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Pointwise Hölder spaces
Let x0 ∈ Rd ; a function f ∈ L∞

loc(R
d ) belongs to the Hölder space Λ𝛼 (x0)

(𝛼 > 0) if there exist C > 0 and a polynomial Px0 of degree less than 𝛼 s.t., for
j large enough,

‖f − Px0 ‖L∞ (B (x0,2−j )) ≤ C2−j 𝛼.
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Pointwise Hölder spaces
Let x0 ∈ Rd ; a function f ∈ L∞

loc(R
d ) belongs to the Hölder space Λ𝛼 (x0)

(𝛼 > 0) if

sup
|h | ≤2−j

‖Δ[𝛼]+1f ‖
L∞ (B [𝛼]

h
(x0,2−j ))

≤ C2−j 𝛼.

with

Δ1
h f (x ) = f (x + h) − f (x ) and Δn+1

h = Δ1
hΔ

n
h f (x ),

and BM
h

(x0, 2−j ) = {x : [x0, x0 + (M + 1)h] ⊂ B (x0, 2−j )}.
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Pointwise Hölder spaces
Let x0 ∈ Rd ; a function f ∈ L∞

loc(R
d ) belongs to the Hölder space Λ𝛼 (x0)

(𝛼 > 0) if

sup
|h | ≤2−j

‖Δ[𝛼]+1f ‖
L∞ (B [𝛼]

h
(x0,2−j ))

≤ C2−j 𝛼.

|x |1/3,
√︁
|x |, |x |0.8, |x |, |x |3/2.
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Pointwise Hölder spaces
Let x0 ∈ Rd ; a function f ∈ L∞

loc(R
d ) belongs to the Hölder space Λ𝛼 (x0)

(𝛼 > 0) if

sup
|h | ≤2−j

‖Δ[𝛼]+1f ‖
L∞ (B [𝛼]

h
(x0,2−j ))

≤ C2−j 𝛼.

h (∞) (x0) = sup{𝛼 : f ∈ Λ𝛼 (x0)}.

D (∞) (h) = dimH{x : h (∞) (x ) = h}.
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Drawbacks
Unadapted to study non-locally
bounded functions

The Brjuno function

Jaffard and Mélot
propose to use the spaces of Calderón
and Zygmund where the L∞ norm is re-
placed by a Lp norm (p ∈ [1, +∞]).

Unable to detect precise and
particular pointwise behaviour

The Brownian motion display-
ing the Khintchine law
of iterated logarithm

Kreit and Nicolay
replace the dyadic sequence
appearing in the definition by a
more general sequence, called
admissible.
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Objectives

1. Define functional spaces which gather the two approaches.

2. Propose a multifractal formalism adapted to these new spaces.
3. Study the new spaces from a functional analysis point of view.

First guidelines
• Hölder spaces are a pointwise version of some Besov spaces.
• The multifractal formalism of Jaffard and Frayse is based on the

belonging to some Besov spaces.
• Besov spaces were generalized using admissible sequences.
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Some equivalent
definitions of Besov
spaces of generalized
smoothness
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Besov spaces
Historically Besov spaces were first defined using interpolation spaces

B s
p,q = [H t

p ,H
u
p ]𝛼,q ,

with s = (1 − 𝛼)t + 𝛼u , where H t
p and H u

p are Sobolev spaces

or equivalently using Litllewood-Paley Theory

B s
p,q =

{
f ∈ S′(Rd ) :

(
2js ‖F −1(𝜑jF f ))‖Lp (Rd ))

)
j
∈ ℓq

}
where (𝜑j )j ∈N0 ⊂ S(Rd ) is a regular partition of unity.
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B s
p,q = [H t

p ,H
u
p ]𝛼,q ,

with s = (1 − 𝛼)t + 𝛼u , where H t
p and H u

p are Sobolev spaces
or equivalently using Litllewood-Paley Theory

B s
p,q =

{
f ∈ S′(Rd ) :

(
2js ‖F −1(𝜑jF f ))‖Lp (Rd ))

)
j
∈ ℓq

}
where (𝜑j )j ∈N0 ⊂ S(Rd ) is a regular partition of unity.

supp 𝜑j ⊆ {b ∈ Rd : 2j−1 ≤ |b | ≤ 2j+1}
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Admissible sequences
A sequence 𝝈 = (𝜎j )j ∈N0 of real positive numbers is called admissible if there
exists a positive constant C such that

C −1𝜎j ≤ 𝜎j+1 ≤ C𝜎j ,

for any j ∈ N.

One sets

s (𝜎) = lim
j

log2(𝜎j )
j

, s (𝜎) = lim
j

log2(𝜎j )
j

,

so that for any Y > 0, there exists C > 0 s.t. for all j , k

C −12j (s (𝜎)−Y) ≤
𝜎j+k
𝜎k

≤ C2j (s (𝜎)+Y) .
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Admissible sequences

Example
If s ∈ R, s = (2sj )j is admissible with s (s) = s (s) = s

Definition
A strictly positive function 𝜓 is a slowly varying function if

lim
t→0

𝜓(rt)
𝜓(t) = 1,

for any r > 0.

