About some notions of regularity for functions

Dissertation presented by Laurent Loosveldt for the degree of Doctor in Sciences

Advisor: Samuel Nicolay

10th March 2021

Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the Hölder space $\Lambda^{\alpha}(x_0)$ ($\alpha > 0$) if there exist C > 0 and a polynomial P_{x_0} of degree less than α s.t., for j large enough,

$$\|f - P_{x_0}\|_{L^{\infty}(B(x_0, 2^{-j}))} \le C 2^{-j\alpha}.$$

Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the Hölder space $\Lambda^{\alpha}(x_0)$ ($\alpha > 0$) if

$$\sup_{|h| \le 2^{-j}} \|\Delta^{\lceil \alpha \rceil + 1} f\|_{L^{\infty}(B_{h}^{\lceil \alpha \rceil}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

with

 $\Delta_h^1 f(x) = f(x+h) - f(x) \quad \text{and} \quad \Delta_h^{n+1} = \Delta_h^1 \Delta_h^n f(x),$ and $B_h^M(x_0, 2^{-j}) = \{x : [x_0, x_0 + (M+1)h] \subset B(x_0, 2^{-j})\}.$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the Hölder space $\Lambda^{\alpha}(x_0)$ ($\alpha > 0$) if

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

 $h^{(\infty)}(x_0) = \sup\{\alpha : f \in \Lambda^{\alpha}(x_0)\}.$

$$\sup_{|h| \le 2^{-j}} \|\Delta^{[\alpha]+1} f\|_{L^{\infty}(B_{h}^{[\alpha]}(x_{0}, 2^{-j}))} \le C 2^{-j\alpha}.$$

$$h^{(\infty)}(x_0) = \sup\{\alpha : f \in \Lambda^{\alpha}(x_0)\}.$$

$$D^{(\infty)}(h) = \dim_{\mathcal{H}} \{ x : h^{(\infty)}(x) = h \}.$$

Unadapted to study non-locally bounded functions

Unadapted to study non-locally bounded functions

The Brjuno function

Unadapted to study non-locally bounded functions

The Brjuno function

Unable to detect precise and particular pointwise behaviour

Unadapted to study non-locally bounded functions

The Brjuno function

Unable to detect precise and particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

Unadapted to study non-locally bounded functions

The Brjuno function

Unable to detect precise and particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

Jaffard and Mélot

propose to use the spaces of Calderón and Zygmund where the L^{∞} norm is replaced by a L^p norm ($p \in [1, +\infty]$).

Unadapted to study non-locally bounded functions

The Brjuno function

Jaffard and Mélot

propose to use the spaces of Calderón and Zygmund where the L^{∞} norm is replaced by a L^p norm ($p \in [1, +\infty]$). Unable to detect precise and particular pointwise behaviour

The Brownian motion displaying the Khintchine law of iterated logarithm

Kreit and Nicolay

replace the dyadic sequence appearing in the definition by a more general sequence, called admissible.

1. Define functional spaces which gather the two approaches.

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.
- 3. Study the new spaces from a functional analysis point of view.

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.
- 3. Study the new spaces from a functional analysis point of view.

First guidelines

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.
- 3. Study the new spaces from a functional analysis point of view.

First guidelines

• Hölder spaces are a pointwise version of some Besov spaces.

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.
- 3. Study the new spaces from a functional analysis point of view.

First guidelines

- Hölder spaces are a pointwise version of some Besov spaces.
- The multifractal formalism of Jaffard and Frayse is based on the belonging to some Besov spaces.

- 1. Define functional spaces which gather the two approaches.
- 2. Propose a multifractal formalism adapted to these new spaces.
- 3. Study the new spaces from a functional analysis point of view.

First guidelines

- Hölder spaces are a pointwise version of some Besov spaces.
- The multifractal formalism of Jaffard and Frayse is based on the belonging to some Besov spaces.
- Besov spaces were generalized using admissible sequences.

Some equivalent definitions of Besov spaces of generalized smoothness

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

 $B^s_{p,q} = [H^t_p, H^u_p]_{\alpha,q},$

with $s = (1 - \alpha)t + \alpha u$, where H_p^t and H_p^u are Sobolev spaces

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

 $B_{p,q}^s = [H_p^t, H_p^u]_{\alpha,q},$

with $s = (1 - \alpha)t + \alpha u$, where H_p^t and H_p^u are Sobolev spaces or equivalently using Litllewood-Paley Theory

$$B_{p,q}^{s} = \left\{ f \in \mathcal{S}'(\mathbb{R}^{d}) : \left(2^{js} \| \mathcal{F}^{-1}(\varphi_{j} \mathcal{F}f)) \|_{L^{p}(\mathbb{R}^{d})} \right)_{j} \in \ell^{q} \right\}$$

where $(\varphi_j)_{j \in \mathbb{N}_0} \subset \mathcal{S}(\mathbb{R}^d)$ is a regular partition of unity.

Besov spaces

Historically Besov spaces were first defined using interpolation spaces

 $B_{p,q}^s = [H_p^t, H_p^u]_{\alpha,q},$

with $s = (1 - \alpha)t + \alpha u$, where H_p^t and H_p^u are Sobolev spaces or equivalently using Litllewood-Paley Theory

$$B_{p,q}^{s} = \left\{ f \in \mathcal{S}'(\mathbb{R}^{d}) : \left(2^{js} \| \mathcal{F}^{-1}(\varphi_{j} \mathcal{F}f)) \|_{L^{p}(\mathbb{R}^{d})} \right)_{j} \in \ell^{q} \right\}$$

where $(\varphi_j)_{j \in \mathbb{N}_0} \subset \mathcal{S}(\mathbb{R}^d)$ is a regular partition of unity.

 $\operatorname{supp} \varphi_j \subseteq \{\xi \in \mathbb{R}^d \ : \ 2^{j-1} \le |\xi| \le 2^{j+1}\}$

Admissible sequences

😻 fnrs

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \le \sigma_{j+1} \le C\sigma_j,$$

for any $j \in \mathbb{N}$.

Admissible sequences

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \leq \sigma_{j+1} \leq C\sigma_j,$$

for any $j \in \mathbb{N}$.
One sets
$$\underline{\sigma}_j := \inf_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_k} \quad \text{and} \quad \overline{\sigma}_j := \sup_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_k}$$

😻 fnrs
A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \le \sigma_{j+1} \le C\sigma_j,$$

for any $j \in \mathbb{N}$. One sets

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\underline{\sigma}_j)}{j}, \qquad \overline{s}(\sigma) = \lim_{j} \frac{\log_2(\overline{\sigma}_j)}{j},$$

Or

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant C such that

$$C^{-1}\sigma_j \le \sigma_{j+1} \le C\sigma_j,$$
for any $j \in \mathbb{N}$.
One sets
$$\underline{s}(\sigma) = \lim_j \frac{\log_2(\underline{\sigma}_j)}{i}, \qquad \overline{s}(\sigma) = \lim_j \frac{\log_2(\overline{\sigma}_j)}{i}$$

so that for any $\varepsilon > 0$, there exists C > 0 s.t. for all j, k

$$C^{-1}2^{j(\underline{s}(\sigma)-\varepsilon)} \le \frac{\sigma_{j+k}}{\sigma_k} \le C2^{j(\overline{s}(\sigma)+\varepsilon)}.$$

Example

If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Example

If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Definition

A strictly positive function ψ is a *slowly varying function* if

$$\lim_{t \to 0} \frac{\psi(rt)}{\psi(t)} = 1,$$

for any r > 0.

