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Abstract

Given a function, a first natural desire is to know its “behaviour”. To achieve this
goal, different notions, such as differentiability, Lipschitz or Holderian conditions,
have been introduced through the time, with more and more preciseness. In this the-
sis, we aim at characterizing the regularity of functions from different points of view
that generalize the precited ones, and using different associated functional spaces.

First, we focus on uniform regularity, investigated through Besov spaces of gener-
alized smoothness. These spaces were originally defined in terms of Littlewood-Paley
decompositions and, quickly afterwards, a characterization using finite differences was
given. Using this last one, we present some alternative definitions for Besov spaces of
generalized smoothness, involving elementary objects: (weak) derivatives, polynomi-
als and convolution. This is made in order to understand as precisely as possible what
means the belonging to a given Besov space. Initially, these spaces are known to be
interpolation spaces between Sobolev spaces. A first generalization was obtained by
introducing a function parameter in the interpolation formula. The spaces we con-
sider here are even more general and, as an intent to “close the circle”, we define a
new method of interpolation for which Besov spaces of generalized smoothness are
still linked to Sobolev spaces.

Then, we study pointwise regularity by defining functional spaces that generalize
both the ones of Holder and Calderén and Zygmund. After nearly characterizing them
by the mean of wavelet coefficients, we establish a multifractal formalism particularly
well adapted to explore the pointwise regularity through our new spaces. In fact, as
their definition is a kind of localization around the point of interest of generalized
Besov conditions, it is not a surprise that Besov spaces of generalized smoothness play
a major role in this formalism. After investigating the multifractal nature of pointwise
spaces of generalized smoothness, we focus, in a more functional analysis point of
view, on their interaction with partial differential equations. This follows the trail
of Calderén and Zygmund as we link generalized pointwise smoothness with some
families of operators. This leads to a theorem that allows to give the regularity of the
solution of an elliptic partial differential equation by formulating it from the regularity
of the coefficients and the right-hand side of the equation.

Finally, at a midpoint between uniform and pointwise regularites, we study func-
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tions that are continuously differentiable on a compact set. Even if the question seems
naive and harmless at first look, all good habits from open sets are missing and a whole
new theory needs to be established. Based on deep results of functional analysis, we
characterize the completeness of the defined functional space and show that, for any
compact set, the restrictions on it of the continuously differentiable functions on R? are
dense in our space. Finally, the latter is compared with other spaces, more frequently
met in the literature.



Résume

Etant donnée une fonction, un premier désir naturel est de connaitre son “comporte-
ment”. Pour atteindre cet objectif, différentes notions telles que la différentiabilité, les
conditions de Lipschitz ou de Holder, ont été introduites a travers le temps, avec de
plus en plus de précision. Dans cette theése, nous souhaitons caractériser la régular-
ité de fonctions depuis différents points de vue, qui généralisent les précédents, et en
utilisant divers espaces fonctionnels.

Premiérement, nous nous intéressons a la régularité uniforme, étudiée a travers
les espaces de Besov de régularité généralisée. Ces espaces ont originalement été défi-
nis en termes de décomposition de Littlewood-Paley et, peu de temps apres, une car-
actérisation utilisant les différences finies était obtenu. En exploitant cette derniere,
nous présentons des définitions alternatives pour les espaces de Besov généralisés,
au moyen d’objets élémentaires : les dérivées (faibles), les polynomes et la convo-
lution. Cela est fait en vue de comprendre, aussi précisément que possible, ce que
signifie I'appartenance a un espace de Besov donné. Initialement, ces espaces sont
connus pour étre des espaces d’interpolation entre les espaces de Sobolev. Une pre-
miere généralisation a été obtenue en introduisant une fonction en parametre de la for-
mule d’interpolation. Les espaces que nous considérons ici sont encore plus généraux
et, dans une tentative de “boucler la boucle”, nous définissons une nouvelle méthode
d’interpolation réelle pour laquelle les espaces de Besov de régularité généralisée sont
toujours liés aux espaces de Sobolev.

Ensuite, nous étudions la régularité ponctuelle en définissant des espaces fonc-
tionnels qui généralisent a la fois les espaces de Holder et de Calderén et Zygmund.
Apres avoir (presque) caractérisé ceux-ci au moyen de coefficients en ondelettes, nous
établissons un formalisme multifractal particulierement bien adapté pour explorer la
régularité ponctuelle au travers de nos espaces. En fait, vu que leur définition est une
sorte de localisation autour du point d’intérét de la condition d’appartenance aux es-
paces de Besov généralisés, c’est sans surprise que ces derniers jouent un role majeur
dans ce formalisme. Apres avoir étudié la nature multifractale des espaces ponctuels
de régularité généralisée, nous nous focalisons, d’un point de vue plus tourné vers
I’analyse fonctionnelle, sur leurs interactions avec les équations aux dérivées partielles.
Cela suit le chemin tracé par Calderén et Zygmund puisque nous lions la régularité
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généralisée avec des familles d’opérateurs. Cela conduit a un théoreme qui permet de
donner la régularité de la solution d’une équation différentielle elliptique en la formu-
lant a partir de la régularité des coefficients et du membre de droite de I’équation.

Finalement, en guise d’intermédiaire entre les régularités uniformes et ponctuel-
les, nous étudions les fonctions continiment dérivables sur un ensemble compact.
Méme si cette question semble naive et inoffensive au premier coup d’oeil, toutes les
bonnes habitudes acquises sur les ensembles ouverts manquent a l'appel et il est néces-
saire d’établir entierement une nouvelle théorie. En s’appuyant sur des résultats pro-
fonds d’analyse fonctionnelle, nous caractérisons la complétude de ’espace fonction-
nel que nous définissons et montrons que, pour tout ensemble compact, les restrictions
a ce dernier des fonctions contintiment dérivables sur R? sont denses dans notre es-
pace. Finalement, ce dernier est comparé avec d’autres espaces, plus fréquemment
rencontrés dans la littérature.
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Introduction

Given xy € R? and a > 0, we say that a function f € Lf(‘)’c(IRd) belongs to the pointwise
Holder space of order a at xj, which is noted f € A%(x,) following [86]], if there exist
a polynomial P of degree stricly less than & and a constant C > 0 such that, for all
j€N,

”f - Px0||L°°(B(x0,2‘f)) < Cz_a], (1)
where, as usual, B(xg,r) is the open ball centered at x;, with radius r. When, for all
xo € R?, f belongs to A%(x;), with an uniform constant C, we say that f is uniformly
Holder of order a and we note f € A®(RY).

The aim of those spaces is to define intermediate regularities between the more
standard spaces CP(Q)) of p-times continuously differentiable functions on the open
set (). In equation , Py, is the Taylor polynomial of f at x,, so that one removes
the smoothness part from f around x; to measure the regularity of what remains. If
0 < a < B, AP(xy) € A%(xg) and one can characterize the regularity at x, of a given
function f by its Holder exponent

he(xg) =supf{a 2 0; f € A%(xo)}.

Holderian regularity is in particular well-adapted to study the so-called monsters
of analysis: everywhere continuous but nowhere differentiable functions [110]. For
instance, for all a € (0,1) and b > 1 such that ab > 1, the Weierstrafy function [127]

+00
Wop t R>R: x> Zajcos(bjnx)
j=0

satisfies, for all x; € RY,

1
hWa,b (xO) == IZEEZ;,

see [57,3]].

Unfortunately, in general, the function xo > hf(xo) can be itself very irregular.
For this reason, one prefers to compute the Hausdorff dimension dimy, of the isohdlder
sets, i.e. the sets of points sharing the same Holder exponent. The spectrum of the
function f is then defined by

D : [0,+c0] — [0,d] U {~co} : h—> dimy({xg € R? : hy(xg) = h}),
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with the convention that dimy(0) = —oco.

If the spectrum D of a function admits a unique finite value, this function is
called monofractal (of exponent h). For example, W, is monofractal of exponent
—}gggg; and D(—iggzgi) = 1. At the opposite, the spectrum of a multifractal function
admits different values h for which D(h) # —co. For instance, the Riemann function

- sin(j%7mx)
=1

is multifractal because its spectrum is

4h-2 ifhels,3
D(h)=1{ 0 ifh=3
—00 otherwise,

as established in [68]].

One then has to find conditions to determine spectra of functions. A formula,
aimed at obtaining such a spectrum, is called a multifractal formalism and we wish
this formula to be valid for a large class of functions. Therefore, we look for determin-
ing regularity spaces in which “most” of the functions which belong to them satisfy the
corresponding formalism. To formalize this “most”, one can speaks in terms of preva-
lence, a probabilistic notion that generalizes to infinite dimension spaces the notion of
“almost everywhere” provided by the Lebesgue measure.

A good tool to establish a multifractal formalism is to use the (discrete) wavelet
transform: the associated wavelet coefficients of a function can be used to study the
Holdérian regularity, by defining the so-called wavelet leaders. Wavelets can also be
used to characterize the belonging to some functional spaces such as, for instance,
the Besov spaces ([102]]) . Thanks to these two facts, Jaffard and Fraysse proved [72,
70]] that, from the prevalence point of view, almost every function f € BS ’OO(IRd), with

p€[l,00]and s> %, verifies the following multifractal formalism:
Yhe[s—d/p,s], DMh)=hp—-sp+d. (2)

Unfortunately, Holder spaces can only be used for functions that are locally bounded
almost everywhere, , as inequality relies on a L norm. This assumption is, of
course, not always satisfied. For this reason, Jaffard and Mellot suggested in [74, [75]]
to use in the multifractal analysis theory some functional spaces originally defined by
Calderén and Zygmund [26]). If p € [1, 0], xg € RY and & > —d/p, a function f € LfOC(IRd)

belongs to the space T/ (x,) if there exist a polynomial Py, of degree stricly less than «
and a constant C > 0 such that, for all j € N,

2jd/p||f _PxO“LP(B(xO,Z*j)) < Cz_aj- (3)
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Another drawback from Holder spaces is their inability to precisely characterize
the pointwise behaviour of some remarkable functions and therefore distinguish them.
For example, it is well-known that, if (€, B,IP) is a probability space and if B.(-) is the
Brownian motion on it, almost surely for all w € () and for almost every t; € R, there
exists C > 0 such that

1
[BH() ~ By ()] < Cltg — 1] y/loglog]t ~ to]

while, for all ¢, € R, hp,) = %, see [82], 160]. To overcome this problem, Kreit and
Nicolay generalized the Holder spaces in [87,[88,[90] by replacing the dyadic sequence
which appears in the right-hand side of (1) by an admissible sequence o = (0;);,
sequence of strictly positive real numbers such that the sequence (0;,1/0;); is bounded.
Such sequences are quite easy to handle with as, for instance, they have the advantage
that their asymptotic behaviour can be characterized directly, using their so-called
Boyd indices. Admissible sequences have already been used to define generalized
Besov spaces ([44]).

The initial objective of this thesis was to combine these two methods in order
to define functional spaces better suited to characterize more precisely the pointwise
behaviour of a given function, even if it is not locally bounded. Thanks to the gener-

ie. a

alized Besov spaces, we are able to provide a new multifractal formalism, which gen-
eralizes , and a general framework for the wavelet leaders method. This establishes
the theoretical background needed to implement some methods that could be used,
for example, to detect if a process is a Brownian motion, or not. Combined with the
Black-Scholes model ([13} [58]]), this could help to predict the dynamics of a financial
market.

Chapter [1] of this thesis is devoted to the presentation of the main tools we will
use. Some of them have been briefly quoted in this introduction, more details and
references can be found there.

Besov spaces of generalized smoothness play a central role in the multifractal for-
malism we present. It is thus natural to start by a in-depth study of those spaces, in or-
der to exactly understand the properties of the functions which belong to them. Chap-
ter [2] presents some alternative definitions of the Besov spaces of generalized smooth-
ness, mostly by connecting them to the well-known Sobolev spaces. The uniform reg-
ularity of functions is discussed in terms of derivatives, polynomials and convolution.
Moreover, we present a generalized method of interpolation, based on admissible se-
quences, which is particularly wellsuited to our context. Using it, we show that Besov
spaces of generalized smoothness are interpolation spaces which “lie” in between two
Sobolev spaces.

Chapter [3|to[6] focus on pointwise smoothness.

In Chapter|3, we introduce the generalized pointwise Holder spaces we are work-
ing with. After discussing their definitions, we nearly characterize them with some
wavelet coefficients, the p-wavelet leaders, which generalize the wavelet leaders. The
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properties obtained are used to link pointwise and uniform regularities, thanks to the
wavelet characterization of the generalized Besov spaces, proved by Almeida in [2].
Our multifractal formalism is then presented and we show its validity, from the preva-
lence point of view.

The definition of the p-wavelet leaders given in this thesis is slighty different
from the one proposed in [75] and used by him and his co-authors, see [94, [76, [93]].
Our choice seems, in our eyes, more relevant and easier to handle with. To convince
the reader, in addition to the nearly characterization of the generalized regularity es-
tablished in Chapter 3| we discuss in Chapter[4some other nice facts that “our” leaders
can provide, concerning the so-called irregularity spaces and a result of prevalence in
multifractal analysis.

As already stated, the pointwise spaces of p-regularity were originally introduced
by Calder6on and Zygmund. They used them to characterize the regularity of the so-
lutions of some partial differential equations. Thus, a natural question is to know
whether their results extend to our generalized spaces or not. In Chapter |5, we give
an alternative definition of them, using functions instead of sequences to measure the
regularity, which is more suited to this context of differentiation. Afterwards, we state
the elementary properties of those spaces, needed in the sequel. By the way, we proved
a generalization of Whitney extension theorem, which, originally, gives a characteri-
zation of the functions which are p-times continuously differentiable on a closed set
which are in fact the restriction on it of a p-times continuously differentiable function
on the whole Euclidean space ([19]).

Once done, in Chapter [6] connections between generalized pointwise smooth-
ness and elliptic partial differential equations are explored. This follows the trail of
Calderén and Zygmund: they showed that such equations can be reduced in terms of
fundamental operators that we first need to handle.

A midpoint between uniform and pointwise regularites is to consider functions
defined on a compact set. Then, using the structure and the geometry of the compact,
we are able to define and use richer operators acting on the functions, such as the
Fréchet derivative. Nevertheless, all the good habits acquired while considering func-
tions in CP(€2) have to be dropped, just because we don’t work on an open set anymore.
In Chapter|7}, we propose to start by considering functions which are continuously dif-
ferentiable on a compact set. The completeness of the obtained space, equipped with a
natural norm, is discussed while the density of the restriction to K of the continuously
differentiable functions on R? is established. This last point gives another connec-
tion between this thesis and Whitney extension theorem. We finish by comparing our
notion of differentiability on compact sets with others, previously considered in the
literature.









The tools

In this thesis, one of our main goals is to study some functional spaces in order to
use them to capture information about the regularity of a given function better. Their
definition will rely on standard functional spaces and especially their norms.

The main idea idea will be to compare relevant quantities to admissible sequences
or Boyd functions, depending on the context. They generalize dyadic sequences and
power functions respectively without being too far away from them, which makes
them a good tool to use in our analysis.

From the wavelet transform, we will use particularly well-chosen coefficients to
extract information about the pointwise regularity of a function. Together with the
Hausdorff dimension, this will allow us to estimate the “size” of the set of points shar-
ing the same given regularity. This estimation will rely on a so-called multifractal for-
malism whose validity will be ensured by prevalence.

Of course, to prove our results, we will need some fundamental theorems of func-
tional analysis.

All those tools are gathered in this first chapter which may be seen as the foun-
dation of our work.

Contents
[I.1  Some standard functional spaces and notations|. . . . ... ... ... 2
[I.2  Admissible sequences and Boyd functions|. . . . . ... ... ... .. 3
1.3 Finite differencesl . . . . ... ... ... . .. o oo 8
M4 Wavelets . . .. ... ... 9
1 H rff m reand dimension| . . . . .. ... 10
1.6 Prevalencel . . . ... ... ... 11

[I.7  Some fundamental theorems in functional analysis|. . . . . . ... .. 12




2 Chapter 1. The tools

1.1 Some standard functional spaces and notations

For a given non-empty open set Q ¢ R? and p € [1,00], LP(Q) is the Lebesgue space of
the measurable functions f on Q such that

Il = <L P A7 < oo

if p < oo and

1|z () := supess,eqlf (x)] < o0,
otherwise. One sets LP := LP(IR%). As usual, £/ (K) (where K is either N, N, or Z) is the
Banach subspace of RK consisting of all sequences (x]-)]- satisfying

166))llenacy = () IxjIP)M7 < o0

jeK

if p is finite or [|(x;);ll¢(x) = SUp e |xj| < co. One sets ¢F := (P(IN).
Let k € Ny and p € [1, o0]; the (historical) Sobolev space W;‘(Q) is defined as

WKQ):={f e LP(Q): D*f e LP(Q)V|a| < k},

where D*f is the weak derivative of order a of f (D®f will denote either the usual
derivative or the weak derivative, depending on the context). Equipped with the norm

Il == ) IID* flliric

ler|<k

W;‘(Q) is a Banach space (see e.g. [1,[121]]). We set Wé‘ = Wé‘(le).

As usual, D (resp. S) is the space of infinitely differentiable functions with com-
pact support (resp. the Schwartz space of rapidly decreasing infinitely differentiable
functions) on R? equipped with the usual topology and D’ (resp. S’) denotes its topo-
logical dual, i.e. the space of distributions (resp. tempered distributions) on R, If
f €8’, then Ff and F~!f denote its Fourier transform and its inverse Fourier trans-
form, respectively.

Given s € R, let u; be the tempered distribution defined by

Fus=(1+ | : |2)S/2-

Of course, one has u_g = u; = 6, where ¢ is the Dirac delta “function”( see e.g. [116]).
Given s € Rand p € [1, 00}, the (fractional) Sobolev space H, is defined as

={f €S :lIfllmz = llus* flle < co}.
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Given s € Ng and 1 <p < oo, one has H; = W;. Among the most common properties of
these Sobolev spaces, the one that will be used mostly is maybe the continuous embed-
ding H; — HIZ, valid whenever r <s [1},[7,[124,[91,[121]]. Using Calder6n-Zygmund the-
ory, one can show that fractional Sobolev spaces correspond to Bessel potential spaces
(see e.g. [1,[7]): if J is the Bessel operator of order s:

Tf=FA+]-P)?Ff) (seR, feS),
one has
Hy={f €S :IITfllw <o}  (s€R, 1<p<co). (1.1)
1.2 Admissible sequences and Boyd functions

Definition 1.2.1. A sequence o = (0j); of real positive numbers is called admissible if
there exists a positive constant C such that

-1 ) ) )
C0j<0j;1 <Coj,

for any j € N.
If o is such a sequence, we set
. Oj+k — Oj+k
gj:mf]— and 0 =sup L
keN Ok keN Ok

Since (logo;); is a subadditive (resp. (logd}); is a superadditive) sequence, Fekete’s
lemma [48] states that the limits

log, 0, log, T ;
E(G)zhm gZ—] and E(O’):hm&

j ] J J

exist and are finite. They are defined as the lower and upper Boyd indices of o. It is
well known (see e.g. [87]) that, if o is an admissible sequence and ¢ > 0, there exists a
positive constant C such that

cloilsere < o < Tk G < C2I6lore),

) o

(1.2)

for any j,k € IN.
In the following, o will always stand for an admissible sequence and, given s € R,
we set s = (25j)j. Of course, we have s(s) =5(s) =s.

It is straightforward to note that, if o = (0j); and y = (y;); are two admissible
sequences, then:

* the sequence o +y = (0 + 7;); is admissible,
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* the sequence oy = (o0jy;); is admissible with s(oy) > s(o) + s(y) and
s(oy) <5(0)+5(y),

e if u > 0, the sequence o*
s(o*) = us(o),

(Gj”)]- is admissible with s(o*) = us(o) and

e if u < 0, the sequence o* = (o

])]- is admissible with s(o*) = us(o) and
s(o*) = us(o).

In the sequel, we will very often work with admissible sequences y = (y;); such
that y > 1. Such a sequence is strongly increasing (following [44]), i.e. there exists a
number kj € IN such that

27/] S)/k Vj,kENO s.t. j+k0 <k.

As equation (1.2) suggests, Boyd indices are good indicators to measure the growth
of an admissible sequence. For instance, they give some conditions to bound sums in
which dyadic, admissible and ¢7 sequences appear.

Lemma 1.2.2. Let m € IN, o be an admissible sequence such that s(c=') > m and € € ¢4
with q € [1,00]; there exists a sequence & € €1 such that

Zé‘jzjm()‘j S5]2]m0’],
=l
forall ] € IN.

Proof. Let 0,6” > 0 be such that —26" > m+5(0)+9; given | € IN, we have, using Holder’s
inequality,

Zejzf o] CZe]2 JI)ms(o o) o m

=l =l
Z l/q(Zz—pé’(j—f))l/pZImO],
=l =

where p is the conjugate exponent of g (with the usual modification if one of the indices
is co0). It remains to check that the sequence & defined by

e
k=j
belongs to ¢4, which is easy. O

In the same way, we can get the following result.
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Lemma 1.2.3. Let m € N, o be an admissible sequence such that s(o~') < m and & € (1
with q € [1,00]; there exists a sequence & € €1 such that

J
) 2oy < &2y,
j=0

forall ] € IN.
Admissible sequences are strongly related to so-called Boyd functions.

Definition 1.2.4. A function ¢ : (0,4+c0) — (0,+00) is a Boyd function if ¢(1) =1, ¢ is
continuous and, for all x € (0, +00),
Y b(xy)
(x):=su < 0. 1.3)
¢(x) := sup o) (

>0

We denote by B the set of Boyd functions.

Let us highlight the fact that Boyd functions are part of the general theory of reg-
ular variation for real functions, founded by Jovan Karamata [81] with the introduc-
tion of slowly varying functions, see Definition[I.2.7]below. A comprehensive study of
these notions can be read in [12].

If ¢ € B, then

* ¢ is submultiplicative; this follows from the fact that

(P(xyz) _ (P(XZ) (P(xzy) .
0z Plz) Pxz) < P(x)(p),

for any x,y,z >0,

* ¢ is Lebesgue-measurable, since ¢ is continuous,
* one has ¢(x) > ¢(x) and ¢(1/x) > 1/¢(x), for any x > 0.

The fact that ¢ is submultiplicative allows us to introduce the following notion
(see e.g. [31]] or [12]] where the terminology Matuszewska indices is used):

Definition 1.2.5. The lower and upper Boyd indices of the function ¢ € I3 are respectively
defined by

b(g) = sup logd(x) _ . log(x)
- ve0,1) logx x>0 logx

and

- log ¢ log ¢
b(¢):= inf 08P() _ i, logox)
xe(l,+00) logx x—+oo  logx
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The change of supremum and infimum into limits in the previous equalities again
comes from a classical result (see e.g. Theorem 7.6.2 in [61]]). Let us point out that we
have —co < b(¢) < b(¢p) < +o0, since if b is defined as

o
b(x) == Olgo ‘é)ix),

we have b(x) > b(1/x) for x > 1.

Similarly to admissible sequences, Boyd indices also allow us to estimate the
asymptotic behaviour of functions in 53, near the origin and at infinity. The follow-
ing proposition also appears in [12]].

Proposition 1.2.6. Let ¢ € B, € > 0 and R > 0; there exist C;,C,, C3,Cy > 0 such that
1. forall r € (O,R],
CyrY@%e < (r) < Cpri @), (1.4)
2. forall r € [R,+00),
Cyrt®)=¢ < (1) < Cyrt(®rre, (1.5)

Proof. Let us prove the first assertion. There exists Ry € (0,1) such that, for all r €
(0’ RO)/

~ loga(r) <

b(¢)

logr
which implies that, for such r,
P(r) < 2P, (1.6)
Similarly, there exists Ry > 1 such that, for all r € (R;, o),
B(r) < rh@)re, (1.7)
Now, using (1.3)), we have
d(1/r) < P(r) < p(n), (1.8)

for all r > 0 and from inequalities (1.6), (1.7) and (1.8), we get,
Ph(@)+e o P(r) < rh(@)-e

for 0 < r <min{R, 1/R;}. If R < min{R,, 1/R;}, one can take C; = C, = 1; otherwise we
can use the continuity of the functions

L o)

rb(d)+e rb(d)-¢

on the compact set [min{Ry, 1/R;},R] to find two constants C;,C, > 0 such that (1.4)
holds. Inequality (1.5) can be obtained by an analogous reasoning. O
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Definition 1.2.7. A strictly positive function ¢ is a slowly varying function if

p(re)
p(t)

lim =1,
t—0

for any r > 0.
Slowly varying functions give rise to fundamental examples of Boyd functions.

Example 1.2.8. If i is any slowly varying function, then, for any u € IR, the function
¢ : (0,400) = (0,+00) : r = r*4(r) is a Boyd function with b(¢) = b(¢p) = u (see [87] for
example). Such functions are known as Karamata regularly varying functions (with
index u), see [12]. A standard possibility is to take i) = |[In[®, for some s > 0.

Remark 1.2.9. Inequality (1.6) can be extended in the following way: for all ¢ > 0 and
R > 0, there exists C > 0 such that for all r € (0, R],

a(r) < Crhlé)-¢

If R > Ry, we can use the submultiplicativity of ¢ to see that for all r € (0, R],
=< Bz Ro = R Ropg)e big)-e
<D(—)Pp(=2r) < P(—)(=2)2 b(p)-¢
Bl S Pl () < Bl NI
Similarly, we can extend inequality (1.7) using the same approach: for all ¢ > 0 and
R > 0, there exists C > 0 such that, for all r € [R, ),

As a corollary to this remark, we have the following result (see e.g. [31]], [101]),
showing that the Boyd indices give an integrability criterion for Boyd functions.

Proposition 1.2.10. Let ¢ € BB; if b(¢) < 0, then f;ooa(x)/xdx < oo and if b(¢p) > 0, then
fol P (x)/xdx < co.

Again, one can note that, if ¢; and ¢, are Boyd functions, ¢ ¢p,, P1/¢,, ¢7 (1 € R)
and ¢(1/-) are Boyd functions [101].
Boyd functions and admissible sequences are connected by dyadic sequences.

Proposition 1.2.11. A sequence o = (0;); of real positive numbers is admissible if and only
if there exists a Boyd function ¢ such that, for any j, ¢(2/) = ;. Moreover, in this case, we
have b(¢) = s(o) and b($) = 5(0).

Proof. The sufficiency of the condition is straightforward. For the necessity, if o = (0});

is an admissible sequence, one can check that the function ¢ defined on (0, +c0) by

L x—2))+0; ifx e [2/,27*1)(forj € Ny)

P(x) =
1 ifxe(0,1)
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is a Boyd function satisfying, for any j, the equality ¢ (2)) =

For the “moreover part”, of course, for any j, 0; < cj)(Zf ) and, for any r > 1, if
2j <r< 2, d(r) < p(2)p(277r) < C(j) (2/), by the submult1phcat1v1ty of ¢ and Remark
9l This is enough to show that b((p) 5(c0). The equality b(¢) = s(o) is obtained in
the same way, after noting that ¢ = ¢p=1(1/-). O

Using Example the next corollary is obvious.

Corollary 1.2.12. If ¢ is a slowly varying function and u € R, the sequence o = (Zj”z,b(Zj))j
is admissible with s(o) =5(o) = u.

1.3 Finite differences

We will heavily use the finite differences in the sequel (see e.g. [16,[79][107]]). Given
a function f defined on RY and x,h € RY, the finite difference AZ f of f is defined as
follows

Af(x)=f(x+h)—f(x) and A} f(x)=ALALf(x)
for any n € IN. It is easy to check that the following formula holds:

Apf(x) = Z(—l)f(’;)f(ﬂ (n=j)h). (1.9)

j=0

In this thesis, by convention, if n <0, Aj f = f.
The centered finite difference 6, f is obtained in the same way:

5hf =f(x+h/2)- f(x—h/2) and 6Z+1f(x):6,llézf(x)

Since we have o f(x) = A} f (x — nh/2), these two notions will lead to the same defini-
tions; for example, we obviously have

WAL flle = 10, flILo»

for any h € RY, any n € N, and any p € [1,00]. If f € W;‘ (k € N, p € [1,00]), for all
1 <n <k, there exists a constant C > 0, not depending on the function f, such that

Ay fllce < Clh|" sup [ID? fI1»,

|al=n

for all h € R4,
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1.4 Wavelets

Let us briefly recall some definitions and notations about wavelets (for more preci-
sions, see e.g. [36],[102,[100]). Under some general assumptions, there exist a function
@ and 2% — 1 functions (1)), _; 4, called wavelets, such that

(p(x—k) :keZYyU{pD(2ix—k):1<i<2%kez?jeN) (1.10)

form an orthogonal basis of L2. Any function f € L? can be decomposed as follows,

fo=) Cplx-k+) Y ) chpx-k,

kezd j€Nkezd 1<i<24

where

=20 | xR dx

(
C.
]l

and
Cy = f(x)p(x—k)dx. (1.11)
R4

Let us remark that we do not choose the L? normalization for the wavelets, but rather
an L® normalization, which is better fitted to the study of the Holderian regularity.
In this thesis, we will consider two families of wavelets:

* compactly supported wavelets, built in [35]],

* wavelets in the Schwartz space of rapidly decreasing infinitely differentiable
functions, built in [92]].

If 1 is such a wavelet, ())(2/ . —k) is localized around the dyadic cube

1

( i k 1
i

d
2].+1 +5+[0,F) .

).
A =

In the sequel, we will often omit any reference to the indices 7, j and k for such cubes

by writing A = /\;i,)(. We will also index the wavelet coefficients of a function f with

the dyadic cubes A so that c) will refer to the quantity cjl])( The notation A; will stand

for the set of dyadic cubes A of RY with side length 27/ and the unique dyadic cube
from A; containing the point x; € R? will be denoted Ai(xp). The set of dyadic cubes
is A := UjenAj. Two dyadic cubes A and A’ are adjacent if there exists j € IN such
that A, A" € A; and dist(4, A') = 0. The set of the 39 dyadic cubes adjacent to A will be
denoted by 3A1.

In practice, a real-life signal is often modelled as a finite sequence x,...,x; of
real numbers that can be interpreted as the realisation of a function f defined on the
interval [0, 1] for which, forall 1 <j <], f(%) = xj. Then, one can assume that f belongs
to L2(T¥), the set of 1-periodic functions which are in L?__(R?).

loc
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To deal with L?(T%) functions, one can use the periodization operator

[1: ) fe=1)
lezd

to obtain an orthonormal basis of L?>(T¢) from the one defined in (1.10). Indeed, as
shown in [36}33], the set

{[r]:1<i<2%jeNandkelo,..., 2714,

together with the function 1, form an orthonormal basis of L?(T¢). The wavelet coeffi-
cients are then defined in the same way:

b =24 fO[p](x)dx. (1.12)
[0,1]4
One often omits the mention “per” and any references to the periodization oper-
ator in (1.12) and c, can denote both the wavelet coefficients or the periodized wavelet
coefficients, depending on the context. In the sequel, the established results concern
both families of coefficients.

1.5 Hausdorff measure and dimension

The “size” of the sets of points sharing the same regularity will be estimated with the
help of the Hausdorff dimension which is defined from the homonym measure. Details
about what it summarized here can be found in [42,[115,/59]. Let us fix X a separable
metric space; if €,h > 0, we first define

H' 2 9(X) — [0, +00] : A > inf{Zdiamh(Aj) A C UA]. and, Vj,diam(A;) < ¢
j j
where, as usual, diam stands for the diameter. For all ¢,k > 0, H’g is an outer measure
and is called the (h, ¢)-Hausdorff outer measure. Moreover, for all h > 0, the application
¢ > H" is decreasing and it follows that the h-dimensional Hausdorff measure
H": 9(X) > [0, +00] 1 A > lim H(A)
e—0*
is well-defined. Again, H" is an outer measure and, once restricted to the H"-measurable
set, the h-dimensional Hausdorff measure is invariant by translation. Therefore, if
X =R?, the d-dimensional Hausdorff measure is related to £%, the Lebesgue measur
(in IRd), by
d_ n?
24T (4 + 1)

!When the (topological) dimension d is clear, we will simply note £, for the sake of simpleness.

d
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The crucial property of Hausdorff measures is that, for any set A, there exists a
critical value hy such that

HMA)=ocoVh<hy and HM"A)=0VYh>h,.

This pivot is used to define the Hausdorff dimension of a set: if A is a non-empty set,
the Hausdorff dimension of A is

dimy(A) = sup{h > 0: H"(A) = oo} = inf{h > 0 : H"(A) = 0},

while, by convention, dimy/(0) = —co. The main properties are listed in the proposition
below.

Proposition 1.5.1.

If A C B, then dimy,(A) < dimy(B),

If A is countable, then dimy(A) =0,

If (Aj); is a sequence of sets,

dimH(UAj) = sup dimy(A)),
j ]

Foralld e N, if X = RY and A € g)(IRd), dimy(A) < d. Moreover, if[:d(A) > 0, then
dimy(A) =d.

The Hausdorff dimension is therefore a “continuous extension” of the topological
dimension, as, for all d € N and any open subset Q of R?, dim(Q) = d.

1.6 Prevalence

Now, we very briefly introduce the notion of prevalence (see [27, 166, [65] for more
details).

In IR?, it is well known that if one can associate a probability measure y to a Borel
set B such that y(B + x) vanishes for very x € IR, then the Lebesgue measure £(B) of B
also vanishes. For the notion of prevalence, this property is turned into a definition in
the context of infinite-dimensional spaces.

Definition 1.6.1. Let E be a complete metric vector space; a Borel set B of E is Haar-
null if there exists a compactly-supported probability measure y such that y(B+x) =0,
for every x € E. A subset of E is Haar-null if it is contained in a Haar-null Borel set; the
complement of a Haar-null set is a prevalent set.
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If E is finite-dimensional, B is Haar-null if and only if £(B) = 0; if E is infinite-
dimensional, the compact sets of E are Haar-null. Moreover, it can be shown that a
translated of a Haar-null set is Haar-null and that a prevalent set is dense in E. Finally,
the intersection of a countable collection of prevalent sets is prevalent.

Let us make some remarks about how to show that a set is Haar-null. A common
choice for the measure in Definition[I.6.1]is the Lebesgue measure on the unit ball of a
finite-dimensional subset E’ of E. For such a choice, one has to show that L(BN(E’+x))
vanishes for every x. Such a subspace is called a probe. If E is a function space, one can
choose a random process X whose sample paths almost surely belong to E. In this case,
one can show that a property only holds on a Haar-null set by showing that the sample
path X is such that, for any f € E, X; + f almost surely does not satisfy the property.

If a property holds on a prevalent set, we will say that it holds almost everywhere
from the prevalence point of view.

1.7 Some fundamental theorems in functional analysis

In this section, for the sake of completeness, we gather some fundamental theorems
that we use all along the thesis, together with a reference to a proof.

The first theorem, established by Lebesgue, discusses the reciprocity between
integration and differentiation.

Theorem 1.7.1 (Lebesgue differentiation theorem, [15]]). Let f be a Lebesgue-integrable
function defined on R?. For almost every point x, € R?, the limit

1
lim — x)dx
r—0* [:(B(Xo,r)) L(xoﬂ,)f( )

exists and is equal to f(xg). Such a point is called a Lebesgue point of f.
To state the next theorem, one first has to introduce the Taylor chain condition.

Definition 1.7.2. If k € N and if (fy)q|<k is @ k-jet defined on a closed set F, we say that
(fa)|a|<k satisfies the Taylor chain condition of order k if the functions

Y
fa(%) = Lipi<k-a fa+/3(y)%
jx — y[k-lal

(x,9) (1.13)

are continuous on (F x F) \ {(x,y) € F x F : x = y} and can be continuously extended by
0 to the whole of F x F.

Obviously, if k e N, f € Ck(IRd) and F is a closed set, then f and its derivatives
up to order k restricted to F define a k-jet which satisfies the Taylor chain condition of
order k. Whitney extension theorem establishes the reverse.
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Theorem 1.7.3 (Whitney extension theorem, [19]]). Let F be a closed set in R? and
k € N. A k-jet (fa)|a|<k is obtained by restriction of a function in CK(R?) and its derivatives
up to order k if and only if it satisfies the Taylor chain condition of order k.

Before stating the next theorem, let us recall that, if ¢ € C'(R), then
» The gradient of ¢ is the vector Vo = (D1, -+, D),
* The divergent of ¢ is the scalar divep = 27:1 Djgp.

Moreover, if ¢ € C?(IRY), one can apply the Laplace operator A to ¢:
d
Ap = ZDquo.
j=1

Theorem 1.7.4 (Green’s first identity,[120]). Let D be a domain in RY, @ € C*(R%),
P € CHIRY); we have

. _ [ 20
J;D(gbA(p +Vy-Ve)dx = LD P 3 do,

where (3_(5 =n- Vo is the directional derivative in the outward normal direction and do in

the surface area on dU.

The Banach-Steinhaus theorem is a very strong result to find a uniform bound
for a family of continuous linear maps.

Theorem 1.7.5 (Banach-Steinhaus theorem - Uniform Boundedness Principle,[112]).
Let X be a Banach space, Y a normed linear space and (T))ea a collection of continuous
linear transformations of X into Y. If, for any x € X,

sup [Ty (x)lly < oo,
AeA

then

sup  ||Ty(x)[ly < co.
AeA|Ixllx =1

The next theorem deals with equicontinuous sequences of functions; let us first
recall this notion.

Definition 1.7.6. A sequence of functions (f;); defined on a metric space (X, d) is
* pointwise bounded if, for any x € X, the sequence (f;(x)); is bounded.

* equicontinuous if, for any ¢ > 0, there exists 6 > 0 such that, whenever x,y € X and
d(x,y) <06, we have |f(x)— f(p)| <e.
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Theorem 1.7.7 (Arzela-Ascoli theorem, [111]]). Let K be a compact metric space and (f;);
a sequence of continuous functions on K. If (f;); is pointwise bounded and equicontinuous
on K, then (f;); is uniformly bounded and contains a uniformly convergent subsequence.

Hahn-Banach theorems are a family of fundamental results which link a locally
convex topological vector space X with its dual X*, whose elements are the continuous
linear functional on X, and its subspaces by the mean of semi-norms on X. Among
them, we will need the following.

Theorem 1.7.8 (Hahn-Banach theorem,[113]]). Suppose that M is a subspace of a locally
convex space X, and xq € X. If x( is not in the closure of M, then there exists A € X* such
that Axy =1 but Ax = 0 for every x € M.

As stated in [113], a consequence of this theorem is that, in order to show that
xo € X belongs to the closure of a subspace M of X, it suffices to show that, for every
continuous linear functional A on X such that A vanishes on M, Axy = 0.

Now, we recall that if y is a complex measure on a measurable space (X, %), the
variation measure ||y|| is the positive measure defined on & by

lpl|(A) = sup Zm(Aj)l : (Aj); partition of Ain &/ .
j

The total variation is then defined by Var(u) = ||u[|(X).

Definition 1.7.9. Let X be a locally compact Hausdorff space and % the Borel o-
algebra on X. A measure y on (X, %) is regular if

* uis outer regular: for every Borel set A,

u(A) =inf{u(Q): A C Q,Q open},

* uisinner regular: for every Borel set A with finite measure,

H(A) =sup{u(K): K C A, K compact}.

If, in addition, y is finite on compact sets, y is said to be a Radon measure.
A complex measure on (X, %) is regular (resp. a Radon measure) if ||y|| is regular
(resp. a Radon measure).

In this last theorem, Cy(X) stands for the space of continuous function on X
which are vanishing at infinity.
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Theorem 1.7.10 (Riesz representation theorem, [15, 112]]). If X is a locally compact
Hausdorff space, then every bounded linear functional @ on Cy(X) is represented by a unique
Radon measure p, in the sense that, for every f € Cy(X),

o(f)= | iy

Moreover, the norm of @ is the total variation of .






Generalized Besov spaces

The Besov spaces By, (with s € R and 1 < p,q < oo) were introduced about sixty
years ago [8], [9] and many studies have been since devoted to such spaces (see e.g.
(123} 110} 124}, [11],[125,126]]). They were generalized in the middle of the seventies by
several authors in different contexts starting from different points of view. The variant
we will present here has been largely considered in [43} 23] [2, [44] 105] for example.
Besov spaces are still considered nowadays in connection with embeddings, limiting
embedding, entropy numbers, probability theory and theory of stochastic processes for
instance (see e.g. [80, (39, 21},40, 95, [108] and references therein). More recently, such
generalizations have been used to numerically detect the law of the iterated logarithm
in signals 8984, [90].

A classical generalization of the usual Besov spaces was introduced in [101}, [31]]
using interpolation theory. To obtain these spaces B{;q, s is replaced by a function
parameter g such that f(x) = x’/g(x'™*) in the interpolation formula (2.8). These spaces
can themselves be generalized using the Littlewood-Paley decomposition instead of
the interpolation theory to define the spaces of generalized smoothness B;}’;’ , where
o and y are two admissible sequences [44]. One has B{,,q = B;’Z, with y = (2j)]~ and
o = (f(2/));. In a way, these spaces provide a very general definition of the spaces of
generalized smoothness [105]. This work can be seen as an intent to “close the circle”
by defining a generalized interpolation method that allows to define the spaces B;’;
starting from the usual Sobolev spaces. This interpolation method is quite different
from the one introduced in [31]].

