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.
Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let K be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_{x}>0$ and a neighbourhood V_{x} of x in K such that each $y \in V_{x}$ can be joined from x by a rectifiable path in $K \cup\{x, y\}$ of length bounded by $C_{x}|x-y|$. Then $C_{\text {int }}^{1}(K)=C^{1}(K)$.

L. Frerick, L. L., J. Wengenroth (2020)

Construction of a compact set K for which $C_{\text {int }}^{1}(K)=C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ but \grave{K} is not Whitney regular.
$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ and $C^{1}(K)$

$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ and $C^{1}(K)$

L. Frerick, L. L., J. Wengenroth (2020)

For each compact set K, the space $C^{1}\left(\mathbb{R}^{d} \mid K\right)$ is dense in $C^{1}(K)$.

$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ and $C^{1}(K)$

L. Frerick, L. L., J. Wengenroth (2020)

For each compact set K, the space $C^{1}\left(\mathbb{R}^{d} \mid K\right)$ is dense in $C^{1}(K)$.

L. Frerick, L. L., J. Wengenroth (2020)

$C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.
$C^{1}(\mathbb{R} \mid K)$ and $C^{1}(K)$

$C^{1}(\mathbb{R} \mid K)$ and $C^{1}(K)$

Whitney (1934)

A function $f \in C^{1}(\mathbb{R} \mid K)$ if and only if, for all non-isolated $\xi \in K$,

$$
\lim _{x, y \rightarrow \xi} \frac{f(x)-f(y)}{x-y}=f^{\prime}(\xi),
$$

$C^{1}(\mathbb{R} \mid K)$ and $C^{1}(K)$

Whitney (1934)

A function $f \in C^{1}(\mathbb{R} \mid K)$ if and only if, for all non-isolated $\xi \in K$,

$$
\lim _{x, y \rightarrow \xi} \frac{f(x)-f(y)}{x-y}=f^{\prime}(\xi)
$$

The simple idea is that small gaps are dangerous for the Lipschitz continuity on K which is a necessary condition for C^{1}-extendability.

$C^{1}(\mathbb{R} \mid K)$ and $C^{1}(K)$

Whitney (1934)

A function $f \in C^{1}(\mathbb{R} \mid K)$ if and only if, for all non-isolated $\xi \in K$,

$$
\lim _{x, y \rightarrow \xi} \frac{f(x)-f(y)}{x-y}=f^{\prime}(\xi),
$$

The gap structure function

$$
\sigma(\xi)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \subseteq(\xi-\varepsilon, \xi+\varepsilon) \text { is a gap of } K\right\} .
$$

$C^{1}(\mathbb{R} \mid K)$ and $C^{1}(K)$

Whitney (1934)

A function $f \in C^{1}(\mathbb{R} \mid K)$ if and only if, for all non-isolated $\xi \in K$,

$$
\lim _{x, y \rightarrow \xi} \frac{f(x)-f(y)}{x-y}=f^{\prime}(\xi),
$$

The gap structure function

$$
\sigma(\xi)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \subseteq(\xi-\varepsilon, \xi+\varepsilon) \text { is a gap of } K\right\} .
$$

L. Frerick, L. L., J. Wengenroth (2020)

For a compact set $K \subseteq \mathbb{R}$ we have $C^{1}(K)=C^{1}(\mathbb{R} \mid K)$ if and only if $\sigma(\xi)<\infty$ for all $\xi \in K$.

About some notions of regularity for functions

Dissertation presented by Laurent Loosveldt
for the degree of Doctor in Sciences

Advisor: Samuel Nicolay

10th March 2021
Lİ̀cE université
Mathematics
fn's
LA LIBERTÉ DE CHERCHER