Example

If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Definition

A strictly positive function ψ is a *slowly varying function* if

$$\lim_{t \to 0} \frac{\psi(rt)}{\psi(t)} = 1,$$

for any r > 0.

Example

If ψ is a slowly varying function and $u \in \mathbb{R}$, the sequence $\sigma = (2^{ju}\psi(2^j))_j$ is admissible with $\underline{s}(\sigma) = \overline{s}(\sigma) = u$.

Let γ be an admissible sequence such that $\underline{\gamma}_1>1$

Let γ be an admissible sequence such that $\underline{\gamma}_1 > 1$, there exists $k_0 \in \mathbb{N}$ such that

$$2\gamma_j \leq \gamma_k \ \forall j, k \in \mathbb{N} \text{ s.t. } j + k_0 \leq k$$

Let γ be an admissible sequence such that $\underline{\gamma}_1 > 1$, there exists $k_0 \in \mathbb{N}$ such that

$$2\gamma_j \leq \gamma_k \ \forall j, k \in \mathbb{N} \text{ s.t. } j + k_0 \leq k$$

$$B_{p,q}^{\boldsymbol{\sigma},\boldsymbol{\gamma}} = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \left(\boldsymbol{\sigma}_j \| \mathcal{F}^{-1}(\boldsymbol{\varphi}_j^{\boldsymbol{\gamma},J} \mathcal{F}f) \|_{L^p(\mathbb{R}^d)} \right)_j \in \ell^q \right\}$$

Let γ be an admissible sequence such that $\underline{\gamma}_1>1$, there exists $k_0\in\mathbb{N}$ such that

$$2\gamma_j \leq \gamma_k \ \forall j, k \in \mathbb{N} \text{ s.t. } j + k_0 \leq k$$

$$B_{p,q}^{\boldsymbol{\sigma},\boldsymbol{\gamma}} = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \left(\boldsymbol{\sigma}_j \| \mathcal{F}^{-1}(\boldsymbol{\varphi}_j^{\boldsymbol{\gamma},J} \mathcal{F}f) \|_{L^p(\mathbb{R}^d)} \right)_j \in \ell^q \right\}$$

- $\operatorname{supp}(\varphi_j^{\gamma,J}) \subseteq \{\xi \in \mathbb{R}^d : |\xi| \le \gamma_{j+Jk_0}\} \ \forall j \in \{0,\ldots,Jk_0-1\},\$
- $\operatorname{supp}(\varphi_j^{\gamma,J}) \subseteq \{\xi \in \mathbb{R}^d : \gamma_{j-Jk_0} \le |\xi| \le \gamma_{j+Jk_0}\} \ \forall j \ge Jk_0,$

Moura, 2007

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and $0 < \underline{s}(\sigma)\overline{s}(\gamma)^{-1}$. For any $n \in \mathbb{N}$ such that $\overline{s}(\sigma)\underline{s}(\gamma)^{-1} < n$, we have

$$B_{p,q}^{\sigma,\gamma} = \{ f \in L^p : (\sigma_j \sup_{|h| \le \gamma_j^{-1}} \|\Delta_h^n f\|_{L^p})_j \in \ell^q \}.$$

Generalized Besov spaces and convolution

Characterization of Generalized Besov spaces in terms of convolution L.L. & S. Nicolay (2019) Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and $\underline{s}(\sigma) > 0$; we have

 $B_{p,q}^{\sigma,\boldsymbol{\gamma}} = \{ f \in L^p : \exists \phi \in \mathcal{D} \text{ such that } (\sigma_j \| f * \phi_{\gamma_i^{-1}} - f \|_{L^p})_j \in \ell^q \}.$

Generalized Besov spaces and derivatives

Characterization of Generalized Besov spaces in terms of derivatives L.L. & S. Nicolay (2019) Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\underline{\gamma}_1 > 1$. Let the numbers $k, n \in \mathbb{N}_0$ be such that

$$k < \underline{s}(\boldsymbol{\sigma})\overline{s}(\boldsymbol{\gamma})^{-1} \le \overline{s}(\boldsymbol{\sigma})\underline{s}(\boldsymbol{\gamma})^{-1} < n.$$

We have

$$B_{p,q}^{\sigma,\gamma} = \{ f \in W_p^k : (\gamma_j^{-|\alpha|} \sigma_j \sup_{|h| \le \gamma_j^{-1}} \|\Delta_h^{n-|\alpha|} D^{\alpha} f\|_{L^p})_j \in \ell^q \quad \forall |\alpha| = k \}.$$

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of polynomials L.L. & S. Nicolay (2019) Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\gamma_1 > 1$. Let $n \in \mathbb{N}$ be such that $n < \underline{s}(\sigma)\overline{s}(\gamma)^{-1} \le \overline{s}(\sigma)\underline{s}(\gamma)^{-1} < n + 1$; the following assertions are equivalent: 1. The function f belongs to $B_{n,q}^{\sigma,\gamma}$;

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of polynomials L.L. & S. Nicolay (2019)

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\underline{\gamma}_1 > 1$. Let $n \in \mathbb{N}$ be such that $n < \underline{s}(\sigma)\overline{s}(\gamma)^{-1} \le \overline{s}(\sigma)\underline{s}(\gamma)^{-1} < n + 1$; the following assertions are equivalent:

2. The function f belongs to W_p^n and, for all $h \in \mathbb{R}^d$ and almost every $x \in \mathbb{R}^d$, we have

$$f(x+h) = \sum_{|\alpha| \le n} D^{\alpha} f(x) \frac{h^{\alpha}}{|\alpha|!} + R_n(x,h) \frac{|h|^n}{n!},$$

where

$$(\sigma_j \gamma_j^{-n} \sup_{|h| \le \gamma_j^{-1}} \|R_n(\cdot, h)\|_{L^p})_j \in \ell^q;$$

Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of polynomials L.L. & S. Nicolay (2019)

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ and $\gamma = (\gamma_j)_j$ be two admissible sequences such that $\gamma_1 > 1$. Let $n \in \mathbb{N}$ be such that $n < \underline{s}(\sigma)\overline{s}(\gamma)^{-1} \le \overline{s}(\sigma)\underline{s}(\gamma)^{-1} < n + 1$; the following assertions are equivalent:

3. If, given $j \in \mathbb{N}_0$, π_j is a net of \mathbb{R}^d made of cubes of diagonal γ_j^{-1} , then for all $j \in \mathbb{N}_0$, there exists g_{π_j} such that

• the trace of g_{π_j} in each cube of π_j is a polynomial of degree at most n,

• one has
$$(\sigma_j \| f - g_{\pi_j} \|_{L^p})_j \in \ell^q$$
.

😻 fnrs

Let A_0 , A_1 be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_0 \cap A_1$ and $A_0 + A_1$ are also normed vector spaces.