In this chapter, in the same spirit as in [87,[88]], we propose equivalent definitions
of the spaces of generalized smoothness Bg,’;/ . The first section is devoted to standard
definitions and a brief review of the background material needed for them. Next, we
give some preliminary results before looking at the links between these spaces and the
weak derivatives of the elements of the historical Sobolev spaces Wlﬁ‘. We also give
definitions involving Taylor expansion and polynomials before investigating how the
generalized Besov spaces can be characterized in terms of convolution. Finally, we
show that these spaces can be introduced using generalized interpolation of fractional
or historical Sobolev spaces, as were the spaces Bﬁ,q.

Our aim, in this chapter, is to better understand the generalized Besov spaces,
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using the alternative definitions we obtain, in order to know, with more details, the
information we can extract (about uniform regularity) from the fact that a function
belongs to a generalized Besov space. In the next chapter, we show that these spaces
provide a natural framework for a general multifractal formalism.

Results established in this chapter were published in [97].
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2.1 Definition

Let us start by introducing the Besov spaces of generalized smoothness Bg,’qy that we
will consider (see e.g. [44, [105] and references therein). Let us recall some kind of
generalization of the Littlewood-Paley decomposition (more details can be found in
[44]). For a strongly increasing admissible sequence y = (y;);, let p € D be a positive
function such that p(t) =1 for all [t|{ <1, p is decreasing for t > 0 and supp(p) C {t e R:
|t| < 2} (where, as usual, supp(p) denotes the support of p). Given J € N, let us set

o7 =p(!I-1) forjel0,...,Jko 1)

and
o7 =1 D - p(rily | for j = Jko.

Let us define ¢, := Jko and

o 2]+1 ko
)’J 12 .
®; Z (p]+k for j € Ny,
~(2J+1)k
where (lei] =...= 7’(’£]+1)k = 0. With such a system one has, for all j € N,

<p] on supp(p?”).
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As a consequence, if we set, for any f € S/,
N f=F el Ff)  and AV f=FN eV ), (2.1)
then
RZINZF N2
AN f=cpAiT S

Remark 2.1.1. From the Littlewood-Paley theory [119, 41]], A;”]f belongs to the space
C®(RY).

Definition 2.1.2. Let o0 and y be two admissible sequences such that y is strongly
increasing (most often we will require v, > 1) and p,q € [1, 0]; the generalized Besov

space B;,’,;/ is defined as
/) r]
={f €S :Wfllgor = GlIA]" fllzo)jlles < oo).

Remark 2.1.3. The space B deﬁned above does not depend on the particular de-
composition chosen to represent the functions, in the sense of equivalent norms: two
decompositions give rise to the same space (see Remark 3.1.3 in [44]]). Indeed, such
spaces can be defined with a general representation method which must satisfy condi-
tions that are met by the decomposition given here, see again [44].

If the admissible sequence y is the usual sequence (2/ )j, we prefer to denote Bg,’,;
by By ,, in order to simplify the notation.

Remark 2.1.4. In [23] 22]], the authors highlight the fact that, if o = (0j); and p = (y;);
are admissible sequences such that 12 > 1 then, if k is such that 7/]1‘0 > 2, the sequence
B = (B;j); defined by

Bj = ok, with k(j) := min{k € Ny : 27t < Vitky s

forall j € Ny, is admissible and Bg}’;’ = Bg,q. This allows us to work with one or two non-
dyadic sequences, depending on the context. In this chapter, it is more appropriate to
work with Bg}’;’ as the Boyd indices of o and y are easier to compute separately than the
ones of B. In the next chapter, since we will make use of wavelets, which are heavily
connected to the (2/ ); sequence, we will favor the other option and work with only one
admissible sequence.

The following characterization is given in [105]: let p,q € [1,00], 0 = (0}); and

¥ = (¥)); be two admissible sequences such that y, >1 and 0 < s(o)s(y)"!. For any
n € N such that 5(0)s(y)~! < n, we have
By ={f €LP: (0; sup [A}fllL»); € £7). (2.2)

Ihl<7/‘1
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In this framework, Besov spaces of generalized smoothness provide an obvious
generalization of the usual Holder spaces: if o = (25j)]- (s>0)and y = (27)]-, the space
B;’Z so defined is the usual Besov space By, , and if p = g = oo, we get the usual Holder
space A*(IR%). One can therefore wonder if polynomials can play a role in the definition
of the spaces B;} (as it is the case for Holder spaces and their generalized version for
example [86)],187,[88]). A theorem due to Whitney (see [20]) states that for f € LP, r > 0
and n € IN, there exists a constant C > 0 (which only depends on #n and d) such that

inf ||f = Pllzp(B(x,n) < Csup IALFILe (B (0,7
PEIPnfl |h|<r

where
Bn(x0,7) :={x € B(xg, 1) : [x,x+ nh] C B(xg,1)}.

It follows that, if f € B;’; , then, for n sufficiently large, there exists (¢;); € {7 such that
for all x, € IRY,

G] Pel]rpl; ||f —P”Lp(B(xO’y]fl)) S 5]' V] € NO. (23)
n-1

The converse is not true unless p = o0, as explained in Remark below.

Remark 2.1.5. Now, suppose that f € L™ and let o = (0});, = (y;); be two admissible
sequences satisfying 5(o)s(y)™! < n, with n € IN. If y is strongly increasing, given
xo € R?, we can claim that there exists k; € IN such that ny;! < 7/]._1 if j + k; <k, which
implies that if |h| < Vj_+1k1' then x, + Ih € B(x, y]-_l) for all I € {0,...,n}. Since, for any
Pe H)Z_y the formula

n

Bif (xo) = Aj(f = P)(xo) = <—1>”-l(’;)<f - P)(xo +1)

1=0

holds, we have

A} <2" inf —P||; e 1y, 2.4
3£l < 2" inf 1f = Pl (2.4)

if || < 7/]'_+1k1' for almost every x(. Therefore, if (2.3) holds with p = oo, we have

o; sup [|A,fllz-= <Ce; VjeN,
i<y

and thus f € ng?,;. Inequality 1} is not sufficient to get such a conclusion in L
with p < co. Nevertheless, we will see that a approximation by a sequence of “locally”
polynomial functions is still possible, in any case.
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2.2 Preliminary results involving convolutions

Let us first introduce some results about the convolution product that will be used in
the sequel. They are obtained using very classical proofs but we give them for the sake
of completeness. If ¢ is a function defined on R?, given ¢ # 0 one sets

1 .
e = W (P(E)

Proposition 2.2.1. Let n € N, p,q € [1,00] and (0});, (y;); be two sequences of positive real
numbers. If f € LP is such that

(0j sup [|ALfllze); € €9,
Ihi<y;!

then there exists ¢ € D such that

(0j sup |[If *dpe— fllrr); € £7.

O<e<y;!

Proof. Without loss of generality, we can suppose that n = 2m where m is an odd inte-
ger. Let p € D be a radial function such that

* supp(p) € B(0,1),

* 0<p<l,
* llpllpr =1
and set

-S~

m—1
A
:0

Cp = Z] o ( ( ) = (!)/2 and finally ¢ := ¢/c,. Obviously, ¢ € D and for all x € R?
and ¢ >0, we have

~.

febe ffx 9)p(v)dy - f(x)
m—1
_ 1 f(x—¢ev)p2j_n(v)dy — f(x)
s L V/(5) [ ree-eness
m—1
=Ci (%) [ = etes-mnptnnds - 1o
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We get
]:;1( 1>(].)Jf<x e(2j — n)t)p(r)dt

_ Yy _e(n- d
]:;1( 1>( ].)fﬂx e(n—2)y)p(v)dy
m—1
_ <—1>J( )jf(x—e(z;—my)p(y)dy
=0

and

1 . : .
=5 (j;<—1>f(’]7)f(x— 2t(j - 3)) Jp(t)dt

1
= o5 f(x)p(t)dt
s g P8 000

Using Holder’s inequality, we have

1f * ()~ F ()| < Clipll oz 1%e. £ ()l a7,
< ClIAL, f Ol 51

where g is the conjugate exponent of p. It follows, with the usual modification if p = oo,
that

)
I * e — fllr < C j AL (P dtdx) P
B(0,1)

-
= C( f nfPdxdt)/p
B(0,1)

:
=CC[ 1A% FUE dey P
B(0,1)

<C sup |IAS,,fllre
teB(0,1)

L

and finally, using a classical result for the last inequality [37) p. 45, formula (7.6)],

sup |If *¢pe—fllre < C sup ||A%,fllze < C sup ||ALfllze,
0<e<y;! Ihl<y;! hi<y;!

as desired. ]
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Proposition 2.2.2. Let p,q € [1,00], 0 be an admissible sequence and (y;); be a sequence of
positive real numbers such that there exists dy > 0 satisfying

doyi <yjs1 Vj€N,.
Let also ¢ € D and f € LP satisfying
(Oflf * 2 =l € 7.
Then, for all a € N4,

(077 "D (F * fyt = f # byt M) jeny € L7(N).
Proof. Let us write
f *(Pyj’l _f *(Py]?_ll = (Pyj’l * (f * (Pyj’l _f * (Py]’_ll)
+(Py].‘1 *(f_f*({)y].‘l)
g ~fx,) (2.5)

Considering the first term on the right-hand side of this equality, we have, by Young’s
inequality,

077} D @yt # (f byt = f byt
= O-J'V]'_W”Dad))/fl *(f *(j)y]_q —f*¢y;}1)||Lp
—lal
< ojY; ”Da(j))/;llll“l”f*d))/;l _f*(PV]‘ill”Lp’

but, as ||D“({)yj_1 = 7/]|.“| f |ID%¢(y)|dy, we obtain, since o is admissible,

Gj7;|a|||Da(¢yfl “(frdyor=f 2ty
< Cojlif = by = fllr + Cojllf = f = by Il
<Cojllf xy = fllur + Cojallf = f by oo

The conclusion comes by applying the same reasoning to the other terms of (2.5). O

2.3 Generalized Besov spaces and weak derivatives

The spaces of generalized smoothness Bg}’;’ can be characterized using weak derivatives
and finite differences.
We will need the following condition for a function to belong to ng‘ .
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Proposition 2.3.1. Let k € N, p,q € [1,00], 0 be an admissible sequence and (y;); be a
sequence of positive real numbers such that there exists dy > 0 satisfying

doyi <yjs1 Vj€N,.

) vjoi’ (2:6)

J€Ny

Let us also suppose that the series

converges for all 0 <1 < k. If f € LP is a function satisfying

(0 sup |IA}fllr); € €,
Ihl<y;!

then f € Wlf.

Proof. Let ¢ € D be a function as constructed in the proof of Proposition Let us
set

Py = (l)yab Pj = ¢7j—1 - d)y;}1 Vi€,
and finally define

fi=f*¢; VYjeNy.

It follows from Proposition that for all & € IN? satisfying |a| < k, there exists a
constant C, > 0 such that for all j € N, we have

ID* filli» < Coy[lo}

As a consequence, since 1} converges, the series ), D f; converges in L for all
|a| < k. Let us denote its limit by f, and show that f, = D%f (with the derivative taken
in the weak sense). It is clear that f; = f since, by Proposition[2.2.1},

J
1) fi= s =lf ¢, = flip < Coj' >0 as] - .
j=0

Finally, for all ¢ € D and |a| < k, we have

Jf(x)D“ dx_llggjzjg )D*¢
- [ 3 st
—1)'“'jfa<x>qo<x>dx

which is sufficient to conclude. OJ



2.3. Generalized Besov spaces and weak derivatives 25

We can now give necessary and sufficient conditions for a function to belong to
B,

p.q -
Theorem 2.3.2. Let p,q € [1,00], 0 = (0}); and y = (y;); be two admissible sequences such
that 7, > 1. Let the numbers k,n € N be such that

1

k<s(0)s(y) <5(0)s(y)”! <n.

If f € By, then f € WY and for all |a| < k,

(770} sup 147D fllpp) jen € €4,
i<y}

~lal
which means that D f € Bg,q 7,
Conversely, if f € Wé‘ satisfies

("o sup I4;7D fllys) € €9 Vlal =k,
Ihl<y;!

o,y
then f € Byl .

Proof. Assume first that f € Bgf;’ ; using 1} and the convergence of 1} for 0 <1<k,
which follows from the hypothesis on k and n, it is clear from Proposition [2.3.1]| that
we have f € Wé‘. Keeping the same notations used in the proof of Proposition|2.3.1} let
us fix ] € IN; for all || < 7/]_1, we have

||AZ_|a|Daf||LP
J o0
<) ClI™suplIDPfilly + ) I sup |DP il
i=0 |Bl=n i=J+1 |Bl=k

] 00
_ &
< E Cy]lal "sup [|DF fill;r + E C)/}a| sup |IDF £l
=0 |Bl=n j=I+1 IBI=k

For all || = k, we also have, as k < s(o)5(y)7!,

1)~ v o lID? £l )yl

j=J+1

<llY 750y o IDP Flle)ylle
j=J+1

—k -1 -k
<Y T N7 07 IDP fiallie)len
=1

o0
5k -1
< o
< CZ)/]g] < co.
j=1
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Similarly, as 5(o)s(y)~! <n, for all |B| = n, we get

J
1Y~ 77" oD £l )y len < oo,

j=0
which allows us to conclude that

|ex]

o7 sup ||AZ_|“|D“f||Lp)]||gq < oo.

1073
|nl<y;!

For the converse, assume f € WI;‘; the desired conclusion follows directly from
1) and the fact that for all |h| < 7/]-_1, we have, using classical inequalities (see [16]] for
example),

1AL flle < Cl* sup |AY D £l
|a|=k

< Cy* supl|a) D £,
la|=k

As a corollary, we have the following alternative definition of B;,’qy .

Corollary 2.3.3. Let p,q € [1,00], 0 = (0j); and y = (y;); be two admissible sequences such
that 12 > 1. Let the numbers k,n € N, be such that

-1

k<s(@)3(y) " <5(0)s(y) ! <.

We have
By ={f e W (7%} sup 1A} DY fllp); € €1 Vial = k).

]
-1
|h|S7/]-

2.4 Generalized Besov spaces and polynomials

The following characterization is inspired by [78], where links between classical Besov
spaces and related spaces are explored.

Theorem 2.4.1. Let p,q € [1,00], 0 = (0}); and y = (y;); be two admissible sequences such
that y, > 1 Let the number n € IN be such that

n<s(0)s(y)! <s(o)s(y)! <n+1;

the following assertions are equivalent:

1. The function f belongs to B;’;;
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2. The function f belongs to W' and, for all h € RY and almost every x € RY, we have

ha |h|7l
TR

fleshy=) Dl

lal<n

where

(oj7;" sup |IRu(~h)llrr); € €9;
Ihl<y;!

3. If, given j € N, 1t; is a net of RY made of cubes of diagonal 7/]._1, then for all j € IN,
there exists g, such that

* the trace ofgn‘ in each cube of 1; is a polynomial of degree at most n,

* one has (0jl|f — gx;llr)j € 9.

Proof. Let us first show that assertion 1| implies assertion |2l We know from Corol-
lary that f € W}'; using the Taylor expansion with weak derivatives, we get

flx+h)= ZD“f Z J (-t D"‘fx+thd
lajl<n-1

for all h € R? and a.e. x € R?. Of course, we have

1 n—
J (1(;)(1)D“f(x+th)dt
0

1)
1 _ +\(n-1) . o

- |, o shet s | St
L1 -1 g

:J; (l(ni—)l)!A:hDaf(x)dter.

Let us set

! L1 = =1
= Zh“fo %A}hD“f(x)dt if h=0

Rufoh) =y I G Joo (-
0 otherwise.
Clearly, for all h € R? and a.e. x € RY,
h n
flx+hy=) Df(x W, h)l '

la|<n

Moreover, for any h = 0 such that |h| < 7/]-_1, Holder’s inequality allows us to write

IRy(x, 1) < C ) NIALD F(x)luo o)

lat|=n
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and it follows that

1
IRl <€ Y ([ [ 18LD% o drdny
jaf=n ¥R J0
r1
-C Z( f AL DY f(x)P dxdt)'/P
laf=n /0 IR
rl
=C Y (| IAaLDfIT,dt)?
lal=n *
<C) sup [ADfl.
lal=nlhl<y;!

We can conclude this second point, using Corollary[2.3.3]

Now, let us show that assert10nl1mphes l 3l We fix j € Ng and let 7t; = (Ag); be a
net of R? with cubes of diagonal Vi ~L. Set for all k € N,

— 1 a (x_y)a
=g Y orrmE

klal<n
Of course, Py is a polynomial of degree less or equal than n. Let us then define
& RY >R x> P (x)if xe A, (keNy);

the trace of &r; in each cube of 7t; is a polynomial of degree at most n and if x € A, then
Ay C B(x, 7/]-_1 ). Moreover, if g is the conjugate exponent of p, using Holder’s inequality,
we get, for x € A,

()~ g ()] < - Y Do) a4y
’ B(x,y;")

L(Ay) = al!
d h®
<oyt [ - Y Dot by
B(0,y;7) lal<n
—d/ a
<Cyly;Nf(x) - ) Df(x- Vo

lal<n
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We thus can write

”f_gn]”LP
—d/ h*
sCyfy | [ f= Y Dt dnd
B(O’yfl) R? lar|<n
—d/q IhI””J 1/
=C (f IR, (x — b, )P dx di)V/P
7/] i B(0,y;) (n)P Jga "
~d(d+d)
<Cyly; 7 Ty sup IRy, 1)l

hi<y;!

:C)/]_n sup ”Rn('lh)“Lp’
Ihl<y;!

which procures the desired membership.

Finally, let us show that assertion |3| implies As 12 > 1, there exists k; € IN
such that for any x, € R? and any |i| < 7/]‘_+1k1' we have xy + kh € B(x, 7/]-_1/3\/3) for all
ke€{0,...,n+1}. Let us fix |h| < 7’]'_+1k1 and let 7; = (Ag)x be a net of R? made of cubes of

diagonal y]-_l/S such that each vertex is the vertex of 24 distinct cubes.

If I € N, then for all x € Ay and for all I € {0,...,n+ 1}, x + lh € Ci, where Cj is the
cube of diagonal )/]-_1 whose center coincides with the center of A;. Let n]’. be a net of

RY defined in the same way as above but made of cubes of diagonal y;! that contain
Ck and let P, be the polynomial that is the trace of 8w on Ck. As the degree of P is at
most 1, we have

AR AN = ) IAR FlE = ) IARF = POl s,

kENO kENO

= ) 1A =g oa,y

kENO

with the usual modiﬁcation if p = co. Let us remark that there exist m := 3¢ such nets
with cubes of diagonal Vi ! whose centers are also center of some cube in 7j; let us
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denote by 7'(;’1, e n;’m those nets. We have

quFZZM“f&MM

kENO

:§]mfﬂf—&%mﬂ
I=1

m
<C) I -8 M
I=1

Since we have

aill(f = 8w Mlv)j € €%,

for all I € {1,..., m} by hypothesis, we can write

1
(0 sup [IA;" fllze)jen € €7,
Ihi<y;!

as desired. ]

2.5 Generalized Besov spaces and convolution

The spaces of generalized smoothness B;’;’ can be defined in terms of convolutions.

The characterization relies on the following condition for a function to belong to

o,y
Bp’q .

Proposition 2.5.1. Let p,q € [1,00], 0 = (0j); and y = (y;); be two admissible sequences
such that y,>1 and s(o) > 0. If f € L? is such that there exists ¢ € D for which

(0jllf =1 = fllee)j € €9, (2.7)
]

then f € Bg,’,;/

Proof. Let n € N be such that

0<s(0)5(y)" <5(o)s(y)" <n.

As done before in the proof of Proposition and having in mind that s(o) > 0, if
holds, we can build a sequence (f;); of infinitely differentiable functions belong-

ing to LP such that
f=) £

J€Ny
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in LP. It follows that, for any ] € Ny and any |h| < yj_l, we have

1A} flle < ZnAzf]um Z IA7 £ille

j= j=J+1

<czy] sup D% fill» + C Z 1l

lal=n j=J+1

Since, by Proposition [2.2.2, we also know that (o Y, |0(|||D‘)‘f]||Lp € {1 for all |a| < n,

we can proceed as in the proof of Theorem using the fact that s(o) > 0 and

5(0)s(y)~! < n, to conclude that the sequence (0]- sup|h|<y71 1AL, flze); belongs to £9, and
-]

hence, by Qi fe B;’;’ . ]

From Propositions[2.2.1]and [2.5.1} we have the following corollary.

Corollary 2.5.2. Let p,q € [1,00], 0 = (0}); and y = (y;); be two admissible sequences such
that Y, 1 and s(o) > 0; we have

By ={f € LP: 3¢ € D such that (o jllf*¢y;1—f||Lp)]-e€q}.

2.6 Generalized real interpolation methods

Let us first recall some notions of real interpolation, more details can be found in
[7, 96], 121]. In the sequel, we will consider two normed vector spaces Ay and A;
which are continuously embedded in a Hausdorff topological vector space V. As a
consequence, the spaces Ay N A; and Ay + Ay are also normed vector spaces. The J-
operator of interpolation is defined for t >0 and a € AN A; by

J(t,a) := max{llall4,, tllalla, }

If 0 <& <1and qe€[l,00], we say that a belongs to the interpolation space [Ag, A1]a,q7
if there exists (14j)jez € Ao N Ay such that a =} ;.7 u;, with convergence in Ag + A; and

(279](2],u}))jez € 9(2).
On the other hand, the K-operator of interpolation is defined for t > 0 and
ac AO + Al by

K(t,a):= inf{||ao||AO + 1f||611||A1 ra=ag+a}.

Similarly, if 0 < @ < 1 and g € [1, 0], we say that a belongs to the interpolation space
[Ag, At]aqk if a € Ag+ Ay and (27%K(2/,a))jez € £1(Z).
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One can then show that, for all 0 < @ < 1 and g € [1,0], these two spaces are
identical, and the resulting

[Ao,Atlag = [A0, Atlag) = [Ao Atlagx

“lies” in between AgNA; and Ay + A;.
The Besov space B}, ; is an interpolation space between the Sobolev spaces H;, and
Hp with s = (1 - a)t + au: we have

By, =[Hy Hylag (2.8)

(see e.g. [7,132, 125, 121]]). In an aim to obtain such a characterization in the context
of generalized Besov spaces, we first have to define a generalized real interpolation
method in which admissible sequences play a role. Let us first introduce this method
before applying it to the generalized Besov spaces.

Definition 2.6.1. Let 6 = (6;);cz and ¥ = (¥;)jcz be two sequences and let g > 1. We
say that a belongs to the (], q)-generalized interpolation space [A(, A; ]]9";) if there exists

(4j)icz € AgN Ay such that a = ZjeZ u;, with convergence in Ag + A; and

(9j](¢j,uj))j e 01(Z).

Definition 2.6.2. Let 0 = (6;);cz and ¢ = (¢;)jcz be two sequences and let g > 1. We

say that a belongs to the (K, q)-generalized interpolation space [A(, A; ]165’15 ifaeAg+A;
and

(6;K(¢,a)). € €(2).
]

Remark 2.6.3. If one considers the admissible sequences (0, = 27%);cz and
(P; = 2i )jez, the two preceding definitions correspond to the classical interpolation

spaces [Ag, A1]a,7,4 and [Ag, A1 ]q k4 Tespectively.

As for the usual case, such interpolation methods often coincide; this result is a
generalization of Proposition 11 in [88].

Theorem 2.6.4. Let r,s € R and o, y be two admissible sequences such that 7, > 1 and

-1 -1

r <min{s(0)s(y)"",s(a)s(y)""} < max(s(a)s(y) ', 5(0)5(p) ") <s. (2.9)

We have
0, 0,
[0 Arlyy = (Ao ArTeS,

where sequences 0 = (0;)jcz and ¢ = (1;)jcz are defined by
yZjo-j if—jeNg

yioit ifjeN
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and
7/_]'5 if =j € Ng

7/].5 " ifjeN.

Proof. Consider f € [AO,Al]]Q"q#); we know that there exists (f;);ez € Ag N A; such that

f=) fi

leZ

with convergence in Ay + A; and

(6 max{l|filla,, Yill fill a, Dilleagzy < o0

Set, for any j € Z,

j-1 00
= Z fi and ;= Zfl
|=—c0 I=j

(2.10)

Because of 1} and 1 , we have b]- €Ay, cj €A and f = b]- +c;. Let us prove that

(65101112, + willellay)) flesiz) < oo.
We have

||(9-<||b~||A0 +lljlla)) N

zuﬁnAo )illes + (6 Zab]nfznAl len

(A) (B)

Using triangle inequality, we obtain

(6 ]+1_16j+l—1||fl+j—1”AO)]’”M

V-j o

=1
+Z(( Vi )" ( % )_19j+l—1||fl+j—1”Ao)
j=2—

] Vi+l-1  Oj4l-1

)

[

O . .
( S (N 0 el )

4
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with the usual modification if g = co. If r > 0, there exists ¢ > 0 such that
r5(y)—s(o)+ (r+1)e < 0 and (1.2 implies the existence of a constant C > 0 such that

(7/—]'—1+1 )r(G—j—Hl) <307l < 200" D(rs(y)=s(o)+(r+1)e)
V=i Oj
If r <0, we can choose ¢ > 0 such that rs(y)—s(o)+ (1 —r)e <0 and find C > 0 such that
(V—j—l+1 )7(0'—]'—1+1 )_1 < 7/r QIEZ < Cz(l—l)(rg(y)—g(a)+(1—r)e)'
V- o-j -

Adapting this reasoning for the other terms, we can claim that there exists a < 0 such
that

0
A)<C Y 2206l frajallagillen < oo
[=—c0
Similarly, there exists > 0 such that

0
B)<C ) 27O itpjillfi-tlla, )jlles < oo.
|=—c0

Reciprocally, let us consider f € [AO,Al]Ii’fg; for any j € Z there exists b; € Ay and
cj € Ay such that f =b; +c; and

1(0;lEjlla, + jllcilla,)) llea < co. (2.11)

Let us remark that, because of 1) and (2.11), by = Z]__Oo(bjﬂ —b;) with convergence
in Ay and ¢y = Z}'io(c cjy1) with convergence in A;. Now, let us set, for any j € Z,

]
fi=bjs1-bj=ci—cj1.
Clearly, fj € AgNA; forany j€ Zand f = byo+co = )_jcz fj, with convergence in Ag+A4;.
Let us prove that
10 max{ll fillay, il filla, Djlles < eo.
We have, as o and y are admissible,
10 max{l|fillay, il filla, Njlles < 11O;(llfilla, + Pillfilla, )jllia

=11(6 j(”bj+1 = bjlla, + ¥illej = cji1lla,)jllea

< CII(0;(lbjlla, + ylicjlla,)) e

< oo,
which allows to conclude. O]

Definition 2.6.5. Given two admissible sequences o and y w1th 7/ > 1, let 6 and ¢ be
the sequences defined as in Theorem [2.6.4] for some r,s as in we define the space
[Ag, A 1]q as follows:

: 0, 0,
[Ag A1)y = [Ao:Al]],qlp = [onAl]K,lf;
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2.7 Generalized interpolation of Sobolev spaces

Let us show that the generalized Besov spaces Bg,’qy can be defined from the usual
Sobolev spaces W, or H; as generalized interpolation spaces, as it is the case with the
usual Besov spaces By , and the classical real interpolation theory. Let us recall that ug
is the tempered distribution defined by

Fug=(1+]-1%)7

and that || - #u||, is a norm on H;.
We need some auxiliary results. Roughly speaking, we aim at showing that there
exists a constant C > 0 (depending on s) for which, for any j,

CUAY Fllgs < y3IAY flle < Cllf N

Lemma 2.7.1. Let y be an admissible sequence such that 7, > 1; given s € Rand N € N,
there exists a constant Cyn > 0 such that for all j € N,

A7 u] < Cony (14 y5l- 7N
Proof. Let us fix j > Jky, the proof being similar for 0 < j < Jky — 1. As
A;/J”s = ]—"‘l(qo]?/']]-'us), we get that

(2m)A7 | < L I 1ED - P JEDIL + 1) de

_ . d 1 ’ > 2w
= | It =p 0, bl + 218 .
Since the support of p(|-|) - P(Vj__lfko 7/]-| -]) is included in Q defined by
Q =B(0,2)\ B(O’y—l )
_]ko

we have

1
(2m0)"|A7 | < yd“f (oDl +lp(y,, WD(=— +IpI*)">dy
Vi P

and, as 0 < 1/y? < 1/y?2, this implies the existence of a constant C, o > 0 such that
7/] 7/0 p 5,0
A7 ()] < Coop .
Now, if a € lNg is a multi-index such that |a| > 1, then

(2”)d|xaA];-/’] (%) < (2m)*Vd max |x|a|Aw s(x)]

1<k<d

S\/EmaxJ- |D|0‘| )1+ &7 dE

1<k<d
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and similarly we get
v,] d+s—|af
|xaA]' us(x)l < Cs,lalyj ’
for such an a, which is sufficient to conclude. ]

Remark 2.7.2. Using the same proof as in Lemma one can obtain the following
result: for all s € Rand N € N there exists a constant C; 5y > 0 such that for all j € N,

J _
AT ug] < Cony (L4l - )7

Proposition 2.7.3. Let s € Rand p € [1,00]; if f € H then there exists a constant Cs > 0
such that

IAY Fll < Coyliflli (€ No),
where the notations defined by have been used.
Proof. As f =u_g+uz+f, we get
)] J
AT f = (AT u_g) * (ug = ).
It follows from the Young’s inequality and Lemma that
)] )]
1A7 flls < 187 o * 1l
< Collf g
for some constant C,, which is the desired result. O
Proposition 2.7.4. Let s € R, p € [1,00] and f € S8’. If, using the notations defined by (2.1)),
A;/’]f € LP (for some j € INy), then there exists a constant C; > 0 such that
ol )]
IAT” fllzg < CoyIAT" £l

Proof. From A}/’] A;”] f= C¢A}/'] f, we get

1 —_—
F N FuFAY f) = C_f—l(fusf(A]}/;IA;/,If))
¢
1 —~——
= —F (¢] ' Fu,FA] f)
¢
L 57
= _A?’Ius*A;/]f,

j
Cop

It follows here again from the Young’s inequality and Remark that

| | |
IIA]? Sl S—IIA]? us”l”A;/ Fllre
Cp

< CoyHIAY fl,

for a constant C, > 0. O
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We are now able to define the generalized Besov spaces B;}’;’ from the Sobolev
spaces using generalized interpolation.

Theorem 2.7.5. Let p,q € [1,00], 1,5 € R, and o, y be two admissible sequences such that
7, >1 and

1,5(0)5(p) !} < max{s(o)s(y) L 5(0)s(y) M <55 (2.12)

r <min{s(o)s(y)
we have

pq — [Hr,HS

Proof. Let 0 and 1 be the sequences defined as in Theorem [2.6.4]
Let us first suppose that f € Bg,’; and set

AV fif-jeNg
0 ifjeN.

From Proposition for any t € {r,s} and j € —-IN, there exists a constant C; such
that

gy < Covl; IIAY fllees

which implies u; € H;. Now, since (okllAZ’]flle)keNO belongs to ¢9 and ([2.12) holds, we

have f =} ez uj, with convergence in H;. Moreover, for all j belonging to -INy, we get
Oillujllmg < CrU—j”AZ}]f”LP and  0;jllujll; < Coo AT  Fllee.

From this, we can conclude that (Gj](l,b]-, u]-))],eZ belongs to {1(Z) and thus f € [H}, H;]ifqll)

Let us now consider f € [H, HS]] , > there exists (f})iez € Hy such that f =} 7 fi

in H, and (Gl](lpl’fl))lez belongs to ¢1(Z). Now, for all j € Ny, Proposition [2.7.3|allows
us to write

)J J
IAY Flle < Y IAY fills
leZ
_] 1

<Cr ) ¥ llfillg + C Zy]slllele +C, Zyﬁnflan

|=—c0 I=—j
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It follows that
—j-1
I IAY Fllo)jlles < CICY o377y 107 Ol fillag )l

|=—00

0
+CIY o107 0l fillig) e
I=—j

+CIY o7 v aBpillfillg )l
I=1

If r > 0, there exists € > 0 such that a = r5(y) —s(0) + (r + 1)e < 0 and (1.2)) implies the
existence of a constant C > 0 such that

o; .
iy <y ot < et
j oo

Using the triangle inequality, we get

_]'_1 -1
Y~ o v o Oullfillmg)illes <C ) 27 O fi- ey )l
|=—00 |=—0c0
< 00.

If r <0, we can choose ¢ > 0 such that g =rs(y)—s(0)+ (1 —r)e <0 and find C > 0 such
that

0 .
(LLyr 2L o Y oThis Co-1-B.

Again, we have

-j-1
- -1
1Y o7 107 0l fillg)len < oo.
|=—0c0

The same reasoning can be applied to the other terms in order to obtain

S IAY Fllp)illes < o,
which means that f belongs to Bg,’g/. [

If the admissible sequence y is the usual sequence (2j)j, 1} can be written in
a simpler way, which is given by Corollary

Corollary 2.7.6. Let p,g € [1,00], 1,5 € R and o be an admissible sequence such that
r<s(o)<s(o)<s; (2.13)
we have

o _ r s10,1
Bp'q o [H ’HP]‘I ’
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The classical Besov spaces can be defined by interpolating the Sobolev spaces W
even when p =1 or p = co. Let us show that it is also the case in the generalized version.

Theorem 2.7.7. Let p,q € [1, 0], 0 and y be two admissible sequences such that y, > 1L If
k,n € Ny are two numbers such that

-1 _ =

k<s(o)s(y)" <5(o)s(y) ' <n,

we have

oy _ k n1o.¥v
prq — [W ,Wp q .

Proof. Let us first suppose that f € Bg,’;/ ; again, as in the proof of Proposition
there exists a sequence (f;); of infinitely differentiable functions belonging to L? such
that

D*f =) Df,

j€Ng

in LP for all || < k. Moreover, we have (O']")/;laluDafj”Lp)]' € {1 for all || < n. Let us then
define the sequence
f_]' if —j S IN()
0 ifjelN.

We can write f =} ;. u; (with convergence in Wlf ); moreover, for all j € -IN,, we have

Ollusllys = Y v o D jls

|a|<k

<C ) yo Do £l

la|<k

and

Ojyllllwg = )_ v o ID"f- s

lal<n
<C ) vl iID f o,
|a|<n
which implies (6] (), ;)); € ¢4 and thus f € [W}, W]

Now, let f € [Wlf, Wﬁ]g’y; there exists a sequence of functions (u);cz in W' such
that f =} ;e u;in Wlﬂ‘ and (6,](uj, ¢;)); € 1. Tt follows that D*f =} ;. D%u; in LP for
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all |a| < k. Let us fix || < 7/]._1 and |a| = k; we have

IAED Flls < )AL Dl

leZ
-j-1 oo
<C ) D%l +C ) yf ™ suplIDPullss
1= = IBl=n
-j-1 oo
<C ) Mullyg +C Yy llullwg.
|=—c0 I=—j

It follows, using the same arguments as before, that

(v; o sup [1A,'D fll)j € €4 Vial=k,
Ihl<y;!

which implies f € Bg,’;/ , by Corollary O]



To a general framework for the WLM

The Holderian regularity can be seen as a notion that fills gaps between being “n times
continuously differentiable” and “n + 1 times continuously differentiable”. More pre-
cisely, a function f from L’ioc(IRd) belongs to the space T} (x,) (with xo € R?, p € [1, 0]
and u > 0) if there exist a polynomial P, of degree strictly less than u and a positive
constant C such that

r_u”f _PxOHLP(B(xO,r)) <C, (31)

for r > 0, (see [26]); T°(xp) is called a Holder space (and is usually denoted by A¥(x)
[86]]). These spaces are embedded and the Holder exponent of f at x, is defined as

hoo(xg) :=supfu>0: f € T,°(x)}. (3.2)

The discrete wavelet transform provides a useful tool for studying Holder spaces,
since the condition on f at x; can be transposed to a condition on some wavelet coeffi-
cients near x, (for more details, see [70,[77] for example), the so-called wavelet leaders
(see Definition [3.3.1] with p = o0). Indeed, if a function belongs to a space T;°(xy), the
wavelet leaders of x; satisfy an inequality somehow similar to (3.1). Conversely, if this
condition on the wavelet leaders is met, the corresponding function belongs to a space
close to T,;°(xy). More precisely, in this case one has

0, (M)If = Pyyllreo(Bxg,r) < C (3.3)

with 6,(r) = r¥|In(r)|. In other words, f belongs to T;°(xy) up to a logarithmic correc-
tion. If such results hold, we will say that we have a quasi-characterization of the space
(T;°(xg) in this case). Such a quasi-characterization provides an exact characterization
of the Holderian regularity, i.e. of the Holder exponent k. (xg).

This notion of regularity can be generalized in several ways. First, in the same
spirit as what has been done for Besov spaces in the previous chapter, one can replace
the expression ™" appearing in with a general function ,(r) satisfying some
requirements, as in inequality (3.3). By doing so, one defines spaces that are able to
make subtle distinctions between functions associated to the same Holder exponent,
giving tools for detecting the presence of a Brownian motion in the signal. Such spaces
have been studied in [90], where a quasi-characterization is obtained. Another idea
consists in replacing the Holder space appearing in with a general T} space, in
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order to study non-locally bounded functions (see [73] for such an application). This
approach has been undertaken in [71]], where generalized wavelet leaders, called p-
leaders, are introduced. However, this definition is not a direct generalization of the
usual leaders and fails to quasi-characterize the T (x0) spaces, although they still can
be used to study the corresponding generalized Holder exponent.

The first part of this chapter consists in combining these two points of view, by
considering the spaces of functions satisfying the condition

0, (VN f = Py llLe (Bxy,ry < C. (3.4)

Indeed, we consider an even larger class of spaces called here spaces of generalized
pointwise smoothness (see Definition[3.1.1). Their functional properties, up to slightly
different definitions (see Remark [5.1.3)), will be studied in Chapter [5| while links with
partial differential equations will be explored in Chapter [6] They correspond in some
way to a pointwise version of the generalized Besov spaces introduced in the preceding
chapter. We obtain a quasi-characterization of such spaces by introducing a variant
definition of the p-leaders that naturally extends the classical case where p = oco.

The second part of this chapter aims at providing a multifractal formalism suited
for the spaces introduced here. A multifractal formalism is an empirical method that
allows to estimate the quantity

dimyf{xo € R? : hy(xo) = h},

where dimy; denotes the Hausdorff dimension, see Section for more details, and
hy(xo) is the generalized Holder exponent obtained by replacing T,°(xq) with TS (x0)
in (3.2). Usually, one requires such a method to be valid for a large class of func-
tions. Such a multifractal formalism was first presented in [109] in the context of the
analysis of fully developed turbulence velocity data and it can be shown that, from a
prevalence point of view (see Section[L.6), almost every function belonging to a given
Besov space satisfies this formalism. We aim at providing here a multifractal formal-
ism for the exponents defined from the T, spaces (see ), thus generalizing the
wavelet leaders method [70,[75]]. We show here that, from the prevalence point of view,
almost every function belonging to a space of generalized smoothness satisfies a mul-
tifractal formalism derived from the formalism relying on the p-wavelet leaders. By
doing so, we show that the generalized Besov spaces provide a natural framework for
supporting this theory, reinforcing the idea that the spaces of generalized smoothness
are a natural pointwise version of these spaces. To achieve this goal, we will mainly use
the wavelet representation of generalized Besov spaces (see [2])): if o is an admissible
sequence and p,q € [1,00], a tempered distribution f belongs to Bj , if and on only if
the sequence (Cy); defined by belongs to ¢4 and if

_id
(0277 l(e)aen; llev)j € €7, (3.5)
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This chapter can be seen as a generalization of the ideas and techniques employed
in [70,175},50, 90]. Results obtained here have been submitted for publication in [98]].

Contents
[3.1 Generalized spaces of pointwise smoothness| . . . .. ... ... ... 43
[3.2 Independence of the polynomial from thescale|. . . . ... ... ... 44
[3.3 Spaces of generalized smoothness and wavelets|. . . . . ... ... .. 47
[Compactly supported wavelets| . . . . ... ... ... ......... 48
h Z lets| . . .. . 52
[3.4 A multifractal formalism associated to the generalized Besov spaces|. 58

3.1 Generalized spaces of pointwise smoothness

Definition 3.1.1. Let p,q € [1,00], 0 = (0j); be an admissible sequence such that
s(o) > _%' fe L* and x, € R%; f belongs to T, (xo) wheneve

loc

(0217 sup AL

| Fller (By(xp,27)j € €7
Ih|<2-i

where, given r > 0, if 5(0) > 0, we recall that
Bi(xg,7) = {x: [x,x+ ([S(0)] + 1)h] C B(xg, 1)},
and By(xg, 1) = B(xg,r) otherwise.

It is easy to check that T2 . (x¢) is the generalized Holder space A%(x() intro-
duced in [90]. These spaces can also be seen as a generalization of the spaces T} (x)
introduced by Calderén and Zygmund in [26]. This aspect will be studied in details
in Chapters [5and @ Let us also mention that we can equip T7,(xo) with the natural
norm

0)]+1

- ll7g.(x0) : f 7 e (Bxg1)) + (0 27%P sup ||AE( Fllee (B, xg,2-17)jllea

h|<2-i

and, from the completeness of L? spaces, (T,,(xo), I| - ”Tp‘fq(xo)) is a Banach space. Other
functional properties of the pointwise spaces of generalized smoothness will be ex-
plored in Chapter

A comparison between Definitions and (2.2), taking into account Remark
allows to declare the spaces T, (x¢) as the pointwise Besov spaces, as the L” norm

is now taken on some balls around the point x, instead of the whole space R%. Only

"We recall that, if n <0, Allf = f.
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the factor 2/%/P differs, it corresponds to the inverse of the LP norm of the characteristic
function of B(xy,27/). It is introduced in order that the measure of the ball does not
interfere in the regularity measurement.

