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Abstract

Given a function, a first natural desire is to know its “behaviour”. To achieve this
goal, different notions, such as differentiability, Lipschitz or Hölderian conditions,
have been introduced through the time, with more and more preciseness. In this the-
sis, we aim at characterizing the regularity of functions from different points of view
that generalize the precited ones, and using different associated functional spaces.

First, we focus on uniform regularity, investigated through Besov spaces of gener-
alized smoothness. These spaces were originally defined in terms of Littlewood-Paley
decompositions and, quickly afterwards, a characterization using finite differences was
given. Using this last one, we present some alternative definitions for Besov spaces of
generalized smoothness, involving elementary objects: (weak) derivatives, polynomi-
als and convolution. This is made in order to understand as precisely as possible what
means the belonging to a given Besov space. Initially, these spaces are known to be
interpolation spaces between Sobolev spaces. A first generalization was obtained by
introducing a function parameter in the interpolation formula. The spaces we con-
sider here are even more general and, as an intent to “close the circle”, we define a
new method of interpolation for which Besov spaces of generalized smoothness are
still linked to Sobolev spaces.

Then, we study pointwise regularity by defining functional spaces that generalize
both the ones of Hölder and Calderón and Zygmund. After nearly characterizing them
by the mean of wavelet coefficients, we establish a multifractal formalism particularly
well adapted to explore the pointwise regularity through our new spaces. In fact, as
their definition is a kind of localization around the point of interest of generalized
Besov conditions, it is not a surprise that Besov spaces of generalized smoothness play
a major role in this formalism. After investigating the multifractal nature of pointwise
spaces of generalized smoothness, we focus, in a more functional analysis point of
view, on their interaction with partial differential equations. This follows the trail
of Calderón and Zygmund as we link generalized pointwise smoothness with some
families of operators. This leads to a theorem that allows to give the regularity of the
solution of an elliptic partial differential equation by formulating it from the regularity
of the coefficients and the right-hand side of the equation.

Finally, at a midpoint between uniform and pointwise regularites, we study func-
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tions that are continuously differentiable on a compact set. Even if the question seems
naive and harmless at first look, all good habits from open sets are missing and a whole
new theory needs to be established. Based on deep results of functional analysis, we
characterize the completeness of the defined functional space and show that, for any
compact set, the restrictions on it of the continuously differentiable functions on R

d are
dense in our space. Finally, the latter is compared with other spaces, more frequently
met in the literature.



Résumé

Étant donnée une fonction, un premier désir naturel est de connaitre son “comporte-
ment”. Pour atteindre cet objectif, différentes notions telles que la différentiabilité, les
conditions de Lipschitz ou de Hölder, ont été introduites à travers le temps, avec de
plus en plus de précision. Dans cette thèse, nous souhaitons caractériser la régular-
ité de fonctions depuis différents points de vue, qui généralisent les précédents, et en
utilisant divers espaces fonctionnels.

Premièrement, nous nous intéressons à la régularité uniforme, étudiée à travers
les espaces de Besov de régularité généralisée. Ces espaces ont originalement été défi-
nis en termes de décomposition de Littlewood-Paley et, peu de temps après, une car-
actérisation utilisant les différences finies était obtenu. En exploitant cette dernière,
nous présentons des définitions alternatives pour les espaces de Besov généralisés,
au moyen d’objets élémentaires : les dérivées (faibles), les polynômes et la convo-
lution. Cela est fait en vue de comprendre, aussi précisément que possible, ce que
signifie l’appartenance à un espace de Besov donné. Initialement, ces espaces sont
connus pour être des espaces d’interpolation entre les espaces de Sobolev. Une pre-
mière généralisation a été obtenue en introduisant une fonction en paramètre de la for-
mule d’interpolation. Les espaces que nous considérons ici sont encore plus généraux
et, dans une tentative de “boucler la boucle”, nous définissons une nouvelle méthode
d’interpolation réelle pour laquelle les espaces de Besov de régularité généralisée sont
toujours liés aux espaces de Sobolev.

Ensuite, nous étudions la régularité ponctuelle en définissant des espaces fonc-
tionnels qui généralisent à la fois les espaces de Hölder et de Calderón et Zygmund.
Après avoir (presque) caractérisé ceux-ci au moyen de coefficients en ondelettes, nous
établissons un formalisme multifractal particulièrement bien adapté pour explorer la
régularité ponctuelle au travers de nos espaces. En fait, vu que leur définition est une
sorte de localisation autour du point d’intérêt de la condition d’appartenance aux es-
paces de Besov généralisés, c’est sans surprise que ces derniers jouent un rôle majeur
dans ce formalisme. Après avoir étudié la nature multifractale des espaces ponctuels
de régularité généralisée, nous nous focalisons, d’un point de vue plus tourné vers
l’analyse fonctionnelle, sur leurs interactions avec les équations aux dérivées partielles.
Cela suit le chemin tracé par Calderón et Zygmund puisque nous lions la régularité
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généralisée avec des familles d’opérateurs. Cela conduit à un théorème qui permet de
donner la régularité de la solution d’une équation différentielle elliptique en la formu-
lant à partir de la régularité des coefficients et du membre de droite de l’équation.

Finalement, en guise d’intermédiaire entre les régularités uniformes et ponctuel-
les, nous étudions les fonctions continûment dérivables sur un ensemble compact.
Même si cette question semble naïve et inoffensive au premier coup d’oeil, toutes les
bonnes habitudes acquises sur les ensembles ouverts manquent à l’appel et il est néces-
saire d’établir entièrement une nouvelle théorie. En s’appuyant sur des résultats pro-
fonds d’analyse fonctionnelle, nous caractérisons la complétude de l’espace fonction-
nel que nous définissons et montrons que, pour tout ensemble compact, les restrictions
à ce dernier des fonctions continûment dérivables sur R

d sont denses dans notre es-
pace. Finalement, ce dernier est comparé avec d’autres espaces, plus fréquemment
rencontrés dans la littérature.
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Introduction

Given x0 ∈ Rd and α ≥ 0, we say that a function f ∈ L∞loc(Rd) belongs to the pointwise
Hölder space of order α at x0, which is noted f ∈ Λα(x0) following [86], if there exist
a polynomial Px0

of degree stricly less than α and a constant C > 0 such that, for all
j ∈N,

‖f − Px0
‖L∞(B(x0,2−j )) ≤ C2−αj , (1)

where, as usual, B(x0, r) is the open ball centered at x0 with radius r. When, for all
x0 ∈ Rd , f belongs to Λα(x0), with an uniform constant C, we say that f is uniformly
Hölder of order α and we note f ∈Λα(Rd).

The aim of those spaces is to define intermediate regularities between the more
standard spaces Cp(Ω) of p-times continuously differentiable functions on the open
set Ω. In equation (1), Px0

is the Taylor polynomial of f at x0, so that one removes
the smoothness part from f around x0 to measure the regularity of what remains. If
0 < α < β, Λβ(x0) ⊆ Λα(x0) and one can characterize the regularity at x0 of a given
function f by its Hölder exponent

hf (x0) = sup{α ≥ 0; f ∈Λα(x0)}.

Hölderian regularity is in particular well-adapted to study the so-called monsters
of analysis: everywhere continuous but nowhere differentiable functions [110]. For
instance, for all a ∈ (0,1) and b > 1 such that ab > 1, the Weierstraß function [127]

Wa,b : R→R : x 7→
+∞∑
j=0

aj cos(bjπx)

satisfies, for all x0 ∈Rd ,

hWa,b
(x0) = −

log(a)
log(b)

,

see [57, 3].
Unfortunately, in general, the function x0 7→ hf (x0) can be itself very irregular.

For this reason, one prefers to compute the Hausdorff dimension dimH of the isohölder
sets, i.e. the sets of points sharing the same Hölder exponent. The spectrum of the
function f is then defined by

D : [0,+∞]→ [0,d]∪ {−∞} : h 7→ dimH({x0 ∈Rd : hf (x0) = h}),
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with the convention that dimH(∅) = −∞.
If the spectrum D of a function admits a unique finite value, this function is

called monofractal (of exponent h). For example, Wa,b is monofractal of exponent
− log(a)

log(b) and D(− log(a)
log(b) ) = 1. At the opposite, the spectrum of a multifractal function

admits different values h for which D(h) , −∞. For instance, the Riemann function

R(x) =
+∞∑
j=1

sin(j2πx)
j2

is multifractal because its spectrum is

D(h) =


4h− 2 if h ∈ [1

2 ,
3
4 ]

0 if h = 3
2

−∞ otherwise,

as established in [68].
One then has to find conditions to determine spectra of functions. A formula,

aimed at obtaining such a spectrum, is called a multifractal formalism and we wish
this formula to be valid for a large class of functions. Therefore, we look for determin-
ing regularity spaces in which “most” of the functions which belong to them satisfy the
corresponding formalism. To formalize this “most”, one can speaks in terms of preva-
lence, a probabilistic notion that generalizes to infinite dimension spaces the notion of
“almost everywhere” provided by the Lebesgue measure.

A good tool to establish a multifractal formalism is to use the (discrete) wavelet
transform: the associated wavelet coefficients of a function can be used to study the
Holdërian regularity, by defining the so-called wavelet leaders. Wavelets can also be
used to characterize the belonging to some functional spaces such as, for instance,
the Besov spaces ([102]) . Thanks to these two facts, Jaffard and Fraysse proved [72,
70] that, from the prevalence point of view, almost every function f ∈ Bsp,∞(Rd), with
p ∈ [1,∞] and s > d

p , verifies the following multifractal formalism:

∀h ∈ [s − d/p,s], D(h) = hp − sp+ d. (2)

Unfortunately, Hölder spaces can only be used for functions that are locally bounded
almost everywhere, , as inequality (1) relies on a L∞ norm. This assumption is, of
course, not always satisfied. For this reason, Jaffard and Mellot suggested in [74, 75]
to use in the multifractal analysis theory some functional spaces originally defined by
Calderón and Zygmund [26]. If p ∈ [1,∞], x0 ∈Rd and α ≥ −d/p, a function f ∈ Lploc(Rd)
belongs to the space T pα (x0) if there exist a polynomial Px0

of degree stricly less than α
and a constant C > 0 such that, for all j ∈N,

2jd/p‖f − Px0
‖Lp(B(x0,2−j )) ≤ C2−αj . (3)
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Another drawback from Hölder spaces is their inability to precisely characterize
the pointwise behaviour of some remarkable functions and therefore distinguish them.
For example, it is well-known that, if (Ω,B,P) is a probability space and if B·(·) is the
Brownian motion on it, almost surely for all ω ∈Ω and for almost every t0 ∈ R, there
exists C > 0 such that

|Bt(ω)−Bt0(ω)| ≤ C|t0 − t|
1
2

√
loglog |t − t0|−1

while, for all t0 ∈ R, hB·(ω) = 1
2 , see [82, 60]. To overcome this problem, Kreit and

Nicolay generalized the Hölder spaces in [87, 88, 90] by replacing the dyadic sequence
which appears in the right-hand side of (1) by an admissible sequence σ = (σj)j , i.e. a
sequence of strictly positive real numbers such that the sequence (σj+1/σj)j is bounded.
Such sequences are quite easy to handle with as, for instance, they have the advantage
that their asymptotic behaviour can be characterized directly, using their so-called
Boyd indices. Admissible sequences have already been used to define generalized
Besov spaces ([44]).

The initial objective of this thesis was to combine these two methods in order
to define functional spaces better suited to characterize more precisely the pointwise
behaviour of a given function, even if it is not locally bounded. Thanks to the gener-
alized Besov spaces, we are able to provide a new multifractal formalism, which gen-
eralizes (2), and a general framework for the wavelet leaders method. This establishes
the theoretical background needed to implement some methods that could be used,
for example, to detect if a process is a Brownian motion, or not. Combined with the
Black-Scholes model ([13, 58]), this could help to predict the dynamics of a financial
market.

Chapter 1 of this thesis is devoted to the presentation of the main tools we will
use. Some of them have been briefly quoted in this introduction, more details and
references can be found there.

Besov spaces of generalized smoothness play a central role in the multifractal for-
malism we present. It is thus natural to start by a in-depth study of those spaces, in or-
der to exactly understand the properties of the functions which belong to them. Chap-
ter 2 presents some alternative definitions of the Besov spaces of generalized smooth-
ness, mostly by connecting them to the well-known Sobolev spaces. The uniform reg-
ularity of functions is discussed in terms of derivatives, polynomials and convolution.
Moreover, we present a generalized method of interpolation, based on admissible se-
quences, which is particularly wellsuited to our context. Using it, we show that Besov
spaces of generalized smoothness are interpolation spaces which “lie” in between two
Sobolev spaces.

Chapter 3 to 6 focus on pointwise smoothness.
In Chapter 3, we introduce the generalized pointwise Hölder spaces we are work-

ing with. After discussing their definitions, we nearly characterize them with some
wavelet coefficients, the p-wavelet leaders, which generalize the wavelet leaders. The
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properties obtained are used to link pointwise and uniform regularities, thanks to the
wavelet characterization of the generalized Besov spaces, proved by Almeida in [2].
Our multifractal formalism is then presented and we show its validity, from the preva-
lence point of view.