Let A_0, A_1 be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_0 \cap A_1$ and $A_0 + A_1$ are also normed vector spaces. We say that $a \in [A_0, A_1]_{\alpha, q}$ ($0 < \alpha < 1$ and $1 \le q \le \infty$) if

• $\exists (u_j)_{j \in \mathbb{Z}} \subset A_0 \cap A_1$ such that

$$a = \sum_{j \in \mathbb{Z}} u_j$$
 with convergence in A_0 + A_1

and

$$(2^{-\alpha j} \max\{\|u_j\|_{A_0}, 2^j \|u_j\|_{A_1}\})_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z})$$

Let A_0 , A_1 be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_0 \cap A_1$ and $A_0 + A_1$ are also normed vector spaces. We say that $a \in [A_0, A_1]_{\alpha, q}$ ($0 < \alpha < 1$ and $1 \le q \le \infty$) if

• $\exists (u_j)_{j \in \mathbb{Z}} \subset A_0 \cap A_1$ such that

$$a = \sum_{j \in \mathbb{Z}} u_j$$
 with convergence in A_0 + A_1

and

$$(2^{-\alpha j} \max\{\|u_j\|_{A_0}, 2^j \|u_j\|_{A_1}\})_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$$

OR

• $\forall j \in \mathbb{Z}$, there exist $a_{0,j} \in A_0$ and $a_{1,j} \in A_1$ such that $a = a_{0,j} + a_{1,j}$ and $(2^{-\alpha j}(||a_{0,j}||_{A_0} + 2^j ||a_{1,j}||_{A_1}))_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$

Let A_0 , A_1 be two normed vector spaces which are continuously embedded in a Hausdorff topological vector space V. As a consequence, the spaces $A_0 \cap A_1$ and $A_0 + A_1$ are also normed vector spaces. We say that $a \in [A_0, A_1]_{\alpha, q}$ ($0 < \alpha < 1$ and $1 \le q \le \infty$) if

• $\exists (u_j)_{j \in \mathbb{Z}} \subset A_0 \cap A_1$ such that

$$a = \sum_{j \in \mathbb{Z}} u_j$$
 with convergence in A_0 + A_1

and

$$(2^{-\alpha_j} \max\{\|u_j\|_{A_0}, 2^j\|u_j\|_{A_1}\})_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$$

OR

• $\forall j \in \mathbb{Z}$, there exist $a_{0,j} \in A_0$ and $a_{1,j} \in A_1$ such that $a = a_{0,j} + a_{1,j}$ and $(2^{-\alpha j}(||a_{0,j}||_{A_0} + 2^j ||a_{1,j}||_{A_1}))_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$

Let $r,s\in\mathbb{R}$ and σ,γ be two admissible sequences such that $\gamma_{_1}>1$ and

 $r < \min\{\underline{s}(\sigma)\underline{s}(\gamma)^{-1}, \underline{s}(\sigma)\overline{s}(\gamma)^{-1}\} \le \max\{\overline{s}(\sigma)\underline{s}(\gamma)^{-1}, \overline{s}(\sigma)\overline{s}(\gamma)^{-1}\} < s.$

Let $r,s\in\mathbb{R}$ and σ,γ be two admissible sequences such that $\gamma_{_1}>1$ and

 $r < \min\{\underline{s}(\sigma)\underline{s}(\gamma)^{-1}, \underline{s}(\sigma)\overline{s}(\gamma)^{-1}\} \le \max\{\overline{s}(\sigma)\underline{s}(\gamma)^{-1}, \overline{s}(\sigma)\overline{s}(\gamma)^{-1}\} < s.$

$$\theta_j := \begin{cases} \gamma_{-j}^{-r} \sigma_{-j} & \text{if } -j \in \mathbb{N}_0 \\ \gamma_j^r \sigma_j^{-1} & \text{if } j \in \mathbb{N} \end{cases} \qquad \qquad \psi_j := \begin{cases} \gamma_{-j}^{-(s-r)} & \text{if } -j \in \mathbb{N}_0 \\ \gamma_j^{(s-r)} & \text{if } j \in \mathbb{N} \end{cases}$$

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and $r < \min\{s(\sigma)s(\gamma)^{-1}, s(\sigma)\overline{s}(\gamma)^{-1}\} \le \max\{\overline{s}(\sigma)s(\gamma)^{-1}, \overline{s}(\sigma)\overline{s}(\gamma)^{-1}\} < s.$

• $a \in [A_0, A_1]_{J,q}^{\theta, \psi}$ if there exists $(u_j)_{j \in \mathbb{Z}} \subset A_0 \cap A_1$ such that $a = \sum_{j \in \mathbb{Z}} u_j$, with convergence in $A_0 + A_1$ and

 $(\boldsymbol{\theta}_j \max\{\|\boldsymbol{u}_j\|_{A_0}, \boldsymbol{\psi}_j\|\boldsymbol{u}_j\|_{A_1}\})_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$

• $a \in [A_0, A_1]_{K,q}^{\theta, \psi}$ if $\forall j \in \mathbb{Z}$, there exist $a_{0,j} \in A_0$ and $a_{1,j} \in A_1$ such that $a = a_{0,j} + a_{1,j}$ and

 $(\theta_{j}(\|a_{0,j}\|_{A_{0}} + \psi_{j}\|a_{1,j}\|_{A_{1}}))_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}).$

Let $r, s \in \mathbb{R}$ and σ, γ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and $r < \min\{s(\sigma)s(\gamma)^{-1}, s(\sigma)\overline{s}(\gamma)^{-1}\} \le \max\{\overline{s}(\sigma)s(\gamma)^{-1}, \overline{s}(\sigma)\overline{s}(\gamma)^{-1}\} < s.$

• $a \in [A_0, A_1]_{J,q}^{\theta, \psi}$ if there exists $(u_j)_{j \in \mathbb{Z}} \subset A_0 \cap A_1$ such that $a = \sum_{j \in \mathbb{Z}} u_j$, with convergence in $A_0 + A_1$ and

 $(\boldsymbol{\theta}_j \max\{\|\boldsymbol{u}_j\|_{A_0}, \boldsymbol{\psi}_j\|\boldsymbol{u}_j\|_{A_1}\})_{j \in \mathbb{Z}} \in \ell^q(\mathbb{Z}).$

• $a \in [A_0, A_1]_{K,q}^{\theta, \psi}$ if $\forall j \in \mathbb{Z}$, there exist $a_{0,j} \in A_0$ and $a_{1,j} \in A_1$ such that $a = a_{0,j} + a_{1,j}$ and

 $(\theta_{j}(\|a_{0,j}\|_{A_{0}} + \psi_{j}\|a_{1,j}\|_{A_{1}}))_{j \in \mathbb{Z}} \in \ell^{q}(\mathbb{Z}).$

L.L. & S. Nicolay (2019)

$$[A_0, A_1]_{J,q}^{\theta, \psi} = [A_0, A_1]_{K,q}^{\theta, \psi} =: [A_0, A_1]_q^{\sigma, \gamma}$$

Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized interpolation L.L. & S. Nicolay (2019) Let $p, q \in [1, \infty], r, s \in \mathbb{R}$, and σ, γ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and

 $r < \min\{\underline{s}(\boldsymbol{\sigma})\underline{s}(\boldsymbol{\gamma})^{-1}, \underline{s}(\boldsymbol{\sigma})\overline{s}(\boldsymbol{\gamma})^{-1}\} \le \max\{\overline{s}(\boldsymbol{\sigma})\underline{s}(\boldsymbol{\gamma})^{-1}, \overline{s}(\boldsymbol{\sigma})\overline{s}(\boldsymbol{\gamma})^{-1}\} < s;$

we have

$$B_{p,q}^{\boldsymbol{\sigma},\boldsymbol{\gamma}} = [H_p^r, H_p^s]_q^{\boldsymbol{\sigma},\boldsymbol{\gamma}}.$$

Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized interpolation L.L. & S. Nicolay (2019) Let $p, q \in [1, \infty], r, s \in \mathbb{R}$, and σ, γ be two admissible sequences such that $\underline{\gamma}_1 > 1$ and $k < s(\sigma)\overline{s}(\gamma)^{-1} < \overline{s}(\sigma)s(\gamma)^{-1} < n$,

we have

$$B_{p,q}^{\boldsymbol{\sigma},\boldsymbol{\gamma}} = [W_p^k, W_p^n]_q^{\boldsymbol{\sigma},\boldsymbol{\gamma}}.$$