We refer to Section for examples of functions belonging to T, (xo) spaces,
once all the necessary tools to discuss them properly will be available.

Let us give an alternative definition of Tp‘fq(xo).

Proposition 3.1.2. Let p,q € [1,00], f € L’;oc, Xg € RY and o be an admissible sequence
such that s(o) > 0. We have f € T (xo) if and only if there exists a sequence of polynomials
(P; x,)j of degree less than or equal to |S(o)] such that

(szjd/p”f _Pj,xollLP(B(Xo,z—f)))j A (3.6)

Proof. The necessity of the condition being a consequence of the Whitney’s theorem,
let us check the sufficiency. Let j € IN; for any polynomial P of degree less than or
equal to n :=|5(0)], we have, given x, h € RY,

n+1

AN < AT (f ()= POOJ < Cy ) I et k) = P+ ki),
k=0

for a constant C,,. Therefore, for || <27/ and x € Bj,(xy,27/), we get

”AZHf”LP(Bh(xO,z*J')) < Cn(” + Z)Hf _P”LP(B(XO,Q#)):

hence the conclusion. O

3.2 Independence of the polynomial from the scale

Under some additional assumptions on the admissible sequence o, the sequence of
polynomials (P; . ); appearing in inequality can be replaced by a unique polyno-
mial P independent from the scale j: P, = P; .
We first need some preliminary results. Let us first state a somehow standard re-

sult about inequalities on polynomials; we sketch a proof for the sake of completeness.

Lemma 3.2.1. Given xg € RY, a radius r > 0, p € (0,00] and a maximum degree n, there
exist two constants C,C’ > 0 only depending on p, d and n such that, for any polynomial P
of degree less than or equal to n,

ID® Pllie(sixyry < CrNIPIlLe(5(xy 1)
for any multi-index o and

sup |P(x)| < C'rP|IP||to(B(xor)-

XEB(xq,t)
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Proof. For the first inequality, let us recall that the Markov inequality (see e.g. [38]))
affirms that, given a convex bounded set E of RY, there exists a constant CE,p > 0 such
that for any n € N and k € {1,...,d}, we have

IDkPlle(g) < Ce p( + 1)?IPllLr(E),

for any polynomial P of degree less than or equal to n. As a consequence, given r > 0,
there exists a constant C > 0 depending on # and p such that, for any multi-index «,
we have

ID® Pllzexg,r) < Cr NPl e (Bxg )

That being done, using Sobolev’s inequality, we can now write

sup  [P(x)| < C'rPIIPllLo(B(xg, ),

x€B(xg,r)
for a constant C’ > 0 which only depends on n and p. O
The main theorem of this section relies on the following lemma.

Lemma 3.2.2. Letp,g€[l,00], f € L};DC, Xg € RY and o be an admissible sequence such that
0<n:=s(0)] <s(o). If f belongs to T7,(xo), the sequence of polynomials (P, »); satisfying
is such that, given a multi-index « for which |a| < n, there exists a sequence & € 1
satisfying
271 6D (B x, = P (0 < &5,
whenever j <k.
In particular, under the same hypothesis, the sequence (D*P;  (x¢)); is Cauchy and its

limit does not depend on the chosen sequence of polynomials satisfying (3.6).

Proof. Let € € £1 be such that

d/ |
03 2PN = Py llp(s(xg,2-i)) < €5

for any j € IN. Given a multi-index «a satisfying the hypothesis and j € IN, we know
that there exists a constant C > 0 such that

”Da(Pj,xo - Pj+1,x0)”LP(B(XO,Q—(J'H)))

< Czlal(]'+1)||pj’x0 - Pj+1,x0”LP(B(XO,Q—(J'H)))

< Czlal(jH)HPj,xo _f”Lp(B(xo,z—(jH))) + ||f - Pj+1,x0||Lp(3(x0,2—(j+l)))

j+1 jd/p -1 i+1)d/p —1
< C2lalGi+ )(5].21 /Po]. +€j+12(1+ ) /pgm),

which implies, from what we have obtained so far,

|Da(13j,x0 - Pj+1,x0)(XO)| < C/(Ej + E]'+1)2|a|j(jj_1_
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For j <k, Lemma then implies

ID(P, JXo Pk,xo)(x0)| < 5j2|a|j(7]-_1;

for the appropriate sequence & € ¢1.
It remains to show that the limit ¢ f(x,) of the sequence (D“P;

i xo(X0))j 1s inde-
pendent of the peculiar choice of the sequence (D®P; , (xg));; let (Q;,,); be another

sequence of polynomials satisfying (3.6). With the same reasoning as before, we get

ID*(P; x, = Qjx,)(x0) < C21%V o1,

Jrxo

for j large enough, which is sufficient to assert that
IDYQ; x, (x0) = Z° f (x0)l
tends to zero as j tends to infinity. O

We are now able to show the existence of the unique polynomial P, introduced
in the beginning of this section.

Theorem 3.2.3. Let p,q € [1,00], f € LP 1ocr X0 € R? and o be an admissible sequence such

that 0 < n:=[5(0)] <s(o). The following assertions are equivalent:
* f belongs to T, (xo);
* there exists a unique polynomial P, of degree less than or equal to n such that

(0 27P||f = Py, ll1o (B(xy 27 € €7 (3.7)

Proof. We need to prove that the first assertion implies the second one. As f belongs
to T ,(xo), there exists a sequence of polynomials (P;y); of degree less than or equal
to n such that

(0 27P||f = Py o (Bxg.2-1y))j € €7-

Given a multi-index a satisfying |a| < n, let us set

P f(xg) == hmD Py, (xo)
and define the polynomial

« (x—x
mweZ@f H?' (3.8)

lal<n

One directly gets

d
1B x, = P ”LP B(x(,277)) <Z{lD ) xo (X - 2% f(xg |2J|a|+/p)

lal<n
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That being said, we know from the previous lemma that, given a, there exists a se-
quence &% € ¢7 such that
DB, (x0) = 2° f (xo)| < &2l 671,
We thus have
(ajzjd/p”IJ],XO - PXQ'lLP(B(Xo,Z_j)))j € gq’

which proves the first part of the theorem.

Concerning the uniqueness of the polynomial, the idea of the proof is the same as
the one given in [26] for the spaces T}, (xy). Let P and Q be two polynomials satisfying
a relation of type (3.7); one directly gets P(xo) = Q(x¢). That being said, let us define

L:= Z Col—x0)%,

|a|=m

where m is the lowest degree of P — Q, with

Co =
If m<sup{l € Z:1<s(o)}, one can write

Ll a1y < C2™ 07+ 27),
for a constant C, which means L = 0. For m = sup{l € Z : | < s(0)}, we simply get
LI (B 1)) < Cz—miaj—l, which implies L=P - Q = 0. O

Remark 3.2.4. In the previous result, if o is the usual sequence u with u € IN, it is
easy to check that the polynomial P, is unique if one requires its degree to be strictly
smaller than u. This requirement does not modify the functional spaces as, if u € IN,
forany j e N

-d .
2]p”(x_XO)ullLP(B(xo,z—f)) =277",

3.3 Spaces of generalized smoothness and wavelets

Let now us focus on the quasi-characterization of T,4(x0) spaces. As for the wavelet-
based study of pointwise Holder spaces, we will use wavelet leaders [70]. However, as
we work here with L norms, we need to introduce a generalized version.

Definition 3.3.1. Given a dyadic cube A € A; at scale j, the p-wavelet leader of A
(p € [1,0]) is defined by
dh=sup( ) (U,

I'2] NeAjaca

Given x( € R?, we set
p _ p
d]- (xo)= sup d,.
/\E?J/\j(X())
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Remark 3.3.2. The definition of the wavelet leaders given in this thesis is different
from the one presented in [94]. The quantities introduced here are easier to work with

and naturally generalize the usual wavelet leaders d;(x,) introduced in [70], since we

have d;(xp) = d]-°°(x0).

Compactly supported wavelets

In this section, we work with compactly supported wavelets of regularity r > 5(o) (see
[36]). In this context, jo is a natural number such that the support of each wavelet
is contained in B(0,2/0). We will need the following definition (see [103]]), ensuring a
minimum regularity condition for a function.

Definition 3.3.3. Given x; € R, a function f defined on IR? belongs to the Xu space
X;’q(xo) (se€RR, p,q €[1,0]) if there exists a constant C, > 0 such that

( Z (Z(S‘d/p”ch(_il)(l)p)l/”e€‘7.
k—2ix|<C. 2] r

Theorem 3.3.4. If f belongs to the space T; (xq), then
(a]-d]’.’(xo))j 40 (3.9)

Proof. Let € € {1 and (P;); be a sequence of polynomials of degree less than or equal to
5(o) such that

id
0j2] /p”f _Pj”LP(B(xO,z—J’)) <é&j,
for all j € N. Let us choose j; € IN such that 2Vd + 200 < 2/t and fix n > j;. For
/\EZI)c C 31,,(xg), we have
k
|—, —XOl < 2\/32_1/1.
2]
By setting
) _ -
Ajni= (A0 € A k= 2Txg| < 2Va2I ),
for A € 31,,(xg), we can write
Z 2014 |c P < Z 20=Dd)c PP,
VeAVcA Ve,
whenever p # co. In this case, let us set

Sn:j = Z |C/\’|p

Ve,

and define

-1 ..
8nj = Z lenlP™ sign(cn)pa.
VEn,,
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One easily checks that the support of g, ; is contained in B(x,, 2/17") and

Snj = 24, guj) =2/ f (f () = Py (0))8(x) dx,

B(xg,2/171)

so that, if we denote by g the conjugate exponent of p,

id
Snj < 2Nf = Pucji o (Bxg,21-)) 18, jllLa-

To estimate ||g,, |14, let us remark that there exists a constant C, € IN that depends
neither on A nor on the scale j such that the cardinal of

{A" € A;j:supp(py) Nsupp(y) = 0}
is bounded by C,. Therefore, given j € IN, we can choose a partition Ey,...,Ec, of A]-
such that A, A" €E,, (1 <m<C,)and
supp(¢r) Nsupp(Pyr) =0
implies A" = A”. For p # 1, we easily get
g <CE ) eyl
Veh,

and thus
1/q

g jllen < C277%0s,, f max {1l (3.10)

If p =1, one easily checks that

g1l < €274 max [|p@][pe,
1<i<2d

so that (3.10) is still satisfied in this case.
That being done, since we have

1 i _
/]p < Ce”_hz(] n)d/po.n1,

for a constant C > 0, we get

)d *P
n] |C/\’|p<2n] Sn]—c‘E On
NeN;,VCA

which is sufficient to conclude in the case p # .
Finally, let us consider the case p = co0. The conclusion is straightforward since,
given A C 31,(x(), one easily checks that, using an analogous reasoning, we can write

|C)\| < Cen—jl Ons

for a constant C > 0. O
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For the sufficient condition, we need the following definition.

Definition 3.3.5. Let p,g € [1,00], xg € R and f be a function from L‘ioc; if o is an
admissible sequence such that 2‘jd/paj_1 tends to 0 as j tends to oo, we say that f

belongs to T 0, log(xo) if there exists ] € IN for which
2i4/p 5.
] [s(0)]+1
sup [|A; Flleo (B, xg,271))j27 € €7

=l
|log, (2774/Po )| <z

Theorem 3.3.6. Let p,q € [1,00], xg € R? and f be a function from L’;OC; let also o be an
admissible sequence such that 2‘jd/pa]_1 tends to 0 as j tends to co and o, > 27VP. If f

belongs to Xf,’q(xo)for some s > 0, then (o dp(xo)) e {1 implies f € T o, log( 0)-

Proof. Let us first suppose that s(o) > 0 and set n := |5(0)]. We need to define some
quantities. First, choose m € IN such that k/2/ € B(x, r) implies /\Ell)( C B(x,2™r), for any
xeRY, k ez, jeNand r > 27J. Let also m’ € N be such that, for any x € RY and

any j € N, B(x,2_j) is included in some dyadic cube of side length 2™~} and define
Jo :=jo+m+m’. Let C, >0 be such that

() @) Pe

(i
. . k
=2/ xo|<C, 2] g

and choose a number J; € N for which we have (1+2/0) < C,2/1. We also need a sequence
€ € {1 satisfying Ujd]l-)(X()) < ¢j, for all j € IN. Finally, given ] > max{Jy,J;}, define

where

for j > 0. We have

2]d/p||f_PI”LP B(xp,27))

<Z2]d/p”f] Z ||, Dafj(xo)”LP(B(xO,Z*f)) (3.11)
j=-1 lal<n

+ ) PUflp o) (3.12)
j=J+1

Let us fix y € B(xg,27/) and |a| = n+ 1. We will first consider the case p # co. We
have D*®, ) (v) # 0 only if k/2] belongs to B(y,2/07); for Jo < j < ], we have

(i)
ik

Aﬁ C B(y, 27170y € A1 (%),
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so that we can write, using the same reasoning as in the previous proof,

D% £i(y)] < C2PU1 Y [ PID ()P

/\EAj
<C2P) N e PID  (v)P
)\EA]',/\C/\]',]O(X())
< CIPmD el 57P

; ’

J=Jo"j

since o is an admissible sequence. Moreover, as the wavelet coefficients are finite and
there exists a constant C; which only depends on 4 such that

#lkez®: keB(y,2°)<Cy #lkez®:k/2) € By, 2077)) < Cy,

we also have

|Daf |p < C2]p n+1) ] P,

forall je{-1,...,]Jp—1}. As a consequence, we can write, for any j € {-1,...,]},

(-—x0)" - d/p)~j -
1= ) o D fiwolls(ag 2o < 0527702

la|<n

for some sequence 6 € £9. A similar reasoning gives the same inequality for p = co.
Now, since s(o) <n+1, (3.11) is upper bounded by

J
o 1 : 1) -1 ’ -1
C’oJ(n+1) 2 9].2]("+ >g]. <C'&o;,
j=-1

for some constant C” > 0, where the sequence £ is given by Lemmal|[1.2.2]
For the second term, let us fix j > ] + 1 and p # oo to define

Ajy =AY € Ay B(k/2),20/29) 0 B(xp, 277) 2 0).

By proceeding as before for x € B(x(,27/), we get

1 M a2y SC ) 27 leal?, (3.13)

/\EA]]

for some constant C, which gives

d —
2P| £ ()Mo 3y 21y < Cegy07 -

Moreover, since the coefficient ¢ () in the sum (3.13) vanishes always but when

(i
/\]

)
k

|k — 2/ x| < C,27, we also have

P~—spj
I My 0 < 2
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for a sequence 6 € ¢4, as f belongs to the space X;’q(xo). Let us obtain upper bounds
for the case p = oo; for x € B(xg,27/), k/2/ € B(x, 2/0~J) implies /\Ell)(

have |C/\(k)| < C¢j_j,on. The same reasoning as before leads to
7l

C Aj_j,(xp), so that we

/5 (Lo (B(xg,2-7)) < Céjz_sj-

Let us now set j.(J) := [|log, (2~ ]d/pa )I/s] and choose s small enough in order to

ensure that we have log2(2d/pg1 )/s > 1. W1th such a definition, we have j,(J) = j.(J') if
and only if ] =]’ and we can write

Y 2Pl ey 2

j:]+1
d d
= ) 2Pl Y PP lea
':]+1 ]_](])
SCZwr +C2 Z %2
j=J+1

< Cleyy, + &) 11og, (2 Wpa )|

for ] large enough, where the sequence (&;,(5)); belongs to £1.
It only remains to consider the situation where s(o) < 0. In this case, let us set
P; = 0 whenever ] > max{Jy,/;}. Once again, there exists a sequence & € £7 such that

for y € B(xg,27/), any ] > max{Jy,J;} and any j € {~1,...,J}. As done previously, we get
2J4p|| £ = Pillze(B(xy,277)

] o
<C ) PPl + ) 2Ifllrmeo

j=—1 j=]+1
< ojllog,(2~ Jd /pa )|o

with 6 € 1. 0

Schwartz wavelets

In practise, compactly supported wavelets are used most of the time; however, for
theoretical applications, it can be handy to have similar results concerning wavelets in
the Schwarz class [102]]. We will thus consider such wavelets in this section.
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Lemma 3.3.7. Let p,q € [1,00], xg € R? and o be an admissible sequence such that either
5(0)>—d/p,s(0) <0, 0r 0 <n:=|s(o)] <s(o); if f € LP belongs to T (xo), then we have

; -P
R4\ B(x¢,277) |0 — x|

for any u >3(o) +d, where P is the polynomial given by Theorem 3.2.3|

Proof. Let us set R := f — P; without loss of generality, we can assume xy = 0. Let us

define, for r > 0,
o= [ IRl
B(0,r)

we know that there exists a sequence € € ¢4 such that
- —jd . -1
p(277) <27 €j0;
for all j € IN. Moreover, for r > 1, we have

(P(T’) < Crd(l_l/p)”f”Lp +Crn+d < Crd+§(a).

Using spherical coordinates, we can write

o) :jo P(p)dp,

27 TC TC
¢<p>:=pd‘1f0 fo fo IR(x(p, 01, 00 1) dQ4,

where dQ); stands for

with

sin2(6,)---sin(6,_,)d6; ---dO,_;.

Since, for all r > 0, we have

P _ o piypin R, (" 2 p(p)a
S s o L

)l
we get
J |R(3fl)|dx
B(0,1\B(0,2-7) Xl
p(r) (" wu Loy
<PV (p)dp + J () dp.
- Lpuu@p p ; L. g ele)de
Since

p(r)/r < C <M Mgt,
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where 6 > 0 has been chosen such that 6 < u —d —5(0), we can write

"u i(u—d)H—jé _—1
L pm p(p)dp < C21=D27 70671,

Finally, as o is admissible and u >35(0) + d, we have

21—k

j
k=12

where & € {1 is given by Lemma Putting all these together, we can claim that
there exists a sequence 0 € ¢7 such that the inequality

f [R(x)| dx < 2/11-Dg 1
B(0,/\B(0,2-7) |xI* J

holds for r > 1. O

Theorem 3.3.8. Let p,q € [1,00], xo € RY and o be an admissible sequence such that either
5(0)>—d/p,s(c) <0, 0r 0<[5(0)] <s(o); if f € LP belongs to Ty (xo), then we have

(ajdf(xo))j e,
Proof. Let € € £1 be such that
id
0;2/ PIIf = Pille(B(xg,27)) < €

for any j € N, choose j; € N such that 2Vd < 2/1 and fix n > j; + 1.
Let us first suppose that p € (1, 00); define

Ajui= (A € A1 k- 2ix| < Vd2itiy,

j ik

so that A €31,(xg) and A € A; implies A € A,
siwi= ) leul?
Ven,,

and
-1 .
Sin = Z lea|P™ sign(cy )y
/\/GA]"W
We have

Sjn = 2fdf C(f(x) - P(x)gja(x) dx
B(x(),Z]l’"*l)

420 j C(f) - P)g () dx.
IRd\B(xO,ZH’”H)



3.3. Spaces of generalized smoothness and wavelets 55

Using Holder’s inequality, we can write

20 [ (- PG
B(x0,211‘”+1)
< Ceyjy 1 2927 PlIg 0
where p’ is the conjugate exponent of p, with
] ) 1/ 7
“gj,n”Lp’ <C2 jdlp S]”np ,

for a constant C > 0, thanks to the wavelet characterization of L? spaces (see e.g. [102]).
Now, for all u > d +5(0), it is easy to check, using the fast decay of the wavelets, that
there exists a constant C;,, > 0 such that, for all x € R? \ B(xg, 27171,

() Tpwl)? < Caul(2T1x = xo)"
/\/EA]',n

Using the previous lemma, we can claim that there exists a sequence 0 € ¢4 for which

2jd J (f (x) = P(x))gj,n(x) dx < ens.;"'z(f—")d/l’a,;l.
IRd\B(xo,Zjl’”*l) J

As a consequence, there exists a sequence & € ¢1 such that

1/p j—n)d/p _—1
sj'n Sénz(] I’l) pan .

If p =1, keeping the same notations, we have

o< 2f'df F =P Y lpaldx
o B(x0,2j1‘"+1) Z A

NeA;

jn

[ =Pl Y lalds
Rd\B(x0,211_”+1)

Veh,

To bound the first integral, remark that } ;.. Aj || is bounded and
I1f = Pllzs g 2oy < Cnjy 120

The second integral can be treated as in the case p € (1, ).
Finally, assume that p = oo, fix j > 1 and suppose that A € A; satisfies A € 31,,(x).
We have

|cA|s2fdj ) -P)llpaldx
B(x0,211*”+1)

+zfdj If() - Pl .
IRd\B(xO,ZH’”“)
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Once again, it is sufficient to bound the first integral, which is easy since we have
id -1
2 [ 0= P@ldx < Capgiay,
B(XO 2J1 n+1)

for some constant C > 0. ]

xo € R? and o be an admissible sequence such

Theorem 3.3.9. Let p,q € [1,00], f € L,
then (ajd]’.’ (x0)); € €1

that s(o) > —d/p and o > 2~VP_ If there exists s > O such that f € BS
implies f €

P’
Ty g10g(¥0)-

Proof. Let us use the definitions of n, m, ]y, ], ], €, P; and f] introduced in the proof of
Theorem Of course, we have

2]d/p||f_P]”LP B(x0,277)

< Z2Wpllf] Z X D ol a1 (3.14)
j=—1 lal<n
+ Z PP flluo a2 (3.15)
j=J+1

Let us first consider the term (3.14) of the last bound. Let a be a multi-index such
that |a| = n + 1; from Taylor’s formula, we need to bound |D f;(x)| for x € B(xg,27).
Assume now that j is such that j —[j/2] > J, and define

Aj,O = {A;f;{ S A] : |2jX0 —kl < 1},

for I such that 1 <1 <Tj/2],

Ajii= (A € A2 <(20xg -k < 2)
and |
Aj = {/\;l;)( €A |2xg—kl 2 2120,

A sum over A; can be decomposed into a sum over the sets A;; (with I €{0,...,[j/27})
and A]-,*. For 1 <1<7Tj/2], we have, by Holder’s inequality,

) leallD ()

/\eA
Z |C/\|p l/p Z |D0( |p 1/p’
/\eA /\eA
1 ,
ld -1 1
< Clejorg, 2o ) () (—— P

d+1
et (1 +|2]x_k|)2 + +u+d/p)p

ul
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where u is such that u > 5(0) and p’ is the conjugate exponent of p; for I = 0, we can
write

PRI

/\EA]"O

For the last set, we get

) lelID* ()l <307,

/\GA]"*

for a sequence 6 € {9, as f € By .. Using these results, we obtain

[j/2]

) leallD*pa(x)| < 550 Z]z,oz o7 <(8;+&))07

/\EA]

where & € ¢4 is defined as in the proof of Lemma[1.2.2] For the first term , we
still have to consider the case j —[j/2] <Jo; since f € B}, ,, we can write

Z leAl D%y (x)] < 8,275 217P < Csj07,
/\EA]

so that [D® f;(x)| is bounded by C’(6; + 5])2”+1 -1, for any j < J; we thus have

(= x0)*
||f]._Z = D £ (x0)llLp (Bxg.2 1))

|a]!
|a|<n
(n+1+d/p)] H(n+1)j _—1
< C(8;+ &2/ pln gL,

Finally, as 5(0) <n+1, (3.14) is bounded by

J
Co-(n+1)] Z(éf " 5],)2(11+1)]O-j—l < 9}01—1,
j=-1

where 0 € {1 is given by Lemma([I.2.3]
Let us now consider the second term (3.15)); we actually need to bound the L?
norm of f] for j > J. Let us, in the same spirit as before, define

A;‘,O = {/\;ZI){ €EA;: |2jx0 —k| < 2j+]o—]}’

for I suchthat1 <I<]J,

A=Ay € A 27Tl < alg -k < 27T

and .
A= {/\;f,)( €A;: 2 <|2xy -kl
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Using the wavelet characterization of L? spaces (see [102]]), we can write

1) exallpuon<CC ) 27Ule)”

P AEA;,ACA;(x0)

< Ce]2_]d/pa]_1.
For I €{l1,...,]}, we get this time

Z |C/\| |7’l1/\(X)| = CE]—lz_(]_]-'_l)uO-]__ll < C2_Ml€]_lElO']_1,
AeA’,

for x € B(xy,27/) and
Y leallpaol < c27or?,

AeA i

for some 6 > 0. As previously, we get that there exists a sequence p € ¢9 such that

2]d/p||fj||LP(B(x0,2—’)) < pfa]_l’

so that we can conclude using the same arguments as in the compactly supported
case. [

3.4 A multifractal formalism associated to the
generalized Besov spaces

We show in this section that the generalized Besov spaces, studied in the preceding
chapter, provide a natural framework for the multifractal formalism based on the T,
spaces.

As the wavelet leaders method (WLM) involves the oscillation spaces O,S;S/ (see
[70},[75]]), we will temporarily use them in our general framework.

Definition 3.4.1. Let p,g,7 € [1,0]; a function f belongs to the generalized oscillation
space OF, . if the sequence (Cy); defined by belongs to ¢1 and if

p.1.q
(Z( Z(O.jz—dj/rdi)r)q/r)l/q <C,

jEN /\EA]'
for some positive constant C.

We will show that these spaces are closely related to generalized Besov spaces.
We first need the following definition to introduce a multifractal formalism.
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Definition 3.4.2. Let p,q € [1,0]; if, given h > —d/p, ¥ is an admissible sequence, the
family of admissible sequences i — ¥ is (p,q)-decreasing if it satisfies s(y") > —d/p,
y(lh) > 274 for any h > —d/p and if —~d/p < h < I’ implies

() (h)
Y V4
Tpq (x0) C Tyq (x0)-

In the sequel, we will only consider families of admissible sequences ! that
are implicitly (p, q)-decreasing. This notion was introduced in [90], where criteria to

obtain such families are presented. The idea is to work with a familly of sequences of
(h)
)i

the form (o = (2jg(h)5;h))]-)h>_% where g is an increasing function and, for any h, (6j

is the non-dyadic part of 0. To summarize, if the Boyd indices of the sequences (6;-h))]-
vary sufficiently slowly compared to g(h), then the family is decreasing. This can be

done, following Corollary(1.2.12} using slowly varying functions.

Definition 3.4.3. Given p,q € [1,00] and a family of admissible sequences y), the gen-
eralized (p,q)-Holder exponent associated to f € Llioc and ') at xy € R? is defined
by

(h)
hpa(x0) :=suplh>—d/p: f € T (xo)} (3.16)

The most natural family of admissible sequences is h +— (2jh)j. In this case,
Neo,0(X0) is the usual Holder exponent [70], while h, .(xo) is the p-exponent consid-
ered in [75].

Given p,q € [1,0], a family of admissible sequences ) and a function f € L"

loc’
we set

Dy 4(h) = dimy({xg € R? : , 4(x0) = h}).

P4

In the following, we will implicitly work with indices p,g,7 € [1,0], a function
f that belongs to Lﬁoc, a point x; € IR, a family of admissible sequences () and an
admissible sequence o.

Lemma 3.4.4. If
(M) 5nj 7P pa

for some 1 > 0 such that |5(y"M) + 1] = [5(yM)], then hp,q4(xq) > h.

Proof. We know that there exist a sequence of polynomials (P;); of degree at most
§(y(h)) and a sequence € € ¢1 such that

h) A7 —ni —ni—i h
Y 2RI~ Pl 2oty < Cej2 M logy (2717470 7/ 1)

(h
for j large enough, which implies f € Tp7,/q )(xo). O
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Proposition 3.4.5. If the function f belongs to both Bp g for some >0, and OF , ., then

pnq’
d yak
dimy({xg € R" : h, 4(x0) <h}) <d + TS(T)
Proof. Let & € {7 be such that ¢; # 0 and

( Z(O_jz—jd/rdi)r)l/r < £,

/\EA]'

for all j € IN. Let us first consider the case r = oo; if §(y(h)/0) < 0, there exists 6 > 0 such
that y;h)zéfdf(xo) < Cg¢; for any j and h,, ,(xo) > h for all xo € R?. As a consequence, we
have

dimy({xo € R? : h, 4(xp) < h}) = —c0 = d +15(y"/0).

On the other hand, if §(y(h)/0) >0,
dimy,({xg € R? : b, 4 (xp) < h}) < d < d +15(y"/0).

Now, suppose r < oo, fix h > —d/p and define, given j € IN and ¢ > 0 sufficiently
small,
Elsi={AleA:df =2 bf/y N

and set n = #Eh As feO rq, we have
s S (
a]-rZ (2 61/7/]- )" < € 0 rp-id Z dp
AeE] s
so that ,
jd (9=0j 7o, \W\=r, 1
Now, define A;llé as the set of the dyadic cubes A € A; such that there exists a neighbor

A" € 3 that belongs to E h i Finally, define

Fg _hmsup{xoele /\(xO)EA sk
]

If xo does not belong to F, then there exists ] € N such that j > J implies Aj(x) € A;’,é
and, from what we have obtained for n, there exists a constant C > 0 for which j > ]
implies
- . h
227y (xg) < Ce;

and therefore

{xg € R?: h 4(x9) < h} C FL. (3.17)

Let a > 0, set j; :=inf{j: Vd27/ < a) and

Es:={AeAl;:j>]).
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It is easy to check that Es is an a-covering of F; given s, > 0, we have
) diam(A) <) #F)(Vd27)
A€E; JZJo
d-s)j (7=0] 7,,(M)\~
<C Zz< 20y o]
JjZjo
<’ Z iy o)+ 5 (d-s)]
jeIN
As a consequence, we have

\ y )
dimy(Fy) <d +1(5(=—)+0+1),

for any # > 0 and we can conclude thanks to (3.17).

]

Of course, for classic examples of families of admissible sequences, the appli-
cation h +— E(y(h)) is continuous (see [90]]); in such a case, the previous result can be

improved.

Remark 3.4.6. If there exists a sequence € converging to 0" such that

(h+€]‘)

5(Y

(h)
)—3(E-),

o

we have "
X,

. d —
h <h}<d
dimy{xg € R" : h, 4(x0) <h} <d +715 >

Proposition 3.4.7. If o is an admissible sequence such that s(¢) > 0 and s(o)—d/r > —d/p,

we have Oy . . = BJ .
Proof. We obviously have Oy, . < B7 . If f belongs to B ;, we have
( Z (sz—jd/rd/P\)r)q/r
/\EA]'
_ o r/p\4/"
<( Yoy (@) )
AEA; j’zj AMeAp,AcA

for any j € N.
Let us first suppose that r < p; in this case, (3.18) is bounded by

q/r

Z(Oja]:lz(j—j )d/pz(j —j)d/r)r Z (0]_,2—]' d/l’lc/v|)r

Iy Neny

(3.18)
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Let ¢ > 0 be such that s(o) — e —d/r > —d/p; there exists a constant C, > 0 such that
0].0];1 < C.26@)-e)j=]"),

If g <r, (3.18) is bounded by

C Z(2(§(0)+6—d/r—d/r)(j—j’))q( Z (O'j’z_j’d/rlc,\’l)r)q/r '

7> Neh
As f belongs to By ;, we can write
—jd 1 —j’d 1
(Z( Z(sz ] /Tdi)r)Q/r) /9 < C(z( Z (0]-,2 ] /rlc/vl)r)q/r) /q,
jEN AeA; jEN VeAp

which implies f € Oy, .. If r < g, by denoting s the conjugate exponent of q/r, we can

use Holder’s inequality to bound (3.18) by

C( Z(2—§(0)+£—d/p—d/r)(j’—j))rs/2)q/(rs)
j'zj

(Z(2—s(a)+s—d/p—d/r)(j’—j))q/(Zr)( Z ( Oj/z—j’d/rl C/\’l)r)q/r)

Iy Ven;

< C(Z(2—5(U)+e—d/p—d/r)(j’_j))q/(2r)( Z (Gj/z_jfd/rl C/Vl)r)q/r)’

j'zj NeA

i)

]

so that f belongs to Oy, ., as in the previous case.
We still have to consider the case p < r; by Jensen’s inequality, we can bound

(B18) by

a/r
Yiopty At
A€A; jZj Ve, M'cA
q’r

[ Y ¥ e

> Nen
so that we can conclude as in the other cases. O

We propose the following formula to estimate the spectrum D, , related to a func-
tion f € By :

D

(h)
_ -V
p,q(h) =d+ rs(—Cy )

and we show that, under natural smooth conditions, this equality is satisfied almost
everywhere from a prevalence point of view.
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Definition 3.4.8. An admissible sequence ¢ and a family of admissible sequences "
are compatible for p,q,7,s € [1,00] with s < g if

* s(0)>0,
* s(o)—d/r>-d/p,

* the function C defined on (-d/p, o) by

LN
C(h) -—E(T)—S(T)

is non decreasing, continuous and such that
{h>—-d/p:C(h)<-d/r}=0.
We call C the ratio function. We will also frequently use the quantity
hmin(r) :=sup{h>—-d/p: C(h) < —-d/r}.
The following remark stresses the importance of hj,.

Remark 3.4.9. Suppose that o and () are compatible as in the previous definition. If

f belongs to By, there exists 7 > 0 such that Bj , < BZ,q. For A € Ajand j' > j, we
have
1/p 1/p
i—j’)d id -j'd -1
(2(] i) /plC/\/l)p < 2] /p Z (O']'/Z ] /p|c/\/|)p Ujr
/\’EA]",/\’C/\ /\'EA]-/

id -1
< 2] /pg]‘ij/ ’

for a sequence € € £1. As a consequence, there exist # > 0 and a sequence & € ¢1 given

by Lemma such that, for A € Aj,

dh<CY 2epont <cgipyl,
>

for all 1 > —d/p such that 5(y"//o) < —d/p. Therefore, one has hp,q(x0) = himin(p), for
any x, € IR%.

In the same spirit, for r < p, one has By, — Bg’q, where 0 is the admissible se-
quence defined by 0, := Z(d/p‘d/r)joj (j e N). Ass(o)—d/r > —d/p implies s(8) > 0, there
exists 17 > 0 such that B}, — Bg,q and hy, ;(x) > hyin(r), for any xg € RY.

That being done, if p <r then, for any f € BY

r,q’

hp,q(xO) 2 hr,q(xO) 2 hmin(r)-

Thus, if f € BY, we have f € BY, and h;, 4(xq) = hin (7).

r,s’
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From what we have done so far, we get the following corollary.

Corollary 3.4.10. Let p,q,7,s € [1,00], 0 be an admissible sequence and y') be a family of
admissible sequences such that o and y') are compatible. If f belongs to B, then

e {xgeR?: hpa(x0) <h} =0 for any h < hyn(r),
o dimy/({xg e R : hya(x0) <h}) <d+rC(h)  for any h > hpn (7).

To show that, under some general hypothesis, the last upper bound is optimal for
a prevalent set of functions in B7, we need the following definition.

Definition 3.4.11. Let x, € R? and r > 0; the strict cone of influence above x, of width
ris
= {(i k .k r

where |[x — ||, is the Chebyshev distance between x and y (x,y € R%):
b = Plloo = max x, = pu.
This definition is related to the wavelets as follows: in this context, we set
Ky, (r) = {Aﬁ.j}c e A:(j,k)eCy (r)
The following result explains why K,/ can be seen as a cone of influence for the wavelets.

Proposition 3.4.12. If f belongs to TJ(xq), then

(0 Z leAlP)P); € €.

/\EA]'OICXO(I’)

Proof. Choose j; € N such that Vdr+2/0 < 2/1;for j > j;,if A e A; also belongs to Ky (7),
then the support of ¢, is included in B(xy, 2/t™7). From the proof of Theorem [3.3.4} we
know that there exists a sequence € € €7 such that

o ) 1l <e;,

AEA MK, (7)

for any j > j;. The conclusion then comes from the Archimedean property of the real
line. [

Given a dyadic cube A = /\Ell)(, let us denote by k(1) and j(A) the numbers such
that k(1)/2/(Y) is the dyadic irreducible form of k/2/. For a € [1, 0], let us set
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We have h.(a) > hyin(r) = hJ(o0). If C(h) > d/ar — d/r, choose ¢y > 0 such that
C(h)—¢eg>d/ar—d/r and let my € IN be such that

d—(i—i—C(h)+£o)2dm°a<O. (3.19)
ar r

Let us split each cube A € A; into 29™M0 cubes at the scale j + m, and for each
nell,..., deo}, choose the unique subcube A of A such that n = n’ implies A1) £ (1)
From this, we can consider a function g such that its wavelet coefficients c, satisfy
the following conditions:

Ca 1= j 02TV G i e Ajn [0, 1]7,

with ag:=1+1/r+1/s and c, := 0 if A is not of the form A" for some n.
Proposition 3.4.13. For all n € {1,...,29™M0}, ¢ belongs to B

Proof. For j > 1, we have

() (G, 2 T ey )7

/\EAj+n10

Z Z ]+m0 ]+m0)d/r]—a02]d/r2—ld/r ]—1) )l/r

=0 deA; jnlo, 14
J'(A):l

and

]
(Em 2—(j+m0)d/r]-—a0 )r)l/r
0

() (Ofm 2 ey 1) <

/\eAj+m0 l

S C]-—a0+1/r.

0

As ayg>1/r+1/s, we get

(D (D (om0 ey ) < ey jT I < oo,

]Zl /\EA]'+mO ]21
which is sufficient to conclude. O

Definition 3.4.14. Let @ > 1; a point x; € [0,1]% is a-approximable by dyadics if there
exist two sequences k and j of natural numbers with k,, < 2/» for any n € N such that

k, 1

__n < i
o = 2l < 52

for any n € IN.
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Let us denote the set of points of [0,1]¢ which are a-approximable by dyadics by
E® and define

: k 1
Ef :={xg€ [0,1]¢ : 3k €{0,...,27 =1} such that ||xg — E”‘” <—1),

= 24
so that E = limsup; E]’?‘. We also define

1

k
a . d.
Ej,k'_ {XOE[O,l] .||XO—E||OOSE

b

for k e {O,...,2j - 1}d, in order to have

ES = U E,.

1€0,...,21-1)4
Finally, set E* = N, E%; this set is non-empty since it contains the dyadic numbers.

Proposition 3.4.15. Given C >0, j € N and k € {0,...,2/ — 1}4, the set

FOC(h) = (f € BY,: (Ax € ES s Vn € NVA € A, N K, (2704 [y < c/yi")

is closed in BY ..

Proof. Let (f;); be a sequence of functions of F].“]’(C such that f; — f in BY; and denote

by cf\l) (resp. c,) the wavelet coefficients of f; (resp. f). Since

s(o)+ s(o)-
B By B,
for any y > 0 and as the application that associates to a function its wavelet coefficients
. . I
is continuous on the Besov spaces, we have c(/\) —c, forall X € A.
For I € N, let x; € E]’?‘k be such that, for all n € N and A € A, N K, (2"0*), we

have |cf\l)| < C/)/,(qh). As E;fk is compact, we can suppose that the sequence (x;); con-
verges to a point x( of E;’fk. Now, let us fix N € IN and ¢ > 0; if ] is sufficiently large,
we have /CXO(2’”0+1) C ICXZ(ZV”O”) and, for n < N, we have, for 1 € A, N ICXI(Z’”O”),
|c(/\l) —cyl < 5/7/,(1]1) as cf\l) converges to ¢,. Also, we have |c(/\l)| < C/)/,gh) for A e A, N

ICXI(Z’”OH). As a consequence, A € A, N ICXO(Z”’OH) implies

leal < (C+oyy”,
for all n < N. Taking the limit for N — co and 6 — 0" leads to f € F].Df]’cc(h). O

Let us set
;C .-— ,C
Fmy= () ENC)

kefo,...,21-1}4

and F¥¢(h) :=limsu -Fq’c(h . All these sets are obviously Borel sets.
p; L y
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Proposition 3.4.16. The set F*(h) is a Haar-null Borel set.

Proof. Set m; :=2"04 and let us fix j € N and k € {0, —1);for f € B7,, suppose that
there exist two points of R”1, all) = (a(ll) a(,,il) and al? (a(lz), “5131))' such that
fri=f+ Zam g
m=1

belongs to F]‘.)f;(C(h) (I €{1,2}). For I € {1,2}, let us also denote by CE\Z) the wavelet coef-
ficient of f; associated to the dyadic cube A € A and let x; be a point of E]?fk such that
L€ Aaji NIy (270%) implies || < C/y (0

(i)

L(mk,wehave

For A" € A|4jj+m, satisfying A" C A

() (h)

As a consequence, we get, by denoting c}m) the wavelet coefficient of g associated to
A, ,
1 )
labn — a1 = lap’ = a1 mVIc ] < 2C/ (g e €D

for any m € {1,...,m;}. On the other hand, for j > j(A), we have

|C,((T))| — LajJ—aozLade/qz j(A )d/qal_al”
> C/La]-J—ao zLade/qz—La]Jd/aqo_L—aljy

so that there exists a constant C” > 0 for which
7 c— i _ h
la®) = |, < C”ajy o2l daa-da g, oy (3.20)

That being done, for f € BY,, we have

r,s?