Example
If 𝜓 is a slowly varying function and u ∈ R, the sequence 𝝈 = (2ju𝜓(2j ))j is
admissible with s (𝝈) = s (𝝈) = u.
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Generalized Besov spaces
Let 𝛾 be an admissible sequence such that 𝛾

1
> 1

, there exists k0 ∈ N such
that

2𝛾j ≤ 𝛾k ∀ j , k ∈ N s.t. j + k0 ≤ k

B
𝝈,𝜸
p,q =

{
f ∈ S′(Rd ) :

(
𝜎j ‖F −1(𝜑𝜸,Jj F f )‖Lp (Rd )

)
j
∈ ℓq

}
• supp(𝜑𝜸,Jj ) ⊆ {b ∈ Rd : |b | ≤ 𝛾j+Jk0} ∀j ∈ {0, . . . , Jk0 − 1},
• supp(𝜑𝜸,Jj ) ⊆ {b ∈ Rd : 𝛾j−Jk0 ≤ |b | ≤ 𝛾j+Jk0} ∀j ≥ Jk0,
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Generalized Besov spaces

Moura, 2007
Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j and 𝜸 = (𝛾j )j be two admissible sequences such
that 𝛾

1
> 1 and 0 < s (𝝈)s (𝜸)−1. For any n ∈ N such that s (𝝈)s (𝜸)−1 < n , we

have
B

𝝈,𝜸
p,q = {f ∈ Lp : (𝜎j sup

|h | ≤𝛾−1
j

‖Δn
h f ‖Lp )j ∈ ℓq }.
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Generalized Besov spaces and convolution

Characterization of Generalized Besov spaces in terms of convolution
L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j and 𝜸 = (𝛾j )j be two admissible sequences such
that 𝛾

1
> 1 and s (𝝈) > 0; we have

B
𝝈,𝜸
p,q = {f ∈ Lp : ∃ 𝜙 ∈ D such that (𝜎j ‖f ∗ 𝜙𝛾−1

j
− f ‖Lp )j ∈ ℓq }.
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Generalized Besov spaces and derivatives

Characterization of Generalized Besov spaces in terms of derivatives
L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j and 𝜸 = (𝛾j )j be two admissible sequences such
that 𝛾

1
> 1. Let the numbers k , n ∈ N0 be such that

k < s (𝝈)s (𝜸)−1 ≤ s (𝝈)s (𝜸)−1 < n .

We have

B
𝝈,𝜸
p,q = {f ∈ W k

p : (𝛾−|𝛼 |
j 𝜎j sup

|h | ≤𝛾−1
j

‖Δn−|𝛼 |
h

D 𝛼f ‖Lp )j ∈ ℓq ∀|𝛼 | = k }.
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Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j and 𝜸 = (𝛾j )j be two admissible sequences such
that 𝛾

1
> 1. Let n ∈ N be such that n < s (𝝈)s (𝜸)−1 ≤ s (𝝈)s (𝜸)−1 < n + 1; the

following assertions are equivalent:
1. The function f belongs to B

𝝈,𝜸
p,q ;
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> 1. Let n ∈ N be such that n < s (𝝈)s (𝜸)−1 ≤ s (𝝈)s (𝜸)−1 < n + 1; the

following assertions are equivalent:
2. The function f belongs to W n

p and, for all h ∈ Rd and almost every x ∈ Rd ,
we have

f (x + h) =
∑︁
|𝛼 | ≤n

D 𝛼f (x ) h
𝛼

|𝛼 |! + Rn (x , h)
|h |n
n!

,

where
(𝜎j 𝛾

−n
j sup

|h | ≤𝛾−1
j

‖Rn (·, h)‖Lp )j ∈ ℓq ;
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Generalized Besov spaces and polynomials

Characterization of Generalized Besov spaces in terms of
polynomials L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j and 𝜸 = (𝛾j )j be two admissible sequences such
that 𝛾

1
> 1. Let n ∈ N be such that n < s (𝝈)s (𝜸)−1 ≤ s (𝝈)s (𝜸)−1 < n + 1; the

following assertions are equivalent:
3. If, given j ∈ N0, 𝜋j is a net of Rd made of cubes of diagonal 𝛾−1j , then for all
j ∈ N0, there exists g𝜋j such that
• the trace of g𝜋j in each cube of 𝜋j is a polynomial of degree at most n ,
• one has (𝜎j ‖f − g𝜋j ‖Lp )j ∈ ℓq .
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Interpolation methods
Let A0,A1 be two normed vector spaces which are continuously embedded in
a Hausdorff topological vector space V . As a consequence, the spaces
A0 ∩A1 and A0 +A1 are also normed vector spaces.