Pointwise spaces of generalized smoothness

The space $T_{p,q}^{\sigma}(x_0)$

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ be an admissible sequence such that $\underline{s}(\sigma) > -\frac{d}{p}$, $f \in L^p_{\text{loc}}$ and $x_0 \in \mathbb{R}^d$; f belongs to $T^{\sigma}_{p,q}(x_0)$ whenever

$$(\sigma_j 2^{jd/p} \sup_{|h| \le 2^{-j}} \|\Delta_h^{\lfloor \overline{s}(\sigma) \rfloor + 1} f\|_{L^p(B_h(x_0, 2^{-j}))})_j \in \ell^q,$$

where, given r > 0, if $\overline{s}(\sigma) > 0$, we have

 $B_h(x_0, r) = \{x : [x, x + (\lfloor \overline{s}(\boldsymbol{\sigma}) \rfloor + 1)h] \subset B(x_0, r)\},\$

and $B_h(x_0, r) = B(x_0, r)$ otherwise.

The space $T_{p,q}^{\sigma}(x_0)$

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ be an admissible sequence such that $\underline{s}(\sigma) > 0$, $f \in L^p_{loc}$ and $x_0 \in \mathbb{R}^d$; f belongs to $T^{\sigma}_{p,q}(x_0)$ whenever there exists a sequence of polynomials $(P_{j,x_0})_j$ of degree less than or equal to $\lfloor \overline{s}(\sigma) \rfloor$ such that

$$(\sigma_j 2^{jd/p} \| f - P_{j,x_0} \|_{L^p(B(x_0, 2^{-j}))})_j \in \ell^q.$$

The space $T_{p,q}^{\sigma}(x_0)$

Let $p, q \in [1, \infty]$, $\sigma = (\sigma_j)_j$ be an admissible sequence such that $\underline{s}(\sigma) > 0$, $f \in L^p_{loc}$ and $x_0 \in \mathbb{R}^d$; f belongs to $T^{\sigma}_{p,q}(x_0)$ whenever there exists a sequence of polynomials $(P_{j,x_0})_j$ of degree less than or equal to $\lfloor \overline{s}(\sigma) \rfloor$ such that

$$(\sigma_j 2^{jd/p} \| f - P_{j,x_0} \|_{L^p(B(x_0, 2^{-j}))})_j \in \ell^q.$$

L.L. & S. Nicolay (2020)

Moreover, if $0 \le n := \lfloor \overline{s}(\sigma) \rfloor < \underline{s}(\sigma)$, there exists a unique polynomial P_{x_0} of degree less than or equal to n such that

$$(\sigma_j 2^{jd/p} \| f - P_{x_0} \|_{L^p(B(x_0, 2^{-j}))})_j \in \ell^q.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} \left(\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p} \right)^{1/p}.$$

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

Given a dyadic cube $\lambda \in \Lambda_j$ at scale j, the p-wavelet leader of λ ($p \in [1, \infty]$) is defined by _____

$$d_{\lambda}^{p} = \sup_{j' \ge j} (\sum_{\lambda' \in \Lambda_{j'}, \lambda' \subset \lambda} (2^{(j-j')d/p} |c_{\lambda'}|)^{p})^{1/p}.$$

Given $x_0 \in \mathbb{R}^d$, we set

$$d_j^p(x_0) = \sup_{\lambda \in 3\lambda_j(x_0)} d_\lambda^p.$$

L.L. & S. Nicolay (2020)

If f belongs to the space $T^{\sigma}_{p,q}(x_0)$, then

 $(\sigma_j d_j^p(x_0))_j \in \ell^q.$

Conversely, if $2^{-jd/p}\sigma_j^{-1}$ tends to 0 as j tends to ∞ and $\underline{\sigma}_1 > 2^{-d/p}$, if f belongs to $B_{p,q}^s(\mathbb{R}^d)$ for some s > 0, then $(\sigma_j d_j^p(x_0))_j \in \ell^q$ implies $f \in T_{p,q,\log}^{\sigma}(x_0)$.

18/33
😻 fnrs

Let $p, q \in [1, \infty]$, $x_0 \in \mathbb{R}^d$ and f be a function from L^p_{loc} ; if σ is an admissible sequence such that $2^{-jd/p}\sigma_j^{-1}$ tends to 0 as j tends to ∞ , we say that f belongs to $T^{\sigma}_{p,q,\log}(x_0)$ if there exists $J \in \mathbb{N}$ for which

$$(\frac{2^{jd/p}\sigma_j}{|\log_2(2^{-jd/p}\sigma_j^{-1})|}\sup_{|h|\leq 2^{-j}}\|\Delta_h^{\lfloor\overline{s}(\sigma)\rfloor+1}f\|_{L^p(B_h(x_0,2^{-j}))})_{j\geq J}\in\ell^q.$$

f belongs to $T_{p,q,\log}^{\sigma}(x_0)$ if there exists $J \in \mathbb{N}$ for which $\left(\frac{2^{jd/p}\sigma_j}{|\log_2(2^{-jd/p}\sigma_j^{-1})|} \sup_{|h| \le 2^{-j}} \|\Delta_h^{\lfloor \overline{s}(\sigma) \rfloor + 1} f\|_{L^p(B_h(x_0, 2^{-j}))}\right)_{j \ge J} \in \ell^q.$

$$E_{\infty}^{\varepsilon}(x_0) = \{ f \in B_{\infty,\infty}^{\varepsilon}(\mathbb{R}^d) : (\sigma_j d_j^{\infty}(x_0))_j \in \ell^{\infty} \},\$$

equipped with the norm

 $\|\cdot\|_{E^{\varepsilon}_{\infty}(x_0)} : E^{\varepsilon}_{\infty}(x_0) \to [0, +\infty) : f \mapsto \|f\|_{B^{\varepsilon}_{\infty,\infty}} + \|(\sigma_j d^{\infty}_j(x_0))_j\|_{\ell^{\infty}}.$

$$f$$
 belongs to $T_{p,q,\log}^{\sigma}(x_0)$ if there exists $J \in \mathbb{N}$ for which
 $(\frac{2^{jd/p}\sigma_j}{|\log_2(2^{-jd/p}\sigma_j^{-1})|} \sup_{|h| \le 2^{-j}} \|\Delta_h^{\lfloor \overline{s}(\sigma) \rfloor + 1} f\|_{L^p(B_h(x_0, 2^{-j}))})_{j \ge J} \in \ell^q.$

$$E_{\infty}^{\varepsilon}(x_0) = \{ f \in B_{\infty,\infty}^{\varepsilon}(\mathbb{R}^d) : (\sigma_j d_j^{\infty}(x_0))_j \in \ell^{\infty} \},\$$

equipped with the norm

$$\|\cdot\|_{E^{\varepsilon}_{\infty}(x_{0})} : E^{\varepsilon}_{\infty}(x_{0}) \to [0, +\infty) : f \mapsto \|f\|_{B^{\varepsilon}_{\infty,\infty}} + \|(\sigma_{j} d^{\infty}_{j}(x_{0}))_{j}\|_{\ell^{\infty}}.$$

L.L. & S. Nicolay (2020)

If $x_0 \in \mathbb{R}^d$, for all $0 < \varepsilon < \frac{\underline{s}(\sigma)}{4}$, from the the prevalence point of view, almost every function of $E_{\infty}^{\varepsilon}(x_0)$ belongs to $T_{\infty,\log}^{\sigma}(x_0) \setminus T_{/s\log}^{\sigma,\infty}(x_0)$.

