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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(@ > 0) if there exist C' > 0 and a polynomial P,, of degree less than « s.t., for
j large enough,

1f = Pao | (5 (ag.2y) < €279 }
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(a >0)if

sup [lAl* gy < 27
<0 (B (20,277))

with

Af(@)=f(@+h) - f(x) and AT = ALATf(a),
and B (20,277) = {x : [20, 20 + (M + 1)h] C B(x,27)}.
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Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(a >0)if
sup (Al r) = Copie,

[a] —j
|h| <27 (B, (20,277))
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(a >0)if

sup [lAl* gy < 27
<0 (B (20,277))
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(a >0)if
sup (Al c2e,

<
Ihl<2 (B (20.29) =

h”(x) = 0,6
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’gc(Rd) belongs to the Holder space A% ()
(a >0)if
sup (Al c2e,

<
Ihl<2 (B (20.29) =

() (29) = sup{a : f € A%(a0)}.
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Pointwise Holder spaces

Let 2y € R%; a function f € L;’;C(Rd) belongs to the Holder space A% ()
(a >0)if
sup (Al r) = Copie,

[a] —j
|h| <27 (B, (20,277))

() (29) = sup{a : f € A%(a0)}.

D (p) = dimg{z : B (z) = h}.
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Drawbacks

Unadapted to study non-locally
bounded functions

I The Brjuno function

Jaffard and Mélot

propose to use the spaces of Calderén
and Zygmund where the L= norm is re-
placed by a L? norm (p € [1, +o0]).
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The Brownian motion display-
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of iterated logarithm
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Drawbacks

Unadapted to study non-locally
bounded functions

I The Brjuno function

Jaffard and Mélot

propose to use the spaces of Calderén
and Zygmund where the L= norm is re-
placed by a L? norm (p € [1, +o0]).

Unable to detect precise and
particular pointwise behaviour

The Brownian motion display-
ing the Khintchine law
of iterated logarithm

Kreit and Nicolay

replace the dyadic sequence
appearing in the definition by a
more general sequence, called
admissible.
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1. Define functional spaces which gather the two approaches.

3/33




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.

3/33




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

3/33




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines
e Holder spaces are a pointwise version of some Besov spaces.




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines
e Holder spaces are a pointwise version of some Besov spaces.

e The multifractal formalism of Jaffard and Frayse is based on the
belonging to some Besov spaces.




Objectives

1. Define functional spaces which gather the two approaches.
2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines
e Holder spaces are a pointwise version of some Besov spaces.

e The multifractal formalism of Jaffard and Frayse is based on the

belonging to some Besov spaces.
® Besov spaces were generalized using admissible sequences.
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Some equivalent
definitions of Besov
spaces of generalized
smoothness
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Besov spaces

Historically Besov spaces were first defined using interpolation spaces

_ t
B;,q - [Hp’ Hpu] a,q»

with s = (1 — @)t + au, where H} and H,* are Sobolev spaces
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Besov spaces

Historically Besov spaces were first defined using interpolation spaces

_ t
B;,q - [Hpa H;]a’,q,

with s = (1 — @)t + au, where H} and H,* are Sobolev spaces
or equivalently using Litllewood-Paley Theory

By = {f € S'(RY) : (2j5||7’_1(<pj7’f))||L,,(Rd))) efq}

J

where (¢;)jen, € S(RY) is a regular partition of unity.
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Besov spaces

Historically Besov spaces were first defined using interpolation spaces

_ t
B;,q - [Hpa H;]a',q,

with s = (1 — @)t + au, where H} and H,* are Sobolev spaces
or equivalently using Litllewood-Paley Theory

By = {f € S'(RY) : (st||7-'_1(90j7‘"f))||L,,(Rd))) = gq}

J

where (¢;)jen, € S(RY) is a regular partition of unity.

supp ¢; C {€ e R? : 2771 < |¢] < 27+1}
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Admissible sequences

A sequence o = (0j);en, Of real positive numbers is called admissible if there
exists a positive constant C' such that

0_10']' <0541 < CO']', J

forany j € N.
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Admissible sequences

A sequence o = (0j);en, Of real positive numbers is called admissible if there
exists a positive constant C' such that

0_10']' <0541 < C(Tj, J
forany j € N.
One sets
. Oj+k _ Tj+k
o, = inf —= and 0j i=sup 2
—J keN o} keN Ok
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Admissible sequences

A sequence o = (0j);en, Of real positive numbers is called admissible if there
exists a positive constant C' such that