The definition of the p-wavelet leaders given in this thesis is slighty different
from the one proposed in [75] and used by him and his co-authors, see [94, 76, 93].
Our choice seems, in our eyes, more relevant and easier to handle with. To convince
the reader, in addition to the nearly characterization of the generalized regularity es-
tablished in Chapter 3, we discuss in Chapter 4 some other nice facts that “our” leaders
can provide, concerning the so-called irregularity spaces and a result of prevalence in
multifractal analysis.

As already stated, the pointwise spaces of p-regularity were originally introduced
by Calderón and Zygmund. They used them to characterize the regularity of the so-
lutions of some partial differential equations. Thus, a natural question is to know
whether their results extend to our generalized spaces or not. In Chapter 5, we give
an alternative definition of them, using functions instead of sequences to measure the
regularity, which is more suited to this context of differentiation. Afterwards, we state
the elementary properties of those spaces, needed in the sequel. By the way, we proved
a generalization of Whitney extension theorem, which, originally, gives a characteri-
zation of the functions which are p-times continuously differentiable on a closed set
which are in fact the restriction on it of a p-times continuously differentiable function
on the whole Euclidean space ([19]).

Once done, in Chapter 6, connections between generalized pointwise smooth-
ness and elliptic partial differential equations are explored. This follows the trail of
Calderón and Zygmund: they showed that such equations can be reduced in terms of
fundamental operators that we first need to handle.

A midpoint between uniform and pointwise regularites is to consider functions
defined on a compact set. Then, using the structure and the geometry of the compact,
we are able to define and use richer operators acting on the functions, such as the
Fréchet derivative. Nevertheless, all the good habits acquired while considering func-
tions in Cp(Ω) have to be dropped, just because we don’t work on an open set anymore.
In Chapter 7, we propose to start by considering functions which are continuously dif-
ferentiable on a compact set. The completeness of the obtained space, equipped with a
natural norm, is discussed while the density of the restriction to K of the continuously
differentiable functions on R

d is established. This last point gives another connec-
tion between this thesis and Whitney extension theorem. We finish by comparing our
notion of differentiability on compact sets with others, previously considered in the
literature.







1The tools

In this thesis, one of our main goals is to study some functional spaces in order to
use them to capture information about the regularity of a given function better. Their
definition will rely on standard functional spaces and especially their norms.

The main idea idea will be to compare relevant quantities to admissible sequences
or Boyd functions, depending on the context. They generalize dyadic sequences and
power functions respectively without being too far away from them, which makes
them a good tool to use in our analysis.

From the wavelet transform, we will use particularly well-chosen coefficients to
extract information about the pointwise regularity of a function. Together with the
Hausdorff dimension, this will allow us to estimate the “size” of the set of points shar-
ing the same given regularity. This estimation will rely on a so-called multifractal for-
malism whose validity will be ensured by prevalence.

Of course, to prove our results, we will need some fundamental theorems of func-
tional analysis.

All those tools are gathered in this first chapter which may be seen as the foun-
dation of our work.
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1.1 Some standard functional spaces and notations

For a given non-empty open set Ω ⊂ R
d and p ∈ [1,∞], Lp(Ω) is the Lebesgue space of

the measurable functions f on Ω such that

‖f ‖Lp(Ω) := (
∫
Ω

|f |p dx)1/p <∞

if p <∞ and
‖f ‖L∞(Ω) := supessx∈Ω|f (x)| <∞,

otherwise. One sets Lp := Lp(Rd). As usual, `p(K) (where K is either N, N0 or Z) is the
Banach subspace of RK consisting of all sequences (xj)j satisfying

‖(xj)j‖`p(K) := (
∑
j∈K
|xj |p)1/p <∞

if p is finite or ‖(xj)j‖`∞(K) = supj∈K |xj | <∞. One sets `p := `p(N0).
Let k ∈N0 and p ∈ [1,∞]; the (historical) Sobolev space W k

p (Ω) is defined as

W k
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω)∀|α| ≤ k},

where Dαf is the weak derivative of order α of f (Dαf will denote either the usual
derivative or the weak derivative, depending on the context). Equipped with the norm

‖f ‖W k
p (Ω) :=

∑
|α|≤k
‖Dαf ‖Lp(Ω),

W k
p (Ω) is a Banach space (see e.g. [1, 121]). We set W k

p :=W k
p (Rd).

As usual, D (resp. S) is the space of infinitely differentiable functions with com-
pact support (resp. the Schwartz space of rapidly decreasing infinitely differentiable
functions) on R

d equipped with the usual topology and D′ (resp. S ′) denotes its topo-
logical dual, i.e. the space of distributions (resp. tempered distributions) on R

d . If
f ∈ S ′, then F f and F −1f denote its Fourier transform and its inverse Fourier trans-
form, respectively.

Given s ∈R, let us be the tempered distribution defined by

F us = (1 + | · |2)s/2.

Of course, one has u−s ∗ us = δ, where δ is the Dirac delta “function”( see e.g. [116]).
Given s ∈R and p ∈ [1,∞], the (fractional) Sobolev space H s

p is defined as

H s
p := {f ∈ S ′ : ‖f ‖H s

p
= ‖us ∗ f ‖Lp <∞}.
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Given s ∈N0 and 1 < p <∞, one has H s
p =W s

p . Among the most common properties of
these Sobolev spaces, the one that will be used mostly is maybe the continuous embed-
dingH s

p ↪→H r
p, valid whenever r ≤ s [1, 7, 124, 91, 121]. Using Calderón-Zygmund the-

ory, one can show that fractional Sobolev spaces correspond to Bessel potential spaces
(see e.g. [1, 7]): if J is the Bessel operator of order s:

J sf = F −1
(
(1 + | · |2)−s/2F f

)
(s ∈R, f ∈ S ′),

one has
H s
p = {f ∈ S ′ : ‖J −sf ‖Lp <∞} (s ∈R, 1 ≤ p ≤∞). (1.1)

1.2 Admissible sequences and Boyd functions

Definition 1.2.1. A sequence σ = (σj)j of real positive numbers is called admissible if
there exists a positive constant C such that

C−1σj ≤ σj+1 ≤ Cσj ,

for any j ∈N.
If σ is such a sequence, we set

σ j = inf
k∈N

σj+k
σk

and σ j = sup
k∈N

σj+k
σk

.

Since (logσ j)j is a subadditive (resp. (logσ j)j is a superadditive) sequence, Fekete’s
lemma [48] states that the limits

s(σ ) = lim
j

log2σ j
j

and s(σ ) = lim
j

log2σ j
j

exist and are finite. They are defined as the lower and upper Boyd indices of σ . It is
well known (see e.g. [87]) that, if σ is an admissible sequence and ε > 0, there exists a
positive constant C such that

C−12j(s(σ )−ε) ≤ σ j ≤
σj+k
σk
≤ σ j ≤ C2j(s(σ )+ε), (1.2)

for any j,k ∈N.
In the following, σ will always stand for an admissible sequence and, given s ∈R,

we set s = (2sj)j . Of course, we have s(s) = s(s) = s.

It is straightforward to note that, if σ = (σj)j and γ = (γj)j are two admissible
sequences, then:

• the sequence σ +γ = (σj +γj)j is admissible,
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• the sequence σγ = (σjγj)j is admissible with s(σγ) ≥ s(σ ) + s(γ) and
s(σγ) ≤ s(σ ) + s(γ),

• if u > 0 , the sequence σu = (σuj )j is admissible with s(σu) = us(σ ) and
s(σu) = us(σ ),

• if u < 0 , the sequence σu = (σuj )j is admissible with s(σu) = us(σ ) and
s(σu) = us(σ ).

In the sequel, we will very often work with admissible sequences γ = (γj)j such
that γ

1
> 1. Such a sequence is strongly increasing (following [44]), i.e. there exists a

number k0 ∈N such that

2γj ≤ γk ∀j,k ∈N0 s.t. j + k0 ≤ k.

As equation (1.2) suggests, Boyd indices are good indicators to measure the growth
of an admissible sequence. For instance, they give some conditions to bound sums in
which dyadic, admissible and `q sequences appear.

Lemma 1.2.2. Let m ∈ N, σ be an admissible sequence such that s(σ−1) > m and ε ∈ `q
with q ∈ [1,∞]; there exists a sequence ξ ∈ `q such that

∞∑
j=J

εj2
jmσj ≤ ξJ2JmσJ ,

for all J ∈N.

Proof. Let δ,δ′ > 0 be such that −2δ′ > m+s(σ )+δ; given J ∈N, we have, using Hölder’s
inequality,

∞∑
j=J

εj2
jmσj ≤ C

∞∑
j=J

εj2
(j−J)(m+s(σ )+δ)2JmσJ

≤ C(
∞∑
j=J

(εj2
−δ′(j−J))q)1/q(

∞∑
j=J

2−pδ
′(j−J))1/p2JmσJ ,

where p is the conjugate exponent of q (with the usual modification if one of the indices
is∞). It remains to check that the sequence ξ defined by

ξj = C(
∞∑
k=j

(εj2
−δ′(j−J))q)1/q

belongs to `q, which is easy.

In the same way, we can get the following result.
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Lemma 1.2.3. Let m ∈ N, σ be an admissible sequence such that s(σ−1) < m and ε ∈ `q
with q ∈ [1,∞]; there exists a sequence ξ ∈ `q such that

J∑
j=0

εj2
jmσj ≤ ξJ2JmσJ ,

for all J ∈N.

Admissible sequences are strongly related to so-called Boyd functions.

Definition 1.2.4. A function φ : (0,+∞)→ (0,+∞) is a Boyd function if φ(1) = 1, φ is
continuous and, for all x ∈ (0,+∞),

φ(x) := sup
y>0

φ(xy)
φ(y)

<∞. (1.3)

We denote by B the set of Boyd functions.

Let us highlight the fact that Boyd functions are part of the general theory of reg-
ular variation for real functions, founded by Jovan Karamata [81] with the introduc-
tion of slowly varying functions, see Definition 1.2.7 below. A comprehensive study of
these notions can be read in [12].

If φ ∈ B, then

• φ is submultiplicative; this follows from the fact that

φ(xyz)
φ(z)

=
φ(xz)
φ(z)

φ(xzy)
φ(xz)

≤ φ(x)φ(y),

for any x,y,z > 0,

• φ is Lebesgue-measurable, since φ is continuous,

• one has φ(x) ≥ φ(x) and φ(1/x) ≥ 1/φ(x), for any x > 0.

The fact that φ is submultiplicative allows us to introduce the following notion
(see e.g. [31] or [12] where the terminology Matuszewska indices is used):

Definition 1.2.5. The lower and upper Boyd indices of the function φ ∈ B are respectively
defined by

b(φ) := sup
x∈(0,1)

logφ(x)
logx

= lim
x→0

logφ(x)
logx

and

b(φ) := inf
x∈(1,+∞)

logφ(x)
logx

= lim
x→+∞

logφ(x)
logx

.
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The change of supremum and infimum into limits in the previous equalities again
comes from a classical result (see e.g. Theorem 7.6.2 in [61]). Let us point out that we
have −∞ < b(φ) ≤ b(φ) < +∞, since if b is defined as

b(x) :=
logφ(x)

logx
,

we have b(x) ≥ b(1/x) for x > 1.
Similarly to admissible sequences, Boyd indices also allow us to estimate the

asymptotic behaviour of functions in B, near the origin and at infinity. The follow-
ing proposition also appears in [12].

Proposition 1.2.6. Let φ ∈ B, ε > 0 and R > 0; there exist C1,C2,C3,C4 > 0 such that

1. for all r ∈ (0,R],

C1r
b(φ)+ε ≤ φ(r) ≤ C2r

b(φ)−ε, (1.4)

2. for all r ∈ [R,+∞),

C3r
b(φ)−ε ≤ φ(r) ≤ C4r

b(φ)+ε. (1.5)

Proof. Let us prove the first assertion. There exists R0 ∈ (0,1) such that, for all r ∈
(0,R0),

b(φ)−
logφ(r)

logr
≤ ε,

which implies that, for such r,

φ(r) ≤ rb(φ)−ε. (1.6)

Similarly, there exists R1 > 1 such that, for all r ∈ (R1,∞),

φ(r) ≤ rb(φ)+ε. (1.7)

Now, using (1.3), we have

φ(1/r)−1 ≤ φ(r) ≤ φ(r), (1.8)

for all r > 0 and from inequalities (1.6), (1.7) and (1.8), we get,

rb(φ)+ε ≤ φ(r) ≤ rb(φ)−ε,

for 0 < r ≤min{R0,1/R1}. If R ≤min{R0,1/R1}, one can take C1 = C2 = 1; otherwise we
can use the continuity of the functions

r 7→
φ(r)

rb(φ)+ε
and r 7→

φ(r)

rb(φ)−ε

on the compact set [min{R0,1/R1},R] to find two constants C1,C2 > 0 such that (1.4)
holds. Inequality (1.5) can be obtained by an analogous reasoning.
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Definition 1.2.7. A strictly positive function ψ is a slowly varying function if

lim
t→0

ψ(rt)
ψ(t)

= 1,

for any r > 0.

Slowly varying functions give rise to fundamental examples of Boyd functions.

Example 1.2.8. If ψ is any slowly varying function, then, for any u ∈ R, the function
φ : (0,+∞)→ (0,+∞) : r 7→ ruψ(r) is a Boyd function with b(φ) = b(φ) = u (see [87] for
example). Such functions are known as Karamata regularly varying functions (with
index u), see [12]. A standard possibility is to take ψ = | ln |s, for some s > 0.