{aeR™ : f +ag e F¥C(h)} C U{a €R™ : f+ag € F{"“(h)

iz
,C
3y U faeR™ : f +ag e FE(h)),
j2] kefo,...,27-1}4

for any J € N. Thus, from (3.20), we get
L({aeR™ : f +ag e F*“(h)})
i 7 . i — h
< Zzld(c Laj |20 olaild/aq d/q)OLa]'J/VL(a)jJ)M
=]
<C” ZLa]'Jﬂoml jd=mya(C(h)-d/aq-d/q-¢o))
=]
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Letting ] going to oo, (3.19) implies
L({aeR™ : f +ag e F¥C(h)})=0,
hence the conclusion. O]

Theorem 3.4.17. Let p,q,1,s € [1,00] with s < q, o be an admissible sequence and y(') be
a family of admissible sequences compatible with o. From the prevalence point of view, for
almost every f € BY, D, 4 is defined on I = [C~Y(=d/r), 71 (0)] and

Dp,q(h) =d+rC(h),

forany hel.
Moreover, for almost every x, € R?, we have hpq(xo) = ¢ H0).

Proof. We know that

(f €BZ:3xg € E*: f € T, (xo)} C L)t
leN

o
r,s?

every xy € E%. By countable intersection, we thus get that for almost every f € B

so that, for any @ > 1 and any h > h.(a), for almost every f € B, we have h,, ,(x) < h for

o
1,5’

have h,, ,(xg) < h(a) for every xo € E. Let f € B be such that the preceding assertion
holds.

First, let us fix @ € (1,00); if @ is an increasing sequence of rational numbers
converging to «a, the sequence (E%*), is decreasing and E¢ Cc U,E%. If x; belongs to
E®, we have hy, ,(xg) < h.(a,) and thus h, ;(xq) < h.(@), for every xo € E®. Let p, be a
measure such that

we

* supp(pq) C EY,
° /"a(Ea) >0,
* 1y(F)=0whenever dimy(F) < d/a;

let us define
F:={xg €[0,1]7 : Iy 4(x0) < h()}

and, for n € IN,

F%:={x,€[0,1]%: hp.q

(x0) < h.(a) —1/n}.

For n large enough, we have h(a) — 1/n > —d/p and thus dimy(F) < d/a. Since F* is
included in a countable union of p,-measurable null sets, we have p,(F*) = 0. As a
consequence, we have

Po(ES\FY) > d + rC(h.(a)).

Since
E*\F* C {xg €[0,1]% : Iy 4(x0) = h.()},
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we get
D(h.(a)) =d +rC(h.(a)).

If @ = co, we know that xy € E* implies hy, ;(xq) < h.(a,) for any n € N and thus
(x0) < hmin(r). As a consequence, the set

hPr‘i

{0 €[0,1]% 2 1 4(x0) = Hiin ()}

is non-empty.

It remains to consider the case @ = 1. In this case, E! = [0,1]¢ and y; can be
chosen to be the Lebesgue measure restricted on [0, 1]%. For x, € E!, hpq(xo) < h.(1)
and by the same argument as in the first case, we get

(o € (0,111 by g(x0) <h(1)) = 0,

so that E! is equal to E' \ F! almost everywhere.
As the proof can be easily adapted to any translated of [0,1]%, the conclusion
follows by countable intersection. ]

The next theorem shows that, as usual, there is no Fubini-like theorem in the
theory of prevalence.

Theorem 3.4.18. Let p,q,1,5 € [1,00] with s < q, o be an admissible sequence and y(')
be a family of admissible sequences compatible with o. Let x be a point of R%; from the
prevalence point of view, for almost every f € BY;, we have hy, ,(xg) = Y (=d/r).

Proof. Given n € N, let us define the admissible sequence 8" by

o ._ 1 1
i T T (=d/r)+1/n) (j+ 1)L+1/s”
Vi

j € N. We can now define the function g™ which is a function whose wavelet coeffi-
cients are

(m) . _
cf\”) '_{ 9]. if Ae Ajand A = A (x)

0 if Ae Ajand A= Ai(xg).

Since, for n € IN, there exists C,, > 0 such that

( Z(Gijd/rlcf\”)l)r)l/T < Cn/(] + 1)1+1/S,
/\EA]

¢'" belongs to BY..
Let us fix ny € IN and define

Fuy = (f €BY,:Vj € NYA € A; N Ky (2)lea] < 1"/
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As shown before, F,, is a Borel set. For f € B and 4,4’ € R satisfying f + ag" e Fy,
and f +a’'g" e F,,, we get

|la—a’| < 2ny/j,
so that the Lebesgue measure of {a € R: f +ag™ € F,,} vanishes, implying that F, is
Haar-null. As we have

()
(feBl: feTl (xolc| JF,

for almost every f € BY;, we have hy, ,(x) < C~Y(=d/r) + 1/n, which leads to the conclu-
sion. 0



Complements with compactly
supported wavelets

As mentioned before, the definition of the p-wavelet leaders given in this thesis slightly
differs from the one of [75}[94]. This choice has been already justified in the previous
chapter by the possibility to obtain a quasi-characterization of the pointwise functional
spaces we consider. In this chapter, we show that, using compactly supported wavelets,
“our” leaders are relevant in different contexts.

First we consider irregularity spaces which is the counterpart of the pointwise
Holderian regularity, in the spirit of [122} 29, 30]. This gives a complementary infor-
mation about the pointwise behaviour of a function, estimating its oscillation by be-
low. We give here a quasi-characterization of the irregularity, by the mean of p-wavelet
leaders. This generalizes and improves results of [29].

Secondly, we discuss about the logarithm correction which appears in Theorem
We show that, from the prevalence point of view, this correction is necessary
for almost every function satisfying the conditions of this last theorem. In some sense,
this shows that Theorem [3.3.6]is optimal.

In the third section, we give examples of functions displaying a precise given
pointwise regularity and, using the tools presented in the two first sections, we discuss
the relevance of pointwise spaces of generalized smoothness.

Finally, we open some perspectives for applications based on the theoretical frame-
work established in this thesis.

In this chapter, we mainly focus on the case where the exponent g in Definition

is equal to co. In order to simplify the notation, we will write T;7(x) instead of
T5 (x0)
p,oo

Contents
[4.1 Irregularity spaces| . . .. .. ... ... . ... ... ... 72
[4.2  Prevalence of the logarithmic correction| . . . . . ... ... ... ... 77

[4.3  About the importance of pointwise spaces of generalized smoothness| 83

[4.4 From theory to practice: open perspectives| . . . ... ......... 87
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4.1 Irregularity spaces

Deﬁnition 4.1.1. Let p € [1l,00], 0 = (0;); be an admissible sequence such that
s(o) > -2 f € Lloc and x, € R% f belongs to I7(xo) if there exist C > 0, ] € IN such
that

-d
20 sup AL

. ey w2y 2 Coj - ¥j2].
|h|<27)

Note that the previous definition is not a contradiction of Definition as the
inequality is assumed to hold for all values of j (sufficiently large), with an uniform
constant C. A particularly interesting situation is when a function belongs to both the
irregularity and the regularity space associated to the same admissible sequence.

Deﬁnition 4.1.2. Let p € [1l,00], 0 = (0;); be an admissible sequence such that
s(o)>-% f eL" and x, € R%; f belongs to Tg(xo) if f belongs to T,7(xo) N 17 (xo).

loc

Interests and applications of such spaces, with dyadic sequences and p = oo, have
already been discussed in [28,29,[30]]. Here, we will characterize them with the help of
p-wavelet leaders. On this purpose, we introduce the following space, whose definition
is obtained by contradicting the I7(xq) condition.

Deﬁnition 4.1.3. Let p € [1,00], 0 = (0;); be an admissible sequence such that
s(o) > -4 f € LloC and xo € RY; f belongs to Tpaw(xo) if for all C > 0 there exists a
sequence (k(])) with k(j) — +oco such that

-\ d
2k(])§ sup ”Alils 0)]+1

|hj<2-*() Fllir g, 27400 < CUk(]) VnelN.
<

Similarly to Proposition we can show that polynomials do characterize the
belonging to Tpaw(xo).

Proposition 4.1.4. Let p € [1,00], f € LI;OC, Xg € RY and o be an admissible sequence such
that 5(c) > 0. We have f € Tpa“’(xo) if and only if for all C > 0 there exist a sequence (k(j));
with k(j) — +oo and a sequence of polynomials (Pyj)x,); of degree less than or equal to
|5(0)] such that

0

2KDAI) £ = Py oo (g 2-46)) < COy (4.1)

Proposition 4.1.5. Let p € [1,00], 0 = (0j); be an admissible sequence such that
s(o)>-¢% f e LP and xy € RY. If there exist ] € N and C > 0 such that for all j > ],

loc
d;’(xo) >Co; !, (4.2)

then f € 17 (xo).
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Proof. We keep the notation used in the proof of Theorem Let dy > 0 be such
that, for all j € N, dOO]-_l < 0']111 and let us set

cdll if p e [1,c0)
- - 1 ell,oc0
o) 2Cmax a2 B F
p i1
Cd .
g if p = 0.

2max15i<2d ”l;b(l)”l

If fe Tpaw(xo), there exist a sequence (k(j)); with k(j) — +co and a sequence of polyno-
mials (Py(j)x,); of degree less than or equal to [5(o)] such that, for all j,

k(j)d  _—1
2XDAIPN = Py ol By 2401 < Cpoyjy-
Following the steps of the proof of Theorem one can see that, for all j,

C

p c
Dy < 5 k()i

)+
which is in contradiction with inequality (4.2). O

Theorem 4.1.6. Let p € [1,00], 0 = (0j); be an admissible sequence such that 2‘jd/Pcr]71
tends t_o Oas jtendstooo, f € L’;OC and xy € R%. If f belongs to X;’q(xo)for some s > 0, then
if f e T;(xo) there exist C1,C, >0 and | € N such that

G

— <oidl(xg)<Cy, Vj>]. (4.3)
|log,(27P o)

Proof. The inequality Ujd];-](xo) < C, coming from the fact that f € T7(xq) and Theo-
rem let us prove the other inequality. Let us first assume that 5(o) > 0 and set
n:=|5(0)]. We keep the notations used in the proofs of Theorems [3.3.4/and [3.3.6/and

we set

d
e Cpy= 7;‘—2, the volume of the unit ball in R?,
’ [(5+1)

* &> 0 such that 5(¢) + & <n+1 (in particular 1 < 2"*175(9)=¢) and C, > 0 such that
forall j €N,

N ~
C,2/l07)-9) S_lj, (4.4)
e £>0suchthats(o)-& > —% and Cg > 0 such that for all j € N,
07! < Ce2Iee3), (4.5)
Without loss of generality, we can assume that s is small enough, so that
d
2(s(o)+==&) =5, (4.6)

p
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* C, > 0such that, forall ] €N,
] .
Z 21 g ot < ¢ o, (4.7)

where we have put o1 =1,

* dy,d; > 0 such that

do 1<0]+1<d10 1 V]EN (48)

]

* dy,d] > 0 such that, for all j sufficiently large,

-1 -1 -1
O o.
dy—-t < i <dj—T 0 (49)

_;d -
llog,(277 07 1)]  [log,(270*V%

borl ) |log,(27P o))
j+1 gZ j

We know that there exists C; > 0 such that for all j > —1, k € N, if |1 < 27% and if

x € Bh(xO,Z‘k),

AL fi(x)] < Cslh™*! sup|D® fi(y)|
y€B(x,27")
la|=n+1

Moreover, as d]p(xo) < C,0;, we know from the proof of Theorem |3.3.6|that there exists
C4 > 0 such that for all k e N, if j <k,

sup|D? fi(y)| < C42j(”+1)0]._1.
yeB(xo,Tk)
|a|=n+1

It follows that there exists C,, > 0 such that for all k € IN, if |l < 27F and if x € Bj,(xy,27%)
and if -1 <j <k,

An+1f]( |<C 2~ (n+1)2j(n+1)6j—1' (410)

Let C > 0, there exists | > max{jy, m’} such that

2]0(n+l)cl§dc d°C,C, < (21501 )1%. (4.11)
If the first inequality of (4.3) is not true, there exists a sequence (k(r)), with k(r) — +oo
such that, for all 7,

: (4.12)
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where we choose
Cs

% n+l l% %
C* = 42n+12°P 3

if pe[l,o0)

= (dg)'3C. max, ; »a [l

p- Cs '
42m+1(dg)13Cy max, _; ,d Dl

_i(r)d
Let us set for all 7, I(r) = k(r)+ ! and L(r) =[

k(r)+jo

)4
|log (2P o))
S

if p = oo.

1. If |h] < 271(), we have

d I(r)2
(T)p ”AZ+1f”LP(Bh(xo,Z*l(’))) < Z 2 (r)P ”AZ-’—lfj”Lp(Bh(XO,zfl(r)))

=1

2L(r)

(1)

1(né
v ) 2R fll s, 20

j=k(ryejo+1

(2)

+00
I(r&
D 2R IAR fllgr, 20y

j=2L(r)+1

(1) By inequality , we know that for all j € {-1

|An+1f( )l <C,2” I(r )(n+1)2j(n+1)o_‘—1

and it follows that

1 k +]0
(1) < ngcnz )(n+1) Z 2] n+1
j=-1

1
< C? C C 2—l(r)(n+1)z(k(r)+j0)(n+1)gk1

<CP C C 2]0 (n+1) d]O =I( n+1)o_k

< CP C C 2]0 (n+1) d]O (2n+1
Lc,

Now, using the definition of I (4.11)), we find that

(2) We know that B(xg, 27'(") € Aj()_(x0) € Ayr)-i(x0) =

o k. .
supp ¢(z)(21 —k)c B(E’zm_}) C

(3)
. k(r)+ jo} and x € By, (x,271"),

]

(r)+jo
(r)

_E(O')—E )—lo_l—(g).

Ak(r)(x0), but if j > k(r) + jo,

- B(ﬁ, 27k(n)

27
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and if A = /\gll)c Z 3Ak(r)(X0), B(%J Ky n Ak(r)(x0) = 0 and so ) (2/x —k) = 0 for all
x € B(xg, 271"). Therefore, if p # o, for all x € B(xg, 27'")), we have

fiP <C ) leallpa(x)P

AEA]‘
AC3Ax(r)(x0)

Now, using inequality (4.12)), we get

1 p
o
* k _
1 g 2100 < (CpIPCE3 | 27 max g,
|log,(2 POy >)| 1<
logn (271005 o1
Finally, from the choice of C;, if r is large enough such that L(r) < 8 < Gl(r)”,
we have c
-1

If p = 0, for all x € B(xy, 271(), we have

<) leallpa()

where the sum is taken over all A = /\il,)c € Aj such that A C 3A4((x9) and

L .y
|§ — Xo| £ 2/07J, Therefore,

() < CaC _’,jj;d e 19l
llog, (2o L) 1<i<2
and, similarly,
(2) < gal@l)
If r is sufficiently large, we have
C52—1<r><§<o~>+g—%> <1
and
L(r) > ~log,(Ce2 1573
) sy + 284 l0B2lCS),
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But, as s(o) + % - % > 0, if r is large enough, we can assume that
d &  log,(Ce) log,(C¢) _ ¢
_(E(O-)-FE_E)-’_T <0and T < 5
Therefore,
I(r) d & log,(Cy)
L) 2 = Pslo)+ =5 =)
> Wisio)+ )

Thus, for all j > 2L(r), j >I(r)and, as f € Xf,’q(xo), we show, in the same way that in
the proof of Theorem the existence of a constant C’ > 0 such that for all such

I
”f}”LP(B(xO,Q*l(Y))) < C’Z—Sj

and

’ (14 5141 H-sj
3)<C Z 2!y pntl =i
j=2L(r)+1

< 21(7’)% 2—L(r)s2—L(r)s c”.

But, if r is large enough, we have 27L5C” < % and finally
C
(3) < gﬁl(r).

It follows from these three points that there exists (/(r)), such that I(r) — +co0 and, for
all r,

I(r)d -
2 "} ”AZHf”LP(Bh(xo,Z’l(r))) = CUl(fl)’

which implies that f € T, (xp), as the constant C is arbitrary, hence a contradiction.
The proof for the case 5(o) < 0 is similar. O

4.2 Prevalence of the logarithmic correction

In this section, we aim at showing that, from the prevalence point of view, for almost
every function in a precise functional space, the logarithmic correction induced by
Theorem is necessary. On this purpose, let us first consider the following lemma
which gives a way to define the probe we will use afterwards.
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Lemma 4.2.1. Let o = (0}); be an admissible sequence, x, € R? and (E,T) be a complete
metrisable space of functions defined on R? such that

S={geE: ge Ty (x)

is a Borel set of E. If there exists f € E such that for all M € IN there exists j € IN for which

O’ijd/p sup ||ALS e

| Flleo(s, 0,271 2 M,
|h|<271

then S is Haar-null in E.

Proof. Let us fix f’ € E and N € IN and consider the set

Sy={¢g€E: szjd/p sup ||ALS 1+

‘ 8llLp By (x,2-)) SN ¥ j € INL
|h|<27]

Assume that there exist 4,b € R such that f'+af € Eand f'+bf € E. If M € N, there

exists j € IN for which
U]-Zjd/p sup ||A%ls e

| Fller (B, x,27)) = M-
Ih|<2-i

It follows that

|la— b|2jd/p SUP |y <2-i “AB(G)Hlf”LP(Bh(xO,Z*J'))

la—b| = . —
2P supycr-i A fll 1 g, (40,2
2]d/p 1 1
< = (sup IAT " afllnsy g2+ sup AR F 4 bfllp(s, )
0] h|<2i |h|<2-i
2N
<
M

and so, as M is arbitrary, a = b. It follows that the set
{aeR: f'+af € Sy}
contains at most one point. Therefore, the set

{aeR: f' +af €S} = U{aeIR:f’+afeSN}
NelN

is countable and thus of Lebesgue-measure zero. The conclusion follows. ]

_jd
Now, let us fix an admissible sequence o = (0}); such that 2 ]Pa]-_l tends to 0 as

]
d
j tends to co and o, > 2 ». We define, for all k € IN, the admissible sequence ok =

(j1 k0;);. As inequalities (1.2) ensure that the sequence (| 10g2(2_jd/p0‘]~)|/j)]- is bounded,
we deﬁne the spaces of under—log" corrected functions in the following way.



4.2. Prevalence of the logarithmic correction 79

Definition 4.2.2. If x, € R?, a function f € L belongs to T/al’gg(xo) if there exists k € N
such that f € Tp“(k)(xo).

The idea is that a function belongs to T/jl’gg(xo) if its pointwise behaviour at x
admits a correction from ¢ which is asymptotically weaker than the absolute value of
the logarithm of 2-%? ¢,

Let us first consider the case where p = 0o and exhibit a function which satisfies
the condition of Theorem|3.3.6/(with p = g = co) but which does not belong to T 7. log(O)

This example is based on one of [67]] but some substantive modifications are made to
correct some points and adapt it to our context. For the sake of simpleness, we take
d=1.

Consider ¢ a wavelet of regularity r > |s(o)] + 1 such that supp(y) € [-1,1] and
(0) = C = 0. Define the sequence (&,,)en bY €, = 272" for all m > 1. For such a m,
define the function

2msj<2m+1
As supp((2/(-—¢,,))) C [ + € Em + %], we have

Supp(fm) - [_€m+1 tEmEm T €m+1]

so f,(0) = 0 and let us remark that those supports are disjoint as soon as m > 2. It
follows that f,,(ex) = 0,,xC2" 0., for all m,k > 2. Let us choose M(c) > 2 big enough

2m 1
such that
Emtemm <lepm<—ep+ép_y Ym=M(o),le€{2,..,|5(0)]+1}.
It follows that, if m > M (o ALaJ+1fm = 0,,kC2"ey,. Let us finally consider the func-
tion f defined by

Z fm,

with convergence in L®. Its wavelet coefficients are given by

(72‘”1_1 if j > M(o) and k = ¢,,2
Cj,k =
0 otherwise.

At scale j € [2™,2™*1) there is only one non-vanishing wavelet coefficient whose
value is Uz_j_l and, using 1) with € > 0 small enough such that s(o) — ¢ > 0, we find

jcjl < 272" (s(0)-0) 5tk
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(s(0)-¢)
This guarantees, from characterization 1) that f € Bo,oo , and the minimal regular-

ity assumption of Theorem [3.3.6|is satisfied.

For all j € N, a dyadic cube [e,,&,, + 277) of scale j’ € [2",2"*) is taken into
account in the value of d]‘-"’(O) if the distance between ¢,, and the origin is less than
2-G=1D or, in other words, if j < 2m=1 41, As o, > 1, the sequence o is increasing and,
using its admissibility, we can conclude than

(crjd}x’(O))j el™.
But, from what precedes, we have, for all m > M(o),
1 — ) —
|A€m o f(O)l = szo—zri—l >C |108(‘72m*1)|(727571;

which shows that f can not belong to T . 1 g( ). Of course, by a translation, this con-

struction holds for any x, € R¥.

Using this last function and Lemma one can establish a first prevalence

result concerning the logarithm correction. If 0 < ¢ < %, Xg € R4, we set

ES (x0) = {f € B oo(RY) : (0jd(xp)); € €.
Equipped with the norm

I llEg (xg) ¢ Edolx0) = [0,+00) = f = |Iflle, o, +11(0d5° (x0)) llgw,
E{ (xg) is a complete normed space.

Theorem 4.2.3. If xo € RY, forall 0 < ¢ < %, almost every function of ES (x) belongs to
Tog log(x())\ /s log( )

Proof. We already know that every function of E: (x() belongs to T"log(xo). For all
k € N, let us check that the set

Bi={geEs(xo): feTS"

is Borel. For all N € IN, we define
‘ k 1
By ={g€E&(xp) : a; ) sup ||AL 1+

‘ 8llpeo (B, (xo,2-1)) <N Vj €N},
|h|l<27

By k is closed as if (g,,)men is a sequence of functions of By j that converges to g in
E{ (xg), then ||g — gmllB;w,oo — 0 and for all m,j € N, we have, from 1}

)]+1 )]+

1
sup ||A%,S gIILoo (By(xp,277)) < SUP ||AL gm”Loo(Bh(xo,z—j)) + C||g—gm||Bgo,w

|h|<2-] |h|<2-]

< N(Gj( )7+ Cllg — gmlls, o
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Taking the limit for m — oo, we conclude that g € By . It follows that

By = U By k

NelN

is a Borel set. The function f built above belongs to E{ (xg) but, for all M € N, there
exists j € IN for which

(k) [s(a)J+1 j
o) sup A fll g, o0y = M
|h|<27]

and we conclude from Proposition that By is Haar-null. As we have

(g€ Es(x0) s g € T/ 1o (xo)} = | Bro
kelN

we conclude that almost every function of ES (xy) belongs to T2 log( o)\ T/Ul':;(xo). O

Let us now focus on the case p = 1. In this setting, we recall that the required
property for the admissible sequence o is that 2774 0]._1 tends to 0 as j tends to oo and

o> 24, Again, we work with d = 1. If we have the additional assumption on the
wavele that fo x)dx # 0, and if we redefine the sequence (f,,),, by

fn=Opurem ) 2P(2(—ep)),

2m3j<2m+1

the functions f, set as previously, but with convergence in L! this time, can be used to
define a probe as in the last theorem. Indeed, now, the only non-vanishing coefficient
of scale j, when j € [2", 2*1) is now 02_,3_1 8,1”2]. First of all, if € > 0 is now chosen such

that s(o)— e > -1,
2‘1'02_”11715,,127 < 2" (s(o)+1-¢) <0 ]w

s(o)+1/p—¢ .,
and f € B * . Secondly, if [e,, ¢, +27/) is a dyadic cube of scale j’ € [27,2+1) for

which ¢, < 2-G-1 we have

7= —]')02—”1_1 £m2j < C’g]._l,

which ensures that (o d] (0)); € €. Finally, let us remark that, increasing M(o) if
necessary, one can makes sure that, for all I € {1,...,|s(0)|+ 1} and x € [e,, — €ps1, Em +
Em+1), we have

Emt Ems1 <X+ley <€po1—Em

IThis assumption is satisfied for Daubechies wavelets for instance.
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and so f(x+ley,) = 010 fu(x). It follows that

EmtEm+1
_ l . .
Ben) AL AL oggm>>clozmlf Y 2l -e,)dx
&

“m 2msj<2m+1

Em+1
>Coh | Y2 [ e ax

2m<]<2m+1

—C1(72ml Z J P(x

2m<]<2m+1

—1 m

If we define, for all 0 < ¢ < & i and x, € RY, the space

Ef(x0) = {f € B (RY) : (0;d} (x0)); € L7},

9j%j
equipped with the obviously modified E{ norm, one can show, in the same way that
Theorem the following result.

Theorem 4.2.4. If xo € RY, forall 0 < & < §(Ui+d, almost every function of E{(xy) belongs to

ol

Tl 10g(x0)\ /log( )

Now, for 1 < p < o0, from what precedes, a judicious choice to obtain the desired
probe seems to take

|—

fu=opieh Y 2p(@i—e).

2msj<2m+l

Once again, it is easy to check that the obtained function f checks the two first desired
properties

(o—jdf(O))j e(® and feB,d
But, unfortunately, for all m, if we compute the LP norm of f,,, it is proportional (see
once again the wavelet characterization of LP spaces in [102]) to

2\ . P\p
L L
J Z (02_"171 8%25)2)([57”'5"1+27j) dx 2"11 1 Z d [ " ]

R 2m<j<coml 2m<j<omel k=2m
and this last term is itself proportional to 02,,} ,2"™P, which is not sufficient to establish
a theorem comparable to Theorems [4.2.3| and [4.2.4] for 1 < p < co. As the belonging

(G]-d][.)(O))j € £* is optimal, one can not add a multiplicative term of order 2"/4 without

altering it. We also thought about increasing the number of terms in the sum that
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defines f,, up to 2P but it is also impossible without destroying the belonging to an
uniform Besov space.

The function f exhibited here guarantees the necessity of a correction of order
: . . s(0)+5
(|log2(2‘1d/Po~]~)|)1/P for almost every function 1 Ef, with 0 < & < —%, but cannot be

used to prove the following conjecture.

Conjecture 4.2.5. If xy € RY, for all 1 < p < oo, there exists sgﬂi, > 0 such that, for all

0<e< egﬁ)p, almost every function of E,(xo) belongs to Tp"log(xo) \T 7. 1Og( 0)-

4.3 About the importance of pointwise spaces of
generalized smoothness

In this section, we start by giving, for any admissible sequence o and p € [1, 00], an ex-

. = . . . .
ample of function that belongs to T, (x¢). This example leads to discussions concerning
the contribution of pointwise spaces of generalized smoothness.

Example 4.3.1. Let us fix p € [1,00] and an admissible sequence ¢ such that s(o) > —%.
Let us also consider a wavelet ¢ with compact support included in [-1,1]. We define
the function f, by

fo= Y opt2rp(2(—27), (4.13)

k>2
with convergence in LP. For all k > 2, 1(2%(- — 27%)) is supported in
[27%(1 —27F), 27K (1 + 27%)]
and, in particular, for all k,k’ > 2, with k = k’,
supp(ip(2%(- - 27)) N supp( (2% (- - 27))) = 0.

Therefore, for all j > 2, we have, with usual modifications if p = oo,

. . 27 k(1427 Yp
D pmozn =27\ [ It |de+2f oo dx

~i(1-2-2j) i “k(1-27k)
1/p
— 2P| g szj I (x |de+Zak"2 f I (x |de] .
k>j

ZFor 1 <p < oo, E, is defined in the obvious way, following the definitions of E{, and E{,.
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Finally, using Lemma it is clear that we can find constants Cy,C, > 0 such that,
forall j > 2,

Cl < Zj/pO'j”fU”Lp(B(O’z—j)) < Cz. (414)

The belonging to 7,7 (0) is immediately guaranteed by (4.14) together with Propo-
sitionm (with P; o = 0, for all j). To show that f € IJ(0), it suffices to note that, for all
n €N, one can find an interval I ¢ [0,27/] such that, for all x € [27%(1-27F), 27k (1+27%)],

Apfe = fo- 1f 5(0) > 0, we can also remark that the sequence (a]._l)j is decreasing, thus,

forall j > 2, d]l-](O) > 6]71 and we can conclude the desired membership by Proposition
For different values of p and different admissible sequences o, Figure give a
representation of f,.
Note that, if we wish to obtain a function in Tp‘fq(O), with g # oo, it suffices to
consider a sequence (&); € €9 and, for all k > 2, to multiply the k' term in the sum

(4.13) by & (the conclusion follows again by Lemma|l.2.2)).
Of course, up to a translation, these affirmations hold for arbitrary x.

This example is of particular interest to discuss the utility of these new spaces in
the precise characterization of the regularity for functions.

Firstly, it shows that for any sequence o, there exists functions for which the
belonging to T,7(xo) is optimal, as reflected by the membership f; € T;(xo).

That being said, let us consider two distinct slowly varying functions W and @,
u > —% and the associated admissible sequences o,y = (zju\p(zj))]. and

Oud = (Zf“CI)(Zj))j, see Corollary If we assume that W(x) — 0 and ®(x) — 0 as
x — oo, thenforall ¢ >0, f,, , and f;, ., belong to T)*"*(x) but not to Tj'(xo). The usual
spaces of Calderon and Zygmund fail to precisely characterize the regularity at x; of
fdu,\y and f(,u, o While the generalized versions are more accurate since fau"y € Tpa"’w(xo)
and f,, o € Tpa"’q’ (x9). Therefore, the notion of regularity underlying the usual spaces
may be too coarse in some situations. For example these spaces do not allow to cap-
ture the logarithmic correction in the regularity of the Brownian motion [82],[83]. As a
consequence, the usual spaces also fail to distinguish f;, , and f;, ., while, as soon as
W(x) € o(P(x)) as x = o0, f4, , € T, " (x0) \ T, (x9). More generally, if o and y are
two admissible sequences such that o; € o(y;) as j = +o9, f5 € TJ(x) \ pr(xo).

This situation occurs in practice when considering for instance the Brownian mo-
tion on (Q2, B,P). If we take the admissible sequence o = (2%j|logj|_%)]-, from the Khint-
chine Law of iterated logarithm [82,[60], we know that almost surely for all w € Q and

for almost every xy € R, B.(w) € TZ(xy) while B.(w) ¢ Té,(xo). Being able to make a
distinction between a Brownian motion and another process not displaying such log-
arithmic corrections is an important issue in practice (see [83]] and the next section
below).



4.3. About the importance of pointwise spaces of generalized smoothness 85
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Figure 4.1: Representations of some functions defined in Example with p =2 (up-
per panel) and p = oo (lower panel) and using dyadic sequence (black) and dyadic se-
quence with a logarithmic correction (red). The wavelet considered is the Daubechies
wavelet of order 2.

All these remarks lead to results of prevalence, using again Lemma

Theorem 4.3.2. Given p € [1,00], if 0 and y are admissible sequences such that o; € o(y;)
as j — +oo and 5(o) <5(y) then, from the prevalence point of view, almost every function in
T;7 (xo) does not belong to pr(xo).

Proof. The assumptions made on the admissible sequences insure the inclusion of
pr(xo) in T (xg), see [90]. From the previous remarks on f;, we know that for all
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M € N there exists j € N for which

. )]+1
72 sup 1877 folipipy g 2y 2 M.
|h|<2-]

Therefore, from Lemma it suffices to show that pr(xo) is a Borel set in
(T (x0): Il - I (x,))- We proceed in the same way that for the proof of Theorem m
For all N € N, we set

= {f € TV (x0) : Il S N

and show that By is closed in (T, (xo), || - ||T,;’(x0))3 if (fx)r is a sequence of functions of
By that converges to f then, for all j,k €N,

H 1
IfllLe(so.1)) + 7277 sup ||ALS N Fllee (B, xp,277))
|h|l<27

H 1
<IIf = fillee o,y + 7277 sup IAE T F — follin s, 0.2
|h|<2-i

: 1
+lfillzo o)) + 727 SuPHAL ok flle B, (xo,2-))-
|h|<27

Of course,

: 1
fillr 0,1y + 72777 SUPV||ALS o felleo B, (xp 277 <N
|h|l<277

and, using fundamental properties of finite differences,

; L5(y J+1 Vi 5( J+1
ijj/p SUP.”A (f = fr) ”LP (By(x0,277)) = CO—O 2//p sup [|A, " (f = fi) ”LP (By(x0,277))*
|h|<27 j |h|<2-]

Taking the limit k — +o0, we have ||f||pr(xO) < N and thus By is closed. As,

T (xo) U Bn,

the conclusion follows. O]

In particular, while working with a decreasing family of admissible sequences,
the assumptions of Theorem are often met (see [90]) and we can state the follow-
ing corollary without too much restriction.

Corollary 4.3.3. Given p € [1,00], if (a(h))h>_% is a decreasing family of admissible se-
quences such that h < h’ implies a]-(h) € O(O;h/)) as j — +oo and 5(c'M) <50 ™)) then, from

. . o h .
the prevalence point of view, almost every function in Tp"( )(xo) is of exponent h.
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4.4 From theory to practice: open perspectives

This thesis only focuses on the theoretical background needed to establish new meth-
ods in multifractal analysis based on admissible sequences and generalized Holder
exponents. Nevertheless, the example presented in the previous section could be used
to make first numerical experimentations of our formalism. In a hope to generate in-
terest from programmers and researchers in signal analysis, one can mention results
obtained by Thomas Kleyntssens in his own thesis [83]. There, he implemented a
numerical method based on a generalization of the S” spaces, originally defined by
Jaffard [69]], adapted to compute generalized Holder exponents such as the ones we
considered before.

Definition 4.4.1. Let v be a right-continuous increasing function for which there exists
Nmin € R such that v(h) = —co if h < hpiy, and v(h) € [0,d] if h > hpip. Let (6'®);, be a
decreasing family of admissible sequences such that h < b’ implies that aj(h) € O(O';h,))
as j — +oo.

The set S*°" is the set of all complex sequences ¢ = (c)) ea such that for any

heR, e>0and C > 0, there exists ] > 0 for which for any j > J, we have
#HAeA;: U;h)|c/\| >C)< o (v(h)+e)j

Of course, in our context, ¢ = (c)),ea are the (periodized) wavelet coefficients of a
function. One can therefore define the corresponding generalized wavelet profile as the

function I
log#{AeA;: o eyl 1)

V. () : h— lim limsu .
ad e—0t j—>+oop logz]

and show that ¢ = (c3)1ca € $*°" if and only if v,4() < v. Note that, if we consider, for
allheR, o = (2jh)]-, we have §o") = g7,

Let us highlight the fact that these spaces are strongly connected to the ones
considered here. Indeed let us define by by, the set of sequences (c)) e that satisfy
condition . We can show [83]] that, if we also assume that 5(c(")) — +o0 as h — +o0
then, if for all p > 0, ¥'?) is an admissible sequence, we have

() (p)p-e/p
s e (|1

p>0¢e>0

if and only if for any p,e > 0 and for any h > h,;,, there exists C > 0 such that, for all
j€N,
jelp jd/py=jv(h)/p,,P)( ()
209P < C2IMP2 14 (oj ).

In [83], Thomas Kleyntssens implements an algorithm based on S” and vt

spaces to estimate the (standard) Holderian regularity and explores the numerical con-
tribution of admissible sequences by distinguishing three fundamentals cases:
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1. Detection of the Holderian behaviour for functions with prescribed Holder expo-
nent defined by their wavelet decomposition.

2. Detection of the Khintchine Law.
3. Detection of the Holderian behaviour for processes defined in the Schauder basis.

In each case, the methodology is similar: performing repeatedly the algorithm using
the families

(2%);, (29| log|log 27]| ), (2%7|log | log 2/||™"); and (2%/[log 2|7 ); (4.15)

of admissible sequences on randomly generated realization of signals with prescribed
Holder exponents and precise regularity known among the four families. Then, the
errors between the Holder exponents estimated by the algorithm and the real exponent
are represented by boxplots.

In case 1, signals defined by their wavelet decomposition, of Holder exponent H
and having logarithm corrections ((w(2/))7!) j» with

w(-) € {1, yl[log|log(:)l, log|log(-)ll, vIlog(-)I}

as precise regularity are considered. The results are quite relevant: the algorithm pro-
viding the smallest error and the fewest dispersion is the one associated with the good
correction in the profile, it is presented in Figure

A similar procedure could be used in our setting, using a randomized version of
the function described in Example [4.3.1]to check if the algorithm is able to detect the
precise regularity given by the used admissible sequence.

In case 2, Brownian motion is considered: almost surely it is of Holder exponent
1/2 and, from the Khintchine law of iterated logarithm, we know that it satisfies a
((|log|log 2/ ||)%) j correction. It is compared with a randomized Weierstraf§ function

W (x) = Zaj cos((bx + Uj)n),
j=0

where (Uj); is an arbitrary sequence of independent random variables with respect

to the uniform probability measure on [0,1] and 0 < a < 1 < b are chosen such that
—log(a)/log(b) = % In this setting, almost surely, W is of Holder exponent 1/2 and
satisfies a correction of order 1. Again, for each function, the estimations of the Holder
exponent with the smallest error and the fewest dispersion are the ones obtained with
the appropriated correction in the profile, as it can be seen in Figure

Case 3 is similar to the first two but considers functions represented in Schauder
basis and the relevance of the profiles using admissible sequences is again showed.

Thomas Kleyntssens” work highlighted the relevance of dealing with admissi-

ble sequences in signal analysis. He provided a method to numerically detect the



4.4. From theory to practice: open perspectives

89

......

:
g

}
..........

=

(a) w:h—1

(b) w: h— \/|log|logh

.....
.....

......

.......

T

.

=

(c) w:h— |log|logh

(d) w:hes f|logh

Figure 4.2: Boxplots of the errors of measurement between the prescribed exponent
and the one estimated. The function w corresponds to the known correction present
in the signal and boxplots correspond to the profile using, from left to right, the ad-
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Figure 4.3: Boxplots of the errors of measurement between the prescribed exponent
and the one estimated. On the left panel, the Holderian regularity of the Brownian
motion is estimated while, on the right panel, a randomized Weierstrafl function is
considered. Boxplots correspond to the profile using, from left to right, the admissible
sequences (Z“f)j, (2%7]log|log 2j||;21)j, (2%|log|log Zf||‘1)]- and (2% |log 2f|;21)j.
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Khintchine Law, which could be of big interested in stock exchange, for example, as
we could detect if a financial market follows a Brownian motion before applying the
Black-Scholes model to it ([13},58]).

Our work here aimed to pave the way for new methods in signal analysis using
admissible sequences. Indeed, we establish a new multifractal formalism which relied
on them and proved its validity from a prevalence point of view. This gives new op-
portunities for researchers using the Wavelet Leaders Method as we provided a general
framework for it.

Please note also that the L spaces have been introduced recently [4]. They consist
in taking advantage of the wavelet leaders by replacing the wavelet coefficients that
appear in the profile by themselves. A common generalization of the LY and vt
spaces is to consider the p-wavelet leaders profile

log#{A € A : a}hﬁ)
V. ) ¢ h— lim limsup .
’ =07 o0 log 2]

dh > 1)

We already checked that the corresponding functional spaces satisfy fundamental prop-
erties similar to the ones presented in [4, 5], in particular they are independent of the
chosen wavelet basis in the Schwartz class, the proofs are straightforward adaptations.
Again, an implementation of an algorithm based on theses spaces and profiles could
be of great interest to work with the generalized spaces and exponents we introduced
in this thesis.



The spaces T(g and t(ip)

The T} spaces were introduced in essence by Calderén and Zygmund [26]: given a
point x, of the d-dimensional Euclidean space IR?, p € [1,00] and a number u > —d/p,
TF (x,) denotes the class of functions f in LP(IR%) for which there exists a polynomial P
of degree strictly less than u with the property that

r P f = Plle(s(agry < Cr*, (5.1)
for a constant C (which does not depend on r). If f € TF (x,) also satisfies
rP\|f = Pllp(sxyry = 0(r")  asr— 07,

where P is a polynomial of degree less than or equal to u (where we have used the
usual Bachmann-Landau notations), then f is said to belong to tfl(xo).

The general idea consists here in replacing the power function r — r" appear-
ing in with 7 = ¢(r) (r > 0), where ¢ is a Boyd function, to obtain generalized
spaces Tq’; and tg respectively; typically, such a function ¢ could be r — r¥|Inr| for the
detection of the logarithmic corrections (such an idea is exploited in [39, [108] in the
case of Bessel potential spaces) or more generally r +— r"i(r), where 1 is any slowly
varying function. Such a choice is natural and observed in many financial models that
are derived from the Brownian motion (e.g. the geometric Brownian motion used in
the Black and Scholes model [64], the Hull and White one-factor model [17], etc.).

Proposition allows us to affirm that we already have investigated those
spaces from a multifractal point of view. Now, we wish to explore their properties as
regularity spaces and show that they are still related to some notion of smoothness. In
this context, we prefer to work with Boyd functions instead of admissible sequences, as
it is more convenient to work with a continuum of values, see Remark [5.1.2] below. To
achieve this goal, we follow the ideas of Calderén and Zygmund and show that most
of the properties established in [26] still hold for the generalized versions T(g and tg);
we thus introduce in this thesis some generalizations of the results obtained in [26]].