0_10']' <0541 < C(Tj, J
forany j € N.
One sets
log (_) log,, (T,
s(o) = lim 2% 5(o) = lim —OgZ(O-]),
J J J J
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Admissible sequences

A sequence o = (0j);en, Of real positive numbers is called admissible if there
exists a positive constant C' such that

C_lo'j < oj < Coy, J
forany j € N.
One sets
logy(c;) log, (T
s(0) = lim -2 5y = fim 22T
J J J J

so that for any ¢ > 0, there exists C' > 0 s.t. forall j, &

c-19is(@)-8) < Titk _ 9j(s(o)+e) J
O
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Admissible sequences

Example
If s € R, s = (2%); is admissible with s(s) =35(s) = s
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Admissible sequences

Example
If s € R, s = (2%); is admissible with s(s) =35(s) = s

Definition
A strictly positive function y is a slowly varying function if
y(rt)
im =1,
=0 ¢ (&)
forany r > 0.
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Admissible sequences

Example
If s € R, s = (2%); is admissible with s(s) =35(s) = s

Definition
A strictly positive function y is a slowly varying function if
y(rt)
im = 1,
=0 ¢ (&)
forany r > 0.
Example

If ¥ is a slowly varying function and u € R, the sequence o = (27“y(2%)); is
admissible with s(o") =35(07) = u.
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Generalized Besov spaces

Let y be an admissible sequence such that v, > 1
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Generalized Besov spaces

Let y be an admissible sequence such that ¥y, > L there exists ky € N such
that

2y; <yip Vi, keNst j+k <k
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Generalized Besov spaces

Let v be an admissible sequence such that Y, > 1, there exists kg € N such
that

2y; <yip Vi, keNst j+k <k

By = {f eS'RY) : (ajnyf—l(gp;"] Fhl Lp(Rd))j : 54}
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Generalized Besov spaces

Let v be an admissible sequence such that Y, > 1, there exists kg € N such
that

2y; <yip Vi, keNst j+k <k

By = {f eS'RY) : (ajnyf—l(ga;"] Fhl Lp(Rd))j : gq}

. .
® supp(¢)™) C{€ €R? ¢ €] < yjuume} Vi € {0, Jho = 1},
o supp(¢”’) C{€ € RY : yj kg < 1€ < vjuamo} Vi 2 Jho,
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Generalized Besov spaces

Moura, 2007
Let p,q € [1,], o = (0j); and y = (y;); be two admissible sequences such
thaty > land0 < s(o)s(y)~L. Forany n € N such that 5(o)s(y)™" < n, we
have
Byy ={feL”: (o sup A3 lz0); € £
57]7
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Generalized Besov spaces and convolution

Characterization of Generalized Besov spaces in terms of convolution
L.L. & S. Nicolay (2019)

Let p,q € [1,0], o = (0j); and y = (y;); be two admissible sequences such
that Y, > 1and s(o) > 0; we have

ByY ={f € L? : 3¢ € D such that (o;]|f * ¢y1 = fllze); € 7).
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Generalized Besov spaces and derivatives

Characterization of Generalized Besov spaces in terms of derivatives
L.L. & S. Nicolay (2019)

Let p,q € [1,0], o = (0j); and y = (y;); be two admissible sequences such
that y, > 1 Let the numbers k, n € N be such that

k<s(@)s(y) ! <s(o)s(y) ™ <n
We have

={fe WF: (v, sup [A}'IDf||L); € €7 Vil =k}
|h|<7
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Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. & S. Nicolay (2019)

Let p,q € [1,0], o = (0j); and y = (y,); be two admissible sequences such
thaty > 1. Let n € N be such that n < s(0)5(y)™! < 5(0)s(y)™t < n+1;the
following assertions are equivalent:

1. The function f belongs to B, 7;
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Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. & S. Nicolay (2019)
Let p,q € [1,0], o = (0j); and y = (y;); be two admissible sequences such
thaty > 1. Letn € Nbe such that n < s(o)3(y)! <5(0)s(y)7! < n+1;the
following assertions are equivalent:
2. The function f belongs to W' and, for all i, € R and almost every z € R?,
we have n

fath) = Y, D)+ Rl

la|<n

where

(oyv;" sup ||Ra(- h)llLe); € €%
lhl<y;?!
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Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. & S. Nicolay (2019)

Let p,q € [1,0], o = (0j); and y = (y;); be two admissible sequences such
thaty > 1. Let n € N be such that n < s(0)35(y)! <5(0)s(y)~! < n+1;the

foIIowmg assertions are equivalent:
3. If, given j € Ny, r; is a net of R? made of cubes of diagonal 'yj_l, then for all
Jj € Ny, there exists g,, such that

® the trace of g, in each cube of r; is a polynomial of degree at most n,
® one has (o;If = g, l|20); € £9.