Remark 1.2.9. Inequality (1.6) can be extended in the following way: for all ε > 0 and
R > 0, there exists C > 0 such that for all r ∈ (0,R],

φ(r) ≤ Crb(φ)−ε.

If R > R0, we can use the submultiplicativity of φ to see that for all r ∈ (0,R],

φ(r) ≤ φ(
R
R0

)φ(
R0

R
r) ≤ φ(

R
R0

)(
R0

R
)b(φ)−εrb(φ)−ε.

Similarly, we can extend inequality (1.7) using the same approach: for all ε > 0 and
R > 0, there exists C > 0 such that, for all r ∈ [R,∞),

φ(r) ≤ Cr(b(φ)+ε).

As a corollary to this remark, we have the following result (see e.g. [31], [101]),
showing that the Boyd indices give an integrability criterion for Boyd functions.

Proposition 1.2.10. Let φ ∈ B; if b(φ) < 0, then
∫ +∞

1
φ(x)/xdx <∞ and if b(φ) > 0, then∫ 1

0
φ(x)/xdx <∞.

Again, one can note that, ifφ1 andφ2 are Boyd functions, φ1φ2, φ1/φ2, φu1 (u ∈R)
and φ1(1/ ·) are Boyd functions [101].

Boyd functions and admissible sequences are connected by dyadic sequences.

Proposition 1.2.11. A sequence σ = (σj)j of real positive numbers is admissible if and only
if there exists a Boyd function φ such that, for any j, φ(2j) = σj . Moreover, in this case, we
have b(φ) = s(σ ) and b(φ) = s(σ ).

Proof. The sufficiency of the condition is straightforward. For the necessity, if σ = (σj)j
is an admissible sequence, one can check that the function φ defined on (0,+∞) by

φ(x) =


σj+1−σj

2j
(x − 2j) + σj ifx ∈ [2j ,2j+1) (for j ∈N0)

1 ifx ∈ (0,1)
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is a Boyd function satisfying, for any j, the equality φ(2j) = σj .

For the “moreover part”, of course, for any j, σ j ≤ φ(2j) and, for any r ≥ 1, if
2j ≤ r < 2j+1, φ(r) ≤ φ(2j)φ(2−jr) ≤ Cφ(2j), by the submultiplicativity of φ and Remark
1.2.9. This is enough to show that b(φ) = s(σ ). The equality b(φ) = s(σ ) is obtained in
the same way, after noting that φ = φ−1(1/ ·).

Using Example 1.2.8, the next corollary is obvious.

Corollary 1.2.12. If ψ is a slowly varying function and u ∈R, the sequence σ = (2juψ(2j))j
is admissible with s(σ ) = s(σ ) = u.

1.3 Finite differences

We will heavily use the finite differences in the sequel (see e.g. [16, 79, 107]). Given
a function f defined on R

d and x,h ∈ Rd , the finite difference ∆nhf of f is defined as
follows

∆1
hf (x) = f (x+ h)− f (x) and ∆n+1

h f (x) = ∆1
h∆

n
hf (x),

for any n ∈N. It is easy to check that the following formula holds:

∆nhf (x) =
n∑
j=0

(−1)j
(
n
j

)
f (x+ (n− j)h). (1.9)

In this thesis, by convention, if n ≤ 0, ∆nhf = f .
The centered finite difference δnhf is obtained in the same way:

δ1
hf (x) = f (x+ h/2)− f (x − h/2) and δn+1

h f (x) = δ1
hδ
n
hf (x).

Since we have δnhf (x) = ∆nhf (x − nh/2), these two notions will lead to the same defini-
tions; for example, we obviously have

‖∆nhf ‖Lp = ‖δnhf ‖Lp ,

for any h ∈ R
d , any n ∈ N, and any p ∈ [1,∞]. If f ∈ W k

p (k ∈ N, p ∈ [1,∞]), for all
1 ≤ n ≤ k, there exists a constant C > 0, not depending on the function f , such that

‖∆nhf ‖Lp ≤ C|h|
n sup
|α|=n
‖Dαf ‖Lp ,

for all h ∈Rd .



1.4. Wavelets 9

1.4 Wavelets

Let us briefly recall some definitions and notations about wavelets (for more preci-
sions, see e.g. [36, 102, 100]). Under some general assumptions, there exist a function
ϕ and 2d − 1 functions (ψ(i))1≤i<2d , called wavelets, such that

{ϕ(x − k) : k ∈Zd} ∪ {ψ(i)(2jx − k) : 1 ≤ i < 2d , k ∈Zd , j ∈N} (1.10)

form an orthogonal basis of L2. Any function f ∈ L2 can be decomposed as follows,

f (x) =
∑
k∈Zd

Ckϕ(x − k) +
∑
j∈N

∑
k∈Zd

∑
1≤i<2d

c
(i)
j,kψ

(i)(2jx − k),

where

c
(i)
j,k = 2dj

∫
R
d
f (x)ψ(i)(2jx − k)dx

and

Ck =
∫
R
d
f (x)ϕ(x − k)dx. (1.11)

Let us remark that we do not choose the L2 normalization for the wavelets, but rather
an L∞ normalization, which is better fitted to the study of the Hölderian regularity.

In this thesis, we will consider two families of wavelets:

• compactly supported wavelets, built in [35],

• wavelets in the Schwartz space of rapidly decreasing infinitely differentiable
functions, built in [92].

If ψ is such a wavelet, ψ(i)(2j · −k) is localized around the dyadic cube

λ
(i)
j,k :=

i

2j+1
+
k

2j
+ [0,

1
2j+1

)d .

In the sequel, we will often omit any reference to the indices i, j and k for such cubes
by writing λ = λ

(i)
j,k. We will also index the wavelet coefficients of a function f with

the dyadic cubes λ so that cλ will refer to the quantity c(i)
j,k. The notation Λj will stand

for the set of dyadic cubes λ of R
d with side length 2−j and the unique dyadic cube

from Λj containing the point x0 ∈ Rd will be denoted λj(x0). The set of dyadic cubes
is Λ := ∪j∈NΛj . Two dyadic cubes λ and λ′ are adjacent if there exists j ∈ N such
that λ,λ′ ∈ Λj and dist(λ,λ′) = 0. The set of the 3d dyadic cubes adjacent to λ will be
denoted by 3λ.

In practice, a real-life signal is often modelled as a finite sequence x1, . . . ,xJ of
real numbers that can be interpreted as the realisation of a function f defined on the
interval [0,1] for which, for all 1 ≤ j ≤ J , f ( jJ ) = xj . Then, one can assume that f belongs
to L2(Td), the set of 1-periodic functions which are in L2

loc(Rd).
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To deal with L2(Td) functions, one can use the periodization operator

[·] : f 7→
∑
l∈Zd

f (· − l)

to obtain an orthonormal basis of L2(Td) from the one defined in (1.10). Indeed, as
shown in [36, 33], the set

{[ψλ] : 1 ≤ i < 2d , j ∈N and k ∈ {0, . . . ,2j−1}d},

together with the function 1, form an orthonormal basis of L2(Td). The wavelet coeffi-
cients are then defined in the same way:

c
per
λ = 2dj

∫
[0,1]d

f (x)[ψλ](x)dx. (1.12)

One often omits the mention “per” and any references to the periodization oper-
ator in (1.12) and cλ can denote both the wavelet coefficients or the periodized wavelet
coefficients, depending on the context. In the sequel, the established results concern
both families of coefficients.

1.5 Hausdorff measure and dimension

The “size” of the sets of points sharing the same regularity will be estimated with the
help of the Hausdorff dimension which is defined from the homonym measure. Details
about what it summarized here can be found in [42, 115, 59]. Let us fix X a separable
metric space; if ε,h > 0, we first define

Hhε : ℘(X)→ [0,+∞] : A 7→ inf{
∑
j

diamh(Aj) : A ⊆
⋃
j

Aj and, ∀j,diam(Aj) < ε}

where, as usual, diam stands for the diameter. For all ε,h > 0, Hhε is an outer measure
and is called the (h,ε)-Hausdorff outer measure. Moreover, for all h > 0, the application
ε 7→ Hhε is decreasing and it follows that the h-dimensional Hausdorff measure

Hh : ℘(X)→ [0,+∞] : A 7→ lim
ε→0+

Hhε(A)

is well-defined. Again,Hh is an outer measure and, once restricted to theHh-measurable
set, the h-dimensional Hausdorff measure is invariant by translation. Therefore, if
X = R

d , the d-dimensional Hausdorff measure is related to Ld , the Lebesgue measure1

(in R
d), by

Ld =
π
d
2

2dΓ (d2 + 1)
Hd .

1When the (topological) dimension d is clear, we will simply note L, for the sake of simpleness.
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The crucial property of Hausdorff measures is that, for any set A, there exists a
critical value h0 such that

Hh(A) =∞ ∀h < h0 and Hh(A) = 0 ∀h > h0.

This pivot is used to define the Hausdorff dimension of a set: if A is a non-empty set,
the Hausdorff dimension of A is

dimH(A) = sup{h > 0 :Hh(A) =∞} = inf{h > 0 :Hh(A) = 0},

while, by convention, dimH(∅) = −∞. The main properties are listed in the proposition
below.

Proposition 1.5.1.

• If A ⊂ B, then dimH(A) ≤ dimH(B),

• If A is countable, then dimH(A) = 0,

• If (Aj)j is a sequence of sets,

dimH(
⋃
j

Aj) = sup
j

dimH(Aj),

• For all d ∈N, if X = R
d and A ∈ ℘(Rd), dimH(A) ≤ d. Moreover, if Ld(A) > 0, then

dimH(A) = d.

The Hausdorff dimension is therefore a “continuous extension” of the topological
dimension, as, for all d ∈N and any open subset Ω of Rd , dimH(Ω) = d.

1.6 Prevalence

Now, we very briefly introduce the notion of prevalence (see [27, 66, 65] for more
details).

In R
d , it is well known that if one can associate a probability measure µ to a Borel

set B such that µ(B+ x) vanishes for very x ∈ Rd , then the Lebesgue measure L(B) of B
also vanishes. For the notion of prevalence, this property is turned into a definition in
the context of infinite-dimensional spaces.

Definition 1.6.1. Let E be a complete metric vector space; a Borel set B of E is Haar-
null if there exists a compactly-supported probability measure µ such that µ(B+x) = 0,
for every x ∈ E. A subset of E is Haar-null if it is contained in a Haar-null Borel set; the
complement of a Haar-null set is a prevalent set.
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If E is finite-dimensional, B is Haar-null if and only if L(B) = 0; if E is infinite-
dimensional, the compact sets of E are Haar-null. Moreover, it can be shown that a
translated of a Haar-null set is Haar-null and that a prevalent set is dense in E. Finally,
the intersection of a countable collection of prevalent sets is prevalent.

Let us make some remarks about how to show that a set is Haar-null. A common
choice for the measure in Definition 1.6.1 is the Lebesgue measure on the unit ball of a
finite-dimensional subset E′ of E. For such a choice, one has to show that L(B∩(E′+x))
vanishes for every x. Such a subspace is called a probe. If E is a function space, one can
choose a random process X whose sample paths almost surely belong to E. In this case,
one can show that a property only holds on a Haar-null set by showing that the sample
path X is such that, for any f ∈ E, Xt + f almost surely does not satisfy the property.

If a property holds on a prevalent set, we will say that it holds almost everywhere
from the prevalence point of view.

1.7 Some fundamental theorems in functional analysis

In this section, for the sake of completeness, we gather some fundamental theorems
that we use all along the thesis, together with a reference to a proof.

The first theorem, established by Lebesgue, discusses the reciprocity between
integration and differentiation.

Theorem 1.7.1 (Lebesgue differentiation theorem, [15]). Let f be a Lebesgue-integrable
function defined on R

d . For almost every point x0 ∈Rd , the limit

lim
r→0+

1
L(B(x0, r))

∫
B(x0,r)

f (x)dx

exists and is equal to f (x0). Such a point is called a Lebesgue point of f .

To state the next theorem, one first has to introduce the Taylor chain condition.

Definition 1.7.2. If k ∈N and if (fα)|α|≤k is a k-jet defined on a closed set F, we say that
(fα)|α|≤k satisfies the Taylor chain condition of order k if the functions

(x,y) 7→

∣∣∣∣fα(x)−
∑
|β|≤k−α fα+β(y) (x−y)β

β!

∣∣∣∣
|x − y|k−|α|

(1.13)

are continuous on (F × F) \ {(x,y) ∈ F × F : x = y} and can be continuously extended by
0 to the whole of F ×F.

Obviously, if k ∈ N, f ∈ Ck(Rd) and F is a closed set, then f and its derivatives
up to order k restricted to F define a k-jet which satisfies the Taylor chain condition of
order k. Whitney extension theorem establishes the reverse.
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Theorem 1.7.3 (Whitney extension theorem, [19]). Let F be a closed set in R
d and

k ∈N. A k-jet (fα)|α|≤k is obtained by restriction of a function in Ck(Rd) and its derivatives
up to order k if and only if it satisfies the Taylor chain condition of order k.

Before stating the next theorem, let us recall that, if ϕ ∈ C1(Rd), then

• The gradient of ϕ is the vector ∇ϕ = (D1ϕ, · · · ,Ddϕ),

• The divergent of ϕ is the scalar divϕ =
∑d
j=1Djϕ.