In this chapter, we only focus on the standard properties of the generalized spaces
Tg and t© and establish some basic results concerning them (about completeness, den-
sity, embeddings,...). Next, we give a generalization of Whitney extension theorem.
Connections with operators and elliptic partial differential equations will be discussed
in the next chapter.
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Results of the next two chapters were published in [99]].
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5.1 Definitions and first properties

Definition 5.1.1. Let x, € RY, p € [1,00] and ¢ € B be such that b(¢) > —d/p. A function
f € LP(IRY) belongs to the space Tg(xo) if there exist a polynomial P of degree strictly
less than b(¢) and a constant C > 0 such that

r P\ f = Pllp(eg,r) < CP(r)  Vr>0. (5.2)

Moreover, if we also have
r™P||f = Pllpp(eo,ry) €0(P(r))  asr— 0%, (5.3)
we say that f belongs to tg)(xo).

Remark 5.1.2. In the previous definition, the condition b(¢) > —d/p is here to ensure
that the spaces T(g are not degenerated: if r~#? < C¢(r) is satisfied in a neighbourhood

of the origin, then any function belongs to Tg (x0); this inequality is never satisfied if
—d/p < b(¢). This condition could be relaxed in Definition but the interest of
such an extended definition is not obvious.

Remark 5.1.3. The definitions of Tg(xo) and T, (xo) slightly differ :

* The use of a Boyd function instead of an admissible sequence is made in order
to work with a continuum of values. Proposition and Theorem con-
nect the two spaces. Note that the T, regularity, in a multifractal analysis point
of view, only focuses on small radii around x, and only requires germs of func-
tions. It is then equivalent, and more convenient, in this context, to work with
sequences. At the opposite, the Tq’; (x¢) regularity scans all values of r, in a more
functional analysis approach, and considering the whole function is then neces-
sary. Up to multiplication by cut-off functions, if needed, Tj,(xo) can be studied
through T(g(xo) and tg(xo) spaces, using the Boyd function defined in Proposition
L2111
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* In Definition we ask the polynomial P to be of degree strictly less than
b(¢), while in Proposition [3.1.2]it is stated to be less than or equal to 5(c). This
assures the uniqueness of the polynomial, see Proposition[5.1.5/below, in order to
use its coefficients in the Tg(xo) norm. Nevertheless, most of the more interesting
results exposed in this chapter hold if the Boyd indices are non-integers. In this
setting, the spaces T(if (xp) and Tp‘foo(xo) are identical (up to multiplication by cut-
off functions), thanks to Theorem

Remark 5.1.4. Let us highlight the fact that tg(xo) is a “true subspace” of Tg(xo); in-

deed, under the assumptions of the previous definition, if f € LP(IR%) is such that there
exists a polynomial P of degree strictly less than b(¢) for which

() VP = Pllppgry = 0 asr— 0%,
then there exists R > 0 such that
r Pl f = Pllio(siag,r) < (1),
for all » < R. Moreover, for r > R, we have
r P f - Plltr(B(xo,r) < 7_d/p||f||Lp(md) +Cr(1+7")

and an application of Proposition[1.2.6|shows that the right-hand side can be bounded
from above by ¢(r), which means that f € T(g (x0)-

Let us study the basic properties of the spaces qu.

Proposition 5.1.5. If f € Tg(xo), then the polynomial P in is unique.

Proof. Of course, if b(¢) < 0, the polynomial appearing in (5.2) must be 0. Now, if
b(¢) > 0, let us suppose that there exist two polynomials P and P’ of degree strictly
less than b(¢) and C,C” > 0 such that, for all » > 0,

rPIf = Pl (B, < CH(r)
and
r PN f = Pllip (Bxg, ) < C (7).

Now, if we define Q := P—P’, Q is a polynomial of degree n < b(¢). So, if € >0
is such that n < b(¢) — ¢, then we have from Proposition that there exists C” >0
such that

r_d/p”Q”LP(B(xO'T)) < C//ré((i))_f.

But, if Q is a non-zero polynomial, than the left-hand side must decrease at most like
", which contradicts this last inequality. O
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Remark 5.1.6. If ¢ € B and if the function f belongs to T(if(xo) for some p € [1, 0], then,

in particular, f belongs to Ll1 o C(]Rd). Suppose that b(¢) > 0 (otherwise, the polynomial
P in (5.2) is identically zero) and let us assume that x, is a Lebesgue point of f. If P is
the polynomial of degree strictly less than b(¢) such that

r PIf = Pllo(sieg,m < CP(r)  Vr>0,
then we also have

PN f = PllzyBeg.) < Cat™PUlf = PllioBeg,r) < C'¢(7)

for all > 0. From the previous relations, we have

|f (x0) = P(xo)| < Car ™I f (x0) = P(x0)lIL1 (Bxy,r))
<N f (x0) = fllzy B + 7 IF = Pl By,
+17|P = P(xo)llp (B(xo,7))
< If (x0) = fllLt By + C P(r)

DP(x,)

: |r|“|.
al

+Cy Z |
1<]al<b(P)

But, as b(¢) > 0, Proposition implies that ¢(r) converges to 0 as r tends to 0. As
a consequence, as xg is supposed to be a Lebesgue-point of f, the last upper bound in
the previous inequality tends to 0 as r tends to 0%, which implies f(xq) = P(xg).

Let f € Tg(xo) and
D*P(x
P:= Z —a!( 0)(x—x0)“
|lal<b(¢p)
be the polynomial that appears in (5.2)). Let us set

|f|T£(x0) :=sup(r)'rVP||f = Pllzp(B(xg,r))

r>0
and

|D® P( o)l

||f||T£(x0) = ||f||LP(1Rd) + |f|T” (x0)"

lar|<b(¢)

Proposition 5.1.7. Let x, € R, p € [1,00] and ¢ € B be such that b(¢p) > —d/p. The space
(Tg(xo), I|- ”T(Z(xo)) is a Banach space.

Proof. It is straightforward to show that || - ||T£(x0) is a norm on Tg(xo).
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Let us now consider a Cauchy sequence (f;);en of (Té:(xo), || ||T£(x0)). For j €N, let
us denote by P; the polynomial of degree strictly less than b(¢) such that, for all r > 0,

r P\ = Pille(srg,ry < |fj|T£(x0)<P(T)-

Let f € LP(RY) and ¢, € C (for |a| < b(¢)) be such that f; — f in LP(RY) and
D%Pi(xg)/a! — ¢, in C for all |a| < b(¢). Let us then define the polynomial P by

P .= Z Col(x—x0)".

lar|<b(9)
For all g € N, we have
d(r) PN = £) = (P = P)llr Bxo,r)
= p(r)tr P }gg”(fs —f ) = (Ps = Pl (B(xo,r))

<limsupl|f, - fs”Tp ) < 0.

S§—>00

Taking the supremum over r > 0 gives us

|f_fq|T£(x <hmsup”fq fs”T” (xg) S X

S§—00

and passing to the limit for g — +o0 allows us to get

lim |f - fq|TP

g—+o0
which is enough to conclude, as the finiteness of |f[7s(, | follows from triangular in-
¢ 0
equality. O]
Proposition 5.1.8. Let x, € R?, p € [1,00] and ¢ € B be such that b(¢p) > —d/p; tg(xo) isa
closed subspace of qu(xo).
Proof. Let (f;)jen be a sequence of functions in tg(xo) for which there exists f € T(g(xo)

such that f; — f in Tg(xo) and let us show that f € tg(xo). Let P and P; (j € IN) be
polynomials of degree strictly less than b(¢) such that

r 21 = Pillp s,y < filzs e ®(r)  YjeN

and
Pl f = Pllp(sxgr < 18 ) P(7)-

If we set R:= f — P and Rj:= f] - P;, we know that

sup ¢(r) "' rVPIIR; = Rllpp(p(xg,r)) < IIf; —f||T£(x0) -0 asj—ooo

>0
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and
(P(r)_lr_d/p”Rj”LP(B(xo,r)) -0 asr— 0.

Given € > 0, let ] € IN be such that j > ] implies

- €
supp(r)~'r d/p”Rj = RllLr(B(xo,r)) < >
r>0

There also exists p; such that, for all r € (0, p]],

() YPIR e (Bxg ) < %
As a consequence, we have, for such 7,
d(r) " VPIIRIp B(xg ) < €5
which proves that f € tg(xo). O]

There is an obvious link, given by the following remark, between the classical
spaces C* of k-times continuously differentiable functions and the spaces tqp)(xo).

Remark 5.1.9. Let xy € RY, p € [1,00] and ¢ € B be such that b(¢) > —d/p. First, if
b(¢) < 0 and f € CO(V), where V is an open neighbourhood of x,, then f € tfp(xo).
Indeed, if R > 0 is such that B(xy, R) C V then there exists C > 0 such that |f| < C on
B(xg,R) and, for r € (0, R], we have

P fllep B, < C.
It follows from Proposition that
r_d/p”f”LP(B(xO,r)) €o(¢p(r)) asr— 0",

Also, if there exists n € IN such that n < b(¢) < E((p) <n+1and f € C"(V), then again
fe t(’;(xo). Let P be the Taylor expansion of order n of f at xy. There exists C > 0 such

that [f — P| < C(- - x¢)"*! on B(xg, R). Therefore
rP|If = Plle(s(agry < Cr"*,

for r € (0,R] and the conclusion comes again from Proposition[1.2.6]

5.2 A density result

Let ¢ be a non-negative, real-valued function in D(IR¥) such that

J p(x)dx =1 and supp(e) C B(0,1).
R4
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Let f be a function that belongs to LP(IR?) for some p € [1,0) and, given A > 0, define
fa by

fri=Ap(A) = f. (5.4)

It is well known that f; € LP(R?) N C®(IRY) and ||f, — fllp(rey — 0 as A — oo. Let us
show that if f € tg)(xo), under some basic assumptions on ¢, then the convergence also

holds in T(g(xo).

Proposition 5.2.1. Let xo € R, p € [1,c0) and ¢ € B be such that b(¢p) > —d/p and either
b(¢) < 0 or there exists n € IN such that n < b(¢) < b(¢p) <n+1. If a function f belongs to
tg(xo), then ||f) —f||T£(xO) —0as A — oo.

Proof. Without loss of generality, we can suppose that x; = 0. Let us first consider the
case where there exists n € IN such that n < b(¢) < b(¢) <n+1. Given A > 0, define
R, := fy— P, where P, is the Taylor expansion of order n of f, at 0. Let R:= f — P, where
P is a polynomial of degree 1, be such that

O PRl p(po,) =0 asr— 0",
For r > 0, we have

r_d||R||L1(B(o,r)) < Cdr_d/p”R”LP(B(O,r)) < e(r)p(r),

where &(r) — 0 as r — 07. We can make the assumption that &(r) is decreasing to 0 as
r—0".

Let us remark that, for |a| < n, we have D%P,(0) — D*P(0) as A — oo. Indeed, for
A>0,

D“P)(0) = D f,(0)

= [ MpanDrEidy+ [ 1D Ay R dy.
R RRY

The first term of the right-hand side tends to D*P(0) as A tends to infinity and for the

second term, we have

| <—1>'“'Ad+'“'D“<p<—Ay>R<y>dy|sc(pw'a'j IR(y)|dy
R B(0,})

<e(Ap(3)

which proves, since |a| < b(¢), that f]Rd(—l)|“|/\d+|“|D“(p(—Ay)R(y)dy tends to 0

as A — oo.
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Given r > 0 and A > 0, let us now estimate the quantity [|[R)||re(p(x,,r)- For all
x € R?, we have

R)\(x) = fa(x) = Pr(x)

= [ @ty - Y At 2 o) Ry
|a|<n )

and as
j M- y)p(y) - Y Al DL iy gy
IRd

a!
|a|<n

is equal to A@()-) + P (which is a polynomial of degree n) minus its Taylor expansion
of order n at 0, this last integral is equal to 0. Therefore,

Rl = [ Wpatr-y)= ) A 2Ry dy
|a|<n )

It follows, by Young’s inequality, that

IRAlze (B(0,r)) < ColIRIIzr(B(0,21))
+ ) ATNRD (=2l s(0,1/ap ]| Neepio.n)

asn

< CL(rPe(2r)p(r) + ZS(%)/UMQI)(%)”ZH&'),

a<n

for all » > 1/A. But, as ¢(1/1) < qb(r)a(%) and % <1, we have, thanks to Remark
—1 e s
(P(a)(h\)lal < Cy(rA) (b(¢)-o-lal) < Cs,

where 6 > 0 has been chosen such that b(¢) — 6 —n > 0. Consequently, given r,A1 > 0
such that r > 1/, we have

IRz (8(0,ry) < Cr¥Pe(2r) (7). (5.5)

On the other hand, if r <1/, Taylor’s formula provides the following relation:

D%p(-A
N pax—y) - Y AP o < ¢y,
lal<n

which implies

IR, (x)] < cgo()uxl)'“udj IR(y)|dy
B(0,%

)
< CpaA™ ()9 (3),
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for all x € B(0,r). Therefore, we have

2 1

IRAllLe(B(0,r) < Crd/p(/“)”“&(;@(;)-

Now, using the second part of Remark we can write

()1 9(3) < BAN™ =)

< Cyrp(r)(rA) 170812
< Cy¢(r),

where 6’ > 0 has been chosen such that n+1—b(¢)— 0" > 0. As a consequence, given
R, A > 0 such that r <1/, we have

IRllso. < CrPe(3)p(r), (56)
From relations and (5.6), we have
B0 PR up a0 < Cle(2r) +(5),
for all r, A > 0, which naturally implies
O IR~ Rillis s < Cle(2r) +(2)). (57)

Let us now remark that, if we fix p > 0 and choose 7 > 0 such that

b(¢p)—n>n,
then, from Proposition we have
o (r) " PIR = Rylle (0,1
<o) YPIf = fillesio,n)

+C Z |D“P(xo);!D“PA(xO)| ()17

lev|<n
b _4d
< Cor NS — fillis ey

ID*P(x9) — D*Py(x,)|
+Cap Z 0 - AKX (~b()+y+al)

lal<n

_ _d
< CpP( b(Pp)+n p)”f _f)\”LP(]Rd)

|IDYP(xq) — D*Py(x0)|
$Cap Y o~ M) b +ry+la)

4

la|<n
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for all r > p. As we know that ||f — f,[[;p(gey = 0 and D*P,(0) — D*P(0) as A — oo, for
all |a| < n, we get that

sup (j)(r)_lr_d/pHR—R,\lle(B(O’,)) — 0 as A — oo. (5.8)
rzp

Gathering (5.7) and(5.8) leads to
sup q)(r)_lr_d/pHR—R/\||Lp(B(0’r)) -0 as A — 00, (59)
r>0

since otherwise there exists & > 0 such that for all A > 0 there exists A > A for which

sup ¢(r) " rP||R - Rallze(so,r) = &5

r>0

which makes us able to build a sequence (1;);cn that converges to co and satisfying

sup ¢(r)” 1 PIR =Ry llun(s(o,m) > &,

r>0

for all j. In particular, given j € IN, there exists r; > 0 such that

N | ™

gy
¢(r;) 1f]- p”R_R/\j”LP(B(O,r]-))Z : (5.10)

As A; — oo, there exists J; € IN such that for all j > J;, £(2/4;) < &/(4C), where C > 0
is the constant appearing in (5.7). Moreover, there also exists p > 0 such that, for any
re(0,p], e(2r) < %. From 1} we know that there exists J, € IN such that, for all

jZ]21

(5.11)

o | P

sup ¢(r) "' rP||R - Ry llee(B(o,r) <

T>p

Therefore, if j > max({J,],}, (5.11) implies 7; < p and, by (5.7) and (5.10), we finally get

a contradiction.
If we now assume that b(¢) < 0, then R = f and R = f,. Therefore, by Young’s
inequality, we have

IRAzr(B(0,r)) < ColIRllze(B(0,2r)) < Ce(27)¢p(7).

If r <1/A, let us recall that &(2r) < &(2/1). As a consequence, relations (5.5), (5.6) and
so (5.7) still hold and we can conclude in the same way, using the fact that

o(r) r PR = Ryllpo 0.0y = @) 7Pl f = fille B0,

and b(¢) > -761 O

The last proposition admits the following useful corollary.
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Corollary 5.2.2. Under the assumptions of the preceding proposition, the space D(R?) is a
dense subspace of tg(xo).

Proof. Let us consider f € tg(xo) and the sequence of functions (f;);en defined by

fi = fXB(O,2j) (] € IN)

By Lebesgue’s dominated convergence theorem, it is clear that f; — f in L? (RY); we will
show that f; belongs to tqps(xo) (j € N) and that the convergence also holds in T(;; (x0)-
Let P be the polynomial of degree strictly less than b(¢) such that

d(r) " rPIf =Pl — 0 asr— 0,
First, as f; = f on B(xg, 1), we have
(P(r)_lf’_d/p”fj —Pllpp(Bxgr) =0  asr—07,

for any j € IN. Therefore, given j €N, f; € tg(xo) and

1 = Fillgzeg) = If = fillo ey + sup o)~ r=PIf; = fllio(sieg ry

r>0

On the one hand, if r € (0, 2j] then

() VPN = Flle(Brgr) = O
and, on the other hand, if r > 2/, by Proposition m,
1 .- —(b(¢p)—e+4
SV = Flleo sy < Cr RIS = Flliwe)
. . d
< C2 PPN f — Fll e

where ¢ > 0 is such that b(¢) —¢ +% > 0 and C > 0 is such that r(&(¢)-¢) < C¢(r) for all
r > 1. Therefore, we have

—i(b(d)—e+4
||f —f]'”T(iI)’(xO) < ”f_f]'”LP(IRd) +C2 j(b(¢) £+p)||fj _f”LP(IRd) -0,

as j — oo, which provides the convergence in Tg(xo).
The conclusion then follows from Proposition [5.2.1] O

5.3 Some embeddings

Notation 5.3.1. Given ¢, ¢ € B, we will write ¢ < ¢ to mean that there exist R,C > 0
such that, for all r € (0, R), we have ¢(r) < Ci(r).
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Of course, by continuity, one has ¢ < ¥ if and only if, for all R > 0, there exists
C > 0 such that ¢(r) < Cy(r) for all r € (0, R).

Proposition 5.3.2. Let ¢, € B; if b() < b(¢p) then ¢ < 1. Conversely, if ¢ < 1, then
b(p) <b().

Proof. Let us first assume that E(gl)) < b(¢) and let € > 0 be such that
B(p)+ e <b(p)—e.
By Proposition given R > 0, there exists C > 0 such that for all r € (0, R),
B(r) < Cro@—e < C7pbWhte < C7y(p),

which means ¢ < .
If we now assume ¢ < ¢ then, in particular, there exists C > 0 such that for all
re(0,1),

o(1/r)7t < Cy(r).

Therefore, for such r, we have

log(¢(1/1)) _ log(C) N log(i(r)
log(1/r) — log(r) log(r)

and taking the limit as r — 0% gives b(¢) > b(1p). O

Proposition 5.3.3. Let xo € R, p € [1,00] and ¢, € B be such that either b(p) < 0 or
there exists n € IN for which n < b(¢) < b(¢) < n+1; if ¢ <, then T (xg) = TP (x0).

¢ ¥
Moreover, if ¢(r) € o(i(r)) as r — 0%, then Tg(xo) < ti(xo).

Proof. Let f € Tg(xo); there exists a polynomial P of degree strictly less than b(¢) such
that

IS = Pl e < If Iz () Yr>0.

Let Q=0,k=1=0if b(s) <0 and
Dep
0=y T s,

a.
lal<n

k=n+1,1=nif ne N satisfies n < b(1p) < b(1p) < n+ 1. For any r < 1, we obviously
have, by Proposition[I.2.6}

r PN f = Qlle o, < 7PN = Plle(sigry + VPP = Qllze (B(xo, )
< |f|T£(x0)¢(r) + Cd”f”Tg(XO)”k
< C(p,lpllfllT(ﬁ(xO)’ub(r);
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while for r > 1,

r P f = Qllee oo < 7 VPN lle By + PO (Bx )
P\ fllp ga) + Cd,p||f||T£fl

< ch)”f”]"g(xo)l/)(r)l

IA

which leads to the first part of the proposition.
The second part comes from the inequality

r PN f = QllerBxor) < 11725 () + Call fll ey
(p( 0) (‘{)( 0)

valid for all 0 < r < 1 and the relations ¢(r) € o(1(r)) and r* € o(¢p(r)). O

Proposition 5.3.4. Let x € R, py,p, € [1,00], p3 be such that

1 1 1
0<—i=—+—X<1

p3 P11 P2

and ¢ € B be such that there exists n € IN for which n < b(¢) < E(cj)) <n+1. Given

1 € Tpl (Xo) and 7 € sz Xp), we have 1/2 € Tp3 (X() R with
¢ ¢ ¢

||f1f2”T£3(xo) < Cd;Ppszd)”fl||T£1(x0)||f2||T£2(x0)‘

Moreover, if f € tg)l (xo) and f, € tgz(xo), then f,f, € tqpf(xo).

Proof. We know that, given k € {1,2}, there exists a polynomial P, of degree less or
equal to n such that Ry := f; — Py satisfies

r~ P Ryl ok (B 1)) < |fk|T(Zk(x0)<P(r)- (5.12)

Therefore, if we denote by P the sum of the terms of degree less than or equal to n in
P, P,, we have

f1f2 = P1P2+R1P2 +R2f1 = P+P1P2 —P+R1P2 +R2f1.

Let R:= PP, - P+ R P, + R, f; clearly,

|D*P(xo)|
Z T < ”fl||T£1(x0)||f2||7"£2(x0)‘

lal<n

Let us first consider r < 1; by Proposition since

|P,Py(x) — P(x)] < (x = x0)" | flllT(;;l (xo)lllelT;;z(xo),
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for x € B(x(,r), we have

r~4/p3||p, P, — Pll1p3 (B(xg,r)) < Cd:P3”f1”T£1 (Xo)||][2||qu’572(x‘))rwrl

< Capy il ol 22 90
Also, for all x € B(x, r), since |P.(x)| < ”fk”TPk(xO) (kel{1,2}),
¢
=P ||Ry Pollios (Bxg, ) < 7 VP2l o2 B,y PHIR L1 (B(xo, )
< Cd,p2||f2||T£2(x0)|f1|qu1 (x0)¢(r)-
Using again Proposition [I.2.6], we get

r P Al B < 7P = Pille By + 7 PHIPILe (B(xg )
< |f] |T£1 (Xo)(l)(r) + Cd,pl ||f1 ||T£1 (_xo)rn

S Cd,p1,¢||f1 ||T(;j1 (xo)
and thus

P3| £y Rollies Bxg,ry < 7V PUIllzer Beg.n ™ P2IR N o2 (B(xg )
< Cd,p1,¢> ||f1 ||qu1 (x0) |f2|T£2(x0)(P(7’)-

As a consequence, we can write, for r <1,
r_d/p3||R||LP3(B(x0,r)) < Cd,pl,pz,q)”fl||T£1(xo)”fZ”T(;’Z(xo)(P(r)' (5-13)
If we now consider r > 1, as |R| < |fi||f2| + |P|, we get

r~P3||R||1p3 (B(xo,r)

—d
< PN fillps ol folleez ey + Capr Uil e 1 foll ey

so that inequality (5.13) still holds in this case, by Proposition[1.2.6]
Finally, if f; € tgl (xo) and f, € tgz(xo), we can write

=P Rl ok (B ) < EX(P)(1),

with ,(r) > 0 for r > 0 and €(r) - 0 as r — 0" (k € {1, 2}). By replacing |fk|T4fk(x0) with

x(r) in the preceding relations, one gets
¢(r)_1r_d/p3||R”LP3(B(x0,r)) - O+r

as r — 07, which is sufficient to conclude. O
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Corollary 5.3.5. Let xy € R?, py,p, € [1,00], p3 be such that

1 1 1
0<—1=—+—<1
ps P11 P2

and ¢, be two functions of B satisfying b(¢p) >0, b(¢) > —p%, ¢ < ¢ and either b(y) < 0 or
n<b(i) < b(p) < n+1 forsomen e N. If f; € T(gl(xo) and f, € T£2(x0), then fi f, € T£3(x0),
with

||f1f2”T£3(x0) < Cd,pl,pz,q),l/)”fl||T£1(x0)||f2||T£2(x0)-
Moreover, if f € tgl (xo) and f, € t{f(xo), then fif, € tl)’f(xo).
Proof. If b(¢) < 0, the embedding is obvious since Tg(xo) — tg(xo) and so, for r >0,

r= P3| ollees Beo.r < TP Lo (B, P2 N falle2 (Blcg,r)
< Cp1,¢,0||f1||T£1 (xO)|f2|T$2(xo)1/)(7)-

Otherwise, we have b(1) >0 and f; € lel (xg), with
||f1”T£1(x0) < C¢,1,b||fl||T(7)’1 (x0)*
Using the previous proposition, we get f; f, € T£3(x0) and

||f1f2||T£3(x0) < Cd,p,lp”fl||T£1(x0)||f2||T£2(xO)
< CdrP"P’lP”fl”Tgl(xo)”fZ”TlZz(xo)’

which allows us to conclude. The second part can be obtained using the usual argu-
ments. ]

Proposition 5.3.6. Let py,py € [1,00], p3 be such that 0 < p% = pi +5, <1 and ¢, p € B be

such that — - < b(p), 0 < b(¢). Let also f, € Tgl (x0), f» € T£2( o), where x is a Lebesgue-
point offl,ﬁnally let ¢ € B be such that b(y) > —p%, ¢ <tand

* b(Y)-bl) <b(¢p) ifb(p)<

. E(IP) b(p) <1 if b(¢) > 1 and either E(gb) < 1 or there exists n € IN for which
n<b(p)<b(p)<n+1.

There exists a polynomial P of degree strictly less than b(1) such that, for all r > 0,

rPI(fy = fi(x0)) f2 = Pllues (Bxor)
< Cpl,pz,¢,<p,l,b||f1||T(§1 (x0)||f2||T£2(xo)€b(f)-

Consequently, if f, € LP3(RY), then (f; — f1(xo)) f» belongs to T$3(x0), with
I(fi = fi (xo))f2||T£3(x0)

< Cpl,p2,¢,(p,¢”f1”T£1 (xo)(”fZ”T(gz(Xo) + ||f2||LP3(IRd))'
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Proof. We keep here the same notations as in the proof of Proposition and set
g1 := fi — fi(xg). Let us first consider the case b(¢) < 1; P, must be a constant and, by
Remark we have P; = f(xg), which allows us to write

r—d/P1||g1||Lp1 (B(xo,r) < |f1|T(/’)’1(x0)¢(r)' (5.14)
Let us consider each case separately. If b(¢) < 0, then
f_d/p2||fz||LP2(B(xO,r)) < |f2|T£2(XO)(P(7)-
Therefore, if ¢ € B is such that b(1) < b(¢) + b(¢), then, by choosing & > 0 such that
b(p)+e <b(p)+b(p)—2¢, we get, by Proposition|1.2.6
P get, by I'rop
_d _d _d
r P3\|g1 folleesBxg,r) < 7 PUIG1IEPL (B(xg,r)” P2 f2llLe2 (B(xg )
<Ifilgp1 ol xo>¢<r>(p<r>
< Clfilps g falgzz ) Phritp)-2e
<C’ ”fl”T(gl (x0)||f2||T£2(xo)§b(r)f

for 0 <r <1, where C,C’ > 0 only depend on ¢, ¢ and ¢. If r > 1, as —d/p, < b(¢), we
can use Proposition[I.2.6/to get

r‘d/m||g1f2||LP3(B(XO'T))
< P3|, ollis (Beo. ) + VP2 L (o) 1 fallLes (Bcg, )

—d —d
< P3| i 1o ey foll oz (e + Cpy s /”lefllle fallzr2 (Bexer
S Cpl;val,b”fl”Tgl (x0)||f2||T(52(x0)11D(r).

If b(p) > 0, let us consider 1 € B such that b(y) > —p%, E(gb) <b(¢)+b(p)and ¢ < . For
0 <r <1, Proposition allows us to write

r_d/p3||81f2||LPs B(xo.1))
P3| |91 Pyll1os (B(xg ) + T~ P2 1181 RallLos (8o, )
|D¥P,(xp)|
< Caplfilzp ) @I ) =) +Ifilger o folges e e (DR(r)

la|<b(p)
<Cppp, ¢||fl||T”1 (x0) ||f2||TP

Again, the previous inequality holds for r > 1 as well.
Let us now investigate the case b(¢) > 1. For 0 < r <1 we have, as we know that

0) = fi(x0),
; [D* P4 (xo)
P Bl < Vilggt e )+ Cap () T

1<lal|<b(¢)
< Cpl,(p“flllT(‘/‘)’l(xO)r
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Obviously, this inequality still holds for r > 1. If b(¢) < 0, then for all ¢ € B such that
b(p) > —p% and b(¢) < b(@) + 1, we have, by Proposition|1.2.6

_d
rp ||g1f2||LP3(B(xo,r)) < Cp1,¢||f1||T£1 (x0)|f2|T£2(xo)¢(7)r
< Cpl,gb,(p,l,b”flllT(gl (x0)||f2||T£2(xo)§b(7’);

for 0<r<1. As b(yp) > —p%, this inequality is also satisfied for » > 1. If b(¢p) > 0, let us

consider ¢ € B such that b(y) > —p%, b(¢) <b(e)+1 and ¢ < . On the one hand, if
b(1h) < 1, Proposition implies
_4a _d _4d
r P38y follres (Bexg,r) ST P31 Pollirs Bxg,ry) + 7 31181 RallLes (B(xg,r)
< Cpl,(])”fl”T(;:l (xo)”fZ”T(gZ(xo)r
+ Cpl,q)”fl”T(/fl (X0)|f2|T£2(xo)(P(r)r
< C(b,(p,lp”fl”T(;)’l (x0)||f2”T£2(x0)l1b(r)’

for 0 < r < 1; again one easily checks that this inequality also holds for » > 1. On the
other hand, if n € IN is such that n < b() < b(¢) <n+1, let us define P as the sum of
terms of degree less than or equal to n in (P, — f;(x())P,; we have

gi1fa = (P = fi(x0))P, + R1 P, + Ry g
=P+ (P, - fi(x9))P, =P+ Ry P, + Ryg;.

By setting R := (P, — f1(x¢))P, — P+ R P, + R, gy, Proposition gives

P3| R o3 (Bxo, ) < 7 VP2lIg1 follies (Bixg, ) + PRI e (B(xg )
< Cp, pllfillzer weyll f2llpp2 (ray(7)
+Cpypowllfi ||qu1 tollf2llez ey (1)

+ Cd,m”fl”]"gl(x0)||f2||T£2(x0)rn
S Cll),pl,pzllfl ”T(Z] (X0)||f2||T£2(XO)¢(r)’
for r > 1, while for 0 < r < 1, we have
r_d/p3||R1P2||LP3(B(x0,r)) <Cip, |f1|T£1 (x0)||f2||T£2(xO)¢(T)

< Cpapplfilgrs o) 1f2llzz2 ) 97,

r_d/p3||R2g1||LP3(B(xo,T)) < Cp1,¢||f1 ||T£1 (x0)|f2|T£2(xo)(P(r)r

= CPI(Pf‘Pfl/)”fl”T(‘Zl(xo)lleng(x0)¢(r)
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and

r=4P3||(Py — £,(x0))Ps = Plizes (Bxg,r) < Cd,p3||f1||T£1(x0)||f2||’1"£2(x0)rn+1
< Cpl,p2,¢||f1||T£1 (o)l f2ll22 () $(7)-

This proves that there exists a constant Cpl,pzd),(p,l,b > 0 such that, for all r > 0,
P3| |g) fr = Plipes (B(xg,r) < Cpl,p2,¢,(p,¢||f1||T£1(x0)||f2||T£2(x0)1P(T)-
If f, € LP3(R?), then

181 follers (rey < ftllees (metyllf2lle2 ey + L1 (o)l f2ll 13 (R
hence the conclusion. O

Proposition 5.3.7. Let xy € R, p;,p, € [1,00] be such that p; < p, and ¢ be a function of

B such that —d/p, < b(¢). If f belongs to T;Z(xo) N LP1(IRY), then f € T(gl(IRd), with

”f”qul (RY) < ||f||T£2(x0) + ||f||LP1(1Rd)-

tpz

Moreover, in this case, f € ¢ (xo) implies f € tg)l(xo).

Proof. Let P be the polynomial of degree strictly less than b(¢) such that, for r >0,
2| f — Pllpa By ) < Fls2 () P (7)-

For such r, we have

—d/ —d/ 4_4d
1 YPUf = Pllger Bxg,r)) S 77 7P1Capy p, TP1 P2AIf = Plle2(B(xg,r)

< Cd'Plxpzlfngz(xo)qb(r)'

which is sufficient to conclude, as f € LP1(IR%).
The second part can be obtained using the same arguments as usual. N

5.4 A generalization of Whitney extension theorem

In this section, we show that some uniform conditions on a closed set E involving
spaces T(g and tg imply the belonging to spaces By (E) and by (E) respectively, that will
be defined in this section. Then, we show that a function which has such properties can
be extended in an open neighbourhood of E into a function which satisfies generalized
Holderian condition type (see [87]]).

In the sequel we will heavily need the following lemma. Its proof can be found
in [130] for example.
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Lemma 5.4.1. Given n € IN, there exists a function @ € D(R?) whose support is included

in B(0, 1) such that, for any polynomial P of degree less than or equal to n and any € > 0, we
have

@.*P =P.

We now introduce the spaces By(E) and by (E) of functions that admit a formal
Taylor expansion on a set E C IR? for which the behaviour can be characterized by a
Lipschitz-type condition given by a function ¢ € .

Definition 5.4.2. Let E be a subset of RY and ¢ € B be such that b(¢) > 0; a bounded
function f on E belongs to the space B¢(E) if there exist C,M > 0 such that, for all
xo € E, there exists a polynomial P, of degree strictly less than b(¢),

X
Py 1= Z, fao((v())(‘—xo)a;
lal<b(¢)

such that fy(xg) = f(x9), [fa(x0)| < M for all |a| < b(¢) and meeting the condition
ID*P,(x) = D* Py, (x)] < Cep(Ix — xo)x — /',
for all x € E satisfying x = xy and all |a| < b(¢).

Definition 5.4.3. Let E be a subset of R? and ¢ € B be such that b(¢) > 0; a function f
defined on E belongs to the space by(E) if, for any xq € E, there exists a polynomial P,
of degree strictly less than b(¢),

X)
Pyy = Z faO(C‘O (-—x0)%
lal<b(¢)

for which fy(xq) = f(xg) and

lim ([ —xol) ™ x = xo| DY Py(x) = D Py, (x)] = 0
x€E

uniformly in x, € E.

Definitions [5.4.2| and |5.4.3| generalize the Taylor chain condition (see Definition

1.7.2) by the mean of T and tg) spaces. Indeed, in Definition|5.4.2| the power function
which appears in is replaced by a Boyd function while, in Definition the
bound is replaced by an asymptotic behaviour. Our aim here is to show that these
adaptations lead to a generalization of Whitney extension theorem.

Proposition 5.4.4. Let E be a closed subset of RY and ¢ be a function of B satisfying
b(¢)>0;
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1. if there exists M > 0 such that f € T(g(xo) with ”f”qu(xo) < M for all x, € E, then

f € By(E) (in the sense that f is equal almost everywhere to a function that belongs to
By (E)),
¢

2. if fe tg(xo)for all xq € E, with (5.3) holding uniformly in x, € E, then f € by(E).

Proof. Let us prove the first point. We know that for any x( € E, there exists a polyno-
mial P, of degree strictly less than b(¢) such that R, := f — P, satisfies

r PR e (B(xg ry) < Mp(7), (5.15)

for r > 0, with [D*P (xo)l/a! < M for all |a| < b(¢). Moreover, in the light of Re-
mark one can modify f on a negligible set in order to have f(xg) = Py (xo) for all
xo € E. In particular |f(xq)| < M for all xy € E and f is bounded on E.

Let us take a function ¢ € D(R?) such as in Lemma let x, xo be two distinct
points of E and set ¢ := |x — x¢|. Let us define, for |a| < b(¢),

I == D@ * f)(%).
On the one hand, we have

I, = Da((Ps * (Pxo + Rxo))(x)
= ((Pe * DanO)(x) + (Da(Pe *Rxo)(x)
= DaPXO(x) + (Da(Pe *Rxo)(x):

and, on the other hand,
Iy = D¥Py(x) + (D" * Ry)(x).
Thus we get, for |a| < b(¢),
DPy(x) = D Py, (x) + (DY@ * (Ryy = Ry)) (%)

= DBy (x)+ fB( )e‘d”“'D“q)("j MRy, (9) = Ry(p) dp.

Setting Cy, := supjyjcp(g) 1D @lloo, we finally get, for |a| < b(¢),

[D?Py(x) = D* Py, (x)] < Cope e IRyl ey + € IRt (8ix,0)
< CypCae ((26) PR ¢, llLe(Bxy 26)
+ & PR e (B(x,e))

< Cp(lx = xol)lx —xol ™%,

where the constant C > 0 only depends on Cy, M, d and ¢.
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For the second part of the proposition, let us consider
r_d/plleOlle(B(xO,r)) eo(¢p(r)) asr — 0"
uniformly in x( € E, instead of (5.15). Since the inequality

IDYP,(x) — D* Py, (x)| < Cy Cae (26 PIIR Lo (B(xg,20))

+ e‘d/”llelle(B(x,e)))

holds for all x,x, € E, we can conclude that, given C > 0, there exists 1 > 0 such that if
0 <|x—xg| <7 (x,x0 € E) then we have

D Pe(x) = D Py (x)] < Cop(lx = x])1x = xo[ ™,
which means that f belongs to by (E). [

The theorem concluding this section relies on the following lemma, which es-
tablishes the existence of a smooth function on a neighbourhood of a closed subset E
which is comparable to the distance to E (see e.g. [130,26]).

Lemma 5.4.5. Let E ¢ RY be a closed set and U = {x € R : d(x,E) < 1}; there exist
0€ C®(U\E)and C >0 such that

Cld(x,E)<é(x)<Cd(x,E) VxeU\E

and
ID5(x)| < C(a)d(x,E)'1¥ VxeU\E,|a|>0.

In the sequel, we will also need the following combinatorial lemma, which can
be easily proved by induction on [ € IN.

Lemma 5.4.6. Let | € IN;

* if =0 mod 4, then

* ifl=1 mod 4, then
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e if | =2 mod 4, then

* if | =3 mod 4, then

-1

{2)-2l) 5 o)

~

Theorem 5.4.7. Let E C R? be a closed set, U = {x e RY : d(x,E)<1},neNand ¢ € B be
such that n < b(¢). If f € qu(xo) satisfies ||f||T£(XO) < M for some M > 0 and all x, € E, then

there exists F € C"(U) such that F = f almost everywhere on E.
Moreover, if m € N is such that n <b(¢) < b(¢p) < m, then there exists C > 0 such that
for any x € U and any h € R? \ {0} for which [x,x + (m — n)h] C U, we have

|AL"DYE(x)] < Cop(|h])In™ (5.16)

for any |a| = n.

Proof. Let us consider the functions ¢ and 6 from Lemmata |5.4.1| and [5.4.5| respec-
tively. We know that we can modify f on a set of measure zero so that f € By (E). Let
us define the function F on U by

. f(x) ifxeE
F(x):= { S(x) deRd(P x—9)o(x)™1)f(y)dy otherwise.

One obviously has F € C*(U \E). Let x € U \ E and x, € E be such that |[x — x| = d(X, E).
As xj € E, there exists a polynomial P, of degree less than or equal to n such that
Ry, := f — Py, satisfies

r PR llr By ry) < Mp(7),

for all r > 0. For any x € U \ E, by setting

we have, by Lemma[5.4.1],

D%F(x) = D Py, (x) + J D, (x (v)dy.
R
One can easily check (by induction) that ®@,(x,-) is of the form

3(x) DY ((x = )57 (x))(x =) P(x),
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where P(x) is a product of derivatives of the function ¢ evaluated at x with ¢ factors
and whose sum of orders is equal to w and where k + w—t —|y| = |a|. Thanks to the
property of the function &, we have |P(x)| < Cd(x, E)"™, 8(x)™4~* < C*d(x, E)™* and

IDY((x =) (x)(x — )| < Cy o d(x, E),

as D¥@((x—-)071(x))(x —-)” does not vanish if |x — | < 6(x). We thus have the following
estimate:

|f () dyl < Crd(x, >d—'“'j IRy, ()],
B(x,6(x))

for all a € IN‘g and x € U \ E. As there exists C’ > 0 such that 6(x) < C’d(x,E) for all
x € U\ E, we can write

IDYF(x) - D*P,, (%)| < Cd(%, E) -1 L( IRy, (1) dy

%,C’d(%,E))

< Cd(x,E)ld(x, E)™ IRy, (v)]dy
B(x(,(C’+1)d(x,E))
|

< C,M(d (%, E))d (%, E)
= CuM (% = xol) (% — xol) ™,

where C, > 0 is a constant which only depends on ¢, ¢, C;, C’ and d. Moreover, as f €
Bg(E), we know that P (xg) = f(xo) and for all x; € E such that x; = xo,
D?Py (x9) = DY Py (xg) + Ra(x0, x1), where R, satisfies

IR, (x0,%1)| < C(lxo — x1 1) (%0 — x11) 711, (5.17)

for all |a| < n. Therefore, thanks to Taylor’s formula, we have, for |a| <n and x € R4,

1
DPy (x) = EDMﬁPxO(xo)(x ~ xo)f
|Bl<n—|al
1
= E(D‘”ﬁle(xo)—i-RMﬁ(xO,xl))(x—xo)ﬁ
|Bl<n—|al
_ ]'( 1 Da+ﬁ+)/P ( )(X —x ))/
|Bl<n—|al lyl<n—(lal+|Bl)

+ Ryp(x0, %1 ))(x —xo)’
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and

1 1
i Z — D PP (x1)(x0 = x1)? (x = x)F

il P e tatersn 7
1 1
= Z = Z EDMﬁWle(xl)(x—xo)ﬁ(xo —x1)”
isial ¥ 1g1<n(absly) P
1
= ) DR xmx ) (o)
yl<ntal ¥
= DDy (x).
Finally, we have
1
DPy(x)=D°Py(x)+ ) giRasplox)(x=xo),

|Bl<n—|al
for all xy,x; € E and x € R?. In particular, for |a| < n,

IDP, (%) =D P, (R <C ) bl —x1 Do — x1 [Pl x|

IBl<n—|al
and as |x — xp| < [x —x;|, we have |xg — x1| < 2|x — x1|. Therefore,

Do — x1])|xg — x, [Tl

B — a0 =2l o = %1l e
< ([T —x, )| — 2, [T X e lal-1p
e L A el ey

and, as |a|+|B| < n < b(¢$), Remark[I.2.9)implies that

—(|x_0—x1| |9ﬁ)—x1| —|al-Ip|
X —xi| 7 [x—xq]

is bounded (by a constant which only depends on ¢). We thus have
D Py, (%) = D Py, (%)) < Cp(I =y % — 17,

for || < n. This inequality and the upper bound obtained for D*F(x) — D*P, (x) give
the following relation, valid for all x; € E:

IDYF(X) - D“Py, (%)

< C(P(IF = xo )% = xoI ™!+ (1T — 21 )% = x0 )
and as [x — x| < [x — x|, we get, as before,

IDYF(%) — DYP,, (%)] < Cp(|x — x; )% — x| 1. (5.18)
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Let F, be the function defined on U by

D*P,(x) ifxeE
F = x
2(%) { D%F(x) otherwise.