12/33




Interpolation methods

Let Ay, A, be two normed vector spaces which are continuously embedded in
a Hausdorff topological vector space V. As a consequence, the spaces
Ag N Ay and Ay + A, are also normed vector spaces.
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Interpolation methods

Let Ay, A, be two normed vector spaces which are continuously embedded in
a Hausdorff topological vector space V. As a consequence, the spaces
Apn Ay and Ag + A, are also normed vector spaces.We say that
a€[Ap, A1]aq(0<e<landl < g < oo)if
L H(Uj)jez c Ap N A; such that
a= Z u; With convergence in Ay + A
JEZ
and

(27 max{||u || 49> 2’ lujll 4, Djez € £(2Z).
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a Hausdorff topological vector space V. As a consequence, the spaces
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Generalized interpolation methods

Let r, s € R and o, y be two admissible sequences such that v, >1 and

r <min{s(c)s(y) ", s(0)3(y) '} < max{5(c)s(y) L 5(0)5(y) 7} < s
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y:JTO'_j if —j € Ny 7:](-5_T) if —j € Ng

yio7t ifjeN Y ifjenN
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Generalized interpolation methods

Let r, s € R and o, y be two admissible sequences such that v, >1 and

r <min{s(c)s(y) ", s(0)3(y) '} < max{5(c)s(y) L 5(0)5(y) 7} < s

® gc[Ap, Al]J if there exists (u;);ez C Ao N Ay such that a = ¥ ;7 u;, with
convergence |n Ao+ A7 and

(0 max{||u;ll - ¥;lluslla; Djez € £9(Z).

® ;¢ [Ao,A1]K if Vj € Z, there exist ap ; € Ag and a; ; € A; such that
a=ap;+ai; and
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Generalized interpolation methods

Let r, s € R and o, y be two admissible sequences such that v, >1 and
r <min{s(o)s(y)™", s()5(y) 7"} < max{5(c)s(y) 7, 5()5() 7} < s

® gc[Ap, Al]J if there exists (u;);ez C Ao N Ay such that a = ¥ ;7 u;, with
convergence |n Ao+ A7 and

(0 max{||u;ll - ¥;lluslla; Djez € £9(Z).

® ;¢ [Ao,A1]K if Vj € Z, there exist ap ; € Ag and a; ; € A; such that
a=ap;+ai; and

(05lao 14y +¥jllarjlla,))jez € C1(Z).
L.L. & S. Nicolay (2019)

[0, A1]5Y = [Ao, A1] 3" =: [Ao, 4117
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Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized
interpolation L.L. & S. Nicolay (2019)

Let p,q € [1,], 7,5 € R, and o, ¥ be two admissible sequences such that
v, >1 and

r <min{s(a)s(») ", 5(0)35(y) "} < max{s(a)s(y) L, 5(a)5(y) "} < s

we have

BO’

Vo oy
p.q — [H;’H;]q .
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Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized
interpolation L.L. & S. Nicolay (2019)

Let p,q € [1,], 7,5 € R, and o, ¥ be two admissible sequences such that
v, >1 and

k<s(0)s(y) " <5(0)s(y) 7 <n,

we have

BO’

Y
p.q

[Wy, Wg”.
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Pointwise spaces of
generalized
smoothness

16/33



The space T} (1)

Let p, ¢ € [1,], o = (0); be an admissible sequence such that s(o7) > -4,
fe LI;OC and 7 € Rd; f belongs to Tg:q(xo) whenever

i S 1
(o257 P A E 1 Lo By a0.2-7))7 € €,
h|<277

where, given r > 0, if 5(o) > 0, we have
Bp(xzo,7) ={z : [z,z + ([5(0)] + 1)h] € B(ap, )},

and By (xy, r) = B(x, r) otherwise.
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The space T} (1)

Let p, g € [1,00], o = (0;); be an admissible sequence such that s(o) > 0,
f € I, and z € R, f belongs to T} , (1) whenever
there exists a sequence of polynomials (P; ,,); of degree less than or equal to

|5(0)] such that

(020407 f - P; ooll 10 (B(zg.2-77))j € €%
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The space T} (1)

Let p,g € [1,0], o = (0;); be an admissible sequence such that s(o) > 0,
f € I, and z € R, f belongs to T} , () whenever
there exists a sequence of polynomials (P; ,,); of degree less than or equal to

|'s(o) ] such that
(05 2YP\|f = P; ool 1o (B (29.2-97) )5 € €7
L.L. & S. Nicolay (2020)