Moreover, if ϕ ∈ C2(Rd), one can apply the Laplace operator ∆ to ϕ:

∆ϕ =
d∑
j=1

D2
j ϕ.

Theorem 1.7.4 (Green’s first identity,[120]). Let D be a domain in R
d , ϕ ∈ C2(Rd),

ψ ∈ C1(Rd); we have ∫
D

(ψ∆ϕ +∇ψ · ∇ϕ)dx =
∫
∂D
ψ
∂ϕ

∂n
dσ,

where ∂ϕ
∂n = n · ∇ϕ is the directional derivative in the outward normal direction and dσ in

the surface area on ∂U .

The Banach-Steinhaus theorem is a very strong result to find a uniform bound
for a family of continuous linear maps.

Theorem 1.7.5 (Banach-Steinhaus theorem - Uniform Boundedness Principle,[112]).
Let X be a Banach space, Y a normed linear space and (Tλ)λ∈Λ a collection of continuous
linear transformations of X into Y . If, for any x ∈ X,

sup
λ∈Λ
‖Tλ(x)‖Y <∞,

then
sup

λ∈Λ,‖x‖X=1
‖Tλ(x)‖Y <∞.

The next theorem deals with equicontinuous sequences of functions; let us first
recall this notion.

Definition 1.7.6. A sequence of functions (fj)j defined on a metric space (X,d) is

• pointwise bounded if, for any x ∈ X, the sequence (fj(x))j is bounded.

• equicontinuous if, for any ε > 0, there exists δ > 0 such that, whenever x,y ∈ X and
d(x,y) < δ, we have |f (x)− f (y)| < ε.
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Theorem 1.7.7 (Arzelà-Ascoli theorem,[111]). Let K be a compact metric space and (fj)j
a sequence of continuous functions on K . If (fj)j is pointwise bounded and equicontinuous
on K , then (fj)j is uniformly bounded and contains a uniformly convergent subsequence.

Hahn-Banach theorems are a family of fundamental results which link a locally
convex topological vector space X with its dual X∗, whose elements are the continuous
linear functional on X, and its subspaces by the mean of semi-norms on X. Among
them, we will need the following.

Theorem 1.7.8 (Hahn-Banach theorem,[113]). Suppose that M is a subspace of a locally
convex space X, and x0 ∈ X. If x0 is not in the closure of M, then there exists Λ ∈ X∗ such
that Λx0 = 1 but Λx = 0 for every x ∈M.

As stated in [113], a consequence of this theorem is that, in order to show that
x0 ∈ X belongs to the closure of a subspace M of X, it suffices to show that, for every
continuous linear functional Λ on X such that Λ vanishes on M, Λx0 = 0.

Now, we recall that if µ is a complex measure on a measurable space (X,A ), the
variation measure ‖µ‖ is the positive measure defined on A by

‖µ‖(A) = sup


∑
j

|µ(Aj)| : (Aj)j partition of A in A

 .
The total variation is then defined by Var(µ) = ‖µ‖(X).

Definition 1.7.9. Let X be a locally compact Hausdorff space and B the Borel σ -
algebra on X. A measure µ on (X,B ) is regular if

• µ is outer regular: for every Borel set A,

µ(A) = inf{µ(Ω) : A ⊆Ω,Ω open},

• µ is inner regular: for every Borel set A with finite measure,

µ(A) = sup{µ(K) : K ⊆ A,K compact}.

If, in addition, µ is finite on compact sets, µ is said to be a Radon measure.
A complex measure on (X,B ) is regular (resp. a Radon measure) if ‖µ‖ is regular

(resp. a Radon measure).

In this last theorem, C0(X) stands for the space of continuous function on X
which are vanishing at infinity.
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Theorem 1.7.10 (Riesz representation theorem, [15, 112]). If X is a locally compact
Hausdorff space, then every bounded linear functional Φ onC0(X) is represented by a unique
Radon measure µ, in the sense that, for every f ∈ C0(X),

Φ(f ) =
∫
f dµ.

Moreover, the norm of Φ is the total variation of µ.





2Generalized Besov spaces

The Besov spaces Bsp,q (with s ∈ R and 1 ≤ p,q ≤ ∞) were introduced about sixty
years ago [8, 9] and many studies have been since devoted to such spaces (see e.g.
[123, 10, 124, 11, 125, 126]). They were generalized in the middle of the seventies by
several authors in different contexts starting from different points of view. The variant
we will present here has been largely considered in [43, 23, 2, 44, 105] for example.
Besov spaces are still considered nowadays in connection with embeddings, limiting
embedding, entropy numbers, probability theory and theory of stochastic processes for
instance (see e.g. [80, 39, 21, 40, 95, 108] and references therein). More recently, such
generalizations have been used to numerically detect the law of the iterated logarithm
in signals [89, 84, 90].

A classical generalization of the usual Besov spaces was introduced in [101, 31]
using interpolation theory. To obtain these spaces Bfp,q, s is replaced by a function
parameter g such that f (x) = xt/g(xt−u) in the interpolation formula (2.8). These spaces
can themselves be generalized using the Littlewood-Paley decomposition instead of
the interpolation theory to define the spaces of generalized smoothness Bσ ,γp,q , where

σ and γ are two admissible sequences [44]. One has Bfp,q = B
σ ,γ
p,q , with γ = (2j)j and

σ = (f (2j))j . In a way, these spaces provide a very general definition of the spaces of
generalized smoothness [105]. This work can be seen as an intent to “close the circle”
by defining a generalized interpolation method that allows to define the spaces Bσ ,γp,q
starting from the usual Sobolev spaces. This interpolation method is quite different
from the one introduced in [31].

In this chapter, in the same spirit as in [87, 88], we propose equivalent definitions
of the spaces of generalized smoothness Bσ ,γp,q . The first section is devoted to standard
definitions and a brief review of the background material needed for them. Next, we
give some preliminary results before looking at the links between these spaces and the
weak derivatives of the elements of the historical Sobolev spaces W k

p . We also give
definitions involving Taylor expansion and polynomials before investigating how the
generalized Besov spaces can be characterized in terms of convolution. Finally, we
show that these spaces can be introduced using generalized interpolation of fractional
or historical Sobolev spaces, as were the spaces Bfp,q.

Our aim, in this chapter, is to better understand the generalized Besov spaces,
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using the alternative definitions we obtain, in order to know, with more details, the
information we can extract (about uniform regularity) from the fact that a function
belongs to a generalized Besov space. In the next chapter, we show that these spaces
provide a natural framework for a general multifractal formalism.

Results established in this chapter were published in [97].
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2.1 Definition

Let us start by introducing the Besov spaces of generalized smoothness Bσ ,γp,q that we
will consider (see e.g. [44, 105] and references therein). Let us recall some kind of
generalization of the Littlewood-Paley decomposition (more details can be found in
[44]). For a strongly increasing admissible sequence γ = (γj)j , let ρ ∈ D be a positive
function such that ρ(t) = 1 for all |t| ≤ 1, ρ is decreasing for t ≥ 0 and supp(ρ) ⊂ {t ∈R :
|t| ≤ 2} (where, as usual, supp(ρ) denotes the support of ρ). Given J ∈N, let us set

ϕ
γ ,J
j := ρ(γ−1

j | · |) for j ∈ {0, . . . , Jk0 − 1}

and

ϕ
γ ,J
j := ρ(γ−1

j | · |)− ρ(γ−1
j−Jk0
| · |) for j ≥ Jk0.

Let us define cϕ := Jk0 and

ϕ̃
γ ,J
j :=

(2J+1)k0∑
k=−(2J+1)k0

ϕ
γ ,J
j+k for j ∈N0,

where ϕγ ,J−1 = · · · = ϕγ ,J−(2J+1)k0
= 0. With such a system one has, for all j ∈N0,

ϕ̃
γ ,J
j = cϕ on supp(ϕγ ,Jj ).
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As a consequence, if we set, for any f ∈ S ′,

∆
γ ,J
j f := F −1(ϕγ ,Jj F f ) and ∆̃

γ ,J
j f := F −1(ϕ̃γ ,Jj F f ), (2.1)

then

∆̃
γ ,J
j ∆

γ ,J
j f = cϕ∆

γ ,J
j f .

Remark 2.1.1. From the Littlewood-Paley theory [119, 41], ∆γ ,Jj f belongs to the space

C∞(Rd).

Definition 2.1.2. Let σ and γ be two admissible sequences such that γ is strongly
increasing (most often we will require γ

1
> 1) and p,q ∈ [1,∞]; the generalized Besov

space Bσ,γp,q is defined as

B
σ ,γ
p,q := {f ∈ S ′ : ‖f ‖Bσ ,γp,q = ‖(σj‖∆

γ ,J
j f ‖Lp)j‖`q <∞}.

Remark 2.1.3. The space Bσ ,γp,q defined above does not depend on the particular de-
composition chosen to represent the functions, in the sense of equivalent norms: two
decompositions give rise to the same space (see Remark 3.1.3 in [44]). Indeed, such
spaces can be defined with a general representation method which must satisfy condi-
tions that are met by the decomposition given here, see again [44].

If the admissible sequence γ is the usual sequence (2j)j , we prefer to denote Bσ ,1p,q
by Bσp,q, in order to simplify the notation.

Remark 2.1.4. In [23, 22], the authors highlight the fact that, if σ = (σj)j and γ = (γj)j
are admissible sequences such that γ

1
> 1 then, if k0 is such that γk0

1
≥ 2, the sequence

β = (βj)j defined by

βj := σk(j), with k(j) := min{k ∈N0 : 2j−1 ≤ γk+k0
},

for all j ∈N0, is admissible and Bσ ,γp,q = B
β
p,q. This allows us to work with one or two non-

dyadic sequences, depending on the context. In this chapter, it is more appropriate to
work with Bσ ,γp,q as the Boyd indices of σ and γ are easier to compute separately than the
ones of β. In the next chapter, since we will make use of wavelets, which are heavily
connected to the (2j)j sequence, we will favor the other option and work with only one
admissible sequence.

The following characterization is given in [105]: let p,q ∈ [1,∞], σ = (σj)j and
γ = (γj)j be two admissible sequences such that γ

1
> 1 and 0 < s(σ )s(γ)−1. For any

n ∈N such that s(σ )s(γ)−1 < n, we have

B
σ ,γ
p,q = {f ∈ Lp : (σj sup

|h|≤γ−1
j

‖∆nhf ‖Lp)j ∈ `
q}. (2.2)
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In this framework, Besov spaces of generalized smoothness provide an obvious
generalization of the usual Hölder spaces: if σ = (2sj)j (s > 0) and γ = (2j)j , the space
B
σ ,γ
p,q so defined is the usual Besov space Bsp,q and if p = q =∞, we get the usual Hölder

space Λs(Rd). One can therefore wonder if polynomials can play a role in the definition
of the spaces Bσ ,γp,q (as it is the case for Hölder spaces and their generalized version for
example [86, 87, 88]). A theorem due to Whitney (see [20]) states that for f ∈ Lp, r > 0
and n ∈N, there exists a constant C > 0 (which only depends on n and d) such that

inf
P ∈Pdn−1

‖f − P ‖Lp(B(x0,r)) ≤ C sup
|h|≤r
‖∆nhf ‖Lp(Bnh(x0,r)),

where

Bnh(x0, r) := {x ∈ B(x0, r) : [x,x+nh] ⊂ B(x0, r)}.

It follows that, if f ∈ Bσ ,γp,q , then, for n sufficiently large, there exists (εj)j ∈ `q such that
for all x0 ∈Rd ,

σj inf
P ∈Pdn−1

‖f − P ‖Lp(B(x0,γ
−1
j )) ≤ εj ∀j ∈N0. (2.3)

The converse is not true unless p =∞, as explained in Remark 2.1.5 below.

Remark 2.1.5. Now, suppose that f ∈ L∞ and let σ = (σj)j ,γ = (γj)j be two admissible
sequences satisfying s(σ )s(γ)−1 < n, with n ∈ N. If γ is strongly increasing, given
x0 ∈ Rd , we can claim that there exists k1 ∈N such that nγ−1

k ≤ γ
−1
j if j + k1 ≤ k, which

implies that if |h| ≤ γ−1
j+k1

, then x0 + lh ∈ B(x0,γ
−1
j ) for all l ∈ {0, . . . ,n}. Since, for any

P ∈ Pdn−1, the formula

∆nhf (x0) = ∆nh(f − P )(x0) =
n∑
l=0

(−1)n−l
(
n
l

)
(f − P )(x0 + lh),

holds, we have
|∆nhf (x0)| ≤ 2n inf

P ∈Pdn−1

‖f − P ‖L∞(B(x0,γ
−1
j )), (2.4)

if |h| ≤ γ−1
j+k1

, for almost every x0. Therefore, if (2.3) holds with p =∞, we have

σj sup
|h|≤γ−1

j

‖∆nhf ‖L∞ ≤ Cεj ∀j ∈N0

and thus f ∈ Bσ ,γ∞,q. Inequality (2.4) is not sufficient to get such a conclusion in Lp

with p <∞. Nevertheless, we will see that a approximation by a sequence of “locally”
polynomial functions is still possible, in any case.
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2.2 Preliminary results involving convolutions

Let us first introduce some results about the convolution product that will be used in
the sequel. They are obtained using very classical proofs but we give them for the sake
of completeness. If φ is a function defined on R

d , given ε , 0 one sets

φε =
1
|ε|d

φ(
·
ε

).