We have proved that, for |a| < n, F, € C*°(U \ E) and for x € E and h # 0 such that
x+he U, we have

F,(x+h) = Z DY*P (x)hf + R, (x, x + h), (5.19)

IBl<n—|a

where
IR, (x,x +h)| < Co(|h])|h 7,

with a uniform constant. More precisely, if h is such that x+h € E, the previous inequal-
ity is satisfied because f belongs to B, (E); otherwise x + h € U \ E and the inequality
follows from (5.18). This is sufficient to show that F € C"(U) and D*F = F, on U for
all |a| < n. Indeed, implies that F, is continuous on E and so on U. Given n>1,
let us fix x € E; if h € R\ {0} is sufficiently small, for j € {1,...,d}, we have

F(x + hej) - ZDﬂP )(hej) + Ro(x, x + h),
IBI=1

which allows us to write

F he:)=F "

| (x+ fZ) (x)_Pej(x)|glmz_émﬁpx(x)”h“m 1 W
Z|D/3P ()| + ¢(|h|)
IpI=2 BN

and, as the right-hand side tends to 0 as h tends to 0, we can conclude, since
1 <n<b(¢), that F is differentiable at x and D, F(x) = Pe],(x). If we now assume that F is
(n—1)-times continuously differentiable at x, with D*F(x) = F,(x) for every |a|<n-1,
we have, for |a| =n—1, h € R\ {0} sufficiently small and j € {1,...,d},

LAk L e

]

1, Rl x4 1)
< ) IDYPR (ol hF ¢ =
BI=1 i

a+p o1, c@UAD
s“;u) B P+ R

and we can conclude, in the same way, that F, is differentiable at x, with
DjFa(x) = Fa+ej(x)-
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Let us now prove that if n < b(¢) < E(q,’)) < m, then there exists C > 0 such that, for
all x € U and h € R? such that [x,x+mh] C U, we have

|AR"DYE(x)] < Co(|h)IA™

for all |a| = n. So far, we know from (5.17) and (5.18)) that the following inequality
holds for all |a| =1, x € U and y in E satisfying x = p:

|Fo(x) = Fo ()| < Ch(lx—yl)lx—y|™.

If x e U and h € R?\ {0} are such that there exists k € {0,...,m — n} for which
x+kh € E, we can use Lemma to obtain, setting [ =m —n,

Al DYF(x) |—|Z ()D“Fx+]h)|

l

=| (—1)j(l,)(D”‘F(x+jh) — D*F(x + kh))|
=

L

< ( -)C<P(|(j —k)h)I(j = k)™
=0

< C'¢(|R)IRI™

Let us now consider the case for which we have, for all k € {0,...,1}, x+kh € U \E;
let us first suppose that d(x, E) < (I + 1)|h| and take x € E such that |xo — x| = d(x, E). Of
course |xo — x| < (I +1)|h| and, for all j € {0,...,1}, we have |xo — (x + jh)| < (2] + 1)|h|. As
before, we have

—

|ALDYF (x)| < ZZ(

=0

1
CZ() (Ix+ jh—xol)|x+ jh —xo|™"

j=0

)|D“P x4 jh) — D*F(xy)

~.
~.

IA

and, for all j €{0,...,1},
P(lx+ jh—xol)lx + jh —xo|™
(L)) s

Ix+jh—x|, |x+jh—x0| _,

)

That being said, we have W <2l +1 and so, by Remark|1.2.9

|x + jh—xo|, |x+ jh—x]

B S €
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where the constant C only depends on ¢ and I. Therefore, we can write
|ALDF ()] < C' ()| ™

It remains to consider the case where x + kh € U \ E for all k € {0,...,]} and
(I +1)|h| < d(x,E). As before, let xq stand for a point in E such that |xq — x| = d(x, E).
We already know that, for any y € U \ E,

DF(y) = DPy,(y) + de D (v, &R, (E)dE.

The function y — fIRd Dy (v, &)Ry, (&) dE belongs to C*(U \ E) and, for all g € N4,

Dﬂj cpa(y,a)RxO(ada:j D p(v, €)Ry, () dE.
R4 R4

As the segment [x,x + [h] is included in U \ E, we know, by Taylor’s formula, that there
exist points xg with |8| = I on the segment [x, x + [h] such that

Al D¥F(x) = AL f d Dy (%, &Ry, (£)dE
R

Y f (g )Ry (£)dE

d
=1 R

- Zhﬁf q)a+ﬁ(xﬁ;5)RxO(é)d€,
ipi=1  ~Blrp.Cd(xp,E))

where C is a constant such that 6(y) < Cd(y,E) for all y € U \ E. Moreover, for such v,
we have already obtained that

[@asp (@)l < Cd(y, Ey 1M = Ca(y, By,
If |Bl =1, as xg € [x,x + [h], we have

d(xg,E) > d(x,E) — |x —xg| = (I + 1)|h| = I|h| = |h]
and so, if &£ € B(xﬁ,Cd(xﬁ,E)),

€ —xol < |& —xp|+|xp — x|+ |x — xo
< Cd(xg, E) + 1l +d(x,E)
< Cd(xp, E)+1d(xp, E) + d(xs, E) + 1]
< C"d(xy E)
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Therefore,

|J 05, )Ry, () dE|
B(Xﬁ,Cd(Xﬁ,E))

< C’d(x,g,E)‘d"”f IRy, (E)dE
B(Xo,c’,d(Xﬁ,E))
< C,Md(Xﬁ,E)_m(j)(d(Xﬁ,F))
) __d(xg,E) d(xg,E) _
< C'M(RNIH " (— =) (=) ™"
|l |hl
Now, as d(xg, E)/|h| > 1, and b(¢) < m, we know that
— d(xg,E) d(xg,E)

|| ||

is bounded by a constant which only depends on ¢ and m. We can thus write
|ALDF(x)| < C'p (kDA™
which is what we need to conclude the proof. ]

Theorem 5.4.8. Let E C R? be a closed set, U = {x e RY . d(x,E) <1}, ne N and ¢ be a
function of B such that n <b(¢). If f € tg(xo)for all xo € E, with (5.3) holding uniformly
in xo € E, then there exists F € C"(U) such that F = f almost everywhere on E.

Moreover, if m € N is such that n < b(¢) < E((j)) < m, then, for all |a|=n, x € E, and
€ > 0, there exists y) > 0 such that, for all 0 < |h| <# for which [x,x + (m—n)h] CE,

|AL " DY (x)| < e () |A|™".

Proof. The proof is essentially the same as the previous one, using this time the fact
that f € by(E) and

r PR e e,y € 0(P(r))  asr— 0%,
uniformly in x, € E. O]

Remark 5.4.9. Let us highlight the fact that inequality (5.16) characterizes the belong-
ing to a generalized Holder space, originally stated in [87], and corresponds to the

condition in Corollary forp=g=o00,y = (2]')], and o = (¢_1(2j))]-.



T(g regularity, operators and elliptic

partial differential equations

In their seminal paper [26], Calderén and Zygmund use the T} and t}, spaces to ob-
tain pointwise estimates for solutions of elliptic partial differential equations £f = g.
Such equations are remarkable because the coefficients in the differential operator &,
which are functions, satisfy some kind of invertibility condition, see Definition [6.4.1]
below. This condition is expressed in term of so-called symbols which link elliptic par-
tial differential equations to standard operators such as the Bessel transform, Laplace
operator and convolution singular integrals.

The main theorem in [26] can be stated as follows: if all the coefficients of £ are
of class T;;°(x), if all components f; and g are of class LP and g € TS with p € (1, 0),
—d/p <v <u,v ¢&Z, then there exists a constant C for which

1D fillzs sy < €O _lgillzz ey ) fillwz). (6.1)
k j

for all j, |a| < m, where g is a number satisfying
s p<g<owifl/p<(m-|al)/d,
s p<qg<oifl/p=(m—|al)/d,

* 1/p<1/9<1/p—(m—|al|)/d otherwise.

Moreover, if g belongs to tf,)(xo), then D®f belongs to tz+m_|a|(x0). Another theorem

states that if £ is elliptic almost everywhere on a set of positive measure whose points
xo satisfy u(xg) > c for some constant ¢ > 0, if the coefficients of £ are in T,;°(xy) and
g€ T (xo) for almost every xg and if f € L}, then D? f belongs to tz+m_|a|(x0) for almost
every xg. Let us remark that there is a common misunderstanding when stating the
hypothesis of this main theorem: the coefficients of £ have to belong to T;°(x() (see
page 172 of [26], where T, is defined as T,;°); the case where these coefficients belong
to T} (xq) with p < oo is not considered in [26]].

In this chapter, we wish to extend this result by considering both Tq’; functions
and conditions based on L” norm, with p < oo, for the coefficients of £. To achieve
this goal, we first need to investigate the action of the Bessel operator, derivatives and

singular integrals operators on a T£ function. Let us highlight the fact that the main
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source of difficulty is the introduction of LP conditions for the coefficients of £. As
usual, most of the properties of the standard spaces are preserved in the generalized

version.

Contents
[6.1 The Bessel operator|. . . . ... ... ... ... .. . ... . . ... . 120
6.2 Derivativesl. . . .. . ... o o 128
[6.3 Singular integral operators| . .. ... .. ... ... .. . 00 L. 139
|6.4 Elliptic partial differential equations| . . . . . ... ... ... ... .. 152

6.1 The Bessel operator
In this section we look at the action of the Bessel operator of order s,
Tf=F1+]-P)?Ff) (seR fe8),

onto spaces Tg(xo) and tg(xo). If ¢ is a function of B and s belongs to R, then ¢ will
denote the function

¢s:(0,400) = (0,+00) x> P(x)x’.

It is obvious that ¢, is again a function of 3 such that b(¢,) = b(¢)+s and E((j)s) = E(¢)+5.
Let us recall thatif 0 <s <d+1, then we have J°f = uy+f, where u; is the function
defined for x = 0 by

: 1 o f
(21)7 2920 (s/2)0 (4521 Jo

+oo | |t 2 d—s—1
e M (t+17/2) 2 dt.

us(x) =

The following inequality holds for all 0 <s<d and a € INg:
D®uy(x) < Cy ge (1 + [x|74+<71al), (6.2)

For the sake of simplicity, let us introduce the notion of admissible value for a real
number.

Definition 6.1.1. Given ¢ € 3, a value s > 0 is said to be admissible (for ¢) if one of the
following two conditions is satisfied:

e b(p)+5<0,
* there exists n € IN such that n < b(¢p) +5s < b(¢p) +s < n+1.

Theorem 6.1.2. Let x, € R%, p € (1,00, ¢ € B be such that b(¢) > —d/p and s > 0 be an
admissible value for ¢. The operator J*° maps continuously TCZ(XO) into T(ZS(xO), where
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i if p<d/s,
e p<g<oo ifd/s<p < oo,
* p<g<oo ifd/s = p.

Proof. Let f be a function of T£ (x0); we know that there exists a polynomial P of degree
strictly less than b(¢) such that R := f — P satisfies

PRI e (Bxy ) < |f|T(/I)’(x0)<P(T): (6.3)

for all r > 0. Without loss of generality, we can assume that x; = 0. We first want to
estimate the following two quantities, for all » >0 and u € R:

j [R(x)||x|™" dx and J IR(x)| |x|™" dx.
B(0,7) IR\ B(0,r)

For this purpose, we use the same idea that in Lemma and set

= dax;
o(r) Lm,r)'R"‘)' .

from inequality (6.3), we have
(1) < Calf gz o) $(r) (6.4)

Moreover, using the spherical coordinates in R?, we can write

=L P(p)dp, (6.5)

27t
‘“J f fuz %(0, 01, 0 1) dQy,

and we recall that dQ, stands for sin?"2(0;)---sin(6,_,)d0; ---d0,_,. Therefore, we
have, for ¢ > 0,

where

P — ple)e™ = f o~ plp)dp —f up™ (o) dp

_ f IRl dx —f up V(0 dp.
B(0,7)\B(0,¢) e

Consequently,

J RGN dx < p(ryr ™ + f o~ Vep(0) dp.
B(0,7)\B(0,¢) 0
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If b(¢)+d—u >0, then

r r
L p—(u+1)(p(p)dp S Cdlf'qu(O)\J; pd_u_l¢(p)dp

< Cd|f|T£(O)¢(r)j pd—u—1$(g)dp

0 r
1 (g gd-u
= Calflzp )b (r)r _”J; %dé

d
< Cul Iy o ()7

thanks to Proposition|1.2.10, Hence, for all » > 0 and u € IR such that b(¢)+d —u >0,
[ IR < Caal g b (6.6)
B(0,7) ¢

If we now assume that E(cp) +d—u <0, then, for all N >0,

N
J- IR(x)[|x|™"dx = (N)NT" —q(r)r " +u J p_”_l(p(p)dp
B(0,N)\B(0,r) r
and, since ¢(N)N " tends to 0 as N — oo, we get, thanks to (6.4) and Proposition|[I.2.6]
J IR(x)||x|™dx < C, |f|Tp(xO)qb(r)rd_”, (6.7)
R4\ B(0,r) ¢

using the same technique as before.
Let us first assume that 0 < s < d; we have

T f=us*P+ug=R,

where u,+P is a polynomial of degree strictly less than b(¢) whose sum of coefficients is
bounded by the sum of the coefficients of P. = We thus need to estimate
ug+ R. Let us fix r > 0 and x € R? such that 2|x| < r; if there exists n € IN for which
n<b(@p)+s< E(c[)) +s<n+ 1, by Taylor’s formula, we find

o

R = | wteepRe)y ) T [ prepRg)dy

|a|<n

xa
Y5 ptuieprmy
a: JB(o,r)

lal<n

a _ dy,
N Z L{d\B(O,r)D us(©(x)x—y)R(y)dy

|al=n+1
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for a ©(x) € (0,1). Using inequalities (6.2)) and then (6.6)), we get, for all |a| < #,

|f D“u5<—y>R<y>dy|sc<f IR () dy
R4 B(O,l)

+f e"”'lf(y)ldwf e HP(y)|dy)
R4\B(0,1) R4\B(0,1)

< Ca,slflT(i’)’(()) + Cp||f||LP(1Rd)
B
Lo v IDPR)
ﬁl
|Bl<b(¢)

< Ca,s,p,d”f”T(Z(o);

e Wylfdy
R4\B(0,1)

so that

a

) = Ld D®uy(~y)R(y)dy

lal<n
is a polynomial of degree n whose coefficients are bounded by ||f||qu;(0). For all |a| < n,
we also have, thanks to (6.6),

|J Dw—y)R(y)dylscf IR ()] dy
B(0,r) B(0,r)

< Ca|f|T£(x0)¢(r)rs‘|“|.
Now, if |a| = n+ 1 and if |[y| > 7, then |®(x)x — y| > [y|/2 and, assuming that s < d,
ID%uy(©(x)x — )| < ClO(x)x — p[4+sal < ¢/ |y|d+sal,
From (6.7)), we get
| J D*uy(©(x)x =~ 9)R®)dyl < Calf e (1) (r)r* .
RY\B(0,7) ¢

If we also assume that 117 — 7 <0 and if p’ is the conjugate exponent of p, then, from
—(d —s)p’ < d, since
lu < Cl- 17",
we can affirm that u, € L (R?) and, for all r > 0,
sl 50,20y < Crér v,

Therefore, by Holder’s inequality,

|j( =R sl 0 ¥t0
B(0,r

< Crr PRIl e(s0,0)
< C|f|T(/’j(0)75¢(T)-
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This shows that

a

Pousp-y o fm D®u,(~y)R(y) dy
|a|<n

is a polynomial of degree n such that
IT°f = P'llre((0,2r)) < Cs,cj),p,d'f'Tg(o)(Ps(zr)’ (6.8)
which means that J°f belongs to € T(;Z’ (0). Moreover, by Young’s inequality,

”jsfllLW(IRd) < ”us”LP'(]Rd)”f”LP(IRd)- (6.9)

From this relation, inequality and the fact that the sum of the coefficients of P’ is
bounded by ||f||T£(0), we get

17 Fllrsio) < Il

If we now assume that 117 - % > 0, then

R
|J u(x—p)R(p)d |scf ZABONT,
B(0,r) =pIR(p)dy R Jx —plds Y
= CIs(lRXB(O,r)l):

for r > 0, where I; is the Riesz potential of order s. As a consequence, if q is such that
1/q= 11—7 — 5, we have, by the Hardy-Littlewood-Sobolev lemma (see e.g. [118]]),

1Is(RxB(0,n)lzarey < ClIRI|Lr8(0,r)
< C|f|T£(0)Td/p¢(V)

d
= Clflge()rr°(r).
o
This implies
_d )
r T f = PllLaso,2r) < Cs,¢,p,d|f|T£(o)¢s(2T),

for r > 0, which means that J°f belongs to T(ZS(O). One more use of the Hardy-
Littlewood-Sobolev lemma gives

1T7° fllLawey < Cllfllze(we)

and we obtain, using the same arguments as before,

”jsfllT(ZS(o) < C”f”T(/’;(O)' (6-10)
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It E((j)) +5<0, let us decompose (ug* R)(x) as follows:
R = [ RO+ [ - pRG)dy.
B(0,7) R4\B(0,7)

We can use inequality (6.7) again to estimate the second term in this equality; more
precisely, we have

| us(x = )R(p) dy| < C|f |7p () P ()7,
RRY\B(0,r) ¢

That being done, we can use the same reasoning to show that and (6.10)) still hold

in this case.

Let us extend inequalities and (6.10) to all admissible values of s > 0. If s = d,
let 0 < ¢ < d be such that the quantity v := s — ¢ satisfies 0 < v < d and
n<b(d)+v <b(¢p)+v <n+1. Suppose first that ;—)—% > 0; we have ;—)—% > 0, which
implies JVf € T(;v(O), with 1/r = %—% and ||.7”f||T(;v(0) < C||f||T4z:(O). From J°f = J¢J'f
and

1 € 1 s
rTdp a
we know that J°f € T(gs(O) with 1/q ::%_5 - 117_5 and

”jsf”Tgs(o) < C”jvf”T(;v(O) < C”f”Tq‘;(O)'

Now, let us suppose that I%—% < 0; by choosing ¢ such that %—% <0,wegetJ"f e Tq‘;‘v’(O),
with 17" fllrz (o) < ClIfllz0) and we obtain 7 € T;2(0), with 17 flizg(o) < Cllfllzy(oy

Let us consider the case s = kd + v with k € IN and 0 < v < d; let us first remark
that if n € IN satisfies

n<b(p)+s<b(p)+s<n+l,
then d < n implies
0<n—-d<b(p)+s—d<b(¢)+s—d<n-d+1

and s —d is still an admissible value. Otherwise, n < d and so n+ 1 < d, which means
that we have b(¢)+s—d < 0 and therefore that s—d is also an admissible value. Suppose
first that }1—)—5 > 0; let us prove by induction that J° f belongs to T(ZS(O) with 1/g := %—%
and ”jsf”T(ZS(O) < C||f||T£(0). The case k = 0 being already known, let us show that if the
assertion is true for k — 1, then it is also true for k (k > 1). Since s —d is an admissible
value, 7°7f € T(gs_d(O) with 1/r = 111 - % and

||js_df||T(/’)57d(0) < C”f”T(g(O)'
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As

we have J°f € TCZS(O) with 1/q := %—% and ||j5f||T(Z (0) S C||f||T£(0)' Now, let us suppose
that Ilﬂ — 5 <0; let us prove by induction that J°f € T(;:’(O) and

17° Flizgo(0) < Clllize o)

It remains to show that if the assertion is true for k — 1, then it is also true for k (k > 1).
If %—% <0, then js‘df € T(;Z’id(O) and ||j5‘df||T$o (0) < C||f||Tp . From what we have

obtained before for the case s =d, we get J°f € T:‘;Z’( 0) and

17° fllze0) < CliflIze o)

Otherwise, 1f = — T > 0, from the previous point, 75 f € qu (0) with 1/r:=+ — %

1774l (0= Clfllpg and

)

1
p

1 d 1 s<0
rd p d

The case s = d leads to J°f € T°° (0) and ||.75f||Too < C||f||Tp . Finally, 1f 1 Sl_id =0,

let 0 < ¢ < d be such that s—d + ¢ is still an admissible value. As - = ‘jl” < 0 we have

T f e Ty ,..(0)and ||js_d+£f||Tq§° 0) < C||f||Tp . We can thus write
s—d+e s—d+e
||jsf||T$§(0) < C||f||T(/f(o)

Let us now remark that if f € T(g(xo) and J°f € T(ZS(XO) with g > p, then we can
define R, := J°f — P, where P, is a polynomial of degree strictly less than b(¢) + s such
that

YRl a(Bxgr) < |~75f|Tg (x0) Ps(7)-

If p<p’<gandgq’>1issuch that %+%: 1/p’, for r > 0, we have

—d/p’ —-d/p’.d/q’
r /P ”RS”LP/(B(xO,r)) < Cyr /Pyl ||Rs||L‘7(B(x0,r))

< CUlT* Flgg a5l

which means that J°f belongs to qus’(xo) (using the estimation made by the same poly-
nomial as the one that gives the belonging to qus (x0)). Moreover, if 0 <6 <1 is such
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that 1/p’ = % pe} we know that

1T° Fll ey < 1T I gy 1T Fll 5 (e
< CINT* g g1 o e
<17 fllzaera) + 1 f lle ra)-
We are ﬁnally able to prove the three points of the theorem. If p < d/s, let us set

1/p*: 5 — %, p* 2 1 and from the first part of the proof, J°f belongs to Tg (0) and
||jsf||T£ ©) < C||f||T£ . Now, from the second part, for g satisfying 1/p > 1/g9 > 1/p",

J*f belongs to T(;;:(O) and

17°Fllsg 0 CUT* Pl g+ )
< C”f”Tg(O)

Let us consider the case p > d/s. The first part of the proof implies that J°f belongs to
T(;?(O) and ||\75f||T(;a( < C||f||Tp . Using the second part of the proof, for p < g < oo,
we get that J° f belongs to T(gs( 0) and

”ij”T(ZS(o) < C”f”qu(O)

For the case p = d/s, let 0 < € <s be such that

¢ being chosen sufficiently close to s so that it is an admissible value; the first point of

the proof gives that J¢f belongs to TCZE(O) and ||\7€f||T(g£(0) < C||f||T£(0) for g such that

1/p>1/q> % - 5. Now,

and, from the first part of the proof, 7°f belongs to T(ZS(O) and
||jsf||T<Zs(0) < C”f”T(lf(o)

We can conclude by letting ¢ tends to s™. N

This theorem admits the following corollary, regarding tg(xo) spaces.
Corollary 6.1.3. Let xo € R?, p € (1, 00), ¢ € B be such that either b(¢) > —d/p and b(¢) <0
or there exists n € IN such that n <b(¢p) < b(¢p) <n+1. Let us consider an admissible value

s> 0 for ¢; if the function f belongs to tg(xo), then J°f € tgs (x0), where
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* p2l/g25-3 ifp<d/s

1
p
* p<g<oco, ifd/s<p<oo,
* p<g<oo, ifd/s=p.

Proof. By Corollary we know that there exists a sequence of functions (f;)jen
in D(RY) N t(xo) such that f; — f in Tg(xo). For such a function, J°f; € C*®(R%) and
Remark [5.1.9/implies that Jsfj belongs to t;s(xo), for all r € [1,00]. But, for all values
of g that we consider, the preceding theorem implies

17°(f; =gt () < CllSj = Fllrs )

Therefore, jsf]- converges to J°f in T(ZS(XO)' From Proposition |5.1.8, we know that
t

(xg) is a closed subspace of T(gs(xo), which gives us the conclusion. ]

6.2 Derivatives

In this section, we investigate the estimates that can be made for a function whose
derivatives are known to belong to T(g (xg) (or tg(xo)). For such a task, we will need the
following classical lemma of Sobolev spaces theory (see e.g. [130]).

Lemma 6.2.1. Let 1 < p <d and q be defined by 1/q :=
that, for all f € D(R?),

1_1 :
5 —q- There exists Cp 4> 0 such

d
1fllzsre) < Cpa ) ID; Fllomey
j=1

Let us remind that, if ¢ € BB, then ¢; is the Boyd function defined by

¢1(x) =x¢p(x) Yx>0.

Theorem 6.2.2. Let xo € R?, p € [1,00), ¢ € B be such that b(¢p) > —d/p and either
b(¢) < -1 or there exists n € IN U {1} for which n < b(¢) < b(¢p) <n+1. If f is such that
Dif € T;j(xo)for alljell,...,d) and

1. ifl<p<dand f € LYRY) with 1/q:= 3 — 3, then f € Tj (xo) and
d
124 (xp) < Coop ;nDjfnTg(xo), (6.11)

2. if f € L1(RY) where q € [1, 00) is such that 1/p > 1/q > % - %, then f € T(gl(xo) and

d
1153 (x0) < Cpp )05 gz sy + I sy (6.12)
j=1



6.2. Derivatives 129

Moreover, if D, f belongs to tg(xo)for all j €{1,...,d}, then f also belongs to t;l(xo),
with q satisfying one of the two preceding points.

Proof. Let us first suppose that f belongs to D(IR?); for j € {1,...,d}, let us set

d 1 X
ki:R*\{0} >R x> ——,
@gq |x|4

where w, is the area of the hyper-sphere in R. Tt is easy to check that for x # 0, we
d
have Zj:l D]k](x) =0.
Let us fix x € R?, set, given r >0, QQ, :={y € RY : |x — y| > r} and denote by

dQ, := {y € R? : |x — y| = r} the boundary of this set. Using Green’s first identity (see
Theorem [1.7.4), we get

: 1 f(®)
FW)ki(x—y)dy = — ST Ay P
;LrD]f(y) i(x-y)dy o LQ, eyl o

Lebesgue’s dominated convergence theorem implies that the right-hand side tends to
f(x) as r tends to 07, while the left-hand side tends to

d
Y| Dif k- p)dy.
j=1 I

Therefore, we have the following representation for f:

d
r=) J P wicnay (6.13)
£

Let us prove the second point in the case g = p. Let us first deal with the case
b(¢p)<-1;forr>0and x € R? such that |x — x| < r, we can write

d
f)=) (A0 + f(x),
i=1

]

where we have set
A= | D@k vy
B(xq,2r)
and

pi= [ DSk cplay
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By Young’s inequality, we have

r PN illeBerg,) < 7 PID; flle By, 2y Wil (Bxg,37)
< CORID; flyp sy B (6.14)

To estimate r‘d/p||f2,]-||Lp(B(XO,r)), let us define the function F; for r > 0 by

= ; dy = (p)dp,
L<x0,r>'D]f(”' y foz,b](p) 0

where we have set, using spherical coordinates in R centered at X0,

Fj(r)

27 T TC
$i(p) :=pd‘1f0 fo L D (9(p, 01, 041 N

We know that, for r > 0,

and, for all R > 0, we have

Thanks to inequality

6.15

R tends to +c0. Therefore,

+

2r

pi(p)p' ™ dp < (d—l)f

rFj(r) < CalDj gz 6(7) (6.15)

and Proposition

+00

2r

Fi(R)R'™ —F;(2r)(2r)'™*

= LR Yi(p)p'dp+ LR

1.2.6

Fi(p)p~*dp

Fi(p)(1—d)p~*dp. (6.16)

as E((j)) <-1, Fj(R)Rl‘d tends to 0 as

+00
< Cald = 1IDf ey [ do)dp

< Cald =)D fly 4, (2)9(7)

+

C—p
¢(5;)dp

2r

= Cy(d - 1)|Djf|T£(xO)$(2)2(j)(r)r£ B(t)dt.

By Proposition [1.2.10}, this last integral is bounded and thus

where

+

2r

¥j(e)p" ™" dp < CaCIDjflyz b1 (1),

Cp,1 = 5(2)J1 ma(t)dt. (6.17)
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S
A

ID;f (v
o= | - 1d
R4\ B(x0,27) |X 3/|

f _IDifl
4\B(xo,2r) Ixo —yl)

. f 0y (0)dp,

IA

we finally obtain

P 2llp (B ) < CaCo1Djflrp () 1(7)-
Inequality (6.12) follows from this estimate and (6.14). Now, let us suppose that
-1 <b(¢p) <b(¢p) <0 and fix r > 0. For any x € B(x(,r), we have

d
fE)=fx) =) (fir+fia—fi3))
j=1
where we have set,

fialx):= L(x D03,

falx):= j D, f(9)(kj{x —v) — ki (xo — ) dy
R4\ B(xg,2r)
and
falx) = L(XO  Dif @0 —3)d.

Once again, we have

T_d/p||f1,j||LP(B(x0,r)) < Ca(Z)ID]-fng(xo)(f)l(r)

Moreover, if x € B(xy,r) and |xy — y| > 27, then, for all |h| < |x—xq|, [xg—y + k| > |xg —p|/2
and so, by the mean value theorem and the fact that [Dk;(z)| < C/|z|* for all z# 0 and
lal=1,

lkj(x —p) —kj(xo —p)| < Crlxog — I g,

Therefore,

+00

fial=<cr | pi(p)p~dp
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p ¢ €8 Y, 0p pucp q

and by the same reasoning as before, using this time b(¢) < 0, we get
r PN fi e By < Cdc¢,2|Djf|T£(x0)¢1(”)r

where

Cp2 = P(2) 1 w@dt. (6.18)

For the last term, we have

2r
fstl<r | pi(p)p'dp

and using an equality similar to (6.16]), we have

2r

2r
pi(p)p'Pdp < Fj(2r)(2r)' ™ + dj Fi(p)p™ dp.

0 0

As -1 < b(¢), we have
r PN fi 5lle (Bl < CdC¢,3|Djf|T£(x0)¢1(T),

where
— 1_
C¢’3 =¢(2)(1 +J; o(t)dt). (6.19)

Again, inequality 1} follows from the estimate made of r~4/7|| fikllLp(B(xo,r)), for all
r>0and k € {1,2,3}. Finally, if there exists n € IN such that n < b(¢) < b(¢) < n+1, let
P be the Taylor expansion of f at x, of order n+1, set f := f — P and, for j € {1,...,d)},
E = Djf. For r > 0, we have

f f )P dy
B(xq,r

(x0,7)
r 27 T T )
:f J J j |f (X0 + Dip,0,,..00 )P P" " dQqdp,
0 0 0 0

where y(,0,,...0,_,) is the point defined by

[y(p,glw,,gdfl)]j = p]_[sin(()k)cos(()j)\fj €{0,...,d -1}
k<j

and

[Y(p.01,...00)]a = p I_[ sin(6y).
k<d
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Let us set

gi(01,...,04-1) := l_[sin(()k)cos(ej)
k<j

and

2i(01,...,04_1) = ]_[sin(Qk).
k<d

Using Taylor’s formula, we have, as f(xo) =0,

d
— P _
f(xo+p.0,,..001) = Zfo f(X0+ ¥1t.61,..00.))8 (O, Oa_1) dt.
j=1

Therefore, as |gj| < 1, Holder’s inequality leads to

[ iFweay
B(XO'r)
r P2 T T i p d ~ B
0 Jo 0 JO 0 i1
i ) d  ~2m ol ot ot
< Capr®™?” Z J J j |fi(x0 +Vt.6,,..0, ) dpdtdQy
jzl JO JO 0 0 t
4 d  ro; 7 T
< Cd,pr +p—1Z j j |fj(x0+y(t,el,...,ed,l)ﬂpdfdﬂd
i=1 Jo JO 0 0
d —
-C rd+p—1 Z i |f](y)|p
— “dp a1 .
— JB(xo,r) [y = Xol

-
Il
—

Moreover, using a similar technique as before, we have, for j € {1,...,d},

£ ()P P
L(xo,n =g Y S Pty P fo Sy )

which allows us to conclude, as b(¢) > 0, that

d
P flle (Bxg,r) < CapCopra Z|Djf|T£(x0)¢l(r): (6.20)
i1

where

1_
Cpa:=(1 +JO P(t)P dt)V/P. (6.21)
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) we need information about ) ;<41 [D*P(xo)l/a!. We

In order to estimate ||f||T£ (%o
1
have
D*P( DPP;(x
y Dftlcy y 2 (622
0<|a|<n+1 j=1 0<|Bl<n ﬁ
where, given j € {1, ,d}, P; is the Taylor expansion of Djf at xo of order n. It remains

to work on P(xg) = f . For this purpose, let us choose ¢ € D(IR?) such that ¢ = 1 on
B(0,1) and supp(¢) C (0 2). Using representation 1) we obtain

d
£(x0) = f(xo)(xo - xo) = j (%0~ 0)D; f (1)@ ( - x0)dy
=1

j
+ de ki(xo =) f (¥)D;jp(y — x0) dy).

For the first term of the right-hand side, we have

D.
IJ ((xo—v)D;f(y nydy|<Cf Mdy

B(xo,2) X0 — ¥|%71

For r > 0, we have
r"PID; f = Bllie(s(s ) < 1Djf s ) $(7)

and so

] DEP;(xo)|
r 2D, fllip s < Djflgp sy $(1)+ Ca ) ——gr—1"

|DF P (xo)|
) —ar— <IDif gy
|Bl<n '

we can write, using the same technique as before,

ID; f )l
L R gy < Cdc¢,5||Djf”T£(Xo)

(x0,2) o — yld !

where

1
Cp,5:= ¢(2)+2”+2¢(2)L o(t)dt. (6.23)
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For the second term, we have
| | ki(xo—)f (®)Djp(y —x0)dy|
sf (%0 - DIF O)IDjp(p - xo)ldy
(x0,2)\B(xq 1)

< cq,f I (v)ldy
B(x0,2)\B(x,1)

< Cop,allf llrp(ra)

which gives

d
£ ()l < Cpa(Co5 ) _IDjfllgp sy +11f o)

=1

This relation, equations (6.20) and (6.22) lead to inequality (6.12). That being done,
we have thus obtained the second part of the theorem in the case p = 4.

Let us now prove the first point of the theorem, still considering a function f from
D(R?). As previously, let us denote by ¢ a function in D(IR?) such that ¢ = 1 on B(0,1)
and supp(@) € B(0,2). If there exists n € NU{-1} such that n < b(¢) < E((j)) <n+1,let P
be the Taylor expansion of f at xO of order n+1, otherwise we set P = 0. Finally, define
f f —P and, for j € { f] D; f If 1/q := l %, thanks to Lemma [6.2.1, we
have, for all r > 0,

YU FllLa g, < 7N fp(— )”LP RY)
< Cpar d/qZ 1o (—)llrme)
i=
1||fD]§0 )||Lp Rd))

=CyCpa Z(rr_d/p”};”LP(B(xo,Zr))
j=1

+ 7P| fllp (Bxg2r))-

Moreover, by hypothesis,
PNl s 2) < 2P BR)ID; s g 01(1) (6.24)

and, using what we have proved so far,

7P e is0,20) < CapCo )10 lgp ey ®1(r) (6.25)
j=1
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As before,

Z« w C‘P 5 Z”D f”T” (xo) T ||f||Lq 1Rd (6.26)

a!
|a|<n+1

That being done, another use of Lemma gives

d
1fllzare) < Cpa ) _IID; Flliomey (6.27)

=1

and inequality (6.11)) is proved, thanks to relations (6.24) to (6.27).
Now, let us come back to the second point of the theorem and investigate the
case where g > 1 is such that 1/p > 1/g > d' we stlll consider a function f € D(R?).

Agaln we use equality (6.13); as 1/p > 1/q > 1—7 — d, there exists p” € [1,00) such that

1/q =+ + — —1 and, by Young’s inequality,

||f 57 )02yl

< Collkill e (5 3m L ®NLe (Bx 2r)

and

d_d
g pt!

”kj”LP’(B(xO,sr)) < Cd,p((3r)(d‘1)(1—p’)+1)1/p' = Cy,p(37)

which gives us

r-d/qnf kj<-—y>}f7<y>(p<” ) dylluo ey
<C(pdp¢ |D flTp (x0) (Pl

Similarly, using the first part of the proof, we obtain

||j Do) sy
<Cpapt Wprs IF (9)N2p (B(x 209)

_ d d
< CpapCoP(20r7 ) IDjflyo sy d1(r)
j=1

This upper bound and equation lead to inequality (6.12).

Now that the theorem has been obtained for the functions belonging to D(R?), let
us consider a compactly-supported function f such that D;f € tg(xo), for all
jefl,...,d}. Given A >0, let f) be the function defined by and, for j € {1,...,d},
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define f) ; := D;f). By Proposition |5.2.1} we know that f, ; converges to D, f in T(if(xo)
(j € {1,...,d}). Inequalities (6.11) and (6.12)) imply that (f)),>o is a Cauchy sequence
in T(Zl(xo) (with appropriate g) and thus, by Proposition [5.1.7, (f1),>¢ converges in

T(Zl(xO)' As f) converges to f in LY(R%), we conclude that f; converges to f in Tgl(xo).
Moreover, by passing to the limit, we can affirm that inequalities (6.11) and (6.12) still

hold for f. Now, as f) belongs to D(R?) and til(xo) for all A > 0, by Proposition|5.1.8

f also belongs to tf{n (x0)-
Let us now consider a general function f such that, for all j € {1,...,d}, D, f be-

longs to tg(xo) and let us again take ¢ € D(RY) with ¢ = 1 on B(0,1) and
supp(@) C B(xg, 2). Given ¢ > 0, we define
fe = fole(- = xp)).