f belongs to
$$T_{p,q,\log}^{\sigma}(x_0)$$
 if there exists $J \in \mathbb{N}$ for which

$$\left(\frac{2^{jd/p}\sigma_j}{|\log_2(2^{-jd/p}\sigma_j^{-1})|} \sup_{|h| \le 2^{-j}} \|\Delta_h^{\lfloor \overline{s}(\sigma) \rfloor + 1} f\|_{L^p(B_h(x_0, 2^{-j}))}\right)_{j \ge J} \in \ell^q.$$

$$E_1^{\mathcal{E}}(x_0) = \{ f \in B_{1,\infty}^{\mathcal{E}}(\mathbb{R}^d) : (\sigma_j d_j^1(x_0))_j \in \ell^{\infty} \},\$$

equipped with the norm

$$\|\cdot\|_{E_1^{\varepsilon}(x_0)} : E_1^{\varepsilon}(x_0) \to [0, +\infty) : f \mapsto \|f\|_{B_{1,\infty}^{\varepsilon}} + \|(\sigma_j d_j^1(x_0))_j\|_{\ell^{\infty}}.$$

L.L. & S. Nicolay (2020) If $x_0 \in \mathbb{R}^d$, for all $0 < \varepsilon < \frac{s(\sigma)+d}{4}$, from the the prevalence point of view, almost every function of $E_1^{\varepsilon}(x_0)$ belongs to $T_{1,\log}^{\sigma}(x_0) \setminus T_{\ell,\log}^{\sigma,1}(x_0)$.

Decreasing family of admissible sequences

Let $p, q \in [1, \infty]$; if, given h > -d/p, $\gamma^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \gamma^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}(\gamma^{(h)}) > -d/p$, $\underline{\gamma}_1^{(h)} > 2^{-d/p}$ for any h > -d/p and if -d/p < h < h' implies

$$T_{p,q}^{\gamma^{(h')}}(x_0) \subset T_{p,q}^{\gamma^{(h)}}(x_0)$$

Decreasing family of admissible sequences and associated exponent Let $p, q \in [1, \infty]$; if, given h > -d/p, $\gamma^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \gamma^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}(\gamma^{(h)}) > -d/p$, $\gamma_1^{(h)} > 2^{-d/p}$ for any h > -d/p and if -d/p < h < h' implies

$$T_{p,q}^{\gamma^{(h')}}(x_0) \subset T_{p,q}^{\gamma^{(h)}}(x_0)$$

$$h_{p,q}(x_0) := \sup\{h > -d/p : f \in T_{p,q}^{\gamma^{(h)}}(x_0)\}.$$

Decreasing family of admissible sequences and associated exponent and spectrum

Let $p, q \in [1, \infty]$; if, given h > -d/p, $\gamma^{(h)}$ is an admissible sequence, the family of admissible sequences $h \mapsto \gamma^{(h)}$ is (p, q)-decreasing if it satisfies $\underline{s}(\gamma^{(h)}) > -d/p$, $\gamma_1^{(h)} > 2^{-d/p}$ for any h > -d/p and if -d/p < h < h' implies

$$T_{p,q}^{\boldsymbol{\gamma}^{(h')}}(x_0) \subset T_{p,q}^{\boldsymbol{\gamma}^{(h)}}(x_0)$$

$$h_{p,q}(x_0) := \sup\{h > -d/p : f \in T_{p,q}^{\gamma^{(h)}}(x_0)\}.$$

$$D_{p,q}(h) := \dim_{\mathcal{H}}(\{x_0 \in \mathbb{R}^d : h_{p,q}(x_0) = h\})$$

Decreasing family of admissible sequences and associated spectrum If $(\gamma^{(h)})_h$ is a (p, q)-decreasing family of admissible sequences

 $D_{p,q}(h) := \dim_{\mathcal{H}}(\{x_0 \in \mathbb{R}^d : h_{p,q}(x_0) = h\}).$

L.L. & S. Nicolay (2020)

It σ is an admissible sequence such that $\underline{s}(\sigma) - \frac{d}{r} > -\frac{d}{p}$ and if $s \le q$ then, for all $f \in B_{r,s}^{\sigma}$, we have

$$\dim_{\mathcal{H}}(\{x_0 \in \mathbb{R}^d : h_{p,q}(x_0) < h\}) \le d + r\overline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}).$$

Compatibility conditions

An admissible sequence σ and a family of admissible sequences $\gamma^{(\cdot)}$ are compatible for $p, q, r, s \in [1, \infty]$ with $s \leq q$ if

- $\underline{s}(\boldsymbol{\sigma}) > 0$,
- $\underline{s}(\boldsymbol{\sigma}) d/r > -d/p$,
- the function ζ defined on $(-d/p,\infty)$ by

$$\zeta(h) := \underline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}) = \overline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}})$$

is non decreasing, continuous and such that

$$\{h>-d/p:\zeta(h)<-d/r\}\neq \emptyset.$$

We call ζ the ratio function and set $h_{\min}(r) := \sup\{h > -d/p : \zeta(h) < -d/r\}$.

$$\zeta(h) := \underline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}) = \overline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}})$$

$$\zeta(h) := \underline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}}) = \overline{s}(\frac{\boldsymbol{\gamma}^{(h)}}{\boldsymbol{\sigma}})$$

L.L. & S. Nicolay (2020)

Let $p, q, r, s \in [1, \infty]$ with $s \leq q$, σ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ . From the prevalence point of view, for almost every $f \in B_{r,s}^{\sigma}$, $D_{p,q}$ is defined on $I = [\zeta^{-1}(-d/r), \zeta^{-1}(0)]$ and

$$D_{p,q}(h) = d + r\zeta(h),$$

for any $h \in I$. Moreover, for almost every $x_0 \in \mathbb{R}^d$, we have $h_{p,q}(x_0) = \zeta^{-1}(0)$.

L.L. & S. Nicolay (2020)

Let $p, q, r, s \in [1, \infty]$ with $s \leq q$, σ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ . From the prevalence point of view, for almost every $f \in B_{r,s}^{\sigma}$, $D_{p,q}$ is defined on $I = [\zeta^{-1}(-d/r), \zeta^{-1}(0)]$ and

 $D_{p,q}(h) = d + r\zeta(h),$

for any $h \in I$. Moreover, for almost every $x_0 \in \mathbb{R}^d$, we have $h_{p,q}(x_0) = \zeta^{-1}(0)$.

If $p = q = \infty$, $(\gamma^{(h)})_{h>0}$ is the usual family $(2^{jh})_{h>0}$ and $\sigma = (2^{sj})_j$

$$\zeta(h) = \underline{s}((2^{(h-s)j})_j) = h - s$$

L.L. & S. Nicolay (2020)

Let $p, q, r, s \in [1, \infty]$ with $s \leq q$, σ be an admissible sequence and $\gamma^{(\cdot)}$ be a family of admissible sequences compatible with σ . From the prevalence point of view, for almost every $f \in B_{r,s}^{\sigma}$, $D_{p,q}$ is defined on $I = [\zeta^{-1}(-d/r), \zeta^{-1}(0)]$ and

 $D_{p,q}(h) = d + r\zeta(h),$

for any $h \in I$. Moreover, for almost every $x_0 \in \mathbb{R}^d$, we have $h_{p,q}(x_0) = \zeta^{-1}(0)$.