Moreover, if 0 < n := |[5(0)] < s(0), there exists a unique polynomial P,, of
degree less than or equal to n such that

(020407 || f - Pooll 1o (B (29,2-97))j € €7
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Wavelet leaders

Given a dyadic cube 1 € A; at scale j, the p-wavelet leader of 1 (p € [1,]) is
defined by o
v = S.,up( Z (2U=1)4/p| ¢, [)P)L/P .
V21 yehjaca

Given 7y € R4, we set

d;](xo)= sup df{.
A€3; (o)
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Wavelet leaders

Given a dyadic cube 1 € A; at scale j, the p-wavelet leader of 1 (p € [1,]) is
defined by o
v = S.,up( Z (2U=1)4/p| ¢, [)P)L/P .
V21 yehjaca
Given 7y € R4, we set

d;’(xo)= sup d/’{.
A€3; (o)

L.L. & S. Nicolay (2020)
If f belongs to the space T} (1), then

(0d} (20)); € £7.

Conversely, if 2‘1‘1/1’0].‘1 tends to 0 as j tends to co and o, > 27%/7, if f belongs

to B ,(R%) for some s > 0, then (0;d/ (2)); € £? implies f € T7 | ().
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Wavelet leaders

Let p, ¢ € [1,], 7 € R? and f be a function from L’I’OC; if o is an admissible

sequence such that 277%/?o~1 tends to 0 as j tends to co, we say that f belongs
to qu log(aco) if there exists J € N for which

24/ g Al

sup || Fllzr By (20,279)) )i =g € €2

|10g2(2_jd/p0']1)| |h|<27
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Wavelet leaders

f belongs to (4 (mp) if there exists J € N for which

,q,log

24P gy AL

sup || Fll2e By (z0,279)))iza € 2.

( :
| logy (2774205 )] 11 <2-5

E&(20) = {f € BE o(RY) : (054 (20)); € €7},

equipped with the norm

- Eg(a0) = ES(20) = [0,400) = f = IfllBg ., + 1(07d;° (20));le
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Wavelet leaders

f belongs to ., log(a:o) if there exists J € N for which

2J4/P . _
[s(0) J+1 ,
(|log2(2—jd/1’a'-_1)| Ihs]lil;—j ”Ahs Slee (B oo, 20 sz € E°-
5 <

EE(20) = {f € BE «(RY) : (0yd>(m)); € €7},
equipped with the norm

I 1Eg(z) = E&(a0) = [0,400) = f = If Iz, + 1(o;d;” (20));le=-

L.L. & S. Nicolay (2020)

s(o)

If 20 € R%, forall 0 < & < =i, from the the prevalence point of view, almost

every function of E£(a) belongs to T | (o) \ TZiZog(xO)-
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Wavelet leaders

f belongs to ., log(a:o) if there exists J € N for which

2J4/P .

( - sup ||AL8(0')J+1f” Vi et
| logy 2794/ 05 )| <27 L? (By(20,279)))j 2

Ef (m) = {f € Bf (RY) : (07d] (w)); € £},
equipped with the norm
I NEp ) = B (20) = [0,400) : f = [Ifllpe + (07 d (20)]le.

L.L. & S. Nicolay (2020)
If zp € RY, forall 0 < ¢ < s(”)+d , from the the prevalence point of view, almost

every function of Ef (1) beIongs to 77 10g(:q)) \ T/‘Tkl)g(xo).
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Generalized Holder exponent

Decreasing family of admissible sequences

Let p, ¢ € [1, o]; if, given h > —d/p, yM is an admissible sequence, the family
of admissible sequences i — y™ is (p, q)-decreasing if it satisfies s(y®) >
—d/p, Zih) > 274/ forany h > —d/p and if —d/p < h < b’ implies

%

(r") (h)
T;’,q (z0) C Tz};,q (20).
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Generalized Holder exponent

Decreasing family of admissible sequences and associated exponent
Let p, ¢ € [1, o]; if, given h > —d/p, M is an admissible sequence, the family
of admissible sequences h — y" is (p, ¢)-decreasing if it satisfies s(y ") >
—d/p, Z;h) > 2-4/? forany h > —d/p and if —d/p < h < b’ implies

170 () € T2 ().

hp.q(z0) = sup{h > —d/p : f € T,y (a0)}.
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Generalized Holder exponent

Decreasing family of admissible sequences and associated exponent
and spectrum

Let p, ¢ € [1, o]; if, given h > —d/p, M is an admissible sequence, the family
of admissible sequences . — y" is (p, q)-decreasing if it satisfies s(y®) >
—d/p, Z;h) > 274/ forany h > —d/p and if —=d/p < h < b’ implies

(r) (h)
7Y, (%) € TV, (20).

hp.o(20) = sup{h > —d/p : f € T2 (20)}.