Proposition 2.2.1. Let n ∈N, p,q ∈ [1,∞] and (σj)j , (γj)j be two sequences of positive real
numbers. If f ∈ Lp is such that

(σj sup
|h|≤γ−1

j

‖∆nhf ‖Lp)j ∈ `
q,

then there exists φ ∈ D such that

(σj sup
0<ε≤γ−1

j

‖f ∗φε − f ‖Lp)j ∈ `q.

Proof. Without loss of generality, we can suppose that n = 2m where m is an odd inte-
ger. Let ρ ∈ D be a radial function such that

• supp(ρ) ⊆ B(0,1),

• 0 ≤ ρ ≤ 1,

• ‖ρ‖L1 = 1

and set

φ̃ :=
m−1∑
j=0

(−1)j
(
n
j

)
ρ2j−n,

cn :=
∑m−1
j=0 (−1)j

(n
j

)
=

(n
m

)
/2 and finally φ := φ̃/cn. Obviously, φ ∈ D and for all x ∈ Rd

and ε > 0, we have

f ∗φε(x)− f (x) =
∫
f (x − εy)φ(y)dy − f (x)

=
1
cn

m−1∑
j=0

(−1)j
(
n
j

)∫
f (x − εy)ρ2j−n(y)dy − f (x)

=
1
cn

m−1∑
j=0

(−1)j
(
n
j

)∫
f (x − ε(2j −n)t)ρ(t)dt − f (x).
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We get

n∑
j=m+1

(−1)j
(
n
j

)∫
f (x − ε(2j −n)t)ρ(t)dt

=
n∑

j=m+1

(−1)j
(
n
j

)∫
f (x − ε(n− 2j)y)ρ(y)dy

=
m−1∑
j=0

(−1)j
(
n
j

)∫
f (x − ε(2j −n)y)ρ(y)dy

and

f ∗φε(x)− f (x)

=
1

2cn

( n∑
j=0
j,m

(−1)j
(
n
j

)∫
f (x − ε(2j −n)t)ρ(t)dt − 2cnf (x)

)

=
1

2cn

∫ ( n∑
j=0

(−1)j
(
n
j

)
f
(
x − 2εt(j − n

2
)
))
ρ(t)dt

=
1

2cn

∫
B(0,1)

δn2εtf (x)ρ(t)dt.

Using Hölder’s inequality, we have

|f ∗φε(x)− f (x)| ≤ C‖ρ‖Lq(B(0,1))‖δ
n
2ε·f (x)‖Lp(B(0,1))

≤ C‖∆n2ε·f (x)‖Lp(B(0,1)),

where q is the conjugate exponent of p. It follows, with the usual modification if p =∞,
that

‖f ∗φε − f ‖Lp ≤ C(
∫ ∫

B(0,1)
|∆n2εtf (x)|p dt dx)1/p

= C(
∫
B(0,1)

∫
|∆n2εtf (x)|p dxdt)1/p

= C(
∫
B(0,1)

‖∆n2εtf ‖
p
Lp dt)

1/p

≤ C sup
t∈B(0,1)

‖∆n2εtf ‖Lp

and finally, using a classical result for the last inequality [37, p. 45, formula (7.6)],

sup
0<ε≤γ−1

j

‖f ∗φε − f ‖Lp ≤ C sup
|h|≤γ−1

j

‖∆n2hf ‖Lp ≤ C sup
|h|≤γ−1

j

‖∆nhf ‖Lp ,

as desired.
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Proposition 2.2.2. Let p,q ∈ [1,∞], σ be an admissible sequence and (γj)j be a sequence of
positive real numbers such that there exists d0 > 0 satisfying

d0γj ≤ γj+1 ∀j ∈N0.

Let also φ ∈ D and f ∈ Lp satisfying

(σj‖f ∗φγ−1
j
− f ‖Lp)j ∈ `q.

Then, for all α ∈Nd
0,

(σjγ
−|α|
j ‖Dα(f ∗φγ−1

j
− f ∗φγ−1

j−1
)‖Lp)j∈N ∈ `q(N).

Proof. Let us write

f ∗φγ−1
j
− f ∗φγ−1

j−1
= φγ−1

j
∗ (f ∗φγ−1

j
− f ∗φγ−1

j−1
)

+φγ−1
j
∗ (f − f ∗φγ−1

j
)

−φγ−1
j−1
∗ (f − f ∗φγ−1

j
). (2.5)

Considering the first term on the right-hand side of this equality, we have, by Young’s
inequality,

σjγ
−|α|
j ‖Dα

(
φγ−1

j
∗ (f ∗φγ−1

j
− f ∗φγ−1

j−1
)
)
‖Lp

= σjγ
−|α|
j ‖Dαφγ−1

j
∗ (f ∗φγ−1

j
− f ∗φγ−1

j−1
)‖Lp

≤ σjγ
−|α|
j ‖Dαφγ−1

j
‖L1‖f ∗φγ−1

j
− f ∗φγ−1

j−1
‖Lp ,

but, as ‖Dαφγ−1
j
‖L1 = γ |α|j

∫
|Dαφ(y)|dy, we obtain, since σ is admissible,

σjγ
−|α|
j ‖Dα

(
φγ−1

j
∗ (f ∗φγ−1

j
− f ∗φγ−1

j−1
)
)
‖Lp

≤ Cσj‖f ∗φγ−1
j
− f ‖Lp +Cσj‖f − f ∗φγ−1

j−1
‖Lp

≤ Cσj‖f ∗φγ−1
j
− f ‖Lp +C′σj−1‖f − f ∗φγ−1

j−1
‖Lp .

The conclusion comes by applying the same reasoning to the other terms of (2.5).

2.3 Generalized Besov spaces and weak derivatives

The spaces of generalized smoothness Bσ ,γp,q can be characterized using weak derivatives
and finite differences.

We will need the following condition for a function to belong to W k
p .
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Proposition 2.3.1. Let k ∈ N, p,q ∈ [1,∞], σ be an admissible sequence and (γj)j be a
sequence of positive real numbers such that there exists d0 > 0 satisfying

d0γj ≤ γj+1 ∀j ∈N0.

Let us also suppose that the series ∑
j∈N0

γ ljσ
−1
j (2.6)

converges for all 0 ≤ l ≤ k. If f ∈ Lp is a function satisfying

(σj sup
|h|≤γ−1

j

‖∆khf ‖Lp)j ∈ `
q,

then f ∈W k
p .

Proof. Let φ ∈ D be a function as constructed in the proof of Proposition 2.2.1. Let us
set

ψ0 = φγ−1
0
, ψj = φγ−1

j
−φγ−1

j−1
∀j ∈N,

and finally define

fj = f ∗ψj ∀j ∈N0.

It follows from Proposition 2.2.2 that for all α ∈ Nd
0 satisfying |α| ≤ k, there exists a

constant Cα > 0 such that for all j ∈N0, we have

‖Dαfj‖Lp ≤ Cαγ
|α|
j σ

−1
j .

As a consequence, since (2.6) converges, the series
∑
j∈N0

Dαfj converges in Lp for all
|α| ≤ k. Let us denote its limit by fα and show that fα =Dαf (with the derivative taken
in the weak sense). It is clear that f0 = f since, by Proposition 2.2.1,

‖
J∑
j=0

fj − f ‖Lp = ‖f ∗φγ−1
J
− f ‖Lp ≤ Cσ−1

J → 0 as J→∞.

Finally, for all ϕ ∈ D and |α| ≤ k, we have∫
f (x)Dαϕ(x)dx = lim

J→∞

∫ J∑
j=0

fj(x)Dαϕ(x)dx

= lim
J→∞

(−1)|α|
∫ J∑

j=0

Dαfj(x)ϕ(x)dx

= (−1)|α|
∫
fα(x)ϕ(x)dx,

which is sufficient to conclude.
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We can now give necessary and sufficient conditions for a function to belong to
B
σ ,γ
p,q .

Theorem 2.3.2. Let p,q ∈ [1,∞], σ = (σj)j and γ = (γj)j be two admissible sequences such
that γ

1
> 1. Let the numbers k,n ∈N0 be such that

k < s(σ )s(γ)−1 ≤ s(σ )s(γ)−1 < n.

If f ∈ Bσ ,γp,q , then f ∈W k
p and for all |α| ≤ k,

(γ−|α|j σj sup
|h|≤γ−1

j

‖∆n−|α|h Dαf ‖Lp)j∈N ∈ `q,

which means that Dαf ∈ Bγ
−|α|σ ,γ
p,q .

Conversely, if f ∈W k
p satisfies

(γ−|α|j σj sup
|h|≤γ−1

j

‖∆n−|α|h Dαf ‖Lp)j ∈ `q ∀|α| = k,

then f ∈ Bσ ,γp,q .

Proof. Assume first that f ∈ Bσ ,γp,q ; using (2.2) and the convergence of (2.6) for 0 ≤ l ≤ k,
which follows from the hypothesis on k and n, it is clear from Proposition 2.3.1 that
we have f ∈W k

p . Keeping the same notations used in the proof of Proposition 2.3.1, let
us fix J ∈N; for all |h| ≤ γ−1

J , we have

‖∆n−|α|h Dαf ‖Lp

≤
J∑
j=0

C|h|n−|α| sup
|β|=n
‖Dβfj‖Lp +

∞∑
j=J+1

C|h|k−|α| sup
|β|=k
‖Dβfj‖Lp

≤
J∑
j=0

Cγ |α|−nJ sup
|β|=n
‖Dβfj‖Lp +

∞∑
j=J+1

Cγ |α|−kJ sup
|β|=k
‖Dβfj‖Lp .

For all |β| = k, we also have, as k < s(σ )s(γ)−1,

‖(
∞∑

j=J+1

γ−kJ σJ‖D
βfj‖Lp)J‖`q

≤ ‖(
∞∑

j=J+1

γkj−Jσ
−1
j−Jγ

−k
j σj‖D

βfj‖Lp)J‖`q

≤
∞∑
j=1

γkj σ
−1
j ‖(γ

−k
j+Jσj+J‖D

βfj+J‖Lp)J‖`q

≤ C
∞∑
j=1

γkj σ
−1
j <∞.
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Similarly, as s(σ )s(γ)−1 < n, for all |β| = n, we get

‖(
J∑
j=0

γ−nJ σJ‖Dβfj‖Lp)J‖`q <∞,

which allows us to conclude that

‖(γ−|α|J σJ sup
|h|≤γ−1

J

‖∆n−|α|h Dαf ‖Lp)J‖`q <∞.

For the converse, assume f ∈ W k
p ; the desired conclusion follows directly from

(2.2) and the fact that for all |h| ≤ γ−1
j , we have, using classical inequalities (see [16] for

example),

‖∆nhf ‖Lp ≤ C|h|
k sup
|α|=k
‖∆n−|α|h Dαf ‖Lp

≤ Cγ−kj sup
|α|=k
‖∆n−|α|h Dαf ‖Lp .

As a corollary, we have the following alternative definition of Bσ ,γp,q .

Corollary 2.3.3. Let p,q ∈ [1,∞], σ = (σj)j and γ = (γj)j be two admissible sequences such
that γ

1
> 1. Let the numbers k,n ∈N0 be such that

k < s(σ )s(γ)−1 ≤ s(σ )s(γ)−1 < n.

We have

B
σ ,γ
p,q = {f ∈W k

p : (γ−|α|j σj sup
|h|≤γ−1

j

‖∆n−|α|h Dαf ‖Lp)j ∈ `q ∀|α| = k}.

2.4 Generalized Besov spaces and polynomials

The following characterization is inspired by [78], where links between classical Besov
spaces and related spaces are explored.

Theorem 2.4.1. Let p,q ∈ [1,∞], σ = (σj)j and γ = (γj)j be two admissible sequences such
that γ

1
> 1. Let the number n ∈N be such that

n < s(σ )s(γ)−1 ≤ s(σ )s(γ)−1 < n+ 1;

the following assertions are equivalent:

1. The function f belongs to Bσ ,γp,q ;
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2. The function f belongs to W n
p and, for all h ∈Rd and almost every x ∈Rd , we have

f (x+ h) =
∑
|α|≤n

Dαf (x)
hα

|α|!
+Rn(x,h)

|h|n

n!
,

where

(σjγ
−n
j sup
|h|≤γ−1

j

‖Rn(·,h)‖Lp)j ∈ `q;

3. If, given j ∈N0, πj is a net of Rd made of cubes of diagonal γ−1
j , then for all j ∈N0,

there exists gπj such that

• the trace of gπj in each cube of πj is a polynomial of degree at most n,

• one has (σj‖f − gπj‖Lp)j ∈ `
q.

Proof. Let us first show that assertion 1 implies assertion 2. We know from Corol-
lary 2.3.3 that f ∈W n

p ; using the Taylor expansion with weak derivatives, we get

f (x+ h) =
∑
|α|≤n−1

Dαf (x)
hα

|α|!
+

∑
|α|=n

hα
∫ 1

0

(1− t)(n−1)

(n− 1)!
Dαf (x+ th)dt,

for all h ∈Rd and a.e. x ∈Rd . Of course, we have∫ 1

0

(1− t)(n−1)

(n− 1)!
Dαf (x+ th)dt

=
∫ 1

0

(1− t)(n−1)

(n− 1)!
∆1
thD

αf (x)dt +
∫ 1

0

(1− t)(n−1)

(n− 1)!
Dαf (x)dt

=
∫ 1

0

(1− t)(n−1)

(n− 1)!
∆1
thD

αf (x)dt +
Dαf (x)
n!