If $p = q = \infty$, $(\boldsymbol{\gamma}^{(h)})_{h>0}$ is the usual family $(2^{jh})_{h>0}$ and $\sigma = (2^{sj})_j$

$$\forall h \in [s - \frac{d}{r}, s] : D(h) = d + r(h - s)$$

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > -d/p$. A function $f \in L^p(\mathbb{R}^d)$ belongs to the space $T^p_{\phi}(x_0)$ if there exist a polynomial *P* of degree strictly less than $\underline{b}(\phi)$ and a constant C > 0 such that

 $r^{-d/p} ||f - P||_{L^p(B(x_0, r))} \le C\phi(r) \quad \forall r > 0.$

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > -d/p$. A function $f \in L^p(\mathbb{R}^d)$ belongs to the space $T^p_{\phi}(x_0)$ if there exist a polynomial *P* of degree strictly less than $\underline{b}(\phi)$ and a constant C > 0 such that

 $r^{-d/p} \|f - P\|_{L^p(B(x_0,r))} \le C\phi(r) \qquad \forall r > 0.$ A function $\phi : (0, +\infty) \to (0, +\infty)$ is a *Boyd function* if $\phi(1) = 1, \phi$ is continuous and, for all $x \in (0, +\infty)$,

$$\overline{\phi}(x) := \sup_{y>0} \frac{\phi(xy)}{\phi(y)} < \infty$$

(1)

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > -d/p$. A function $f \in L^p(\mathbb{R}^d)$ belongs to the space $T^p_{\phi}(x_0)$ if there exist a polynomial *P* of degree strictly less than $\underline{b}(\phi)$ and a constant C > 0 such that

 $r^{-d/p} \|f - P\|_{L^p(B(x_0,r))} \le C\phi(r) \qquad \forall r > 0.$

A sequence $\sigma = (\sigma_j)_j$ of real positive numbers is admissible if and only if there exists a Boyd function ϕ such that, for any j, $\phi(2^j) = \sigma_j$.

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > -d/p$. A function $f \in L^p(\mathbb{R}^d)$ belongs to the space $T^p_{\phi}(x_0)$ if there exist a polynomial *P* of degree strictly less than $\underline{b}(\phi)$ and a constant C > 0 such that

$$r^{-d/p} ||f - P||_{L^p(B(x_0, r))} \le C\phi(r) \qquad \forall r > 0.$$

Uniqueness of the polynomial

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$ and $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > -d/p$. A function $f \in L^p(\mathbb{R}^d)$ belongs to the space $T^p_{\phi}(x_0)$ if there exist a polynomial P of degree strictly less than $\underline{b}(\phi)$ and a constant C > 0 such that

$$r^{-d/p} ||f - P||_{L^p(B(x_0, r))} \le C\phi(r) \qquad \forall r > 0.$$

Uniqueness of the polynomial

Equipped with this norm, $T^p_{\phi}(x_0)$ is a Banach space

$$\|f\|_{T^p_{\phi}(x_0)} := \|f\|_{L^p(\mathbb{R}^d)} + \sum_{|\alpha| < \underline{b}(\phi)} \frac{|D^{\alpha}P(x_0)|}{\alpha!} + \sup_{r > 0} \phi(r)^{-1} r^{-d/p} \|f - P\|_{L^p(B(x_0, r))}.$$

Elliptic partial differential equations

An *elliptic partial differential equation at* $x_0 \in \mathbb{R}^d$ *of order* $m \in \mathbb{N}$ is a partial differentiable equation of the form

$$\mathcal{E}f = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha} f = g$$

where for all $|\alpha| \le m$, a_{α} is an $s \times r$ matrix of functions, f and g are vector valued functions with $f_j \in W_m^p(\mathbb{R}^d)$ for all $j \in \{1, ..., r\}$ and

$$\mu(x_0) := \inf_{|\xi|=1} \det \left[\left(\sum_{|\alpha|=m} a_{\alpha}^*(x_0) \xi^{\alpha} \right) \left(\sum_{|\alpha|=m} a_{\alpha}(x_0) \xi^{\alpha} \right) \right] > 0$$

is the ellipticity constant of \mathcal{E} at x_0 .

and

$$\mathcal{J}^{s} f := \mathcal{F}^{-1} \big((1+|\cdot|^2)^{-s/2} \mathcal{F} f \big) \qquad (s \in \mathbb{R}, \ f \in \mathcal{S}')$$
$$\mathcal{K} f = p.v. \int k(\cdot - y) f(y) \ dy.$$

and

$$\mathcal{J}^{s}f := \mathcal{F}^{-1}((1+|\cdot|^{2})^{-s/2}\mathcal{F}f) \qquad (s \in \mathbb{R}, \ f \in \mathcal{S}')$$
$$\mathcal{K}f = p.v. \int k(\cdot - y)f(y) \ dy.$$

$$\begin{array}{ccc} T^p_{\phi}(x_0) & \xrightarrow{\mathcal{J}^s} & T^q_{\phi_s}(x_0) \\ & \underset{\mathcal{K}}{\overset{\bigcirc}{\mathcal{K}}} \end{array}$$

and

$$\mathcal{K}f = p.v. \int k(\cdot - y)f(y) \, dy.$$

If $\overline{b}(\phi) + s < 0$ or $\exists n \in \mathbb{N}$ s.t. $n < \underline{b}(\phi) + s \le \overline{b}(\phi) + s < n + 1$ and $p \in (1, \infty]$.

$$\begin{array}{ccc} T^p_{\phi}(x_0) & \xrightarrow{\mathcal{J}^s} & T^q_{\phi_s}(x_0) \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

where $\phi_s: (0, +\infty) \to (0, +\infty)$ $x \mapsto \phi(x)x^s$ and

• $1/p \ge 1/q \ge \frac{1}{p} - \frac{s}{d}$ if p < d/s,

•
$$p \le q \le \infty$$
 if d/s

• $p \le q < \infty$ if d/s = p

24/33

$$\mathcal{J}^{s} f := \mathcal{F}^{-1} \big((1 + |\cdot|^2)^{-s/2} \mathcal{F} f \big) \qquad (s \in \mathbb{R}, \ f \in \mathcal{S}')$$

and

$$\mathcal{K}f = p.v. \int k(\cdot - y)f(y) \, dy.$$

If $k \in C^{\infty}(\mathbb{R}^d \setminus \{0\})$ is homogeneous of degree -d with mean value zero on the sphere Σ , $\overline{b}(\phi) < 0$ or $\exists n \in \mathbb{N}$ s.t. $n < \underline{b}(\phi) \leq \overline{b}(\phi) < n + 1$ and $p \in (1, \infty)$

$$\begin{array}{ccc} T^p_{\phi}(x_0) & \xrightarrow{\mathcal{J}^s} & T^q_{\phi_s}(x_0) \\ & \underset{\mathcal{K}}{\bigcirc} \end{array}$$

with

$$\|\mathcal{K}f\|_{T^{p}_{\phi}(x_{0})} \leq C_{\phi,p} \Big(\sup_{|x|=1 \atop 0 \leq |\alpha| \leq \lceil \overline{b}(\phi) \rceil_{\mathbb{N}}} |D^{\alpha}k(x)| \Big) \|f\|_{T^{p}_{\phi}(x_{0})},$$

Our variant

• Considering generalized pointwise regularity.

Our variant

- Considering generalized pointwise regularity.
- Assuming L^q conditions for the coefficients of the equation instead of L^{∞} .

Our variant

- Considering generalized pointwise regularity.
- Assuming L^q conditions for the coefficients of the equation instead of L^{∞} .