We say that
a ∈ [A0,A1]𝛼,q (0 < 𝛼 < 1 and 1 ≤ q ≤ ∞) if
• ∃(uj )j ∈Z ⊂ A0 ∩A1 such that

a =
∑︁
j ∈Z

uj with convergence in A0 +A1

and

(2−𝛼j max{‖uj ‖A0 , 2
j ‖uj ‖A1})j ∈Z ∈ ℓq (Z).

OR
• ∀j ∈ Z, there exist a0,j ∈ A0 and a1,j ∈ A1 such that a = a0,j + a1,j and

(2−𝛼j (‖a0,j ‖A0 + 2j ‖a1,j ‖A1))j ∈Z ∈ ℓq (Z).
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Generalized interpolation methods
Let r , s ∈ R and 𝜎, 𝛾 be two admissible sequences such that 𝛾

1
> 1 and

r < min{s (𝜎)s (𝛾)−1, s (𝜎)s (𝛾)−1} ≤ max{s (𝜎)s (𝛾)−1, s (𝜎)s (𝛾)−1} < s .

• a ∈ [A0,A1] \,𝜓J ,q
if there exists (uj )j ∈Z ⊂ A0 ∩A1 such that a =

∑
j ∈Z uj , with

convergence in A0 +A1 and

(\j max{‖uj ‖A0 , 𝜓j ‖uj ‖A1 })j ∈Z ∈ ℓq (Z).

• a ∈ [A0,A1] \,𝜓K ,q
if ∀j ∈ Z, there exist a0,j ∈ A0 and a1,j ∈ A1 such that

a = a0,j + a1,j and

(\j (‖a0,j ‖A0 + 𝜓j ‖a1,j ‖A1))j ∈Z ∈ ℓq (Z).

L.L. & S. Nicolay (2019)

[A0,A1] \,𝜓J ,q
= [A0,A1] \,𝜓K ,q

=: [A0,A1]𝜎,𝛾
q
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Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized
interpolation L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , r , s ∈ R, and 𝝈, 𝜸 be two admissible sequences such that
𝛾
1
> 1 and

r < min{s (𝝈)s (𝜸)−1, s (𝝈)s (𝜸)−1} ≤ max{s (𝝈)s (𝜸)−1, s (𝝈)s (𝜸)−1} < s;

we have
B

𝝈,𝜸
p,q = [H r

p ,H
s
p ]

𝝈,𝜸
q .
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Generalized Besov spaces and interpolation

Characterization of Generalized Besov spaces in terms of generalized
interpolation L.L. & S. Nicolay (2019)
Let p, q ∈ [1,∞] , r , s ∈ R, and 𝝈, 𝜸 be two admissible sequences such that
𝛾
1
> 1 and

k < s (𝝈)s (𝜸)−1 ≤ s (𝝈)s (𝜸)−1 < n ,

we have
B

𝝈,𝜸
p,q = [W k

p ,W
n
p ]𝝈,𝜸

q .
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Pointwise spaces of
generalized
smoothness

16/33



The space T𝝈
p,q (x0)

Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j be an admissible sequence such that s (𝝈) > −d
p ,

f ∈ Lp
loc and x0 ∈ Rd ; f belongs to T𝝈

p,q (x0) whenever

(𝜎j 2
jd/p sup

|h | ≤2−j
‖Δ bs (𝜎) c+1

h
f ‖Lp (Bh (x0,2−j )) )j ∈ ℓq ,

where, given r > 0, if s (𝝈) > 0, we have

Bh (x0, r ) = {x : [x , x + (bs (𝝈)c + 1)h] ⊂ B (x0, r )},

and Bh (x0, r ) = B (x0, r ) otherwise.
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The space T𝝈
p,q (x0)

Let p, q ∈ [1,∞] , 𝝈 = (𝜎j )j be an admissible sequence such that s (𝝈) > 0,
f ∈ Lp

loc and x0 ∈ Rd ; f belongs to T𝝈
p,q (x0) whenever

there exists a sequence of polynomials (Pj ,x0)j of degree less than or equal to
bs (𝝈)c such that

(𝜎j 2
jd/p ‖f − Pj ,x0 ‖Lp (B (x0,2−j )) )j ∈ ℓq .

!
!
!
!
!
!
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f ∈ Lp

loc and x0 ∈ Rd ; f belongs to T𝝈
p,q (x0) whenever

there exists a sequence of polynomials (Pj ,x0)j of degree less than or equal to
bs (𝝈)c such that

(𝜎j 2
jd/p ‖f − Pj ,x0 ‖Lp (B (x0,2−j )) )j ∈ ℓq .