D,.o(h) = dimg({zo € R? : hyy 4 (0) = h}).
20/33




Generalized Holder exponent

Decreasing family of admissible sequences and associated spectrum
If (y™),, is a (p, q)-decreasing family of admissible sequences

D, 4(h) = dimy({z0 € R? : hyy 4 (0) = h}).

L.L. & S. Nicolay (2020)
It o is an admissible sequence such that s(o) — % > —% and if s < ¢ then, for
all f € B?_, we have

T,8?

(h)
dimg({zo € R? : hy 4(50) < h}) < d + 7’3(77).
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Multifractal formalism

Compatibility conditions
An admissible sequence o and a family of admissible sequences y () are com-
patible for p, q, 7, s € [1, 0o] with s < ¢ if

® s(o) >0,
® s(o)—d/r>-d/p,
e the function ¢ defined on (-d/p, ) by

(h)
£(h) = s(—) =5(X—)

is non decreasing, continuous and such that

{h>—=d/p:¢(h) <-=d/r} +0.

We call 7 the ratio function and set Ay, () := sup{h > —=d/p : £(h) < —d/r}. 21/33




Multifractal formalism

(h)
(h): —s(—)—s<7—>
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Multifractal formalism

(h)
£(h) = s(—) =5(X—)

L.L. & S. Nicolay (2020)
Let p, g, 7, s € [1,00] with s < ¢, o be an admissible sequence and y() be a
family of admissible sequences compatible with o-. From the prevalence point
of view, for almost every f € BZ,, D, , is defined on I = [} (-d/r),71(0)]
and

Dy q(h) = d +1L(h),

forany h e I.
Moreover, for almost every z; € R%, we have h, ,(z9) = £7(0).
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Let p, ¢, 7, s € [1,00] with s < ¢, o be an admissible sequence and y() be a
family of admissible sequences compatible with o-. From the prevalence point
of view, for almost every f € B7,, D, , is defined on I = [{7'(=d/r), {7 (0)]
and

Dy q(h) = d + 1L (h),

forany h € I.
Moreover, for almost every z; € R%, we have h, ,(z9) = £7(0).

If p= g =00, (M), is the usual family (27%),- and o = (29),

{(h)=s(@"9) ) =h-s
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Multifractal formalism

L.L. & S. Nicolay (2020)
Let p, ¢, 7, s € [1,00] with s < ¢, o be an admissible sequence and y() be a
family of admissible sequences compatible with o-. From the prevalence point
of view, for almost every f € By, D, , is defined on I = [c7YN(=d/r), 71 (0)]
and

Dy.y(h) = d+ 1L (h),

forany h € I.
Moreover, for almost every zy € R%, we have h, ,(z9) = £71(0).

If p=gq=oc0, (yM))>0 is the usual family (27%),-¢ and o = (29),

Vhe[s—g,s] :D(h)y=d+r(h-ys)
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About the results of Calderén and Zygmund

Let zp € R?, p € [1,0] and ¢ € B be such that b(¢) > —d/p. A function
f € L?(R%) belongs to the space T () if there exist a polynomial P of degree
strictly less than b(¢) and a constant C' > 0 such that

r~YP\If = Plloo(B(ao,ry) < CH(r)  Vr> 0.
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About the results of Calderén and Zygmund

Let zp € R?% p € [1,0] and ¢ € B be such that b(¢) > —d/p. A function
f € LP(R%) belongs to the space Tg(xo) if there exist a polynomial P of degree
strictly less than b(¢) and a constant C' > 0 such that

=P\ f - Pllio(Bag.ry < Co(r)  Vr > 0.
A function ¢ : (0, +o0) — (0, +c0) is a Boyd function if ¢(1) = 1, ¢ is continuous
and, for all z € (0, +0),
xT
¢(zy) )

< 00,

o= ?i% ()
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About the results of Calderén and Zygmund

Let zp € R?, p € [1,0] and ¢ € B be such that b(¢) > —d/p. A function
f € L?(R%) belongs to the space T () if there exist a polynomial P of degree
strictly less than b(¢) and a constant C' > 0 such that

r=PNf = Plle (o, < Co(r)  Vr>0.
A sequence o = (o;); of real positive numbers is admissible if and only if
there exists a Boyd function ¢ such that, for any j, ¢(27) = o;.
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About the results of Calderén and Zygmund