Our variant

- Considering generalized pointwise regularity.
- Assuming L^q conditions for the coefficients of the equation instead of L^{∞} .

Let, $p \in (1, \infty)$, $\phi, \varphi \in \mathcal{B}$ be such that $0 < \underline{b}(\phi)$, $-d/p < \underline{b}(\varphi)$ and such that there exists $n \in \mathbb{Z}$ such that $n < \underline{b}(\varphi) \le \overline{b}(\varphi) < n + 1$; let us define k_p as follows:

- if $\underline{b}(\varphi) = \overline{b}(\varphi)$, $k_p(\phi, \varphi) := \min\{k \in \mathbb{N} : \frac{1}{k}(\underline{b}(\varphi) + \frac{d}{p}) < \min\{1, \underline{b}(\phi)\}\},\$
- if $n < \underline{b}(\varphi) < \overline{b}(\varphi) < n + 1$,

$$k_p(\phi,\varphi) := k_p(\phi, \cdot \underline{b}(\varphi)) + \min\{k \in \mathbb{N} : \frac{\overline{b}(\varphi) - \underline{b}(\varphi)}{k} < \min\{1, \underline{b}(\phi)\}\}.$$

Calderón & Zygmund (1960)

Let $p \in]1, \infty[, x_0 \in \mathbb{R}^d, u > 0$ and v be a non integer such that $-\frac{d}{p} \le v \le u$. Let $\mathcal{E}f = g$ be an elliptic differentiable equation of order m at x_0 such that $f \in W^p_m(\mathbb{R}^d)$, the coefficients of \mathcal{E} are functions in $T^{\infty}_u(x_0)$ and $g \in T^p_v(x_0)$. Then, for all $|\alpha| \le m$, $D^{\alpha}f \in T^q_{v+m-|\alpha|}(x_0)$ with

$$\|D^{\alpha}f\|_{T^{q}_{v+m-|\alpha|}(x_{0})} \leq C\left(||g||_{T^{p}_{v}(x_{0})} + ||f||_{W^{p}_{m}(\mathbb{R}^{d})}\right)$$

where q is determined by p, m and α

Calderón & Zygmund (1960)

Let $p \in]1, \infty[, x_0 \in \mathbb{R}^d, u > 0$ and v be a non integer such that $-\frac{d}{p} \leq v \leq u$. Let $\mathcal{E}f = g$ be an elliptic differentiable equation of order m at x_0 such that $f \in W^p_m(\mathbb{R}^d)$, the coefficients of \mathcal{E} are functions in $T^{\infty}_u(x_0)$ and $g \in T^p_v(x_0)$. Then, for all $|\alpha| \leq m$, $D^{\alpha}f \in T^q_{v+m-|\alpha|}(x_0)$ with

$$\|D^{\alpha}f\|_{T^{q}_{v+m-|\alpha|}(x_{0})} \leq C\left(||g||_{T^{p}_{v}(x_{0})} + ||f||_{W^{p}_{m}(\mathbb{R}^{d})}\right)$$

where q is determined by p, m and α

L.L. & S. Nicolay (2020) Let $p \in]1, \infty[, q \in]1, \infty], x_0 \in \mathbb{R}^d$ and $\phi, \varphi \in \mathcal{B}$ be such that $-\frac{d}{p} < \underline{b}(\varphi), 0 < \underline{b}(\phi)$ and there exists $n \in \mathbb{Z}$ such that $n < \underline{b}(\varphi) < \overline{b}(\varphi) < n + 1$. Let $\mathcal{E}f = g$ be an elliptic differentiable equation of order m at x_0 such that the coefficients of \mathcal{E} are functions in $T^q_{\phi}(x_0)$ whose x_0 is a Lebesgue point. Let us suppose that:

- $g \in T^{p_1}_{\varphi}(x_0)$ with $\frac{1}{p_1} := \frac{1}{p} + \frac{1}{q}$
- $\phi \leqslant \varphi$ and $\overline{b}(\varphi) \le \underline{b}(\phi)$ or $\overline{b}(\varphi) \underline{b}(\varphi) \le \min\{1, \underline{b}(\phi)\}$,
- $f \in W^s_m(\mathbb{R}^d)$ for all $s \in [p', p]$ with $0 < \frac{1}{p'} := \frac{k_p(\phi, \varphi)}{q} + \frac{1}{p} < 1$

L.L. & S. Nicolay (2020)

There exists $C_{p',\phi,\varphi,m}$ such that for all $|\alpha| \leq m$, $D^{\alpha}f \in T^{q'}_{\varphi_{m-|\alpha|}}(x_0)$ for all $q' \geq 1$ such that

• $\frac{1}{p'} \ge \frac{1}{q'} \ge \frac{1}{p'} - \frac{m - |\alpha|}{d}$ if $\frac{1}{p'} > \frac{m - |\alpha|}{d}$,

•
$$p' \le q' \le \infty$$
 if $\frac{1}{p'} < \frac{m-|\alpha|}{d}$,

•
$$p' \le q' < \infty$$
 if $\frac{1}{p'} = \frac{m - |\alpha|}{d}$

Moreover, we have

$$\begin{aligned} ||D^{\alpha}f||_{T^{q'}_{\varphi_{m-|\alpha|}}(x_{0})} &\leq C_{p',\phi,\varphi}(M(1+MN)^{k_{p}(\phi,\varphi)-1}||g||_{T^{p_{1}}_{\varphi}(x_{0})} \\ &+ k_{p}(\phi,\varphi)(1+MN)^{k_{p}(\phi,\varphi)}(||f||_{W^{p}_{m}(\mathbb{R}^{d})} + ||f||_{W^{p'}_{m}(\mathbb{R}^{d})}) \end{aligned}$$

Continuously differentiable functions on compact sets

Defining continuously differentiable functions on compact sets

Defining continuously differentiable functions on compact sets

• By restriction

Defining continuously differentiable functions on compact sets

• By restriction

```
Whitney (1934)
```

A function f is the restriction to K of a continuously differentiable function on \mathbb{R}^d , with continuous derivative df, if and only if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

uniformly on $x \in K$.

Defining continuously differentiable functions on compact sets

• By restriction

Whitney (1934) A function $f \in C^1(\mathbb{R}^d | K)$, with continuous derivative df, if and only if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

uniformly on $x \in K$.

Defining continuously differentiable functions on compact sets

• By restriction

Whitney (1934) A function $f \in C^1(\mathbb{R}^d | K)$, with continuous derivative df, if and only if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

uniformly on $x \in K$.

• If the compact set K is topologically regular (the closure of its interior)

Defining continuously differentiable functions on compact sets

• By restriction

Whitney (1934) A function $f \in C^1(\mathbb{R}^d | K)$, with continuous derivative df, if and only if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

uniformly on $x \in K$.

• If the compact set K is topologically regular (the closure of its interior)

 $C_{\text{int}}^1(K) = \{ f \in C(K) : f |_{\mathring{K}} \in C^1(\mathring{K}) \text{ and } df \text{ extends continuously to } K \}.$

$C^1(K)$

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

$C^1(K)$

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

$C^1(K)$

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

$C^1(K)$

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

$C^1(K)$

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

In general, a derivative need not be unique. For this reason, a good tool to study $C^{1}(K)$ is the jet space

 $\mathcal{J}^1(K) = \{(f, df) : df \text{ is a continuous derivative of } f \text{ on } K\}$

endowed with the norm

$$\|(f,df)\|_{\mathcal{J}^1(K)} = \|f\|_K + \|df\|_K,$$

$C^1(K)$

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

In general, a derivative need not be unique. For this reason, a good tool to study $C^1(K)$ is the jet space $\mathcal{J}^1(K)$ for which

$$C^1(K) = \pi(\mathcal{J}^1(K))$$
 for the projection $\pi(f, df) = f$

and we equip $C^1(K)$ with the norm

 $||f||_{C^1(K)} = ||f||_K + \inf\{||df||_K : df \text{ is a continuous derivative of } f \text{ on } K\}.$

L. Frerick, L. L., J. Wengenroth (2020) If *K* is a compact set with infinitely many connected components, then $(C^1(K), \|\cdot\|_{C^1(K)})$ is incomplete.