L.L. & S. Nicolay (2020)
Moreover, if 0 ≤ n := bs (𝝈)c < s (𝝈), there exists a unique polynomial Px0 of
degree less than or equal to n such that

(𝜎j 2
jd/p ‖f − Px0 ‖Lp (B (x0,2−j )) )j ∈ ℓq .

17/33



Wavelet leaders

Given a dyadic cube _ ∈ Λj at scale j , the p-wavelet leader of _ (p ∈ [1,∞]) is
defined by

dp
_
= sup

j ′≥j
(

∑︁
_′∈Λj ′ ,_′⊂_

(2(j−j ′)d/p |c_′ |)p)1/p .

Given x0 ∈ Rd , we set
dp
j (x0) = sup

_∈3_j (x0)
dp
_
.
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Wavelet leaders

Given a dyadic cube _ ∈ Λj at scale j , the p-wavelet leader of _ (p ∈ [1,∞]) is
defined by

dp
_
= sup

j ′≥j
(

∑︁
_′∈Λj ′ ,_′⊂_

(2(j−j ′)d/p |c_′ |)p)1/p .

Given x0 ∈ Rd , we set
dp
j (x0) = sup

_∈3_j (x0)
dp
_
.

L.L. & S. Nicolay (2020)
If f belongs to the space T𝝈

p,q (x0), then

(𝜎jd
p
j (x0))j ∈ ℓq .

Conversely, if 2−jd/p𝜎−1
j tends to 0 as j tends to ∞ and 𝜎1 > 2−d/p , if f belongs

to Bs
p,q (Rd ) for some s > 0, then (𝜎jd

p
j (x0))j ∈ ℓq implies f ∈ T𝝈

p,q ,log
(x0). 18/33



Wavelet leaders

Let p, q ∈ [1,∞] , x0 ∈ Rd and f be a function from Lp
loc; if 𝝈 is an admissible

sequence such that 2−jd/p𝜎−1
j tends to 0 as j tends to∞, we say that f belongs

to T𝝈
p,q ,log

(x0) if there exists J ∈ N for which

(
2jd/p𝜎j

| log2(2−jd/p𝜎−1
j ) |

sup
|h | ≤2−j

‖Δ bs (𝝈) c+1
h

f ‖Lp (Bh (x0,2−j )) )j ≥J ∈ ℓq .

!
!
!
!
!
!
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f belongs to T𝝈
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‖Δ bs (𝝈) c+1
h

f ‖Lp (Bh (x0,2−j )) )j ≥J ∈ ℓq .

E Y
∞(x0) = {f ∈ B Y

∞,∞(Rd ) : (𝜎jd
∞
j (x0))j ∈ ℓ∞},

equipped with the norm

‖ · ‖E Y
∞ (x0) : E Y

∞(x0) → [0, +∞) : f ↦→ ‖f ‖B Y
∞,∞ + ‖(𝜎jd

∞
j (x0))j ‖ℓ∞ .
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L.L. & S. Nicolay (2020)
If x0 ∈ Rd , for all 0 < Y <

s (𝝈)
4 , from the the prevalence point of view, almost

every function of E Y
∞(x0) belongs to T𝝈

∞,log
(x0) \ T𝝈,∞

/s log (x0). 19/33
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1,∞(Rd ) : (𝜎jd
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j (x0))j ∈ ℓ∞},

equipped with the norm

‖ · ‖E Y
1 (x0) : E Y

1 (x0) → [0, +∞) : f ↦→ ‖f ‖B Y
1,∞

+ ‖(𝜎jd
1
j (x0))j ‖ℓ∞ .

L.L. & S. Nicolay (2020)
If x0 ∈ Rd , for all 0 < Y <

s (𝝈)+d
4 , from the the prevalence point of view, almost

every function of E Y
1 (x0) belongs to T𝝈

1,log
(x0) \ T𝝈,1

/s log (x0). 19/33



Generalized Hölder exponent

Decreasing family of admissible sequences
Let p, q ∈ [1,∞]; if, given h > −d/p , 𝜸 (h) is an admissible sequence, the family
of admissible sequences h ↦→ 𝜸 (h) is (p, q)-decreasing if it satisfies s (𝜸 (h) ) >
−d/p , 𝛾 (h)

1
> 2−d/p for any h > −d/p and if −d/p < h < h ′ implies

T
𝜸 (h′)
p,q (x0) ⊂ T

𝜸 (h )
p,q (x0).
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Generalized Hölder exponent

Decreasing family of admissible sequences and associated exponent
Let p, q ∈ [1,∞]; if, given h > −d/p , 𝜸 (h) is an admissible sequence, the family
of admissible sequences h ↦→ 𝜸 (h) is (p, q)-decreasing if it satisfies s (𝜸 (h) ) >
−d/p , 𝛾 (h)

1
> 2−d/p for any h > −d/p and if −d/p < h < h ′ implies

T
𝜸 (h′)
p,q (x0) ⊂ T

𝜸 (h )
p,q (x0).