Let zp € R%, p € [1,] and ¢ € B be such that b(¢) > —d/p. A function
f € LP(R%) belongs to the space Tg(aﬁo) if there exist a polynomial P of degree
strictly less than b(¢) and a constant C' > 0 such that

r VP||f = Pllio (. < Co(r)  Vr>0.
Uniqueness of the polynomial

Equipped with this norm, 77’ (1) is a Banach space

| D P ()]
gy = Wllmmn + D, =

+5up ¢(r) " YP|\f = Pll o (B(ao.r))-
|a|<b(¢) >0

22/33




Elliptic partial differential equations

An elliptic partial differential equation at z, € R of order m € N is a partial
differentiable equation of the form

&f= ), wDf=g

|la|<m
where forall |a| < m, a, is an sxr matrix of functions, f and g are vector valued
functions with f; € W} (R9) forall j € {1,...,r} and
:= inf det a; @ a ] >0
() = inf [(.f;m e )(lalzzm o(a)E)]

is the ellipticity constant of & at .

23/33




Operators

T =FHA+|-P)PFf)  (seR, feS)
and

Kf = poo. / k(- 9)f () dy.
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Operators

T =FHA+|-P)PFf)  (seR, feS)
and

Kf = poo. / k(- 9)f () dy.

JS
Ty(w) — T4 (2)
8]
K
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Operators

T =FHA+|-P)PFf)  (seR, feS)
and

Kf =po. [ BC= i) dy.
Ifb(¢)+s<0orIneNst n<b(p)+s<b(¢p)+s<n+1landpe(l,o].

jS
Ty(m) — T4 (2)
O
K

where ¢ : (0,+00) — (0,+00) z +— ¢(z)z* and
*lp=1/g=5-5  ifp<d/s
® p<g<L o ifd/s<p§oo,

® p<g<o ifd/s=p 24/33




Operators

T =FHA+|-P)PFf)  (seR, feS)
and

K = p.o. / k-~ 9)f (3) dy.

If k& € C’°°(Rd_\ {0}) is homogeneous of degree —d with mean value zero on
the sphere X, b(¢) <0ordn e Nst. n < b(¢) < b(¢) <n+1andp € (1, )

JS
Ti(w) — T4 ()
O
K

with

1K S 72 (a) < Coup sup DR DN 72 ()
0<lal<b(4) T 24/33




Generalization of the main result of Calderén
and Zygmund
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Generalization of the main result of Calderén
and Zygmund

Our variant
® Considering generalized pointwise regularity.
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Our variant
® Considering generalized pointwise regularity.

e Assuming L? conditions for the coefficients of the equation instead of
L.
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Generalization of the main result of Calderén
and Zygmund

Our variant
® Considering generalized pointwise regularity.
e Assuming L? conditions for the coefficients of the equation instead of
L>.

Let, p € (1,), ¢, o € B be such that 0 < b(¢), —d/p < b(p) and such that there exists
n € Z such that n < b(¢) < b(¢) < n +1; let us define k, as follows:
® ifb(p) =b(p), ky(,¢) :=min{k e N: £(b(p)+ 4) < min{1, b(¢)}},

® ifn<b(p) <blp) <n+l,

b(p) - b(yp)

= < min(L, b(9)}}.

kyp (9, ¢) = kp (o, - é(‘p)) +min{k € N :
25/33




Calderon & Zygmund (1960)

Let p €]1,00[, 7 € R% » > 0 and v be a non integer such that —% <v < u
Let &f = ¢ be an elliptic differentiable equation of order m at z; such that
f € WE(RY), the coefficients of & are functions in T:°(z) and g € TF ().
Then, for all |a| < m, D%f € T Ial(xO) with

v+m—

1Dz oy < C (19127 ay + 11w e

where ¢ is determined by p, m and «

26/33



Calderon & Zygmund (1960)

Let p €]1,00[, 7p € R% » > 0 and v be a non integer such that —% <wv < u.
Let &f = ¢ be an elliptic differentiable equation of order m at z; such that
f € WE(RY), the coefficients of & are functions in T:°(zy) and g € TF (x).
Then, for all |a| < m, D%f € T Ial(xO) with

v+m—

1Dz oy < C (19127 ay + 11w e

where ¢ is determined by p, m and «
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L.L. & S. Nicolay (2020)
Let p €]1, ][, ¢ €]1, 0], 7 € R% and ¢, ¢ € B be such that —g < b(@),0 < b(e)

and there exists n € Z such that n < b(¢) < b(¢) < n+1. Let &f = g be an
elliptic differentiable equation of order m at zp such that the coefficients of &
are functions in T;(a:o) whose 1y is a Lebesgue point. Let us suppose that:

p1 B 1 ._ 1,1
®geT, (xo)WIthH.— +

p q
* ¢ <pand b(p) < b(g) or b(¢) - b(¢) < min{1, b(¢)},
e fe W (RY) forall s e [p/, p] with 0 < % = L{‘Z”‘P)J,% <1
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L.L. & S. Nicolay (2020)