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x - y|$.

If, for all $x \in A$, $V_x = A$ and C_x is uniform, A is (Whitney) regular.

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x - y|$.

If, for all $x \in A$, $V_x = A$ and C_x is uniform, A is (Whitney) regular.

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x-y|$.

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x-y|$.

 $\begin{array}{ccc} K \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(K), \|\cdot\|_{\mathcal{J}^{1}(K)}) \text{ B.S.} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & &$

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x - y|$.

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x - y|$.

$$\begin{array}{cccc} K \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(K), \|\cdot\|_{\mathcal{J}^{1}(K)}) \text{ B.S.} \\ & & & & \downarrow \end{array}$$

For all $x \in K$, there exists
 $C_{x} > 0$ such that
 $\sup_{\substack{y \in K \\ y \neq x}} \frac{|f(y) - f(x)|}{|y - x|} \leq C_{x} \|f\|_{C^{1}(K)} \end{array} \iff (C^{1}(K), \|\cdot\|_{C^{1}(K)}) \text{ B.S.}$

Pointwise (Whitney) regularity

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exist a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x - y|$.

$$\begin{array}{cccc} K \text{ is pointwise regular} &\Rightarrow & (\mathcal{J}^{1}(K), \|\cdot\|_{\mathcal{J}^{1}(K)}) \text{ B.S.} \\ & & & & & \\ & & & & & \\ & & & & \\ For all \ x \in K \text{, there exists} \\ & & & \\ C_{x} > 0 \text{ such that} \\ & & & \\ sup_{y \in K} \frac{|f(y) - f(x)|}{|y - x|} \leq C_{x} \|f\|_{C^{1}(K)} \end{array} & \leftarrow & (C^{1}(K), \|\cdot\|_{C^{1}(K)}) \text{ B.S.} \end{array}$$

🔃 fnrs

L. Frerick, L. L., J. Wengenroth (2020) $(C^1(K), \|\cdot\|_{C^1(K)})$ is complete if and only if *K* has finitely many components which are pointwise Whitney regular.

 $C_{\text{int}}^1(K)$ and $C^1(K)$

 $C_{\text{int}}^1(K)$ and $C^1(K)$

Whitney (1934)

Let *K* be a topologically regular compact set. If \mathring{K} is Whitney regular, then $C_{int}^1(K) = C^1(\mathbb{R}^d|K)$.

 $C_{\text{int}}^1(K)$ and $C^1(K)$

Whitney (1934)

Let *K* be a topologically regular compact set. If \mathring{K} is Whitney regular, then $C_{int}^1(K) = C^1(\mathbb{R}^d|K)$.

Whitney conjecture: What can be said about the reverse implication?

 $C_{\text{int}}^1(K)$ and $C^1(K)$

Whitney (1934)

Let *K* be a topologically regular compact set. If \mathring{K} is Whitney regular, then $C^1_{int}(K) = C^1(\mathbb{R}^d|K)$.

Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let *K* be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_x > 0$ and a neighbourhood V_x of *x* in *K* such that each $y \in V_x$ can be joined from *x* by a rectifiable path in $\mathring{K} \cup \{x, y\}$ of length bounded by $C_x|x-y|$. Then $C_{\text{int}}^1(K) = C^1(K)$.

 $C_{\text{int}}^1(K)$ and $C^1(K)$

Whitney (1934)

Let K be a topologically regular compact set. If \mathring{K} is Whitney regular, then $C^1_{int}(K) = C^1(\mathbb{R}^d|K)$.

Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let K be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_x > 0$ and a neighbourhood V_x of x in K such that each $y \in V_x$ can be joined from x by a rectifiable path in $\mathring{K} \cup \{x, y\}$ of length bounded by $C_x|x-y|$. Then $C_{\text{int}}^1(K) = C^1(K)$.

L. Frerick, L. L., J. Wengenroth (2020)

Construction of a compact set K for which $C_{int}^1(K) = C^1(K) = C^1(\mathbb{R}^d | K)$ but \mathring{K} is not Whitney regular.

 $C^1(\mathbb{R}^d|K)$ and $C^1(K)$

$C^1(\mathbb{R}^d|K)$ and $C^1(K)$

👯 fnrs

L. Frerick, L. L., J. Wengenroth (2020)

For each compact set *K*, the space $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$.

$C^1(\mathbb{R}^d|K)$ and $C^1(K)$

L. Frerick, L. L., J. Wengenroth (2020)

For each compact set *K*, the space $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$.

L. Frerick, L. L., J. Wengenroth (2020)

 $C^{1}(K) = C^{1}(\mathbb{R}^{d}|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

$C^1(\mathbb{R}|K)$ and $C^1(K)$

 $C^1(\mathbb{R}|K)$ and $C^1(K)$

Whitney (1934) A function $f \in C^1(\mathbb{R}|K)$ if and only if, for all non-isolated $\xi \in K$,

$$\lim_{x,y\to\xi}\frac{f(x)-f(y)}{x-y}=f'(\xi),$$

$C^1(\mathbb{R}|K)$ and $C^1(K)$

Whitney (1934) A function $f \in C^1(\mathbb{R}|K)$ if and only if, for all non-isolated $\xi \in K$,

$$\lim_{x,y\to\xi}\frac{f(x)-f(y)}{x-y}=f'(\xi),$$

The simple idea is that small gaps are dangerous for the Lipschitz continuity on K which is a necessary condition for C^1 -extendability.

 $C^1(\mathbb{R}|K)$ and $C^1(K)$

Whitney (1934) A function $f \in C^1(\mathbb{R}|K)$ if and only if, for all non-isolated $\xi \in K$,

$$\lim_{x,y\to\xi}\frac{f(x)-f(y)}{x-y}=f'(\xi),$$

The gap structure function

$$\sigma(\xi) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|y - \xi| : y \in G\}}{\ell(G)} : G \subseteq (\xi - \varepsilon, \xi + \varepsilon) \text{ is a gap of } K \right\}.$$

 $C^1(\mathbb{R}|K)$ and $C^1(K)$

Whitney (1934) A function $f \in C^1(\mathbb{R}|K)$ if and only if, for all non-isolated $\xi \in K$,

$$\lim_{x,y\to\xi}\frac{f(x)-f(y)}{x-y}=f'(\xi),$$

The gap structure function

$$\sigma(\xi) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|y - \xi| : y \in G\}}{\ell(G)} : G \subseteq (\xi - \varepsilon, \xi + \varepsilon) \text{ is a gap of } K \right\}.$$

L. Frerick, L. L., J. Wengenroth (2020)

For a compact set $K \subseteq \mathbb{R}$ we have $C^1(K) = C^1(\mathbb{R}|K)$ if and only if $\sigma(\xi) < \infty$ for all $\xi \in K$.

About some notions of regularity for functions

Dissertation presented by Laurent Loosveldt for the degree of Doctor in Sciences

Advisor: Samuel Nicolay

10th March 2021