hp,q (x0) := sup{h > −d/p : f ∈ T
𝜸 (h )
p,q (x0)}.
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Generalized Hölder exponent

Decreasing family of admissible sequences and associated exponent
and spectrum
Let p, q ∈ [1,∞]; if, given h > −d/p , 𝜸 (h) is an admissible sequence, the family
of admissible sequences h ↦→ 𝜸 (h) is (p, q)-decreasing if it satisfies s (𝜸 (h) ) >
−d/p , 𝛾 (h)

1
> 2−d/p for any h > −d/p and if −d/p < h < h ′ implies

T
𝜸 (h′)
p,q (x0) ⊂ T

𝜸 (h )
p,q (x0).

hp,q (x0) := sup{h > −d/p : f ∈ T
𝜸 (h )
p,q (x0)}.

Dp,q (h) := dimH ({x0 ∈ Rd : hp,q (x0) = h}).
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Generalized Hölder exponent

Decreasing family of admissible sequences and associated spectrum
If (𝜸 (h) )h is a (p, q)-decreasing family of admissible sequences

Dp,q (h) := dimH ({x0 ∈ Rd : hp,q (x0) = h}).

L.L. & S. Nicolay (2020)
It 𝝈 is an admissible sequence such that s (𝝈) − d

r > −d
p and if s ≤ q then, for

all f ∈ B𝝈
r ,s , we have

dimH ({x0 ∈ Rd : hp,q (x0) < h}) ≤ d + rs (𝜸
(h)

𝝈
).
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Multifractal formalism

Compatibility conditions
An admissible sequence 𝝈 and a family of admissible sequences 𝜸 ( ·) are com-
patible for p, q , r , s ∈ [1,∞] with s ≤ q if
• s (𝝈) > 0,
• s (𝝈) − d/r > −d/p ,
• the function Z defined on (−d/p,∞) by

Z (h) := s (𝜸
(h)

𝝈
) = s (𝜸

(h)

𝝈
)

is non decreasing, continuous and such that

{h > −d/p : Z (h) < −d/r } ≠ ∅.

We call Z the ratio function and set hmin(r ) := sup{h > −d/p : Z (h) < −d/r }.
21/33



Multifractal formalism

Z (h) := s (𝜸
(h)

𝝈
) = s (𝜸

(h)

𝝈
)

!
!
!
!
!
!
!
!
!
!
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Multifractal formalism

Z (h) := s (𝜸
(h)

𝝈
) = s (𝜸

(h)

𝝈
)

L.L. & S. Nicolay (2020)
Let p, q , r , s ∈ [1,∞] with s ≤ q , 𝝈 be an admissible sequence and 𝜸 ( ·) be a
family of admissible sequences compatible with 𝝈. From the prevalence point
of view, for almost every f ∈ B𝝈

r ,s , Dp,q is defined on I = [Z−1(−d/r ), Z−1(0)]
and

Dp,q (h) = d + r Z (h),

for any h ∈ I .
Moreover, for almost every x0 ∈ Rd , we have hp,q (x0) = Z−1(0).
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Multifractal formalism

L.L. & S. Nicolay (2020)
Let p, q , r , s ∈ [1,∞] with s ≤ q , 𝝈 be an admissible sequence and 𝜸 ( ·) be a
family of admissible sequences compatible with 𝝈. From the prevalence point
of view, for almost every f ∈ B𝝈

r ,s , Dp,q is defined on I = [Z−1(−d/r ), Z−1(0)]
and

Dp,q (h) = d + r Z (h),

for any h ∈ I .
Moreover, for almost every x0 ∈ Rd , we have hp,q (x0) = Z−1(0).

If p = q = ∞, (𝜸 (h) )h>0 is the usual family (2jh )h>0 and 𝜎 = (2sj )j

Z (h) = s ((2(h−s)j )j ) = h − s
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Multifractal formalism

L.L. & S. Nicolay (2020)
Let p, q , r , s ∈ [1,∞] with s ≤ q , 𝝈 be an admissible sequence and 𝜸 ( ·) be a
family of admissible sequences compatible with 𝝈. From the prevalence point
of view, for almost every f ∈ B𝝈

r ,s , Dp,q is defined on I = [Z−1(−d/r ), Z−1(0)]
and

Dp,q (h) = d + r Z (h),

for any h ∈ I .
Moreover, for almost every x0 ∈ Rd , we have hp,q (x0) = Z−1(0).

If p = q = ∞, (𝜸 (h) )h>0 is the usual family (2jh )h>0 and 𝜎 = (2sj )j

∀h ∈ [s − d

r
, s] : D (h) = d + r (h − s)
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About the results of Calderón and Zygmund

Let x0 ∈ Rd , p ∈ [1,∞] and 𝜙 ∈ B be such that b (𝜙) > −d/p. A function
f ∈ Lp (Rd ) belongs to the spaceT p

𝜙
(x0) if there exist a polynomial P of degree

strictly less than b (𝜙) and a constant C > 0 such that

r−d/p ‖f − P ‖Lp (B (x0,r )) ≤ C 𝜙(r ) ∀r > 0.
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r−d/p ‖f − P ‖Lp (B (x0,r )) ≤ C 𝜙(r ) ∀r > 0.