.

Let us set

Rn(x,h) :=


n!
|h|n

∑
|α|=n

hα
∫ 1

0

(1− t)(n−1)

(n− 1)!
∆1
thD

αf (x)dt if h , 0

0 otherwise.

Clearly, for all h ∈Rd and a.e. x ∈Rd ,

f (x+ h) =
∑
|α|≤n

Dαf (x)
hα

|α|!
+Rn(x,h)

|h|n

n!
.

Moreover, for any h , 0 such that |h| ≤ γ−1
j , Hölder’s inequality allows us to write

|Rn(x,h)| ≤ C
∑
|α|=n
‖∆1
·hD

αf (x)‖Lp([0,1])



28 Chapter 2. Generalized Besov spaces

and it follows that

‖Rn(·,h)‖Lp ≤ C
∑
|α|=n

(
∫
R
d

∫ 1

0
|∆1
thD

αf (x)|p dt dx)1/p

= C
∑
|α|=n

(
∫ 1

0

∫
R
d
|∆1
thD

αf (x)|p dxdt)1/p

= C
∑
|α|=n

(
∫ 1

0
‖∆1

thD
αf ‖pLp dt)

1/p

≤ C
∑
|α|=n

sup
|h|≤γ−1

j

‖∆1
hD

αf ‖Lp .

We can conclude this second point, using Corollary 2.3.3.

Now, let us show that assertion 2 implies 3. We fix j ∈N0 and let πj = (Ak)k be a
net of Rd with cubes of diagonal γ−1

j . Set for all k ∈N0,

Pk(x) =
1
L(Ak)

∫
Ak

∑
|α|≤n

Dαf (y)
(x − y)α

|α|!
dy.

Of course, Pk is a polynomial of degree less or equal than n. Let us then define

gπj : Rd →R
d x 7→ Pk(x) if x ∈ Ak (k ∈N0);

the trace of gπj in each cube of πj is a polynomial of degree at most n and if x ∈ Ak, then

Ak ⊂ B(x,γ−1
j ). Moreover, if q is the conjugate exponent of p, using Hölder’s inequality,

we get, for x ∈ Ak,

|f (x)− gπj (x)| ≤ 1
L(Ak)

∫
B(x,γ−1

j )
|f (x)−

∑
|α|≤n

Dαf (y)
(x − y)α

|α|!
|dy

≤ Cγdj

∫
B(0,γ−1

j )
|f (x)−

∑
|α|≤n

Dαf (x − h)
hα

|α|!
|dh

≤ Cγdj γ
−d/q
j ‖f (x)−

∑
|α|≤n

Dαf (x − ·) ·
α

|α|!
‖Lp(B(0,γ−1

j )).
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We thus can write

‖f − gπj‖Lp

≤ Cγdj γ
−d/q
j (

∫
B(0,γ−1

j )

∫
R
d
|f (x)−

∑
|α|≤n

Dαf (x − h)
hα

|α|!
|p dxdh)1/p

= Cγdj γ
−d/q
j (

∫
B(0,γ−1

j )

|h|np

(n!)p

∫
R
d
|Rn(x − h,h)|p dxdh)1/p

≤ Cγdj γ
−d( 1

p+ 1
q )

j γ−nj sup
|h|≤γ−1

j

‖Rn(·,h)‖Lp

= Cγ−nj sup
|h|≤γ−1

j

‖Rn(·,h)‖Lp ,

which procures the desired membership.

Finally, let us show that assertion 3 implies 1. As γ
1
> 1, there exists k1 ∈ N

such that for any x0 ∈ Rd and any |h| ≤ γ−1
j+k1

, we have x0 + kh ∈ B(x0,γ
−1
j /3
√
d) for all

k ∈ {0, . . . ,n+ 1}. Let us fix |h| ≤ γ−1
j+k1

and let πj = (Ak)k be a net of Rd made of cubes of

diagonal γ−1
j /3 such that each vertex is the vertex of 2d distinct cubes.

If l ∈N, then for all x ∈ Ak and for all l ∈ {0, . . . ,n+ 1}, x + lh ∈ Ck, where Ck is the
cube of diagonal γ−1

j whose center coincides with the center of Ak. Let π′j be a net of

R
d defined in the same way as above but made of cubes of diagonal γ−1

j that contain
Ck and let Pk be the polynomial that is the trace of gπ′j on Ck. As the degree of Pk is at
most n, we have

‖∆n+1
h f ‖pLp =

∑
k∈N0

‖∆n+1
h f ‖pLp(Ak) =

∑
k∈N0

‖∆n+1
h (f − Pk)‖

p
Lp(Ak)

=
∑
k∈N0

‖∆n+1
h (f − gπ′j )‖

p
Lp(Ak),

with the usual modification if p =∞. Let us remark that there exist m := 3d such nets
with cubes of diagonal γ−1

j whose centers are also center of some cube in πj ; let us
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denote by π′j,1, . . . ,π
′
j,m those nets. We have

‖∆n+1
h f ‖pLp ≤

∑
k∈N0

m∑
l=1

‖∆n+1
h (f − gπ′j,l )‖

p
Lp(Ak)

=
m∑
l=1

‖∆n+1
h (f − gπ′j,l )‖

p
Lp

≤ C
m∑
l=1

‖(f − gπ′j,l )‖
p
Lp .

Since we have

(σj‖(f − gπ′j,l )‖Lp)j ∈ `
q,

for all l ∈ {1, . . . ,m} by hypothesis, we can write

(σj sup
|h|≤γ−1

j

‖∆n+1
h f ‖Lp)j∈N ∈ `q,

as desired.

2.5 Generalized Besov spaces and convolution

The spaces of generalized smoothness Bσ ,γp,q can be defined in terms of convolutions.
The characterization relies on the following condition for a function to belong to

B
σ ,γ
p,q .

Proposition 2.5.1. Let p,q ∈ [1,∞], σ = (σj)j and γ = (γj)j be two admissible sequences
such that γ

1
> 1 and s(σ ) > 0. If f ∈ Lp is such that there exists φ ∈ D for which

(σj‖f ∗φγ−1
j
− f ‖Lp)j ∈ `q, (2.7)

then f ∈ Bσ ,γp,q .

Proof. Let n ∈N be such that

0 < s(σ )s(γ)−1 ≤ s(σ )s(γ)−1 < n.

As done before in the proof of Proposition 2.3.1 and having in mind that s(σ ) > 0, if
(2.7) holds, we can build a sequence (fj)j of infinitely differentiable functions belong-
ing to Lp such that

f =
∑
j∈N0

fj
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in Lp. It follows that, for any J ∈N0 and any |h| ≤ γ−1
J , we have

‖∆nhf ‖Lp ≤
J∑
j=0

‖∆nhfj‖Lp +
∞∑

j=J+1

‖∆nhfj‖Lp

≤ C
J∑
j=0

γ−nJ sup
|α|=n
‖Dαfj‖Lp +C

∞∑
j=J+1

‖fj‖Lp .

Since, by Proposition 2.2.2, we also know that (σjγ
−|α|
j ‖Dαfj‖Lp)j ∈ `q for all |α| ≤ n,

we can proceed as in the proof of Theorem 2.3.2, using the fact that s(σ ) > 0 and
s(σ )s(γ)−1 < n, to conclude that the sequence (σj sup|h|≤γ−1

j
‖∆nhf ‖Lp)j belongs to `q, and

hence, by (2.2), f ∈ Bσ ,γp,q .

From Propositions 2.2.1 and 2.5.1, we have the following corollary.

Corollary 2.5.2. Let p,q ∈ [1,∞], σ = (σj)j and γ = (γj)j be two admissible sequences such
that γ

1
> 1 and s(σ ) > 0; we have

B
σ ,γ
p,q = {f ∈ Lp : ∃φ ∈ D such that (σj‖f ∗φγ−1

j
− f ‖Lp)j ∈ `q}.

2.6 Generalized real interpolation methods

Let us first recall some notions of real interpolation, more details can be found in
[7, 96, 121]. In the sequel, we will consider two normed vector spaces A0 and A1

which are continuously embedded in a Hausdorff topological vector space V . As a
consequence, the spaces A0 ∩ A1 and A0 + A1 are also normed vector spaces. The J-
operator of interpolation is defined for t > 0 and a ∈ A0 ∩A1 by

J(t,a) := max{‖a‖A0
, t‖a‖A1

}.

If 0 < α < 1 and q ∈ [1,∞], we say that a belongs to the interpolation space [A0,A1]α,q,J
if there exists (uj)j∈Z ∈ A0 ∩A1 such that a =

∑
j∈Zuj , with convergence in A0 +A1 and

(2−αjJ(2j ,uj))j∈Z ∈ `q(Z).
On the other hand, the K-operator of interpolation is defined for t > 0 and

a ∈ A0 +A1 by

K(t,a) := inf{‖a0‖A0
+ t‖a1‖A1

: a = a0 + a1}.

Similarly, if 0 < α < 1 and q ∈ [1,∞], we say that a belongs to the interpolation space
[A0,A1]α,q,K if a ∈ A0 +A1 and (2−αjK(2j , a))j∈Z ∈ `q(Z).
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One can then show that, for all 0 < α < 1 and q ∈ [1,∞], these two spaces are
identical, and the resulting

[A0,A1]α,q := [A0,A1]α,q,J = [A0,A1]α,q,K

“lies” in between A0 ∩A1 and A0 +A1.
The Besov space Bsp,q is an interpolation space between the Sobolev spacesH t

p and
Hu
p with s = (1−α)t +αu: we have

Bsp,q = [H t
p,H

u
p ]α,q (2.8)

(see e.g. [7, 32, 125, 121]). In an aim to obtain such a characterization in the context
of generalized Besov spaces, we first have to define a generalized real interpolation
method in which admissible sequences play a role. Let us first introduce this method
before applying it to the generalized Besov spaces.

Definition 2.6.1. Let θ = (θj)j∈Z and ψ = (ψj)j∈Z be two sequences and let q ≥ 1. We

say that a belongs to the (J,q)-generalized interpolation space [A0,A1]θ,ψJ,q if there exists
(uj)j∈Z ∈ A0 ∩A1 such that a =

∑
j∈Zuj , with convergence in A0 +A1 and(
θjJ(ψj ,uj)

)
j
∈ `q(Z).

Definition 2.6.2. Let θ = (θj)j∈Z and ψ = (ψj)j∈Z be two sequences and let q ≥ 1. We

say that a belongs to the (K,q)-generalized interpolation space [A0,A1]θ,ψK,q if a ∈ A0 +A1

and (
θjK(ψj , a)

)
j
∈ `q(Z).

Remark 2.6.3. If one considers the admissible sequences (θj = 2−αj)j∈Z and
(ψj = 2j)j∈Z, the two preceding definitions correspond to the classical interpolation
spaces [A0,A1]α,J,q and [A0,A1]α,K,q respectively.

As for the usual case, such interpolation methods often coincide; this result is a
generalization of Proposition 11 in [88].

Theorem 2.6.4. Let r, s ∈R and σ , γ be two admissible sequences such that γ
1
> 1 and

r <min{s(σ )s(γ)−1, s(σ )s(γ)−1} ≤max{s(σ )s(γ)−1, s(σ )s(γ)−1} < s. (2.9)

We have
[A0,A1]θ,ψJ,q = [A0,A1]θ,ψK,q ,

where sequences θ = (θj)j∈Z and ψ = (ψj)j∈Z are defined by

θj :=


γ−r−j σ−j if −j ∈N0

γrj σ
−1
j if j ∈N
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and

ψj :=


γ
−(s−r)
−j if −j ∈N0

γ
(s−r)
j if j ∈N .

Proof. Consider f ∈ [A0,A1]θ,ψJ,q ; we know that there exists (fl)l∈Z ∈ A0 ∩A1 such that

f =
∑
l∈Z

fl ,

with convergence in A0 +A1 and

‖(θl max{‖fl‖A0
,ψl‖fl‖A1

})l‖`q(Z) <∞. (2.10)

Set, for any j ∈Z,

bj =
j−1∑
l=−∞

fl and cj =
∞∑
l=j

fl .

Because of (2.9) and (2.10), we have bj ∈ A0, cj ∈ A1 and f = bj + cj . Let us prove that

‖
(
θj(‖bj‖A0

+ψj‖cj‖A1
)
)
j
‖`q(Z) <∞.

We have

‖
(
θj(‖bj‖A0

+ψj‖cj‖A1
)
)
j
‖`q

≤ ‖(θj
j−1∑
l=−∞
‖fl‖A0

)j‖`q︸                  ︷︷                  ︸
(A)

+ ‖
(
θj(

∞∑
l=j

ψj‖fl‖A1
)
)
j
‖`q

︸                      ︷︷                      ︸
(B)

.