By assumption, we know that, for all j € {1,...,d}, there exists a polynomial P; of degree
strictly less than b(¢) such that

$(r)! r_d/p”Djf ~Pillzr(Bxyr) =0  asr— 0"
Moreover, since we assume that f € L1(IR?) for some g > p, f belongs to L’;OC(IRd ) and

Dife =D;fp(e(-—xq)) + €f Djp(e(- —xp))

belongs to LP(IR) for all € > 0. Of course, we have

O(r) " YPUD; £ = Pille(s(xy )
< <P(r)_17_d/p||Djf(P(€(' —x0)) = Pillze (B(xo,r))
+ <P(r)_1r_d/p||€ij(P(€(' — x0)lee (B(xg,r))-

Now, for r sufficiently small, we have @(e(-—xp)) = 1 and Dj¢(&(- — xp)) = 0 on B(x, )
and, for such r,

O(r) ' YPUD; £ = Pille (Bxg,r) < (1) YPUDS £ = Pillie(s(xg )

which shows that D; f, belongs to tg)(xo). As f. is compactly-supported, the previous

case reveals that f, belongs to tg)l(xo) (for appropriate g). Let us prove that D, f, tends
to D;f in Tg(xo), as ¢ tends to 0*. We have

”Djfe _Djf”T(i’)’(xO)
=sup CP(r)_lr_d/pHDjfe = D; fllze(B(xg,r) + IIDj fe = Dj fllp(re)

>0

and

Djfe=Djf = Djf (¢(e(- = x0)) = 1) + £ f Djp(e(- = xo))- (6.28)
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A simple application of Lebesgue’s dominated convergence theorem shows that the L?
norm of the first term of the right-hand side of (6.28)) tends to 0 as ¢ tends to 0%, while

||5ij§0(5(' _xO))”LP(]Rd) < C(pgllf”Lp(W\B(xo,l/e))

1_d+4
< Copgdt P "fllLama\Bxg,1/e))-

Since 1 - % + % > 0 by hypothesis and ||f||p(ré\B(x,,1/¢)) tends to 0 as ¢ tends to 07,
so does ||D]'f€ —Djflle(]Rd). Moreover, for 0 < ¢ <1, if 0 <r < 1/¢, then D;f. - D;f
vanishes on B(xg,r). If r > 1/¢, then r > 1 and if 6 > 0 satisfies b(¢) -0 + % > 0, then by

Proposition[I.2.6]

4 _5+4
Plr)y i < Gy g W) < ) E)-05)

’

which finally leads to

sup (j)(r)_1 r_d/pllD]fS —D; fllze(B(xy,r)

>0

b(p)-6+4
< C5,¢5u¢) +”)”Djfe _Djf”LP(le);

so that D, f tends to D; f in Tg(xo) as ¢ — 0*. Using again the completeness of the space

T;l (xg) and the closeness of th (x0), we conclude, by inequalities (6.11) and (6.12), that

fe tends to f in T(Zl(xo) and f € tfpl(xO)- By passing to the limit in (6.11)) and (6.12)), we
obtain that those inequalities still hold for f.
It remains to consider the case of a function f such that, for j € {1,...,d}, Djf

belongs to qu(xo)- Let € > 0 be such that

—d/p <b(Pp)—e <b(p)-e <1,
if b(¢p) < -1 and
n<b(p)—e<b(p)—e<n+1

if n € INU {1} satisfies n < b(¢) < b(¢) < n+ 1. For such a number, D;f belongs
to t;ig(xo) for j € {1,...,d} and it follows from the previous case that D;f belongs to
f?,H(Xo)- Moreover, if 1 < p < d and f belongs to L1(RY) with 1/q := I%— %, then f
belongs to T<Z1fg(x0) and

d
I8 ey S Cpapee ) _IDif 2 sy (6.29)
j=1

Otherwise, if f belongs to LI(R?) with g € [1,00) satisfying 1/p > 1/q > 1%_ 1, then f
belongs to T<g1_e(x0) and

d
18 () < Cpgoe ) IDjF Nz ey + I oy (6.30)
j=1



6.3. Singular integral operators 139

Let us analyse the constants defined in (6.17)), (6.18)), (6.19), (6.21) and (6.23). For a
chosen ¢ > 0, we have for example

Copon = ¢_s<2>f1 o
27¢ J+m$(t)t_gdt
1

(t)dt

= 9(2)
< Cy

and a similar reasoning applied to (6.18)), (6.19), (6.21) and (6.23)) shows that we can
find a constant C > 0 such that, for ¢ small enough, the constant C,, . appearing in

1) and 1} is bounded by CC,, 4. Moreover, since

IDjfllze (o) < NP f It g

we can conclude by taking the limit as ¢ tends to 0*. O

6.3 Singular integral operators

Let us now study the action of convolution singular integral operators on the space
Tg (xp)- This class of operators was particularly studied by Calderén and Zygmund in
(24, 25], where the authors proved the following crucial theorem.

Theorem 6.3.1. Let us set, for € > 0,

Kef = k(-=v)f (v)dy,
RY\B(-¢)

where

k is homogeneou of degree —d,

k has mean value zero on the sphere ¥ = {x e R? : |x| = 1},

keL1X)foral <gq<oo,

f e LP(RY) with 1 < p < co.

Then, there exists K f € LP(R?) such that K, f tends to Kf in LP(R?), and pointwise almost
everywhere as € — 0*. Moreover, if we set

K f =sup|K.fl,

e>0
then KC* f belongs to LP(R?) and

W fllp(rey < Cp,gllkllzacs)llf e (re)- (6.31)
Tt means that k(Ax) = A~%k(x) for all A > 0 and x € R? \ {0}.
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Remark 6.3.2. In the theorem originally stated by Calderén and Zygmund, the inte-
grability assumption made on k is the following: k + k(—) € LlogL(X). This condition
is a little less restrictive, since for a finite measure space (X, %, ), we have (see [6] for
example)

LI(X, 8, p) — Llog L(X, %, p),

for all 1 < g < co. In the sequel, we will need to consider k € L9(X), with 1 < g < o0, in
order to take advantage of inequality (6.31).

We will use the following notation:
Notation 6.3.3. Given ¢ € B, we set
[b(¢)]n := inf{k € N : b(¢) < k).

Proposition 6.3.4. Let K be the convolution singular integral operator defined by

Kf = p-v-fk(-—y)f(y)dy,

where the kernel k € C®(IR% \ {0}) is homogeneous of degree —d. We also assume that k has
mean value zero on the sphere X.

Let p € (1,00), xg € R? and ¢ € B be such that —d/p < b(¢) and either E(({)) <0 or
there exists n € IN for which

n<b(¢)<b(Pp)<n+1. (6.32)

If a function f belongs to Tg(xo), then Kf € Tg(xo) and

VAl 1) < CoppMIlf sy (6.33)
where we have set

M= sup |D%(x)|
[x]=1
0<lal<[b()IN

Moreover, if f € tg(xo), then we also have Kf € tg)(xo).

Proof. We can assume, without loss of generality, that xo = 0. If f € Tg(O) then there
exists a polynomial P of degree strictly less than b(¢) such that, for all » >0,

r P f = Pllie(Biag,r)) < |f|T£(o)¢(T)-

Let ¢ be a function in D(IRY) such that ¢ = 1 on B(0,1) and supp(¢) C B(0, 2); we set

fiz=9P and  fr:=f-fi.
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If E((j)) < 0, then f; = 0 and obviously f; € Tp 0) with ||f1||Tp < ||f||Tp . Otherwise,
- holds and if r < 1,7~ 9P||f; - Plltp(Bxg,r)) = 0. If r>1, then, by Proposmonm

r_d/p”fl - P”U’(B(xo,r)) < r—d/p C(p,p”P”LP(B(xo,r))

IDYP(O)] 1
< C(p,d,p Z 7 r

la|<n

< Cq),d,pc¢||f”]"£(o)¢(r)x
which means that f; € T(g(O), with
fillz2 (o) < Conap Collflize (o)
As a consequence, we have

||f2||TP <(1+Cpa,pCo) ||f||TP

Let us now consider 1 € D(R?) such that supp(1) C B(0,2) and set, for ¢ > 0 and x € R,

IL(x) = f K)p(x—p)dy = f K)p(x—p)dy.
RY\B(0,¢) B(0,2+[x[)\B(0,¢)

We have, using the notation used in the proof of Theorem as k is homogeneous
of degree —d,

f K)p(x)dy
B(0,2+|x])\B(0,¢)

2+|x| ~2m - d
- 1’b \J\ J J\ Jo k(y(p,el,...,ed,l))p _1dedp

2+|x| 21 T
x>f f f KD0,,..0, )0 dQudp
€ 0 0

f‘ZTC
= p(x)(In(2 + [x)) - In(e)) f f D00 )

JO

=0,

as k has mean value zero on X. Therefore, for ¢ > 0 and x € R,
L= | k() (x—y) = () dy.
(0,2+]x|)\B(0,¢)

We will use this last equality to show that the sequence (I,).s¢ converges uniformly
as ¢ tends to 07. Indeed, for all x € R?, if 0 < ¢ < ¢, we have, since for all y = 0,
k(v)| < M[y|~ by the homogeneity of k,

|Ie(x) = I (x)] SMJ ™Iyl sup [ID* ¢l dy
B(0,¢”)\B(0,¢)

la]=1

= CyaM(e' ~¢),
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which shows that (I,).s( is uniformly Cauchy. It follows that K¢ is well defined and I,
uniformly converges to K(¢) as ¢ tends to 0. Moreover, for 0 < ¢ < 1, we have

e ()] < 11 (x) = L ()] + I (x)]

< CpaM(1—¢)+M I (x—p)ldy
R4\B(0,1)

< CpaM(1-e)+M | [piwldy
R

<CyaM,

so that ||[K(¢)||ge < CI’MM. Using the same reasoning, we can show that, for ¢ > 0 and
a € IN‘é,

DI, :J k(y)D“z,b(-—y)dy,
R\ B(0,¢)

DI, uniformly converges to D*K(¢) and ||[K(D*¥)l|ge < Cy4,oM. As a consequence,
K(1) belongs to C‘X’(IRd) with DK () = K(D*¢). Moreover, if |x| > 3, then, for € > 0,

() SMJ =3Il (y)] dy
{(x,9):lx—yl|>e,lyl<2}

< M3d|x|—df ()l dy
]Rd
= CyM3|x|™

and so, by Lebesgue’s dominated convergence theorem, K(i) € LP(RY), with
IK@)rp(riy < Cy,a,pM. Gathering all these relations, we can claim, using Remark
that K(¢) belongs to qu(O) and there exists Cy 4, > 0 such that ||IC(z,b)||T£(xO) < Cy,apM.

Now, let us apply this result to the function x — x*¢(x) in order to obtain a
constant Cy, 4 4,, such that ||/C('a§0)”T£(0) < Cy,a,d,pM, which gives

|D*P(x)|
”K(fl)”Tg(O) = Z TO)”K('&(P)”Tg(Q) < C(p,d,pM”f”T(g(())' (6-34)

lal<n

For ||’C(f2)||T£(o), we use Holder’s inequality to get, for r > 0,

—d ,
r I2)ldy < C) 4 Il oy P(7)
and, as for and (6.7), we can write

J;( UBOSTy < Covtplfllygo i1 (6.35)
0,r ¢

~



6.3. Singular integral operators 143

if b(¢p)+d—-s>0,and
Lo 1Ny < Cpaplf g™ (6.36)
R7\B(0,r) ¢

if b(¢p)+d—s<O0.
That being done, let us consider the case where condition (6.32) holds and fix
r > 0; for x € B(0,7/2), we have, using Taylor’s formula,

Kf2(x) = lim k(x=v)f(y)dy
€207 Ji(x,p):lx—yl>e lyl<r)

+ lim+ k(x=v)f2(y)dy
e—0 {(xp):lx—p|>e,|y|>r}

= lim k(x=)f>(y)dy
207 Ji(xp)lx—pl>e lyl<r)

+j K(x—9)f(v)dy
IRd\B(O,r)

= lim k(x=v)f2(y)dy
207 J{(xp)lx—pl>e lyl<r)

Ly %(LdD“k Dy L(O DK

lar|<n

+ J D% (®(x)x—v)fr(v)dy,
RY\B(0,r)

|a|<n+1

for a O(x) belonging to (0, 1).

Thanks to the homogeneity of k, we have, for |[a| < n+1 and y = 0,
ID%k(-p)| < My|"471?l.  Using inequality and Holder’s inequality, we get, if
g € (1,00) is the conjugate exponent of p,

| Dak V) f2(v)dyl

sj LIy | iy
B(0,1) IR?\B(0,1)

< C||f||TP YO (L) + 12l eyl - 4= |a|||Lq(1Rd\B(O,1))

< Clfllrp o)+ €M flle oy

for |a| < n. As a consequence,

a
P = ZEL D%k (-p)fo(y

lal<n
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is a polynomial whose sum of the coefficients is bounded by C¢,p||f||T£(0). Similarly, we

have, for |a| < n,

| Dkephman < Coaplrir
B(0,r)
Given x € B(0,7/2) and |y| > r, we have |©(x)x —y| > [y|/2 and so, by inequality (6.36),

| D KO- PAM A M2 [ |y
R4\B(0,r) R4\B(0,r)
<SMC,q¢(r)r ¢,

for |@| = n+ 1. Finally, using Theorem we have

| lim k(-=9)2(3) dyllewe)
207 Ji(y)l—yl>e lyl<r)

< CpMl| follLe(Bix,r))
< (1+ 1 Co)MIIfllgp b (r)r 7

and we can conclude that there exists a constant Cq’),p,d > 0 such that, for r > 0,
r P f> = Plle(s(o,r) < Cop,p,aMp(r).

If we now assume b(¢) < 0, then, for r > 0 and x € B(0,7/2), we have

Kfylx) = lim k(x-9)fa(y)dy
€207 J(x,)lx—pl>e lyl<r}

+f kx—)fo(0) d.
]Rd\B(O,r)

We can deal with the first term of the right-hand side just as we did before, while for
the second we use the estimation

[ keeppmatsm [ sl
RY\B(0,r) RY\B(0,r)
< CaM(r),
which follows from (6.36). This leads to the following relation, holding for r > 0,
r PIK fallee(so,ry) < Copp,aM(r).
One more use of Theorem ensures

IK fallpprey < CpMlf2llpe(ra),
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which allows us to conclude, with (6.34), that the desired inequality (6.33) holds.

If we moreover assume that f belongs to tZ(O), then we know that there exists a

sequence of functions (f;);en in D(R?) such that fj converges to f in T(g(O) as j tends to
infinity. By a reasoning similar to the one we made for the function i at the beginning
of the proof, we can conclude that, for all j € N, le]- belongs to C°°(1Rd) and so to

tZ)(O) as well, by Remark |5.1.9} In addition, it follows from inequality (6.33) that Kf;

converges to Lf in Tg(O) as j tends to infinity and, as tg(O) is a closed subspace, we get

that Kf € tg,(O). O

Corollary 6.3.5. Let us denote by Y ,, the convolution singular integral operator defined as

Vimf = pv. sz,m« _)f () dy,

whose kernel is

kl,m = Yl,m(m)l . |_d:

where (Y] )1 m forms a complete system of orthogonal spherical harmonics (for more details

on spherical harmonics , see e.g. [104,1106l]), m being the degree of the harmonic. Under the
assumption of Proposition there exist constants C,, Cy , > 0 such that

IV mf e ray < Cpllf llze(re), IV i f e (rey < Cpllfllpp ey (6.37)

and

o
IIyz,mflquf(xO) < Cypm 2 +|—b(¢)-|N”f”T£(XO)' (6.38)

Proof. Inequalities (6.37) come from (6.31) and the fact that ||k; ,|l;2(x) is equal to 1.
(16.33)

Inequality (6.38] is obtained from , using the fact that, for a € IN%, we have
DY), < Cam(d%z”“') on X (see [25])). O

A fundamental example of convolution singular integral operators is given by
the Riesz transform (R;)<j<4, defined for j € {1,...,d} by

Let us fix 1 < p < oo and k > 1; it is known that the following facts hold (see e.g.
(25, [26]]):

e iffe W,f(IRd), wehaveR;f € W,f(IRd) and R is a continuous operator on W,f(IRd),

e for I € {1,...,d} and f € W]f(IRd), we have D|(R;jf) = Rj(D;f) and
Ri(Dif) =Ry(D;jf),
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* if f € LP(R?), we have Y| Rf = f.

The operator

continuously maps W]f(IRd) into W]f_l(]Rd) and, if k > 2,
AZf =-Af,

forall f € W,f(IRd). We also have the identity D, f = —iR;Af forall f € W]f(IRd). It can
also be shown that for all m € IN such that 2m + 1 > d, there exist a4,...4,, < 0 and a
positive integrable function h,, with derivatives continuous and bounded up to order
2m+1—d such that

ATf=f+) aiT¥f~hu+f,

j=1
for all f € LP(R?) (see [26]).

Proposition 6.3.6. Let p € (1,00), xy € R? and ¢ € B be such that either E(cj)) < —1 or there
exists n € NU{-1} for which n <b(¢) < b(¢) <n+1. The operator D;J continuously maps

Tg(xo) into itself.

Proof. Let f be a function of T(g(xo); from what precedes, we have

m

DiJ f = ~iRiATf ==iRj(f + ) T f =y ),

j=1

where m has been chosen sufficiently large so that h,, belongs to C rg(‘f’)]N(IRd ). Using

Remark |5.1.9 we thus have h,, * f € tf;(xo). Moreover, by Theorem [6.1.2{and Propo-

sition [5.3.3, we know that J continuously maps T(g(xo) into itself. The conclusion is
obtained by applying Proposition [6.3.4]to R ;. O

The decomposition of functions into spherical harmonics will lead us to singular
integral operators whose kernel depends on several variables.

Definition 6.3.7. Let g € [1,00], ¢ € B be such that b(¢) > 0 and x, € R. Let K be the
singular integral operator of the form

f > a()f () +p.v.fk<-,-—y>f<y>dy,

where
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* gis a bounded measurable function,

e forall x e R?, k(x,-) is homogeneous of degree —d, has mean value zero on ¥ and
belongs to C®(IR \ {0}).

The symbol of K is the function

—

o(K):(x,z) > a(x)+k(x,z),
where, given x € RY, /k\(x,-) is the Fourier transform of k(x,-) (understood in the dis-
tribution sense). We know that for all x € R?, k(x,-) belongs to C®(R? \ {0}) and is
homogeneous of degree 0 (see e.g. [55]). We say that K is in the class T(g(xo) if, for all
la| < 2d + [E((j))'hN and z # 0, the function

x> D2 o (K)(x,2)

is in T(g(xo) N L®(R?), uniformly on ¥. We then define

— a
Kl =max( sup D2 () 2lpgcey
0<la|<2d+[b(¢)IN

sup  [IDEo(K)(2)llpeo(me)}-
l2l=1
0<|al<2d+Tb(¢) 1N

If moreover, for all |a| < 2d + [E(qb)]IN and z # 0, the function x — DZk(x, z) belongs to
tg)(xo) uniformly on ¥, then we say that K is in the class tg)(xo).

Remark 6.3.8. Given x € R?, 5(K)(x,-) is an homogeneous function of degree zero; it is
proved in [104),25] that the following decompositions hold: for (x,z) € R? xIR? \ {0}, we
have

Z _
K(x,2)= ) annl) Vil
I,m
and
z

o(K)(x,2)=a(0)+ ) _am(x)ymYim(i )
I,m

a;m(x) = (-1)"(m(m+d-2))" L Y nL'k(x,-)do

— (1) (m(m + d—2)) Yy L YL’ o(K)(x, ) do,

with LF(z) = |z|*AF(z) and v € N.
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Theorem 6.3.9. Let g € [1,00], xo € R? and ¢ € B be such that b(¢p) > 0. Let K be a singular
integral operator of class T(g(xo); we have

1. aj, € T(Z(xo) N L=(R?) and

4_2y
maX{”al,m”Tg(xo)’ ||al,m||L°°(]Rd)} < C¢,m2 ”,C”T(Z(xo)’

2. if pe(1,00)issuch that 0 <1/p* := %4_1% < 1 and if f € LP(R?), then, for almost every
x € RY, Kf(x) and Vi f (x) exist and the series

a(X)f (X)+ ) arm(X)Vimf (%)

I,m
converges absolutely to Kf(x),

3. K is a bounded operator from LP(R?) to LP"(R?) N LP(IRY): there exists a constant
CM > 0 such that, for all f € LP(IRd),

max{”’Cf”Lp*(IRd);||Kf||LP(1Rd)} < CP:QHIC”T(Z(XO)”f”LP(IRd)'

4. let ¢ € B be such that b(y) > —-d/p, ¢ < P and either b(ip) < 0 or
n < b(yp) < b(yp) <n+1 for some n € IN; K is a bounded operator from TP (x,) to

¥
T£ (xq): there exists a constant Cp, 4 4 > 0 such that, for all f € T£(x0),
”’Cf”le*(xO) < Cp,q,qb,ll)||IC||T(Z(XO)||f||T£(xO);
5. if moreover K is of class tg)(xo), then aj ,, belongs to tgb(xo) and, for all f € ti(xo), Kf

belongs to tg(xo).

Proof. We keep the same notations as in Remark|6.3.8/with v :=d + [M%]N
Let us show the first point. For all x € R? and z € ¥, let us write

where g, is a product of powers of z; (j € {1,...,d}). From the definition of the class of
operators in T;g(xo), for ze ¥, we have

L0 (K)C 2o ey < CollKllgs vy

Let us also recall that [|Y; ,||;2(5) is equal to 1. If g > 2, then, if we denote by g” the con-
jugate exponent of g, g’ < 2, we have by Holder’s inequality (with usual modification if
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q =),
||al,m||Lq(1Rd)

= (m(m+d—-2))""y, 1 f J Y, ()L 0 (K)(x,2)do(2)|7 dx) "
4 2y v 1/q
< Camt2 ([ MWy ) I Y )2

' 27 d/? L/ 1
< Cmt2 (G Wl [ [ 10700 2 o)

d_ (2m)¥/? 12
S Cd,vm2 ||IC||T(Z xo ( (d/z) )

_ d_2y
= Cam? Kl s,

. d_» .. .
From this, we get [|a] || () < Cm2 7’||IC||T$(XO) and a similar argument can be applied

to obtain the same inequality with ||a; ||« re). Now, if g <2, we have
||al,m||M(IRd)
= nm+d =20 [_ | [ i@ ()5 2ot e

d/2
< Comt (D | WL ()5 2 do (21
(27Z)d/2
T(d/2)
(zn)d/z y
o g il

_ 4_2y
= Cd,vm2 ”IC”T(Z(XO)

5- 1——
< Caum¥2( el PP o

< Cd vm7—21/(

Moreover, we know that, for |a| < 2d + E(qﬁ) +1 and z € ¥, there exists a polynomial

2= Z Cé,@(- —xo)P

Bl<n
of degree n such that

Y Ical <Kz,
|Bl<n

and, for r > 0,
F DL 0 ()1 2) = Poalis(oizor < Kz oy 00
Thus,

P=) (~1)(m(m+d- 2))”*]% () gul2)Cd)do(-—x)f

IBl<n lar|<2v
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is a polynomial of degree n for which

> e d =23 [ Vi@ ) galecli)dol

|Bl<n la|<2v

d_p
S C¢m2 v”K”T(I,(Xo)
and, for r > 0, we can show, in the same way as before, that
—d 42
r™4lay , — Pllia(s(xy,r) < Ca g vll’CHTg(xO)(P(T)-

Let us show the second point. It is well known that there exists a constant C; >0
such that, for m € IN, the number of spherical harmonics of degree m is bounded by
C,m?72 (see e.g. [106]). Moreover, if f belongs to LP(RY), from Corollary‘, we also
know that ||))l mf ey < C ||f||Lp . From this, using the first point, we can claim
that if p* > 1 is such that 1/p* := then

Zal,mylimf

I,m

converges in L (R¥). As a consequence, for almost every x € IR?,

Y @)V, f (%)

I,m
is finite.
. d
Let us fix € > 0 and x € R? such that |aj m(x)] < C(Pm?_z”; we have

f k(x, x— ) f () dy
IRY\B(x,¢)

= a,m(x)Y, (- I f ()
J;Rd\B(x,e)l'Zm’ " " |X V|

X— _
=Y o) [ ksl ),
R4\ B(x,¢) |X - yl

I,m

because, y - |x —y| " f(v) is integrable (using Holder’s inequality) on IR \ B(x, ¢) and

d-2
|Zalm Wi IS Cag ) m 2 m®2m s Ky,

melN
< Cd,q”K”Tq‘Z(xO)

Now, if x is a point for which } ; , al,m(x)yl*’mf(x) is finite and ) ,,, f (x) exists for all [, m,
then, for € >0,

x p—
f Yo=Y~y f(9)dy < VT, f (x),
R4\ B(x,¢) lx -l
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which allows us to take the limit as ¢ tends to 0" to obtain

Kf(x) = ax)f (X)+ ) @)V mf (%)
I,m
The conclusion follows from the fact that almost every x € R? is such that the quan-
tity ) ;. al’m(x)yl*’mf(x) is finite, |a; ,,(x)| < C(Pm%_z” and yl*mf(x) exists for all I, m, by
countable intersection.
Let us prove the third point. For f € LP(IR?), we have, from the previous point

and Corollary
CF ey = laf + )~ arm Vil ey

I,m

< ||a||Lq(1Rd)||f||Lp(1Rd) + Z||al,m||L‘1(]Rd)||yl,mf”LP(]Rd)
I,m

< |lallza(ra)llf o (rey

420, d-2
+ CP:q;d||K||Tg(x0)||f||LP(Rd) Z m2 “Ym
melN

< Cp,q||K||T¢(x0)||f||Lp(1Rd)-

The upper bound for [|Kf]|;»(ge) can be obtained in the same way.
Let us prove the fourth point. Again, from point 2, Proposition Corollar-
ies [6.3.5(and [5.3.5] for f € Tg(xo), we have

VAU ) < Cpapplallzs o 1l ey + 2Nl o ¥n f g2 )
I,m

d-2 4d_ a2 g
+ ”f”Tlf(Xo)”IC”T(Z(xO) Z m 2m2 va 2 +f (’PHIN)
melN

< Cp,q,(j),lp(”a”T(Z(XO)”f”Tg(xO)

d-2, 49— d=2 .}
Wl Wl ) 222 T
melN

S Cp’q,q[),lp||’C||T(Z(XO)||f||TlZ(xO)'

Let us prove the last point. We keep here the notations from the first point. By
definition of the class tg)(xo), there exist ¢ > 0 and ¢(r) converging to 0 as r — 0* such

that, for |a| < 2d +E(¢) +1,z€X and r > 0 sufficiently small,

r_d/q”DaU(IC)(" Z) - Pa,z”L‘?(B(xo,r) < &‘(1’)(}')(1’).

As a consequence, for such 7,

_ 4
r~\a , = PllLa(B(xy,ry) < Ce(r)m272"(r)



152 Chapter 6. T? regularity, operators and elliptic partial differential equations
p ¢ €8 Y, 0p pucp q

and a; ,, belongs to tg)(xo). The conclusion comes from the second part of Corollary|5.3.5

and the fact that tg(xo) is closed. O

Remark 6.3.10. Let us come back to the convolution singular integral operators we

considered in Theorem For such an operator, the kernel k is independent of the

variable x and ||IC||’,},, (o) is bounded by the derivatives of k on ¥. Following the path
Y

taken in the last theorem, we can also bound this norm using now the derivatives of
0(K). Indeed, as k does not depend on x, so do o(K) and 4, ,,,. Let us consider p € (1, o)
and ¢ € B as in Theorem define

d ifb(¢) < 0

v(P):= T
() { d+ |'b( 2)_1-|]N otherwise

and

N:= sup |[D%(K)(z)|
osIZI;(cp)

Using an argument similar to the one used in Theorem we have
d
|al,m| < Cm§_2vN;

for all I,m. For all f € LP(IRd),

Kf= Zal,myl,mf
I,m

almost everywhere, Kf € LP(RY) and, if f € Tg(xo), then Kf € T(;:(xo) with
||Kf||T£(x0) < Cp,cj)N”f”T(g(xOy

6.4 Elliptic partial differential equations

Definition 6.4.1. An elliptic partial differential equation at x, € R? of order m € N is a
partial differential equation of the form

Ef=) a,Df=g

lalsm

where, for all |a| < m, a, is a s x r matrix of functions and

fi &1
| ¢=|:

f:: :
Jr gs
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are vector valued functions with f; € WhH(IRY) for all jef{l,...,r}; D* stands for the
weak derivative and

plxo) = inf detl( ) a(x0)E)( ) aalx0)€7)] >0

|a|=m lal=m
is the ellipticity constant of £ at x.

In [25], Calderén and Zygmund proved that if £ is elliptic with constant coeffi-
cients (g )|q|=m all of the same order, then we can write

E=KA",

where K is a s x r matrix of convolution singular operators, whose matrix of symbols
is, forz =0,

o(K)(2) = (=i)" ) aaz"l™"

|al=m

They also showed in [26] that, in this case, there exists a r x s matrix of convolution
singular operators whose matrix of symbols i

a(H) = [o(K)o ()] a(K)

and for which HK is the identity operator. From Remark [6.3.10, we can estimate the
dual norm of H on the spaces T(g(xo), using the ellipticity constant of £ and (|a,|)|a|=m-
Now, if

Ef = ) a,Df =g

|a|<m

is a general elliptic partial differential equation at x, € R? of order m € IN, we set

Exy = Z a,(xg).

lae|=m

By what precedes, we have Ex, = LA™, where K is a matrix of convolution singular
operators for which HK is the identity operator. Then, let us define

I (1—A)"2f if m is even
T (+A)1-A)"T f if mis odd.

Applying Hon &, f + (£ -&))f = g gives

A" =Hg+H(Ey, - E)f

2The ellipticity of the equation allows us to take the inverse matrix of o (K)*o (K).
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and, as A2 = —A, we obtain, if m is even,

h=Hg+H(Ex, —E)f +[(1-A)"?—(-A)"?]f
=Hg+H(E, —E)f +Li(D)f,

where L(D) is a differential operator of order m —2 with constant coefficients. Assum-
ing that m is odd, we get

-1 m—1

h=Hg+H(E X0~ f+[1+A)1—A) -A(-A) T |f
=Hg+H(Ey, —E)f +Lo(D)f + AL3(D)f,

where L,(D) (resp. L3(D)) is a differential operator of order m — 1 (resp. m — 3) with
constant coefficients.

In the sequel, we choose as the norm of a vector-valued function the sum of the
norm of its components.

Proposition 6.4.2. Let p; € (1,00) and p, € [1,00] be such that

1 1 1
=—+—X51,
P P1 P2

o
N
|
Il

xo € R and ¢, @, € B be such that

* 0 <b(¢) and the coefficients of £ are functions in Tgl (x0) for which x is a Lebesgue-
point,

* P,
« —d/p, < b(y) and there exists n € Z such that n < b(p) <b() <n+1and g € T£3 (x0),

* —d/p, <b(e) and there exists | € Z such that | <b(¢p) < E(go) <l+landhe T(ﬁz(xo),

* b(Y) - b(¢) <min{b(¢), 1}.
We also assume that there exists p* € [1,p3] such that f € Wg(IRd). In this case, h belongs

to T£3(x0) with

”h”TE(Xo) < ||Hg||T£3(x0) + Cpl,pz,(p,tp,qb((l + MN)||h||T£2(XO) + ”f”w,fﬁ(]Rd))f
where M is the least upper bound of the norm of the coefficients of £ in T(gz(xo) and

N = sup |D%(K)(z)|,

0<lal<v(y)

where v(1) is defined as in Remark|[6.3.10}
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Proof. Let us first consider the case where m is even; we have f = J™h and thereforeﬂ
for |a| < m,

Daf — (Dj)ajm—|a|h
As a consequence, for |a| < m, we have E(gb) < b(p)+1, Pyl < P and, following
Proposition and Theorem [6.1.2],
1D fllz2 ) < Cop T Mhllyen

= sz,wb||~7m_|a|h”T£ﬁzf|a|(xO)
< sz,w,b”h||T£2(x0)-
If |a| = m, Proposition gives
1D Fllyzs ) = DT Rl
S sz'(p”h”T(i)Jz(xO)'

Let us consider the operators

glzzaam and SZ:Z(aa(xo)—aa)D“;

ar|<m la|l=m

by Corollary we have
||H51f||T£3(x0) < Cp3,4;N||glf”TlZ3(xO)

< CppprgppNM Z ||Daf||T£2(x0)

la|<m

A

= CPl’Pz"PKP'lPNM”h”ng(xO)‘
Let us remark that the assumption E(gb) —b(p) <min{b(¢), 1} allows us to use Proposi-
tion[5.3.6]to get
||H52f”T£3(x0) < N||g2f”T$3(x0)
< CprpopyNM ) (ID* fllgz2 ) + 1D Fllipsmey)
lar|=m

< CorpapppN Ml g2y + 11 f s ray)-

Finally, by Proposition we have

ILLD)fllges e C ) 1D fllgps

|a|<m—2

< Cpops Z ”Daf”Tl‘f(xo) + 1D fll1ps (re)

|a|<m-2

< sz,p3,(p,1/1(”h”T£2(x0) + ||f||w£3(1Rd));

3(DJ)“ stands for (D; J)%...(DyJ )%
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which leads to the conclusion.
Let us now assume that m is odd; in this case, we have

T h=(i+MNT*f=(-i+ANT" h=(1-NT*f
= (-i+A)J" 1 h=f

and therefore, for |a| < m,

D*f=(i ) Ry(D;J)-iJ)DJ)*T"h.

-

=1

Given |a| < m and j € {1,...,d}, we have, by Proposition Proposition and
Theorem [6.1.2

IR (D TNDT) T Mhllez ) < Conppllllgsa ey

From Theorem|6.1.2|and Proposition|5.3.3, we know that J continuously maps Tlgz(xo)
into itself and so we also have

1T (DTN T " Hlgg2 e,y < Cpopplllgsa ey
As a consequence, the inequality
||Daf||T£2(x0) < Cp2,¢,1p||h||T£2(xo)
still holds for all |a| < m. By a similar reasoning, we can get the following inequality:

||Daf||T£2(x0) = CP2'<P||h”T£2(x0)’

for |a| = m. Therefore, the upper bounds for ||H51f||T$3(XO) and ||H82f||T$3(x0) are still

satisfied. Finally, we also have

||L2(D)f||T£3(x0) < Cpopspp(Illgez oy +1f llwgs we))

and, as A = iZ}i:l RjD]-, Proposition |6.3.4{implies

IALS(D)llgg2 < Cprp ) D llgzaiy

la|l<m-2

= sz,p3,g0,¢(||h||T£2(x0) + ”f”wfﬁ(]Rd))r
which gives the conclusion in this second case. [

Remark 6.4.3. It is still possible to obtain an inequality of this kind if we consider the
case @(r) = r4/p2,
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o If d/p, ¢ N, then Theorem still holds for ¢, since the assumption
b(¢) > —d/p is just assumed in order to guarantee the relation %7 < C¢(r) for r
sufficiently large; it can thus be relaxed in this case. Therefore, Proposition m
can also be applied with ¢ and the inequalities

”Daf”sz(xo) < CPMPAP”h”T(,’?(xo) Yla| <m
and
||Daf||T£2(xo) < CPZKP”h”T(f:Z(xO) Yla|=m
are still valid in this case. Let us also remark that we have
Wil sy < 2Wllon ety < Conplf s e
 If d/p, €e N with p, <d, let us consider |a| < m; we have
Daf e W1p2(IRd) N pr-(IRd)’

with 1/p*:=

— plz - %, by Sobolev’s embedding. Therefore, for r > 0,

_ _ d(L_-L1
2D f s (85 < Capaprt™ P21 P NDY Fll L (3o

—d/p*
< Cd,pz,p*”Dafllwlp*(le)r P
p .
and D*f € T}, .(xo), with
D% fllz72 () < Capap IF g2 me-

Moreover, as b(1) < —p% +1=-d/p*, we get

1D Fllg22 10y < Canprsl g ey
Of course, for |a| = m, we have

||Daf||T£2(xO) < 2D fllzez ey < 20 f llywr2 ra)

and we can now conclude that

||h||T£3(x0)

<IHgllres (s + Cprpopan (1 MNIS gz ey + 1 s e

» If d/p, € N, let us first prove the following lemma.
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Lemma 6.44. If d > 1, for d < q < oo, we have the continuous embedding
WHR?) < LI(RY).
2
Proof. Let g be a function of Wld(IRd); let us first remark that g € defl(IRd). Indeed,
g% e LI(RY), with
L R e T
and, for || = 1, by Holder’s inequality,
ID*g%I1 ga) = dg* ™ D gllp1 (ra)
<dliglfz gy D &l (re)
< allgll g gy
Therefore, g¢ belongs to Wll(IRd) with ||g? ”Wll(]Rd C||g||d le) and, as d > 1,
Sobolev’s embedding gives Wll(IRd) < LT (RY) and finally g € Ld—l (RY), with

181, 42 oy < Ve ey

(d+k)d
Let us prove by induction that any g € Wld(]Rd) belongs to L @1 (RY) with

<
||g||Ld(dd_+1k) o= Ck”g”wld(le),

for all k € IN. Let us suppose that this property holds for some k € IN and
let (@j)jen be a sequence of functions in D(RY) such that @;j converges to g in
Wld(le). In particular, by induction, ¢; converges to g in L(d+k)ddf1(le). Let us
recall that for ¢ € D(IRY), we have (see e.g. Lemma 8.7. in [121]))

which holds if and only if

d+k+1
d+k+1 1/d d+
_— D d(Rd .
lll L@ ey |1 1| IDillpagra)) ™ Ml L) ddl( 2

This proves that (¢;);jen is a Cauchy sequence in L(d+k+1)ddf1(]Rd). As a conse-

quence, ¢ belongs to L(d+k+1)ddfl(IRd), with
d+k+1

1
||g”L(d+k+l)%(]Rd) < Ci( 5 )T ||g||W1d(IRd)'
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Let us finish the ongoing remark. If |a| < m, then D“f belongs to WH(RY), so as
-1 < b(¢) < 0, we can choose d < g < oo such that b(y) < —d/q. By the previous
lemma, D¢ f belongs to Lq(IRd) and

||Daf||m(]Rd) < Cq||Daf||wld(]Rd)~
It follows that, for r > 0,

—1rd(

U=

1
r D fllpa ey, < Cang” q)“Daf”L‘?(B(xo,r))
< Cd,qr_d/q”Daf”wld(]Rd)-

Hence, D“ f belongs to T_pd/q(xo), with
1D il ) < CaallD® Fllxy
Since E(gb) < —d/q, we can write
1D Fllrgay < ConalDF s, (e < CatqalID gy

The previous reasoning for the case |a| = m is still valid and we get again

||h||T£3(x0)

< ||Hg||T$3(x0) + Cpl,p2,<p,1p,¢((1 + MN)”f”w}le(Hgd) + ”f”wff(]Rd))'

Definition 6.4.5. Let, p € (1,0), ¢, ¢ € B be such that 0 < b(¢), —d/p < b(¢) and such
that there exists n € Z such that n <b(@) < b(¢) <n+1; let us define k, as follows:

* if b(¢p) = b(g),

byt ) = min{k € N £{blg) + 5) <min1, b)),

e if n<b(p)<blp)<n+l,

ky(), @) :=ky(¢, - 29)) + minfk e N : w < min{1,b(¢)}}.

Theorem 6.4.6. Let p € (1,00), g € (1,00], X € R? and ¢, @ € B be such that —d/p < b(¢),
0 < b(¢p) and such that there exists n € Z such that n < b(¢) < E(qo) <n+1. Let £f = g be
an elliptic differential equation of order m at x( such that the coefficients of £ are functions
in T(Z(xo)for which x is a Lebesgue-point. Let us suppose that

e g€ T(ijl(xo) with 1/py = ll7+ %,



160 Chapter 6. T£ regularity, operators and elliptic partial differential equations

* ¢ <@ and b(¢) <b(¢) or bl) - b(p) < min{1, b(¢)},

1
> —-<1,
p q p
s feWh(RY) and p* :=inf(s >1: f € W5,(RY)} <p".
Then there exists a constant Cp g, such that, for all la| < m, D®f belongs to the space

T(Zm—lal (xg) and

IDfllzy (i) S Corpgp N+ MNYF OO gl

+ kp(qb,(p)(l +MN)k”(¢'(p)(||f||wﬁ(]Rd) + ”f”W,’Z’(IRd)))’

for all " > 1 such that

* 1/p">21/9"> l%_ m:i|0(| if1/p’ > m:i|a|,

° p/sqlsoo Zfl/p,< m—d|0(|,

m—|a|
d

*p'<q'<eo ifl/p'=

’

where M is the least upper bound of the norm of the coefficients of £ in T(Z(xo) and

N = sup |D%(K)(z)].
OSIZ};W)

Proof. Let us first suppose that b(¢) = b(¢) and set k = k, (¢, ¢). Let us choose 0 < e <1
such that

+ 0 < be) + ) < b + ) < min(Lb(g),
» 4 BE(b(@)+ Sy e Zforall je(l,... . k-1).

We can then define, for j €{0,..., k}, the function 1; by

rd/p ifj=0
Pi(r) =2 AP (p(r)rP) T if1<j<k
Q if j =k.

For 0 <j <k, we have E(gbj) <b(¢) and so ¢ <1p;. Moreover, for 1 <j <k,

d j+e¢

Q(¢j)=z(¢j)=—p+ - (Q((p)+§)ezz.
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We also have

(1+¢)

Bn)~biyn) = b)) < minf1, ()

and, for 1 <j <k,

— d j+1+¢ - d d j+e¢ d
b(j1) - b(w;) = —= + @)+ !

= L(b(g)+ 5) < min(Lb()),
as well as
Blpu) ~blpe1) = S bl + 5) <mind1, i)

Given j €{0,...,k}, let us also define p; € (1,00) by
1

Pj

+

= .
= | =

Since we have h € LP(R%), h € T:b)g(xO) and ¢ < ¢, we can write, using the previous
remark,

”h”Tl’;ll (x0) < ||Hg”T$11 (x0) + Cl(l +MN)(||f||W,fL(1Rd) + ”f”Wf,I (]Rd))-

Now, since f belongs to W' and the coefficients of £ are in LI(IR%), g belongs to LP2(R%)
and, from Proposition |5.3.7} also to lezz(xo). Furthermore, by Proposition [6.4.2, we

have
g2 ey < Il gy + Col1+ M)Wl )+ lhgo ey
By iterating the reasoning, we find, for 1 <j <k,
Wil < WP+ L+ MNY L2t + 5 )
4’] 4’] 1/"]—1
Now, for 1 <j <k, we have
< Cpl,pj,zijllglng]} (xo) T N|gllze (RY)
< Cpl,p’,¢N||g||T£1 (x0)
and

g2 gy < WFHlyo gy + 1F ey
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this allows us to claim the existence of a constant C, , 4 , > 0 such that

k||,
Ml

<C N(1+MN)Higligan o+ k(U + MNP IF Iy oy + 1 g we)):

p,p’,q‘mp(

That being done, let us establish the same inequality under the assumption
n<b(e)<b(p)<n+1.If b(p) <b(P), then we set ki := kp(cj),-g((f’)) and

b(p)-b(e)

ky :=min{k € N : p

<min{1, b(¢)}}.