A function 𝜙 : (0, +∞) → (0, +∞) is a Boyd function if 𝜙(1) = 1, 𝜙 is continuous
and, for all x ∈ (0, +∞),

𝜙(x ) := sup
y>0

𝜙(xy)
𝜙(y) < ∞. (1)
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strictly less than b (𝜙) and a constant C > 0 such that

r−d/p ‖f − P ‖Lp (B (x0,r )) ≤ C 𝜙(r ) ∀r > 0.

A sequence 𝝈 = (𝜎j )j of real positive numbers is admissible if and only if
there exists a Boyd function 𝜙 such that, for any j , 𝜙(2j ) = 𝜎j .
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Let x0 ∈ Rd , p ∈ [1,∞] and 𝜙 ∈ B be such that b (𝜙) > −d/p. A function
f ∈ Lp (Rd ) belongs to the spaceT p

𝜙
(x0) if there exist a polynomial P of degree

strictly less than b (𝜙) and a constant C > 0 such that

r−d/p ‖f − P ‖Lp (B (x0,r )) ≤ C 𝜙(r ) ∀r > 0.

Uniqueness of the polynomial

Equipped with this norm, T p
𝜙
(x0) is a Banach space

‖f ‖Tp
𝜙
(x0) := ‖f ‖Lp (Rd ) +

∑︁
|𝛼 |<b (𝜙)

|D 𝛼P (x0) |
𝛼!

+ sup
r>0

𝜙(r )−1r−d/p ‖f − P ‖Lp (B (x0,r )) .
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Elliptic partial differential equations

An elliptic partial differential equation at x0 ∈ Rd of order m ∈ N is a partial
differentiable equation of the form

Ef =
∑︁

|𝛼 | ≤m
a𝛼 D

𝛼f = g

where for all |𝛼 | ≤ m , a𝛼 is an s×r matrix of functions, f and g are vector valued
functions with fj ∈ W p

m (Rd ) for all j ∈ {1, . . . , r } and

`(x0) := inf
|b |=1

det[(
∑︁
|𝛼 |=m

a∗
𝛼 (x0)b𝛼) (

∑︁
|𝛼 |=m

a𝛼 (x0)b𝛼)] > 0

is the ellipticity constant of E at x0.
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Operators

J s f := F −1 ((1 + | · |2)−s/2F f
)

(s ∈ R, f ∈ S′)

and
Kf = p .v .

∫
k (· − y)f (y) dy .
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J s f := F −1 ((1 + | · |2)−s/2F f
)

(s ∈ R, f ∈ S′)
and

Kf = p .v .

∫
k (· − y)f (y) dy .

If b (𝜙) + s < 0 or ∃n ∈ N s.t. n < b (𝜙) + s ≤ b (𝜙) + s < n + 1 and p ∈ (1,∞].

T p
𝜙
(x0)

Js

−→ T q
𝜙s
(x0)

�
K

where 𝜙s : (0, +∞) → (0, +∞) x ↦→ 𝜙(x )x s and
• 1/p ≥ 1/q ≥ 1

p − s
d if p < d/s ,

• p ≤ q ≤ ∞ if d/s < p ≤ ∞,
• p ≤ q < ∞ if d/s = p 24/33



Operators

J s f := F −1 ((1 + | · |2)−s/2F f
)

(s ∈ R, f ∈ S′)
and

Kf = p .v .

∫
k (· − y)f (y) dy .

If k ∈ C∞(Rd \ {0}) is homogeneous of degree −d with mean value zero on
the sphere Σ, b (𝜙) < 0 or ∃n ∈ N s.t. n < b (𝜙) ≤ b (𝜙) < n + 1 and p ∈ (1,∞)

T p
𝜙
(x0)

Js

−→ T q
𝜙s
(x0)

�
K

with
‖Kf ‖Tp

𝜙
(x0) ≤ C𝜙,p

(
sup
|x |=1

0≤|𝛼|≤db (𝜙)eN

|D 𝛼k (x ) |
)
‖f ‖Tp

𝜙
(x0) ,
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Generalization of the main result of Calderón
and Zygmund

Our variant
• Considering generalized pointwise regularity.
• Assuming Lq conditions for the coefficients of the equation instead of

L∞.
!
!
!
!
!
!
!
!
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Generalization of the main result of Calderón
and Zygmund

Our variant
• Considering generalized pointwise regularity.
• Assuming Lq conditions for the coefficients of the equation instead of

L∞.