Using triangle inequality, we obtain

(A) ≤
0∑

l=−∞
‖(θjθ−1

j+l−1θj+l−1‖fl+j−1‖A0
)j‖`q

=
0∑

l=−∞

( 0∑
j=−∞

(
(
γ−j−l+1

γ−j
)r(
σ−j−l+1

σ−j
)−1θj+l−1‖fl+j−1‖A0

)q
+

1−l∑
j=1

(γrj σ
−1
j γr−j−l+1σ

−1
−j−l+1θj+l−1‖fl+j−1‖A0

)q

+
∞∑

j=2−l

(
(
γj

γj+l−1
)r(

σj
σj+l−1

)−1θj+l−1‖fl+j−1‖A0

)q) 1
q
,
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with the usual modification if q = ∞. If r ≥ 0, there exists ε > 0 such that
rs(γ)− s(σ ) + (r + 1)ε < 0 and (1.2) implies the existence of a constant C > 0 such that

(
γ−j−l+1

γ−j
)r(
σ−j−l+1

σ−j
)−1 ≤ γr1−lσ

−1
1−l ≤ C2(1−l)(rs(γ)−s(σ )+(r+1)ε).

If r < 0, we can choose ε > 0 such that rs(γ)− s(σ ) + (1− r)ε < 0 and find C > 0 such that

(
γ−j−l+1

γ−j
)r(
σ−j−l+1

σ−j
)−1 ≤ γr

1−l
σ−1

1−l ≤ C2(1−l)(rs(γ)−s(σ)+(1−r)ε).

Adapting this reasoning for the other terms, we can claim that there exists α < 0 such
that

(A) ≤ C
0∑

l=−∞
2α(1−l)‖(θj+l−1‖fl+j−1‖A0

)j‖`q <∞.

Similarly, there exists β > 0 such that

(B) ≤ C
0∑

l=−∞
2βl‖(θj−lψj−l‖fj−l‖A1

)j‖`q <∞.

Reciprocally, let us consider f ∈ [A0,A1]θ,ψK,q ; for any j ∈Z there exists bj ∈ A0 and
cj ∈ A1 such that f = bj + cj and

‖
(
θj(‖bj‖A0

+ψj‖cj‖A1
)
)
j
‖`q <∞. (2.11)

Let us remark that, because of (2.9) and (2.11) , b0 =
∑−1
j=−∞(bj+1−bj) with convergence

in A0 and c0 =
∑∞
j=0(cj − cj+1) with convergence in A1. Now, let us set, for any j ∈Z,

fj = bj+1 − bj = cj − cj+1.

Clearly, fj ∈ A0∩A1 for any j ∈Z and f = b0 +c0 =
∑
j∈Z fj , with convergence in A0 +A1.

Let us prove that
‖(θj max{‖fj‖A0

,ψj‖fj‖A1
})j‖`q <∞.

We have, as σ and γ are admissible,

‖(θj max{‖fj‖A0
,ψj‖fj‖A1

})j‖`q ≤ ‖(θj(‖fj‖A0
+ψj‖fj‖A1

)j‖lq
= ‖(θj(‖bj+1 − bj‖A0

+ψj‖cj − cj+1‖A1
)j‖`q

≤ C‖
(
θj(‖bj‖A0

+ψj‖cj‖A1
)
)
j
‖`q

<∞,

which allows to conclude.

Definition 2.6.5. Given two admissible sequences σ and γ with γ
1
> 1, let θ and ψ be

the sequences defined as in Theorem 2.6.4 for some r, s as in (2.9); we define the space
[A0,A1]σ ,γq as follows:

[A0,A1]σ ,γq := [A0,A1]θ,ψJ,q = [A0,A1]θ,ψK,q .
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2.7 Generalized interpolation of Sobolev spaces

Let us show that the generalized Besov spaces Bσ ,γp,q can be defined from the usual
Sobolev spaces W s

p or H s
p as generalized interpolation spaces, as it is the case with the

usual Besov spaces Bsp,q and the classical real interpolation theory. Let us recall that us
is the tempered distribution defined by

F us = (1 + | · |2)s/2

and that ‖ · ∗us‖p is a norm on H s
p.

We need some auxiliary results. Roughly speaking, we aim at showing that there
exists a constant C > 0 (depending on s) for which, for any j,

C−1‖∆γ ,Jj f ‖H s
p
≤ γsj ‖∆

γ ,J
j f ‖Lp ≤ C‖f ‖H s

p
.

Lemma 2.7.1. Let γ be an admissible sequence such that γ
1
> 1; given s ∈ R and N ∈N0,

there exists a constant Cs,N > 0 such that for all j ∈N0,

|∆γ,Jj us| ≤ Cs,Nγd+s
j (1 +γj | · |)−N .

Proof. Let us fix j ≥ Jk0, the proof being similar for 0 ≤ j ≤ Jk0 − 1. As
∆
γ ,J
j us = F −1(ϕγ,Jj F us), we get that

(2π)d |∆γ ,Jj us| ≤
∫
R
d
|ρ(γ−1

j |ξ |)− ρ(γ−1
j−Jk0
|ξ |)|(1 + |ξ |2)s/2dξ

= γdj

∫
R
d
|ρ(|y|)− ρ(γ−1

j−Jk0
γj |y|)|(1 +γ2

j |y|
2)s/2dy.

Since the support of ρ(| · |)− ρ(γ−1
j−Jk0

γj | · |) is included in Ω defined by

Ω = B(0,2) \B(0,γ−1
Jk0

),

we have

(2π)d |∆γ ,Jj us| ≤ γd+s
j

∫
Ω

(|ρ(|y|)|+ |ρ(γ
Jk0
|y|)|)( 1

γ2
j

+ |y|2)s/2dy

and, as 0 < 1/γ2
j ≤ 1/γ2

0 , this implies the existence of a constant Cs,0 > 0 such that

|∆γ ,Jj us(x)| ≤ Cs,0γd+s
j .

Now, if α ∈Nd
0 is a multi-index such that |α| ≥ 1, then

(2π)d |xα∆γ ,Jj us(x)| ≤ (2π)d
√
d max

1≤k≤d
|x|α|k ∆

γ ,J
j us(x)|

≤
√
d max

1≤k≤d

∫
R
d
|D |α|k (ϕγ ,Jj (ξ)(1 + |ξ |2)s/2)|dξ
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and similarly we get

|xα∆γ ,Jj us(x)| ≤ Cs,|α|γ
d+s−|α|
j ,

for such an α, which is sufficient to conclude.

Remark 2.7.2. Using the same proof as in Lemma 2.7.1, one can obtain the following
result: for all s ∈R and N ∈N0 there exists a constant �Cs,N > 0 such that for all j ∈N0,

|˜∆γ ,Jj us| ≤�Cs,Nγd+s
j (1 +γj | · |)−N .

Proposition 2.7.3. Let s ∈ R and p ∈ [1,∞]; if f ∈ H s
p then there exists a constant Cs > 0

such that

‖∆γ ,Jj f ‖Lp ≤ Csγ−sj ‖f ‖H s
p

(j ∈N0),

where the notations defined by (2.1) have been used.

Proof. As f = u−s ∗us ∗ f , we get

∆
γ ,J
j f = (∆γ ,Jj u−s) ∗ (us ∗ f ).

It follows from the Young’s inequality and Lemma 2.7.1 that

‖∆γ ,Jj f ‖Lp ≤ ‖∆
γ ,J
j u−s‖1‖us ∗ f ‖Lp

≤ Csγ−sj ‖f ‖H s
p
,

for some constant Cs, which is the desired result.

Proposition 2.7.4. Let s ∈R, p ∈ [1,∞] and f ∈ S ′. If, using the notations defined by (2.1),
∆
γ,J
j f ∈ Lp (for some j ∈N0), then there exists a constant Cs > 0 such that

‖∆γ ,Jj f ‖H s
p
≤ Csγsj ‖∆

γ ,J
j f ‖Lp .

Proof. From ∆̃
γ ,J
j ∆

γ ,J
j f = cϕ∆

γ ,J
j f , we get

F −1(F usF ∆
γ ,J
j f ) =

1
cϕ
F −1

(
F usF (∆̃γ ,Jj ∆

γ ,J
j f )

)
=

1
cϕ
F −1(ϕ̃γ ,Jj F usF ∆

γ ,J
j f )

=
1
cϕ

˜

∆
γ ,J
j us ∗∆

γ ,J
j f .

It follows here again from the Young’s inequality and Remark 2.7.2 that

‖∆γ ,Jj f ‖H s
p
≤ 1
cϕ
‖˜∆γ ,Jj us‖1‖∆

γ ,J
j f ‖Lp

≤ Csγsj ‖∆
γ ,J
j f ‖Lp ,

for a constant Cs > 0.
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We are now able to define the generalized Besov spaces Bσ ,γp,q from the Sobolev
spaces using generalized interpolation.

Theorem 2.7.5. Let p,q ∈ [1,∞], r, s ∈ R, and σ , γ be two admissible sequences such that
γ

1
> 1 and

r <min{s(σ )s(γ)−1, s(σ )s(γ)−1} ≤max{s(σ )s(γ)−1, s(σ )s(γ)−1} < s; (2.12)

we have

B
σ ,γ
p,q = [H r

p,H
s
p]σ ,γq .

Proof. Let θ and ψ be the sequences defined as in Theorem 2.6.4.
Let us first suppose that f ∈ Bσ ,γp,q and set

uj =

 ∆
γ ,J
−j f if −j ∈N0

0 if j ∈N.

From Proposition 2.7.4, for any t ∈ {r, s} and j ∈ −N0, there exists a constant Ct such
that

‖uj‖H t
p
≤ Ctγ t−j‖∆

γ ,J
−j f ‖Lp ,

which implies uj ∈H s
p. Now, since (σk‖∆

γ ,J
k f ‖Lp)k∈N0

belongs to `q and (2.12) holds, we
have f =

∑
j∈Zuj , with convergence in H r

p. Moreover, for all j belonging to −N0, we get

θj‖uj‖H r
p
≤ Crσ−j‖∆

γ ,J
−j f ‖Lp and θjψj‖uj‖H s

p
≤ Csσ−j‖∆

γ ,J
−j f ‖Lp .

From this, we can conclude that
(
θjJ(ψj ,uj)

)
j∈Z

belongs to `q(Z) and thus f ∈ [H r
p,H

s
p]θ,ψJ,q .

Let us now consider f ∈ [H r
p,H

s
p]θ,ψJ,q ; there exists (fl)l∈Z ∈H s

p such that f =
∑
l∈Z fl

in H r
p and

(
θlJ(ψl , fl)

)
l∈Z

belongs to `q(Z). Now, for all j ∈N0, Proposition 2.7.3 allows
us to write

‖∆γ ,Jj f ‖Lp ≤
∑
l∈Z
‖∆γ ,Jj fl‖Lp

≤ Cr
−j−1∑
l=−∞

γ−rj ‖fl‖H r
p

+Cs
0∑

l=−j
γ−sj ‖fl‖H s

p
+Cs

∞∑
l=1

γ−sj ‖fl‖H s
p
.
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It follows that

‖(σj‖∆
γ ,J
j f ‖Lp)j‖`q ≤ C‖(

−j−1∑
l=−∞

σjγ
−r
j γ

r
−lσ
−1
−l θl‖fl‖H r

p
)j‖`q

+C‖(
0∑

l=−j
σjγ

−s
j γ

s
−lσ
−1
−l θlψl‖fl‖H s

p
)j‖`q

+C‖(
∞∑
l=1

σjγ
−s
j γ

−s
l σlθlψl‖fl‖H s

p
)j‖`q .

If r ≥ 0, there exists ε > 0 such that α = rs(γ)− s(σ ) + (r + 1)ε < 0 and (1.2) implies the
existence of a constant C > 0 such that

(
γ−l
γj

)r
σj
σ−l
≤ γr−l−jσ

−1
−l−j ≤ C2(−l−j)α.

Using the triangle inequality, we get

‖(
−j−1∑
l=−∞

σjγ
−r
j γ

r
−lσ
−1
−l θl‖fl‖H r

p
)j‖`q ≤ C

−1∑
l=−∞

2−αl‖(θl−j‖fl−j‖H r
p
)j‖`q

<∞.

If r < 0, we can choose ε > 0 such that β = rs(γ)− s(σ ) + (1− r)ε < 0 and find C > 0 such
that

(
γ−l
γj

)r
σj
σ−l
≤ γr

−l−j
σ−1
−l−j ≤ C2(−l−j)β .

Again, we have

‖(
−j−1∑
l=−∞

σjγ
−r
j γ

r
−lσ
−1
−l θl‖fl‖H r

p
)j‖`q <∞.

The same reasoning can be applied to the other terms in order to obtain

‖(σj‖∆
γ ,J
j f ‖Lp)j‖`q <∞,

which means that f belongs to Bσ,γp,q .

If the admissible sequence γ is the usual sequence (2j)j , (2.12) can be written in
a simpler way, which is given by Corollary 2.7.6.

Corollary 2.7.6. Let p,q ∈ [1,∞], r, s ∈R and σ be an admissible sequence such that

r < s(σ ) ≤ s(σ ) < s; (2.13)

we have

Bσp,q = [H r
p,H

s
p]σ ,1q .
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The classical Besov spaces can be defined by interpolating the Sobolev spaces W s
p

even when p = 1 or p =∞. Let us show that it is also the case in the generalized version.

Theorem 2.7.7. Let p,q ∈ [1,∞], σ and γ be two admissible sequences such that γ
1
> 1. If

k,n ∈N0 are two numbers such that

k < s(σ )s(γ)−1 ≤ s(σ )s(γ)−1 < n,

we have

B
σ ,γ
p,q = [W k

p ,W
n
p ]σ ,γq .