We also define, for 0 < j < k,,

and ¥y, := @. For 0 < j <k, we have

b(i)) = blg) + kJZ(E(fp) b(p)) <b(e) < b(¢),

and so ¢ < ). Also,

(1) ~b(t) = £-(5(p) = blg)) < min(1, (@)

From the first part of the proof, we can write, if p, is defined by 1/pg := ];—1 + 11_7’
Allzr0(xy) < Cpopoe

+ (k)1 + MNP oy + 1wz ey)-

k-1
(N(l +MN) ! ”g”Tf;l(xO)

We can proceed as we did in the first part to get the desired inequality.

Let us now consider the case where E((p) > b(¢)and E((p)—h(go) <min{1,b(¢)}. Let
us choose a such that max{-d/p,n} < a < b(¢) and E((p) —a < b(¢); in particular, « is
not an integer. From the first part of the proof, we know that there exists a constant

Cpp¢,p > 0 such that

Il ) < Coprapp(N(1 + MN)llgllra )

# (= 1)1+ MNY L oy + 1)

with 1/p” := &1 + 1 Now, Proposition [6.4.2|implies

1
p’

Al < Comapp N lgllyg o+ (1 MNXBL 41 )

<C (N(1 +MN)k_1||g||T£1(XO)

PP
KL+ MN)UF I g + 1)
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which gives the desired inequality.
Let us now consider |a| < m and g’ > 1 such as in the assumption. If m is even

then
D flly = 1T NDT) Ly

(pm*|a|( 0) <pm,|a|(x0)

< CollD) il

<Cyllily

by Theorem and Proposition If m is odd, we get

QU

1D fllgy (i = I ;Rj(D]J) —i7)NDI) bl
]:
d
< Cylli )_Ri(D;T) = i)DI ) Hll

=1

~

by Theorem Proposition and Proposition From this, the inequality

obtained in the first part of the proof allows us to conclude the desired membership

and inequality. H






Continuously differentiable functions
on compact sets

An intermediate between uniform regularity, as we studied in Chapter[2]and pointwise
regularity, Chapters [3|to [6] is to consider functions defined on compact sets. There,
using the structure of the compact, one can define a notion of differentiability.

In most analysis textbooks differentiability is only treated for functions on open
domains and, if needed, e.g., for the divergence theorem, an ad hoc generalization for
functions on compact sets is given. We propose instead to define differentiability on
arbitrary sets as the usual affine-linear approximability — the price one has to pay is
then the definite article: instead of the derivative there can be many. We will only
consider compact domains in order to have a natural norm on our space. The results
are easily extended to o-compact (and, in particular, closed) sets.

An R"-valued function f on a compact set K C R? is said to belong C!(K,R") if
there exists a continuous function df on K with values in linear maps from R? to IR"
such that, for all x € K,

L F) - flx)-df (-

y—>x —-X
yeK |y |

X _o, (7.1)

where |-| is the Euclidean norm. For n = 1 we often identify R? with its dual and write
(-,-) for the evaluation which is then the scalar product. Questions about C!(K,IR")
easily reduce to the case C!(K) = C!(K, R).

Of course, equality means that df is a continuous (Fréchet) derivative of f
on K. As in the case of open domains, every f € C!(K) is continuous and we have the
chain rule: for all (continuous) derivatives df of f on K and dg of g on f(K) the map
x+—dg(f(x))odf(x)is a (continuous) derivative of go f on K.

In general, a derivative need not be unique. For this reason, a good tool to study
C!(K) is the jet space

={(f,df):df is a continuous derivative of f on K}

endowed with the norm

I(F>d Py = Nf NIk + 1 f 1l
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where |- || is the uniform norm on K and |d f (x)| = sup{|df (x)(v)| : |[v| < 1}. For the pro-
jection 1t(f,df) = f we have C!(K) = nt(J'(K)), and we equip C!(K) with the quotient
norm, i.e.

Ifllcix) = Ifllx +inf{l|dfllx : df is a continuous derivative of f on K}.

It seems that the space C!(K) did not get much attention in the literature. This
is in sharp contrast to the “restriction space” C(R?|K) = {f|x : f € C'(R?)}. Obviously,
the inclusion C!(R¢|K) C C!(K) holds but it is well known that, in general, it is strict.
Simple examples are domains with inward directed cusps like

K ={(x,v) €[-1,1]*: |y| = e V/* for x > 0).

The function f(x,y) = e”/(®¥) for x,p > 0 and f(x,) = 0 elsewhere is in C!(K) but it is
not the restriction of a C!-function on R? because it is not Lipschitz continuous near
the origin.

In a famous paper from 1934 [128]], Whitney proved Theorem which, in
this context, states that C!(R?|K) = 7(&'(K)) where &'(K) is the space of jets (f,df)
for which the limit is uniform in x € K. Moreover, &!(K) endowed with the norm

—f(x
£, d Pl ) = IF df ey + SUP{% xyeKy= x}
is a Banach space. Thus, C!(RYK) equipped with the quotient norm

|l (rajk) inherited from || -[[g1 (k) is also a Banach space.

Since their introduction, Whitney jets (also of higher orders) have been widely
studied, in particular in the context of extension operators [46} 51}, (52} 53]]. General-
izations of them have been defined in various contexts such as Baire functions [85]],
holomorphic functions [18], Sobolev spaces [131], 132], so-called C"™“(IR%) spaces [45]]
or (generalized) Holder spaces as we did in Chapter

In this chapter, we prove that &!(K) is always a dense subset of J!(K). The
density of C!(R?|K) in C!(K) is then an immediate consequence. Together with a char-
acterization of the completeness of (C'(K),]| - llc1(x)), it leads to a simple geometric
criterion for the equality C!(K) = C!(R?K) as Banach spaces. In the one-dimensional
case, we also give a characterization of the mere algebraic equality.

If the compact set K is topologically regular, i.e. the closure of its interior, another
common way to define differentiability is the space

cl

int

(K)={feC(K): flg € C!(K) and df extends continuously to K},

see for instance [49, [130]. For f € C! (K) we will denote again by df the unique
continuous extension to K of the derivative.

In this topologically regular situation, the derivative of a continuously differen-
tiable function on K is uniquely determined by the function, which means that the



7.1. Path integrals 167

projection 7 is injective on J!(K) and therefore C!(K) and J'(K) as well as C'(R?|K)
and &!(K), respectively, can be identified.

Equipped with the norm ||f||x +||d f||k, it is clear that Cilnt(K) is always a Banach
space that contains C!(K). Despite this nice aspect we will see by an example of Sauter
[114] that Cilnt(K) has a dramatic drawback: compositions of Cilnt(K )-functions need
not be differentiable.

We will present some results about equalities between Cilnt(K), C(RYK) and
C!(K) which are related the so-called “Whitney conjecture” ([132}129]).

Results in this chapter were found during a research stay in Trier Universitat with

Leonhard Frerick and Jochen Wengenroth and were published in [54].
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7.1 Path integrals

A function f € C!(K) need not be Lipschitz continuous because segments with end-
points in K, to which one would like to apply the mean value theorem, need not be
contained in K. Instead of segments one then has to consider rectifiable paths in K, i.e.
continuous functions y : [a,b] — K such that the length

Liy)=supi ) Iy(t)=y(tip)lia=to<-<t,=b
j=1

is finite. The function £(f) = L(y|(4,) is then continuous: Given ¢ > 0 and a partition
such that the length of the corresponding polygon is bigger than L(y)—¢ every interval
[r,s] lying between two consecutive points of the partition satisfies

O(s)=L(r) = L(yp,s) <y (s) = y(r)+e

For the minimal length of the subintervals of the partition one then easily gets the
required continuity estimate.

Proposition 7.1.1 (Mean value inequality). Let f € CY(K) and x,y € K. Ifdf is a deriva-
tive of f on K and if x and y are joined by a rectifiable path y : [a,b] — K, then

[f (@)= f ()| < L(y)suplldf (z)| : z € y ([a, b])}. (7.2)
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Proof. We essentially repeat Hormander’s proof [63, Theorem 1.1.1]. For each
c>supfldf(z)|:zey([ab])} theset T ={t €[a,b]:|f(y(t)— f(x)| < cl(t)} is non-empty
and closed because of the continuity of f oy and ¢, hence it has a largest element
t € [a,b]. If t is different from b, the differentiability of f at z= y(t) gives a neighbour-
hood U of z such that

[f(2) = f(w) <f(2) = f(w) =df (2)(z=w)[ +|df(2)(z ~w)| < c|z - w]
for all w € U. By the continuity of  we find s > t with y(s) € U so that

f ()= fE<If(p(s)) = f(y () + cl(t) < cly(s) =y (t)] + cl(t) < cl(s),
contradicting the maximality of t. O

The mean value inequality does not use the continuity of a derivative and has
the usual consequences. For example, if df = 0 is a derivative of f and K is rectifiably
pathwise connected (a certainly self-explaining notion) then f is constant.

Our next aim is to show that a continuous derivative integrates back to the func-
tion along rectifiable paths. We first recall the relevant notions. If F : K — R? is
continuous and y is a rectifiable path in K we define the path integral fy F as the limit

of Riemann-Stieltjes sums
n
Y @) y(t)=v(ti)
j=1

where a =ty <... < t, = b are partitions with max{t; - ;1 : 1 <j < n} - 0 and
ti1 < 1; < t;. The existence of the limit is seen from an appropriate Cauchy condi-
tion (or by using the better known one-dimensional case where rectifiable paths are
usually called functions of bounded variation). If y is even absolutely continuous, i.e.
there is a Lebesgue integrable y : [a,b] — R? with ¥(8) — y(a) = L/j y(t)dt for all @ < B,
one gets from the uniform continuity of F o y the familiar representation

b
F= [ Eoo)
| £ ] oy

If y is even continuously differentiable and F = df for a function f € C!(K), the inte-
grand in the last formula is the derivative of f oy (by the chain rule) and the fundamen-
tal theorem of calculus gives fy df = f(y(b))— f(y(a)). Since continuous differentiabil-
ity of ¥ is a not a realistic assumption in our considerations (interesting phenomena
typically occur for quite rough compact sets K), we need a more general version.

Theorem 7.1.2 (Fundamental theorem of calculus). For each f € C'(K) with a continu-
ous derivative d f and each rectifiable path y : [a,b] — K we have

jdfszw»—ﬂym» (7.3)
Y
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Proof. Given a partitiona =1t;<...<t,=band a fixed j € {1,...,n} we set z = y(¢;) and
apply the mean value inequality to the function

8§(x) = f(x) = f(z) - (df(2),x-2)

on y([tj_y,t;]). Since dg(x) = df(x)—df(z) is a derivative of g, we obtain

[F () = F(ti-0)) = f (), y(E) = v (tjo1)]
= lg(y(ti-1)) —g(2)|
< Ll o) supfld f (7(£) = df (y (1)l £ € [tjo1, ]}

The uniform continuity of df oy yields that this supremum is small whenever the
partition is fine enough. The theorem then follows by writing f(y(b)) — f(v(a)) as a
telescoping sum and inserting these estimates together with the obvious additivity of
the length. O]

Remark 7.1.3. Below, we will need a slightly more general version of the fundamental
theorem: The formula Iy df = f oy|’ holds if f and df are continuous on K and d f(x)
is a derivative of f at x for all but finitely many x € y([a, b]).

Indeed, if only the endpoints y(a) and y(b) are exceptional, this follows from
a simple limiting argument, the general case is then obtained by decomposing the
integral Iy df into a sum.

In the proof of Proposition we will have to find a rectifiable path by using
the Arzela-Ascoli theorem. It is then essential to have a “tame” parametrization which
we explain briefly; more details can be found, e.g., in [56]. Given a rectifiable path
y : [a,b] — R with length L = L(y) and length function #(t) = L(¥l[a,s7), the function
a(s) = inf{t € [a,b] : €(t) > s} is again increasing but not necessarily continuous, it jumps
over the intervals where ¢ is constant. Nevertheless, 7 =y oa : [0,L] — R? is a contin-
uous path with ¥([0,L]) = v([a, b]) such that all path integrals along ¥ and ¥ coincide
and such that L(yjo,)) =  for all t € [0,L]; in particular, 7 is Lipschitz with constant 1.
This path 7 is called the parametrization of y by arclength.

If {y; : 1 € I} is a family of curves with equal length, it then follows that
{y; : i € I} is equicontinuous. Moreover, Rademacher’s theorem implies that y is al-
most everywhere differentiable and absolutely continuous.

We have seen that the behaviour of functions f € C!(K) concerning compositions
and the fundamental theorem together with its consequences is essentially as in the

case of open domains. We will now present Sauter’s example [114] showing that is not
the case for f € CL (K).

int
Let C be the ternary Cantor set and U its complement in (0,1). The open set () is
constructed from U x (0,1) by removing disjoint closed balls (B;);cn that accumulate
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precisely at C x [0,1] and such that the sum of the diameters is less than 1/4. This
implies that there exist horizontal lines in K = Q that do not intersect any of the balls.

If f is the Cantor function on [0, 1], we consider the function F defined on K by
F(x,y) = f(x). We have F € Cilnt(K) because it is continuous and dF = 0 on Q = K, as
f is locally constant on U. If now y : [0,1] — K is the obvious left-to-right arclength
parametrization of one of the horizontal lines crossing K, we have

JdF:O
14

while

This proves F ¢ C!(K). This example shows that the fundamental theorem does not
hold for C} and also reveals the catastrophe that compositions (namely F o y) of

1 . 1
Cint—funcnons need not be C;_,.

7.2 Completeness

We study here the completeness of (C!(K),|| - llc1(x)) and (THEK), |l - l.71(k))- We show
that, if K has infinitely many connected components, then these spaces are not com-
plete. In contrast, if K has finitely many connected components, the completeness of
both spaces is characterized by a pointwise geometric condition whose uniform ver-
sion goes back to Whitney in [129]]. It is interesting to note that this characterization is
conjectured in [34] in the context of complex differentiability.

First we consider the case of compact sets with infinitely many connected com-
ponents. This is similar to [14, Theorem 2.3].

Proposition 7.2.1. If K is a compact set with infinitely many connected components, then
(CHK), |- llc1(x)) is incomplete.

Proof. We can partition Sy = K into two non-empty, disjoint sets S; and K;, both closed
and open subsets of K, such that S; has infinitely many connected components. Iterat-
ing this procedure we obtain a sequence (K;);en of pairwise disjoint non-empty closed
and open subsets of K.

We fix x; € K; and, by compactness and passing to a subsequence, we can assume
that x; converges in K. The limit x, cannot belong to any K; because they are open and
pairwise disjoint.

We consider the functions f, : K — R defined by f,(x) = [x; — x¢| for x € K; with
1 <j<nand f,(x) = 0, otherwise. These functions are locally constant and hence
fu € CH(K). It is easy to check that (f,),en is a Cauchy sequence in (C!(K),|| - llci(x))-
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The only possible limit is the function f(x) = [x; — x| for all x € K; and j € N and
f(x) =0 otherwise. But, for all j € IN, we have

)= foxoll _
|Xj -xl

and since d f,, = 0 this shows that f cannot be the limit in C!(K). O

The characterization of the completeness of C!(K) will rely on the following no-
tion.

Definition 7.2.2. A set K C R? is called Whitney regular if there exists C > 0 such that
any two points x,y € K can be joined by a rectifiable path in K of length bounded by
Clx — y|; sometimes this condition is called quasiconvexity, e.g., in the book [19].

We say that K is pointwise Whitney regular if, for every x € K, there are a neigh-
bourhood V, of x and C, > 0 such that any y € V, is joined to x by a rectifiable path in
K of length bounded by C,|x —y|.

The inward cusp mentioned in the introduction distinguishes these two notions.
If K is geodesically bounded (i.e. any two points can be joined by a curve of length
bounded by a fixed constant) one can take V, = K in the definition so that the crucial
difference is then the non-uniformity of the constants C,.

Proposition 7.2.3. If K is a pointwise Whitney regular compact set, then the space
(jl(K),” . ||j1(1<)) is complete.

Proof. For a Cauchy sequence ((f,df;))jen in JY(K) we get, from the completeness of
C(K), uniform limits f and df and we only have to show that df is a derivative of f.

Given x € K and a path y from x to y of length L(y) < C,|x — y|, the formula in
the fundamental theorem of calculus immediately extends from f; and df; to the limits
and thus gives

F@)— Fx)—(df (x),y—x) = f (@f - df(x))
V4

The continuity of df and the bound on L(y) then easily imply the desired differentia-
bility. O

To obtain the converse of this simple result we first apply the uniform bounded-
ness principle to show that the completeness of (C!(K),||-[lc1(k)) is equivalent to some
bounds for the difference quotient of a function f € C!(K). This is the same as in the
case of complex differentiability 62} [14].

Proposition 7.2.4. The following assertions are equivalent:
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~

. The space (J(K),||- l.71(x)) is @ Banach space;

N

. The space (C'(K),||- llc1(x)) is @ Banach space;

V)

. For every x € K, there exists C, > 0 such that for all f € C1(K) and y € K \ {x}

f(9) = f(x)]

. 7.4

Proof. The fact that assertion 1 implies assertion 2 is a standard fact from Banach space
theory. Let us show that the second assertion implies the third one. For fixed x € K
and each y € K \ {x} we define a linear and continuous functional on C!(K) by

[0 -f)

P =Ty

For fixed f € C!(K), we get a bound for SUpyck(x) [Py (f) because of the differentiability
at x.
The Banach-Steinhaus theorem thus gives

Cy = sup{[@y ()l : lIfllcrxy < 1,y € K\ {x}} < oo,

Now we assume that inequality 1) holds and show that (J!(K),]| - l.71(x)) is
complete. For a Cauchy sequence ((f,df;))jen in J(K) we have uniform limits f and
df. In particular, for all € > 0, x € K, and p < g big enough, we have

”fp _fq”Cl(K) < ”(fp'dfp) - (fq’dfq)”jl(K) <

e €
iC. and ||dfp—df||K<Z.
Now, there exists 6 > 0 such that, for all y € B(x,0) \ {x},

_ @)~ fp(x) —{dfy(x),y — ) LE

B .
ly — x| 4

Finally, for all such y, if q is large enough,

A [(f (@) = f3(¥) = (f (x) = fo ()l £
ly — x| 4

and
|f () — f(x) = (df(x),y —x)|
lx -l
.\ I(fo(¥) = f3(®) = (fp(x) = fy(x))]
|y — x|

<A

+Bldf,(x)-df (x)
<e§g,

which shows that df is a derivative of f on K. O
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Next we show that, for connected sets K, inequality (7.4) implies pointwise reg-
ularity. This is a simple adaptation of a result in [63, Theorem 2.3.9]; we repeat the
proof for the sake of completeness.

Proposition 7.2.5. Let K be a compact connected set. If, for any x € K, there exists C, > 0
such that for all f € CY(K) and y € K \ {x} we have

f(9) - f(x)]

<C , 7.5
then K is pointwise Whitney regular.

Proof. For any ¢ >0,

K,={xeR%: inf [x —y[ < ¢}
yeK

is an open connected neighbourhood of K. Let us fix x € K and define the function d,
on K,, by

d.(y) =inf{L(y): y is a rectifiable path from x to y in K,.}.

Then, for fixed y, € K, we set u.(y) = min{d.(y),d.(vo)}. If v and y’ are close enough in
K,., we have

|u£(y) - ”s(y,)l < |y _y’|' (7-6)

as any rectifiable path from x to y can be prolonged by the segment between y and y’
to a rectifiable path from x to y’.

If ¢ is a positive smooth function with support in B(0, ¢) and integral 1, the con-
volution u,.*¢, defined in K, is a smooth function for which |d(u.*¢})| < 1 on K, because

of inequality (7.6). Then, from (7.5)), we have
(e * P)(x) — (e * P) (o) < Cy(de(v0) + 1)lx = vol

which gives us, passing to the limit supp(¢) — {0},

d:(y0) < Cx(de (o) + 1)lx = ol.

For y, € B(x,z%x) N K, this implies d.(yg) < 1 and thus d.(yy) < 2C,|x — yo|- Hence,
there exists a rectifiable path from x to y, in K,, of length bounded by 2C,|x — yo| + €.
Using the parametrization by arclength gives an equicontinuous family of paths and
the conclusion follows from the Arzel4d-Ascoli Theorem O

Remark 7.2.6. If the constant C, in the previous proposition is uniform with respect
to x € K, then inequality (7.6) is equivalent to the Whitney regularity of K, as stated in
Hormander’s book [63]].
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Collecting all results of this section, we have the following characterization of the
completeness of (C!(K),|| - llcr(x))-

Theorem 7.2.7. (C*(K), ||-llc1(k)) is complete if and only if K has finitely many components
which are pointwise Whitney regular.

Remark 7.2.8. In this pointwise Whitney regular situation, the jet space J!(K) can
be described as a space of continuous irrotational vector fields F on K, i.e. vector
fields F for which fyP = 0 for all closed rectifiable paths y in K. More precisely, if

(f,df) € J'(K), the fundamental theorem of calculus implies that df is circulation

free and if F is circulation free and continuous we can define, for some fixed x, € K,
forall x e K

where y is a path in K from x to x. This definition makes sense as F is circulation free
and F is a continuous derivative of f on K, by a similar argument as in the proof of

Proposition[7.2.3]

7.3 Density of restrictions

In this section we will show that the space C!(IR?|K) of restrictions of continuously
differentiable functions on R? to K is always dense in C!(K). As D(IR), the space of
C®-functions with compact support, is dense in C!(IR%); this is the same as the density
of test functions restricted to K in C!(K) and again, it is advantageous to consider this
question on the level of jets, that is, we will show that

i:D(RY) — JTHK), ¢ — (@l dplk)

has dense range.

For general K, the standard approximation procedures like convolution with
smooth bump functions do not apply easily, and we will use the Hahn-Banach the-
orem instead, see Theorem and the remark below.

A continuous linear functional ® on J'(K) € C(K)?*! is, by the Hahn-Banach
and Riesz representation theorem, given by signed measures y, yuy,---, 4z on K via

d
of.af)= [ fansy [ dfa,
j=1

where d; f are the components of df. If @ vanishes on the image of i we have, for all
¢ € D(RY),

d
j=1
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For the distributional derivatives of the measures this means that

d
j=1

where T = (yy,..., 4g) is a vector field of measures or a charge.

Fortunately, such charges were thoroughly investigated by Smirnov in [117].
Roughly speaking, he proved a kind of Choquet representation of charges in terms
of very simple ones induced by Lipschitz paths in K. If y : [4,b] — K is Lipschitz with
a.e. derivative y = (y1,...,y4) and F = (Fy,...,F;) is a continuous vector field, we have,
as noted in section

b d b
[ r= [ Ewnpma=) [ Epuoar
4 a j=1-4

In order to see this as the action (T,F) = IP dp; of a charge T = (puy,..., pq), we
=i

denote by p; the image (or push-forward) under y of the measure with density y; on

[a, ] so that JF t)yi(t)dt = JF dp;. For the charge T, = (py,..., pg) we then have

The fundamental theorem of calculus for ¢ € D(IRY) with derivative d ¢ then gives

div(T,)(¢) = —j 4 = 9(7(@) — Py () = (50— 5, ) (@),
Y

that is

div(Ty) = u(y) = Oe(y)

where b(y) and e(y) denote the beginning and the end of y (the change of signs comes
from the minus sign in the definition of distributional derivatives).

To formulate Smirnov’s results we write T for the set of all Lipschitz paths in R,
Moreover, for a charge T we denote by

IT||(E) = sup Z|T j)jeN is a partition of E
jEN

the corresponding variation measure.
Given a set S of charges, endowed with the Borel o-algebra with respect to the
weak topology induced by the evaluation

d

1y pa) (@1, @) = Zf%dﬂj, @; € D(RY),
j=1
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a charge T is said to decompose into elements of S if there is a finite, positive measure
v on S such that

T- LR dv(R) and |IT]| = Landv(R),

where these integrals are meant in the weak sense, i.e. (T, @) = fS(R,(p>dv(R) for all
¢ € (D(RY))?. By density and the continuity of charges with respect to the uniform
norm, this extends to all ¢ € (C.(IR%))?, where C,(IR%) is the space of continuous func-
tions with compact support.

We can now state a consequence of Smirnov’s results (theorem C of [117] is some-
what more precise than we need).

Theorem 7.3.1. Every charge T with compact support such that div(T) is a signed measure
can be decomposed into elements of I, i.e. there is a positive finite measure v on I such that

T [ vy and = | n v

The decomposition of the corresponding variation measures has the important
consequence that the supports of v-almost all T, are contained in the support of T
(where the supports are meant as the supports of signed measures which coincide with
the supports of the corresponding distributions). After removing a set of v-measure 0
we can thus assume that all paths involved in the decomposition of T have values in
the support of T. Using the definition of the distributional derivative we also obtain a
decomposition of the divergences:

le(T) = J;le(Ty)dV(y) = J;éb(y) - 56(7)611/()/).

We are now prepared to state and prove the main result of this section.
Theorem 7.3.2. For each compact set K, the space C'(R%|K) is dense in C'(K).

Proof. We will show that i : Z(R?) — JY(K) : ¢ > (@|g,dp|x) has dense range, the
conclusion then follows by projecting onto the first components.

Let us consider ® € (C(K)?*!)’" such that ® vanishes on the range of i. By the
Hahn-Banach theorem it is enough to show that ®| ;1) = 0.

As explained at the beginning of this section we get signed measures y and p; on
K with

O fuee S = | S | fidves [ fadp

for all (f, fi,---, fs) € C(K)**!, and T = (M1, , pq) satisfies div(T) = yu. We can thus
apply Theorem and get a measure v and S C I' such that all paths in S have
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values in K and

T = LTde(V)-

For (f,df) = (f,d\f,...,dif) € T (K) we extend all components to C.(R%) by Tietze
extension theorem and obtain from the fundamental theorem of calculus for C!(K)-
functions

fdlfdm bt fddfdﬂd —(T,df)

- f (T, df)dv(y)
S

- Léemm ~Sy)()dV(y)
- _div(T)(f)

—ffd%

which means that ®| ;1) = 0. O

The use of the Hahn-Banach theorem has the disadvantage of not giving any
concrete approximations. Let us therefore very briefly mention two situations where
approximations can be described explicitly.

A natural idea is to glue the local approximation given by the definition of differ-
entiability together with a partition of unity. If K is Whitney regular, there exists C > 0
such that any two points x,y € K can be joined by a rectifiable path in K of length at
most C|x —y|. For all 6 >0, let 7 = (¢;, C;);enbe a grid partition of unity of R?, such
as considered in Theorem 1.4.6 of [63], made of cubes (C;) e of diameter 6. We know
there exist C(1),C(2) > 0, independent of 9, such that

c
sup |dkpj(x)] < — (7.7)
xeR4
ke(l,...d)
jelN

and such that at most C(?) cubes C; have no empty intersection. We set C* = cchcq.
Let f € CY(K), df be a continuous derivative of f on K and ¢ > 0, there exists
A >0 such that

&
If(y)—f(x)|<1 Vx,yeK : |x—y|< A,
|d fi(v) — d fi(x |<— Vx,yeK : |x—y|<A kell,...,d},
ldf(y)—df(x |<— Vx,yeK : |x—y|<CA
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Then, we take 6 < min(m), A); if C]ﬂK # (), we choose X; in this intersection,
otherwise we remove C; from 9%. The function

fa,= ) @i(f(x))+(df(xj) - x}))
j

belongs to C®(IRY) and, for all k € {1,...,d), we have
Iefor, = ) hpi(f(x) +(df (x)) =)+ ) @ificlx)).
j j

Then, f%lK € CI(IRd|K) and it is easy to check, with Theorem|7.1.2, that

1fam i = fllcrx) < e

The next family of compact sets we consider is defined as follows in [47].

Definition 7.3.3. We say that S C R? is radially self-absorbing if for each r > 1, we have

5 C(rS), (7.8)

where 1S :={rx : x € S}. A set S is locally radially self-absorbing if any point x € S admits
a radially self-absorbing neighbourhood in E.

It is easy to see that a compact set is radially self-absorbing if and only if 0 € K and
K is star-shaped from 0 in such a way that for all x € K, the segment [0, x) is included

in K. If K is locally radially self—absorbin we can cover it by finitely many radially
self-absorbing sets (S;)1<j<j, star-shaped from x;. Then, if (¢;, V})1<j< is a partition of
unity associated to this covering and if f € Cl (K), then, for all n € IN, from (7.8)),

n+1

J
fi= Y gif (%)
=1

is defined and differentiable on an open neighbourhood of K, so f,x € CY(RYIK). If
X € Vj, we have

diam(V;)

| 1
n+1

and the convergence of (fn|K)n€1N to f in C!(K) is then straightforward.

X)) — <
(n-+xj) - x| < n+1

Finally, the following strategy can be applied for compact sets where finitely
many points forbid to use one of the two preceding cases. Namely, if x;,---,x; € K
are such that, for any 6 small enough,

In particular, K is topologically regular.
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is a compact set for which an explicit approximation of J'(K®) jets by & (K®) jets
is known, then we build an explicit approximation for C!(K) functions by C!'(R?|K)
functions. Indeed, we know that for all j € {1,...,J} and 6 > 0, one can find (p}é) smooth

function, supported on B(x;,0) such that 0 < (p;-(s) <1land (pﬁé) =1 on B(x;, %). Moreover,

if (péé) =1- Z]_l (p(é), supp((p(é)) K@) for all &’ < %. Moreover, one can find Ct) >0
such that 1nequa11ty (7.7) holds for all j € {0,...,]}.
Let f € C}(K), df be a continuous derlvatwe of f and € > 0; if 0 > 0 is small

enough, 6 < W, the balls (B(x]-,é))lgjg are disjoint and for all j € {1,...,]} and
X € B(X]', 6) N

I () = F(x)) = df (x;)(x = x))| < 4%1|x—xj|,
F)=Fel< g
14 fi(x) = d filx;) ﬁ Vkell,...d).

Then, if &’ < 2, let us take (g;dg) € &1(K®)) such that

I(f5df)—(g:dg) ”jl <EC_1

It is easy to check that if we define on K
(0) ’ (9)
=0 g+ )y (Fx)+ (Af (x;), = x;))
j=1
and
© () : (0) / (0)
dfor=0kpy 8+ Py G+ ) g, (Flx)+(df (xp)-=x)+ ) o) filx;),
=1 =

for all k € {1,...,d}, then (f.;df,) € &'(K) and

I(F3df) = (fesdfelll ) < €

In particular, f, € C'(R%|K) and

lf —fe||c1(1<) <¢

7.4 Comparison

In this section, we compare the spaces C!'(IR?|K), C!(K) and C} (K).

int
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Theorem 7.4.1. C'(K) = CY(R¥|K) with equivalent norms if and only if K has only finitely
many components which are all Whitney regular.

Proof. Assuming the stated isomorphism of normed spaces we get that C!(K) is com-
plete and Proposition implies that K has only finitely many components. More-
over, the equivalence of norms implies W < Cl|fllc1(x) for some constant so that
Remark [7.2.6]implies that each component is Whitney regular.

For the other implication we first note that the global Whitney condition for each
of the finitely many components implies, by the mean value inequality, the equivalence
of the norms || -||c1(rejx) and [| - llc1 (k) on C!(R4|K). This is thus a complete and hence

closed subspace of C!(K) and, on the other hand, it is dense by Theorem m O

If we assume, a priori, the completeness of C!(K), i.e. K has finitely many compo-
nents which are pointwise Whitney regular, then the algebraic equality
C!(K) = C}(R¥K) already implies the equivalence of norms by the open mapping the-
orem. However, in the next section we will see that K = {0} U {27" : n € IN} satisfies
C!(K) = C!(R|K) although C!(K) is incomplete. This means that the algebraic equality,
in general, does not imply the equivalence of norms. Except for the one-dimensional
case, we do not know a characterization of the algebraic equality C'(K) = C!(R%|K).
Nevertheless, we would like to remark that this property has very poor stability prop-
erties. The example of the inward directed cusp mentioned in the introduction is the
union of two convex sets whose intersection is an interval (sadly, the two halfs of a
broken heart behave better than the intact heart). More surprising is perhaps the fol-
lowing example showing that the property C!'(K) = C!(IR?|K) is not stable with respect
to cartesian products.

Example 7.4.2. For M = {0}U{27": n € N} and K = M x[0,1] we have C!(K) = C!(R?K).

Proof. We construct a function f € C!(K) which is equal to 0 everywhere except for
some tiny bumps on the segments S,, = {27} x [0, 1]. More precisely, we fix ¢ € C*(RR)
with support in [-1, 1] which is bounded in absolute value by 1, and satisfies ¢(0) = 1.
For (x,y) € S, we then set f(x,y) = n>@(n*(y — 1/n)). It is easy to check that f is
differentiable on K (the only non-obvious point is (0,0) where the derivative is 0), and
that one can choose a continuous derivative (because the second partial derivatives on
S, are bounded by c¢/n where c is a bound for the derivative of ¢). Hence f € C!(K) but
f & C!(IR?IK) because f is not Lipschitz continuous as f(27",1/n) — f(27"*1,1/n)) = n~3
which is much bigger than the distance between the arguments. O]

Let us consider now a topologically regular compact set K C IR?. We can formu-
late the main theorem of [129] in this context as follows.

Theorem 7.4.3. Let K be a topologically regular compact set. If K is Whitney regular, then
CL (K)=CYRIK).

int
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In Example we proved that the reverse implication doesn’t hold. This should
be compared with a theorem of [132]] about Sobolev regularity: For an open, connected,
and finitely connected set Q C IR? every element of

WE(Q)={f e CF(Q): 9%f € L.(Q) for all |a| = k)

is the restriction of a function in WX (IR?) if and only if Q is Whitney regular. As a
preparation, we establish the following proposition.

Proposition 7.4.4. Let K be a topologically regular compact set and assume that, for all
x € JdK, there exist C, > 0 and a neighbourhood V, of x in K such that each y € V, can
be joined from x by a rectifiable path in K U {x,v) of length bounded by Cylx —y|. Then
Cl.(K)=CY(K).

Proof. Let us take f € C. (K). In order to prove that f € C!(K), we just have to show
the differentiability at x € dK. For all y € V, we get, from Remark

F@)— ()~ (df (x)y—x) = f (@f —df(x))
4

where 7y is as stated in the assumptions. This is enough to get the differentiability at x,
as we did previously in Proposition[7.2.3] O

We now construct a topologically regular compact connected set whose interior
is not Whitney regular, but where equality C. (K) = C!(IR?K) holds.

Example 7.4.5. Let () be the open unit disk in R? from which we remove, as in Sauter’s
example, sufficiently tiny disjoint balls which accumulate precisely at S = {0} x [—%, %]
Then K = () is connected, topologically regular and Whitney regular (by the same ar-
gument as explained below). In particular, from Theorem we know that
Cl(R?|K) = C!(K).

Of course, K is not Whitney regular, because S is not contained in K, but the
assumptions of Proposition m are satisfied and hence C'(K) = Cilnt(K): Indeed, a
boundary point x of K is either a boundary point of the unit disc, or of one of the tiny
removed discs in which cases the condition is clear, or x is on the segment S. If then p is
a point of K not lying on the segment {0} x[~1,1], we consider the line from p to x and,
whenever this line intersects one of the removed discs, we replace this intersection by
a path through K which is parallel to the boundary of the little disc. The total length
increase of this new path is by a factor 7. Finally, if z € K is arbitrary, we can use the
preceding argument to connect z by a very short path to some y as considered before
that we then connect to x.

To give a partial converse of Whitney’s theorem we state the following con-
sequence of Theorem|[7.2.7]
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Proposition 7.4.6. Let K be a topologically regular compact set. If C1 (K) = CY(K) (in par-
ticular, if Cilnt(K) = Cl(IRdlK) holds), then K has only finitely many connected components
which are all pointwise Whitney regular.

Proof. If ClL ,(K) = C'(K), then (C'(K),||llc1(x)) is complete and hence Theorem m
implies the stated properties of K. ]

7.5 The one-dimensional case

In this last section we completely characterize the equality between the three spaces of
C!-functions for compact subsets of IR. Of course, all three spaces coincide for topolog-
ically regular compact sets with only finitely many components, and otherwise C!(K)
is incomplete by Proposition and thus different from C! (K). The remaining
question of when C!(K) = C!(R|K) will depend on the behaviour of the bounded con-
nected components of R \ K which we call gaps of K. These are thus maximal bounded
open intervals G in the complement, and we denote their length by £(G).

The simple idea is that small gaps are dangerous for the Lipschitz continuity
on K which is a necessary condition for C 1—extendability. In fact, we will show that
C!(K) # CY(IRIK) whenever there are & € K and nearby gaps of K of length much
smaller than the distance of the gap to £. To be precise, we define, for positive ¢,

0. (&) = sup{SuP“?—él :y € G)

G) :Gg(‘s_g"f“‘f)isagapofK},

with sup® = 0. Of course, these [0, co]-valued functions are increasing with respect to
¢ and thus we can define the gap-structure function

o(&)=limo.(&).
e—0
Theorem 7.5.1. For a compact set K C R we have C!(K) = CY(R|K) if and only if 0(&) < oo
forall & e K.

Before giving the proof let us discuss some examples. The Cantor set K satisfies
o (&) = oo for all £ € K so that C!(K) = C!(R|K).

Other simple examples are sets of the form K = {0} U {x,, : n € IN} for decreasing
sequences x, — 0. Then o(x,) = 0 for all n € N and only the behaviour of ¢(0) depends
on the sequence. Since the gaps of K are (x,;1,x,) we get 0(0) = limsup —2—. This
quantity is finite for fast sequences like x, = a™" with a > 1 but infinite for slower
sequences like x,, = n™P for p > 0.

This class of examples can be easily modified to topologically regular sets of the
form K = {0} U U, ,en[Xn Xu + 1,,]. For r,, = e72" we get o(0) < oo, e.g., for x,, = e™"
0(0) = oo for x,, = 1/n.

and
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We are now going to prove Theorem We invite the reader to have Figure
in mind while discovering the proof, to have a correct image of the built and described
functions.

Proof. We will use Whitney’s characterization that f € C!(R|K) if and only if, for all
non-isolated £ € K,

lim —————

x,y—& X—=7
see [128]]. Let us first assume (&) = oo for some & € K. There is thus a sequence of
gaps G, = (a,,b,) € (£ —1/n,& + 1/n) with sup{ly - &| : v € G,}/|a,, — b,,| > 2n. Passing
to a subsequence, we may assume that all these gaps are on the same side of &, say
¢<a,<b,, sothatb,—&>2n(b,—a,).

Moreover, again by passing to a subsequence and using o.(§) = oo for
¢ = (b, —a,)/2, we can reach b,,; < a, and that the midpoints y, = (a, + b,)/2 of the
gaps satisfy

Yn = Vn+1
b,—a,
We now define f : K = R by f(x) = (v, — &)/n for x € KN (v, v,,-1) (with yy = o0) and
f(x) =0 for x < &. Since the jumps of f are outside K it is clear that f is differentiable
at all points x € K \ {&} with f’(x) = 0. To show the differentiability at & with f’(&) =
we calculate for x e KN (v, v,-1),

‘f(x)—f(é)': (= &)/ _
x—& x—& -

Thus, f € C!(K) but f & C'(R|K) because
f(bn)_f(an) _ (yn_é)/n_(ynﬂ —5)/(n+1) > (yn_yn+1)/n

bn_an bn_an bn_an

> M.

1

“n

(yn—é)/n <
yn_é

> 1.

Let us now assume (&) < oo for all £ € K. To prove that every f € C!(K) belongs
to C!(IR|K), we first show that we can assume f’ = 0 Indeed we extend f’: K — R to
a continuous function ¢ : R — R and consider g(x Io t)dt. Then g € C1(K)
satisfies ¢’ = 0 and g € C!(IR|K) implies f € C!( IRlK)

Let us thus fix f € C}(K) with f’ = 0. We have to show Whitney’s condition stated
above at any non-isolated point £ which, for notational convenience, we may assume
to be £ = 0. We fix ¢ > max{o(0),1} and € € (0,1). There is thus 6 > 0 such that, because
of the differentiability at £ = 0 with f’(0) = 0, we have

fx)-f(0)] &
'—x— 3 ‘ < 5 (7.9)

for all x € K with |x| < 6 and, because of 05(&) < ¢ for small enough 0,

supfly|: v € G} < c{(G),
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for all gaps G C (-9,0). For x,y € KN (-0,5) we will show

‘f(X)—f(y)
X—-y

<e.

If x,p are in the same component of K this quotient is 0 because f is locally constant.
Moreover, if x,y are on different sides of 0, the quotient is bounded by ¢ because of
(7.9) and ¢ > 1. It remains to consider the case 0 < x < y. Then there is a gap G between
x and y and, since f is locally constant, we may decrease y so that y € JK without
changing f(y) which thus increases the difference quotient we have to estimate. This
implies that y is the endpoint of gap G = (a,y) with a > x, which leads to

y—x>ly—al=6(G) 2 y/c>x/c.

Therefore,
'f(x —fO)| (|f®-fO)], f(y)—f(O)‘
X—v B X—=7v X—7
L JE-fQ L 1 -fO) -
x—0 y-0
O e
O O
O O
O
| |
é an+1yn+1bn+1 An Un b, ap—1 Vn-1 b,_1

Figure 7.1: Part of the allure of function which causes the inequality C!(R|K) = C!(K).
The compact set K, partially drawn in blue, is included in R\ (J,,(a,, b,). The value of
the function on K, in thick black, is determined by jumps occurring outside of K, in
Vn = (ay+b,)/2.
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