Let, p ∈ (1,∞), 𝜙, 𝜑 ∈ B be such that 0 < b (𝜙), −d/p < b (𝜑) and such that there exists
n ∈ Z such that n < b (𝜑) ≤ b (𝜑) < n + 1; let us define kp as follows:

• if b (𝜑) = b (𝜑), kp (𝜙, 𝜑) := min{k ∈ N : 1
k (b (𝜑) +

d
p ) < min{1, b (𝜙)}},

• if n < b (𝜑) < b (𝜑) < n + 1,

kp (𝜙, 𝜑) := kp (𝜙, · b (𝜑) ) +min{k ∈ N :
b (𝜑) − b (𝜑)

k
< min{1, b (𝜙)}}.
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Calderón & Zygmund (1960)
Let p ∈]1,∞[, x0 ∈ Rd , u > 0 and v be a non integer such that −d

p ≤ v ≤ u.
Let Ef = g be an elliptic differentiable equation of order m at x0 such that
f ∈ W p

m (Rd ), the coefficients of E are functions in T∞
u (x0) and g ∈ T p

v (x0).
Then, for all |𝛼 | ≤ m , D 𝛼f ∈ T q

v+m−|𝛼 | (x0) with

‖D 𝛼f ‖T q
v+m−|𝛼| (x0)

≤ C
(
| |g | |Tp

v (x0) + ||f | |W p
m (Rd )

)
where q is determined by p,m and 𝛼

26/33



Calderón & Zygmund (1960)
Let p ∈]1,∞[, x0 ∈ Rd , u > 0 and v be a non integer such that −d

p ≤ v ≤ u.
Let Ef = g be an elliptic differentiable equation of order m at x0 such that
f ∈ W p

m (Rd ), the coefficients of E are functions in T∞
u (x0) and g ∈ T p

v (x0).
Then, for all |𝛼 | ≤ m , D 𝛼f ∈ T q

v+m−|𝛼 | (x0) with

‖D 𝛼f ‖T q
v+m−|𝛼| (x0)

≤ C
(
| |g | |Tp

v (x0) + ||f | |W p
m (Rd )

)
where q is determined by p,m and 𝛼

26/33



L.L. & S. Nicolay (2020)
Let p ∈]1,∞[, q ∈]1,∞] , x0 ∈ Rd and 𝜙, 𝜑 ∈ B be such that −d

p < b (𝜑), 0 < b (𝜙)
and there exists n ∈ Z such that n < b (𝜑) < b (𝜑) < n + 1 . Let Ef = g be an
elliptic differentiable equation of order m at x0 such that the coefficients of E
are functions in T q

𝜙
(x0) whose x0 is a Lebesgue point. Let us suppose that:

• g ∈ T p1
𝜑 (x0) with 1

p1
:= 1

p + 1
q

• 𝜙 4 𝜑 and b (𝜑) ≤ b (𝜙) or b (𝜑) − b (𝜑) ≤ min{1, b (𝜙)},
• f ∈ W s

m (Rd ) for all s ∈ [p ′, p] with 0 < 1
p′ :=

kp (𝜙,𝜑)
q + 1

p < 1

26/33



L.L. & S. Nicolay (2020)
There exists Cp′,𝜙,𝜑,m such that for all |𝛼 | ≤ m , D 𝛼f ∈ T q′

𝜑m−|𝛼| (x0) for all q ′ ≥ 1
such that
• 1

p′ ≥
1
q′ ≥

1
p′ −

m−|𝛼 |
d if 1

p′ >
m−|𝛼 |

d ,

• p ′ ≤ q ′ ≤ ∞ if 1
p′ <

m−|𝛼 |
d ,

• p ′ ≤ q ′ < ∞ if 1
p′ =

m−|𝛼 |
d .

Moreover, we have

| |D 𝛼f | |
T

q′
𝜑m−|𝛼| (x0)

≤ Cp′,𝜙,𝜑 (M (1 +MN )kp (𝜙,𝜑)−1 | |g | |Tp1
𝜑 (x0)

+ kp (𝜙, 𝜑) (1 +MN )kp (𝜙,𝜑) ( | |f | |W p
m (Rd ) + ||f | |

W
p′
m (Rd ) )
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Continuously
differentiable functions
on compact sets

27/33



Defining continuously differentiable functions
on compact sets

• By restriction

Whitney (1934)
A function f ∈ C 1(Rd |K ), with continuous derivative df , if and only if

lim
y→x
y ∈K

f (y) − f (x ) − 〈df (x ), y − x 〉
|y − x | = 0,

uniformly on x ∈ K .