There exists Cyy 4., m such that for all || < m, Df € Tg;n_lal(xo) forall¢’ > 1

such that
o L>ly Ll _mialifl, mojal
e 1 m—|a|
.p’Sq’SOOlfF< 4
£ 1 _ m—|a|
'p'Sq’<oolf?— 7

Moreover, we have

1D fllg (o < Craos(M(A+ MNP O gl o )

Pm—|a

+lp (6, @) (L4 MNY OO ([l o) + 111y )
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Continuously
differentiable functions
on compact sets
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Defining continuously differentiable functions
on compact sets
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Defining continuously differentiable functions
on compact sets
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Defining continuously differentiable functions
on compact sets

® By restriction

Whitney (1934)
A function f is the restriction to K of a continuously differentiable function on
R¢, with continuous derivative df, if and only if
i L) =~ (@) ~ (df(2), y —z) _
11m =

y—z =
i ly -zl

0,

uniformlyon z € K.
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Defining continuously differentiable functions
on compact sets

® By restriction

Whitney (1934)
A function / « /' (17| ), with continuous derivative df, if and only if

li L@ —f@) —{df(2),y —2) _

y—)I —
g ly — z|

0’

uniformlyon z € K.
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Yy—x -
g ly -l

0’

uniformlyon z € K.
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Defining continuously differentiable functions
on compact sets

® By restriction

Whitney (1934)
A function / « ' (7| i), with continuous derivative df, if and only if

li L@ —f@) —{df(2),y —2) _

Yy—x —_
g ly -l

0’

uniformlyon z € K.

¢ |f the compact set K is topologically regular (the closure of its interior)

Ci}It(K) ={fe C(K):flg € C'(K) and df extends continuously to K}. J
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Our proposition

CH(K)

A function £, continuous on K, belongs to C''(K) if there exits a continuous

function df on K with values in the linear maps from R? to R such that, for all

reK,
1o W) = f @) = (df @)y =) _
im =0,

Yy—x -
v |y - =l
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Our proposition

C(K)

A function £, continuous on K, belongs to C''(K) if there exits a continuous

function df on K with values in the linear maps from R? to R such that, for all

rz e K,
i L) —f(®) —(df (@), y —z) _
11m - 0’
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. ly -l
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Our proposition

C(K)
A function £, continuous on K, belongs to C''(K) if there exits a continuous
function df on K with values in the linear maps from R? to R such that, for all

rz e K,
i L) —f(®) —(df (@), y —z) _
im =0,
g:ﬁ ly — z|

0 22
15 1 05 N 115
0 0
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Our proposition

C(K)
A function £, continuous on K, belongs to C''(K) if there exits a continuous
function df on K with values in the linear maps from R? to R such that, for all

rz e K,
i L) —f(®) —(df (@), y —z) _
im =0,
g:;{” ly — z|

In general, a derivative need not be unique. For this reason, a good tool to
study C!(K) is the jet space

JYK) ={(f, df) : df is a continuous derivative of f on K}
endowed with the norm

N> dD) gt rey = & + M df [l e
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Our proposition

C(K)
A function £, continuous on K, belongs to C''(K) if there exits a continuous
function df on K with values in the linear maps from R? to R such that, for all

rz e K,
i L) —f(®) —(df (@), y —z) _
im =0,
g:;{” ly — z|

In general, a derivative need not be unique. For this reason, a good tool to
study C!(K) is the jet space J'(K) for which

CYHK) = n(J(K)) for the projection #(f, df) = f

and we equip C''(K) with the norm

If et ky = IfIlc +inf{lldf || : df is a continuous derivative of f on K'}.
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Banach space?

L. Frerick, L. L., J. Wengenroth (2020)
If K is a compact set with infinitely many connected components, then
(CHEK), |l - ll o1 (k) is incomplete.
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Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any z € A there exist a neigh-
bourhood V, of z in A and C, > 0 such that any y € V, is joined to z by a
rectifiable path in A of length bounded by C, |z — y|.