• If the compact set K is topologically regular (the closure of its interior)

C 1
int(K ) = {f ∈ C (K ) : f |K̊ ∈ C 1(K̊ ) and df extends continuously to K }.
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Defining continuously differentiable functions
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• By restriction
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Our proposition

C 1(K )
A function f , continuous on K , belongs to C 1(K ) if there exits a continuous
function df on K with values in the linear maps from Rd to R such that, for all
x ∈ K ,

lim
y→x
y ∈K

f (y) − f (x ) − 〈df (x ), y − x 〉
|y − x | = 0,
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Our proposition

C 1(K )
A function f , continuous on K , belongs to C 1(K ) if there exits a continuous
function df on K with values in the linear maps from Rd to R such that, for all
x ∈ K ,

lim
y→x
y ∈K

f (y) − f (x ) − 〈df (x ), y − x 〉
|y − x | = 0,

In general, a derivative need not be unique. For this reason, a good tool to
study C 1(K ) is the jet space

J 1(K ) = {(f , df ) : df is a continuous derivative of f on K }

endowed with the norm

‖(f , df )‖J1 (K ) = ‖f ‖K + ‖df ‖K ,
29/33



Our proposition

C 1(K )
A function f , continuous on K , belongs to C 1(K ) if there exits a continuous
function df on K with values in the linear maps from Rd to R such that, for all
x ∈ K ,

lim
y→x
y ∈K

f (y) − f (x ) − 〈df (x ), y − x 〉
|y − x | = 0,

In general, a derivative need not be unique. For this reason, a good tool to
study C 1(K ) is the jet space J 1(K ) for which

C 1(K ) = 𝜋(J 1(K )) for the projection 𝜋(f , df ) = f

and we equip C 1(K ) with the norm

‖f ‖C 1 (K ) = ‖f ‖K + inf{‖df ‖K : df is a continuous derivative of f on K }.
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Banach space?

L. Frerick, L. L., J. Wengenroth (2020)
If K is a compact set with infinitely many connected components, then
(C 1(K ), ‖ · ‖C 1 (K ) ) is incomplete.
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Banach space?

Pointwise (Whitney) regularity
We say thatA is pointwise (Whitney) regular if for any x ∈ A there exist a neigh-
bourhood Vx of x in A and Cx > 0 such that any y ∈ Vx is joined to x by a
rectifiable path in A of length bounded by Cx |x − y |.

If, for all x ∈ A, Vx = A and Cx is uniform, A is (Whitney) regular.
!!
!!
!!
!!
!!
!!
!!
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Banach space?

L. Frerick, L. L., J. Wengenroth (2020)
(C 1(K ), ‖ · ‖C 1 (K ) ) is complete if and only if K has finitely many components
which are pointwise Whitney regular.
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C 1
int(K ) and C 1(K )

If K is topologically regular, C 1(K ) ( C 1
int(K ).

Whitney (1934)
Let K be a topologically regular compact set. If K̊ is Whitney regular, then
C 1
int(K ) = C 1(Rd |K ).

Whitney conjecture: What can be said about the reverse implication?

L. Frerick, L. L., J. Wengenroth (2020)
Let K be a topologically regular compact set and assume that, for all x ∈ 𝜕K ,
there exist Cx > 0 and a neighbourhood Vx of x in K such that each y ∈ Vx

can be joined from x by a rectifiable path in K̊ ∪ {x , y} of length bounded by
Cx |x − y |. Then C 1

int(K ) = C 1(K ).

L. Frerick, L. L., J. Wengenroth (2020)
Construction of a compact set K for which C 1

int(K ) = C 1(K ) = C 1(Rd |K ) but
K̊ is not Whitney regular.
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there exist Cx > 0 and a neighbourhood Vx of x in K such that each y ∈ Vx

can be joined from x by a rectifiable path in K̊ ∪ {x , y} of length bounded by
Cx |x − y |. Then C 1

int(K ) = C 1(K ).

L. Frerick, L. L., J. Wengenroth (2020)
Construction of a compact set K for which C 1

int(K ) = C 1(K ) = C 1(Rd |K ) but
K̊ is not Whitney regular.
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C 1(Rd |K ) and C 1(K )

L. Frerick, L. L., J. Wengenroth (2020)
For each compact set K , the space C 1(Rd |K ) is dense in C 1(K ).

L. Frerick, L. L., J. Wengenroth (2020)
C 1(K ) = C 1(Rd |K ) with equivalent norms if and only if K has only finitely
many components which are all Whitney regular.
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C 1(R|K ) and C 1(K )

Whitney (1934)
A function f ∈ C 1(R|K ) if and only if, for all non-isolated b ∈ K ,

lim
x ,y→b

f (x ) − f (y)
x − y

= f ′(b),

The gap structure function

𝜎(b) = lim
Y→0

sup

{
sup{|y − b | : y ∈ G}

ℓ(G) : G ⊆ (b − Y, b + Y) is a gap of K
}
.

L. Frerick, L. L., J. Wengenroth (2020)
For a compact set K ⊆ R we have C 1(K ) = C 1(R|K ) if and only if 𝜎(b) < ∞
for all b ∈ K .
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