If, forall z € A, V, = A and C, is uniform, A is (Whitney) regular.
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Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any z € A there exist a neigh-
bourhood V, of z in 4 and C, > 0 such that any y € V, is joined to = by a
rectifiable path in A of length bounded by C |z — y|.

K is pointwise regular = (JYUK),I| - l 71 (k) B.S.

(CHE), |- llor (i) B-S.
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Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any z € A there exist a neigh-
bourhood V, of z in 4 and C, > 0 such that any y € V, is joined to = by a
rectifiable path in A of length bounded by C |z — y|.

K is pointwise regular = (JYUK),I| - l 71 (k) B.S.
For all z € K, there exists
C, > 0 such that = (CYK),]- llcrex)) B.S.
supyeKW < Gollfllero)
y#

30/33




Banach space?

Pointwise (Whitney) regularity

We say that A is pointwise (Whitney) regular if for any z € A there exist a neigh-
bourhood V, of z in 4 and C, > 0 such that any y € V, is joined to = by a
rectifiable path in A of length bounded by C |z — y|.

K is pointwise regular = (JYUK),I| - l 71 (k) B.S.
m 7 U
For all z € K, there exists
C, > 0 such that = (CHK),]- llcrex)) B.S.
supyeKW < Gollfllero)
y#

30/33




Banach space?

L. Frerick, L. L., J. Wengenroth (2020)
(CYK),| - llc1(k)) is complete if and only if K has finitely many components
which are pointwise Whitney regular.
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Cl (K)and C'(K)

If K is topologically regular, C'(K) ¢ C!

int

(K).
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Cl (K)and C'(K)

If K is topologically regular, C*(K) ¢ C! (K).

Whitney (1934) )
Let K be a topologically regular compact set. If K is Whitney regular, then

CL,(K) = CY(RY|K).
Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let K be a topologically regular compact set and assume that, for all z € 4K,
there exist C, > 0 and a neighbourhood V, of z in K such that each y € V,
can be joined from z by a rectifiable path in X U {z, y} of length bounded by
Cylz — y|. Then CL (K) = C*(K).
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Cl (K)and C'(K)

If K is topologically regular, C'(K) ¢ C!

int
Whitney (1934)
Let K be a topologically regular compact set. If K is Whitney regular, then
Ol (K) = CY(RYK).
Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)

Let K be a topologically regular compact set and assume that, for all z € 4K,
there exist C, > 0 and a neighbourhood V, of z in K such that each y € V,
can be joined from z by a rectifiable path in X U {z, y} of length bounded by
Cylz — y|. Then CL (K) = C*(K).

(K).

L. Frerick, L. L., J. Wengenroth (2020)
Construction of a compact set K for which C! (K) = C'(K) = C'(RY|K) but

K is not Whitney regular. 31/33
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L. Frerick, L. L., J. Wengenroth (2020)
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CYR? K) and C'(K)

L. Frerick, L. L., J. Wengenroth (2020)
For each compact set K, the space C''(R%|K) is dense in C!(K).

L. Frerick, L. L., J. Wengenroth (2020)
CYK) = C*(RYK) with equivalent norms if and only if K has only finitely
many components which are all Whitney regular.
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CH(R|K) and C'(K)

Whitney (1934)
A function f € C'(R|K) if and only if, for all non-isolated ¢ € K,

L 1@ =1
-y

z,Y—& a3

=f(6).
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CH(R|K) and C'(K)

Whitney (1934)
A function f € C'(R|K) if and only if, for all non-isolated ¢ € K,

o F@ 1)
11m f

zy—& T -y

=f"(&).

The simple idea is that small gaps are dangerous for the Lipschitz continuity
on K which is a necessary condition for C'!-extendability.
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CH(R|K) and C'(K)

Whitney (1934)

A function f € C'(R|K) if and only if, for all non-isolated ¢ € K,
lim 1@ =)
11m

-y

z,Y—& a3

=f(6).

The gap structure function

sup{ly —&|: y € G}
)

0'(§)=lil)r})sup{ :Gg(.f—s,§+s)isagapofK}.
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CH(R|K) and C'(K)
Whitney (1934)
A function f € C*(R|K) if and only if, for all non-isolated ¢ € K,
lim 1@ =)
m —
-y

z,Y—& a3

=f(6).

The gap structure function

sup{ly —&|: y € G}
)

(T(f):lin})sup{ :Gg(f—s,§+s)isagapofK}.

L. Frerick, L. L., J. Wengenroth (2020)

For a compact set K € R we have C!(K) = C'(R|K) if and only if o (¢) < oo
forall¢é € K.
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