Proof. Let us first suppose that f ∈ Bσ ,γp,q ; again, as in the proof of Proposition 2.3.1,
there exists a sequence (fj)j of infinitely differentiable functions belonging to Lp such
that

Dαf =
∑
j∈N0

Dαfj

in Lp for all |α| ≤ k. Moreover, we have (σjγ
−|α|
j ‖Dαfj‖Lp)j ∈ `q for all |α| ≤ n. Let us then

define the sequence

uj :=


f−j if − j ∈N0

0 if j ∈N.

We can write f =
∑
j∈Zuj (with convergence in W k

p ); moreover, for all j ∈ −N0, we have

θj‖uj‖W k
p

=
∑
|α|≤k

γ−k−j σ−j‖D
αf−j‖Lp

≤ C
∑
|α|≤k

γ−|α|−j σ−j‖D
αf−j‖Lp

and

θjψj‖uj‖W n
p

=
∑
|α|≤n

γ−n−j σ−j‖D
αf−j‖Lp

≤ C
∑
|α|≤n

γ−|α|−j σ−j‖D
αf−j‖Lp ,

which implies (θjJ(uj ,ψj))j ∈ `q and thus f ∈ [W k
p ,W

n
p ]σ ,γq .

Now, let f ∈ [W k
p ,W

n
p ]σ ,γq ; there exists a sequence of functions (ul)l∈Z in W n

p such
that f =

∑
l∈Zuj in W k

p and (θlJ(uj ,ψl))l ∈ `q. It follows that Dαf =
∑
l∈ZD

αul in Lp for
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all |α| ≤ k. Let us fix |h| ≤ γ−1
j and |α| = k; we have

‖∆n−kh Dαf ‖Lp ≤
∑
l∈Z
‖∆n−kh Dαul‖Lp

≤ C
−j−1∑
l=−∞
‖Dαul‖Lp +C

∞∑
l=−j

γk−nj sup
|β|=n
‖Dβul‖Lp

≤ C
−j−1∑
l=−∞
‖ul‖W k

p
+C

∞∑
l=−j

γk−nj ‖ul‖W n
p
.

It follows, using the same arguments as before, that

(γ−kj σj sup
|h|≤γ−1

j

‖∆n−|α|h Dαf ‖Lp)j ∈ `q ∀|α| = k,

which implies f ∈ Bσ ,γp,q , by Corollary 2.3.3.



3To a general framework for the WLM

The Hölderian regularity can be seen as a notion that fills gaps between being “n times
continuously differentiable” and “n + 1 times continuously differentiable”. More pre-
cisely, a function f from L

p
loc(Rd) belongs to the space T pu (x0) (with x0 ∈ Rd , p ∈ [1,∞]

and u > 0) if there exist a polynomial Px0
of degree strictly less than u and a positive

constant C such that
r−u‖f − Px0

‖Lp(B(x0,r)) ≤ C, (3.1)

for r > 0, (see [26]); T∞u (x0) is called a Hölder space (and is usually denoted by Λu(x0)
[86]). These spaces are embedded and the Hölder exponent of f at x0 is defined as

h∞(x0) := sup{u > 0 : f ∈ T∞u (x0)}. (3.2)

The discrete wavelet transform provides a useful tool for studying Hölder spaces,
since the condition on f at x0 can be transposed to a condition on some wavelet coeffi-
cients near x0 (for more details, see [70, 77] for example), the so-called wavelet leaders
(see Definition 3.3.1 with p =∞). Indeed, if a function belongs to a space T∞u (x0), the
wavelet leaders of x0 satisfy an inequality somehow similar to (3.1). Conversely, if this
condition on the wavelet leaders is met, the corresponding function belongs to a space
close to T∞u (x0). More precisely, in this case one has

θ−1
u (r)‖f − Px0

‖L∞(B(x0,r)) ≤ C, (3.3)

with θu(r) = ru | ln(r)|. In other words, f belongs to T∞u (x0) up to a logarithmic correc-
tion. If such results hold, we will say that we have a quasi-characterization of the space
(T∞u (x0) in this case). Such a quasi-characterization provides an exact characterization
of the Hölderian regularity, i.e. of the Hölder exponent h∞(x0).

This notion of regularity can be generalized in several ways. First, in the same
spirit as what has been done for Besov spaces in the previous chapter, one can replace
the expression r−u appearing in (3.1) with a general function θu(r) satisfying some
requirements, as in inequality (3.3). By doing so, one defines spaces that are able to
make subtle distinctions between functions associated to the same Hölder exponent,
giving tools for detecting the presence of a Brownian motion in the signal. Such spaces
have been studied in [90], where a quasi-characterization is obtained. Another idea
consists in replacing the Hölder space appearing in (3.2) with a general T pu space, in
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order to study non-locally bounded functions (see [73] for such an application). This
approach has been undertaken in [71], where generalized wavelet leaders, called p-
leaders, are introduced. However, this definition is not a direct generalization of the
usual leaders and fails to quasi-characterize the T pu (x0) spaces, although they still can
be used to study the corresponding generalized Hölder exponent.

The first part of this chapter consists in combining these two points of view, by
considering the spaces of functions satisfying the condition

θ−1
u (r)‖f − Px0

‖Lp(B(x0,r)) ≤ C. (3.4)

Indeed, we consider an even larger class of spaces called here spaces of generalized
pointwise smoothness (see Definition 3.1.1). Their functional properties, up to slightly
different definitions (see Remark 5.1.3), will be studied in Chapter 5 while links with
partial differential equations will be explored in Chapter 6. They correspond in some
way to a pointwise version of the generalized Besov spaces introduced in the preceding
chapter. We obtain a quasi-characterization of such spaces by introducing a variant
definition of the p-leaders that naturally extends the classical case where p =∞.

The second part of this chapter aims at providing a multifractal formalism suited
for the spaces introduced here. A multifractal formalism is an empirical method that
allows to estimate the quantity

dimH{x0 ∈Rd : hp(x0) = h},

where dimH denotes the Hausdorff dimension, see Section 1.5 for more details, and
hp(x0) is the generalized Hölder exponent obtained by replacing T∞u (x0) with T

p
u (x0)

in (3.2). Usually, one requires such a method to be valid for a large class of func-
tions. Such a multifractal formalism was first presented in [109] in the context of the
analysis of fully developed turbulence velocity data and it can be shown that, from a
prevalence point of view (see Section 1.6), almost every function belonging to a given
Besov space satisfies this formalism. We aim at providing here a multifractal formal-
ism for the exponents defined from the T σp,q spaces (see (3.16)), thus generalizing the
wavelet leaders method [70, 75]. We show here that, from the prevalence point of view,
almost every function belonging to a space of generalized smoothness satisfies a mul-
tifractal formalism derived from the formalism relying on the p-wavelet leaders. By
doing so, we show that the generalized Besov spaces provide a natural framework for
supporting this theory, reinforcing the idea that the spaces of generalized smoothness
are a natural pointwise version of these spaces. To achieve this goal, we will mainly use
the wavelet representation of generalized Besov spaces (see [2]): if σ is an admissible
sequence and p,q ∈ [1,∞], a tempered distribution f belongs to Bσp,q if and on only if
the sequence (Ck)k defined by (1.11) belongs to `q and if

(σj2
−j dp ‖(cλ)λ∈Λj

‖`p)j ∈ `q. (3.5)
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This chapter can be seen as a generalization of the ideas and techniques employed
in [70, 75, 50, 90]. Results obtained here have been submitted for publication in [98].

Contents
3.1 Generalized spaces of pointwise smoothness . . . . . . . . . . . . . . 43

3.2 Independence of the polynomial from the scale . . . . . . . . . . . . . 44

3.3 Spaces of generalized smoothness and wavelets . . . . . . . . . . . . . 47

Compactly supported wavelets . . . . . . . . . . . . . . . . . . . . . . 48

Schwartz wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 A multifractal formalism associated to the generalized Besov spaces . 58

3.1 Generalized spaces of pointwise smoothness

Definition 3.1.1. Let p,q ∈ [1,∞], σ = (σj)j be an admissible sequence such that
s(σ ) > −dp , f ∈ Lploc and x0 ∈Rd ; f belongs to T σp,q(x0) whenever1

(σj2
jd/p sup

|h|≤2−j
‖∆bs(σ )c+1

h f ‖Lp(Bh(x0,2−j )))j ∈ `
q,

where, given r > 0, if s(σ ) > 0, we recall that

Bh(x0, r) = {x : [x,x+ (bs(σ )c+ 1)h] ⊂ B(x0, r)},

and Bh(x0, r) = B(x0, r) otherwise.

It is easy to check that T σ∞,∞(x0) is the generalized Hölder space Λσ (x0) intro-
duced in [90]. These spaces can also be seen as a generalization of the spaces T pu (x0)
introduced by Calderón and Zygmund in [26]. This aspect will be studied in details
in Chapters 5 and 6. Let us also mention that we can equip T σp,q(x0) with the natural
norm

‖ · ‖T σp,q(x0) : f 7→ ‖f ‖Lp(B(x0,1)) + ‖(σj2jd/p sup
|h|≤2−j

‖∆bs(σ )c+1
h f ‖Lp(Bh(x0,2−j )))j‖`q

and, from the completeness of Lp spaces, (T σp,q(x0),‖ · ‖T σp,q(x0)) is a Banach space. Other
functional properties of the pointwise spaces of generalized smoothness will be ex-
plored in Chapter 5.

A comparison between Definitions 3.1.1 and (2.2), taking into account Remark
2.1.4 allows to declare the spaces T σp,q(x0) as the pointwise Besov spaces, as the Lp norm
is now taken on some balls around the point x0 instead of the whole space R

d . Only
1We recall that, if n ≤ 0, ∆nhf = f .
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the factor 2jd/p differs, it corresponds to the inverse of the Lp norm of the characteristic
function of B(x0,2−j). It is introduced in order that the measure of the ball does not
interfere in the regularity measurement.

We refer to Section 4.3 for examples of functions belonging to T σp,q(x0) spaces,
once all the necessary tools to discuss them properly will be available.

Let us give an alternative definition of T σp,q(x0).

Proposition 3.1.2. Let p,q ∈ [1,∞], f ∈ Lploc, x0 ∈ R
d and σ be an admissible sequence

such that s(σ ) > 0. We have f ∈ T σp,q(x0) if and only if there exists a sequence of polynomials
(Pj,x0

)j of degree less than or equal to bs(σ )c such that

(σj2
jd/p‖f − Pj,x0

‖Lp(B(x0,2−j )))j ∈ `
q. (3.6)

Proof. The necessity of the condition being a consequence of the Whitney’s theorem,
let us check the sufficiency. Let j ∈ N; for any polynomial P of degree less than or
equal to n := bs(σ )c, we have, given x,h ∈Rd ,

|∆n+1
h f (x)| ≤ |∆n+1

h

(
f (x)− P (x)

)
| ≤ Cn

n+1∑
k=0

|f (x+ kh)− P (x+ kh)|,

for a constant Cn. Therefore, for |h| ≤ 2−j and x ∈ Bh(x0,2−j), we get

‖∆n+1
h f ‖Lp(Bh(x0,2−j )) ≤ Cn(n+ 2)‖f − P ‖Lp(B(x0,2−j )),

hence the conclusion.

3.2 Independence of the polynomial from the scale

Under some additional assumptions on the admissible sequence σ , the sequence of
polynomials (Pj,x0

)j appearing in inequality (3.6) can be replaced by a unique polyno-
mial Px0

independent from the scale j: Px0
= Pj,x0

.
We first need some preliminary results. Let us first state a somehow standard re-

sult about inequalities on polynomials; we sketch a proof for the sake of completeness.

Lemma 3.2.1. Given x0 ∈ Rd , a radius r > 0, p ∈ (0,∞] and a maximum degree n, there
exist two constants C,C′ > 0 only depending on p, d and n such that, for any polynomial P
of degree less than or equal to n,

‖DαP ‖Lp(B(x0,r)) ≤ Cr
−|α|‖P ‖Lp(B(x0,r)),

for any multi-index α and

sup
x∈B(x0,r)

|P (x)| ≤ C′rd/p‖P ‖Lp(B(x0,r)).



3.2. Independence of the polynomial from the scale 45

Proof. For the first inequality, let us recall that the Markov inequality (see e.g. [38])
affirms that, given a convex bounded set E of Rd , there exists a constant CE,p > 0 such
that for any n ∈N and k ∈ {1, . . . ,d}, we have

‖DkP ‖Lp(E) ≤ CE,p(n+ 1)2‖P ‖Lp(E),

for any polynomial P of degree less than or equal to n. As a consequence, given r > 0,
there exists a constant C > 0 depending on n and p such that, for any multi-index α,
we have

‖DαP ‖Lp(B(x0,r)) ≤ Cr
−|α|‖P ‖Lp(B(x0,r)).

That being done, using Sobolev’s inequality, we can now write

sup
x∈B(x0,r)

|P (x)| ≤ C′rd/p‖P ‖Lp(B(x0,r)),

for a constant C′ > 0 which only depends on n and p.

The main theorem of this section relies on the following lemma.

Lemma 3.2.2. Let p,q ∈ [1,∞], f ∈ Lploc, x0 ∈Rd and σ be an admissible sequence such that
0 ≤ n := bs(σ )c < s(σ ). If f belongs to T σp,q(x0), the sequence of polynomials (Pj,x0

)j satisfying
(3.6) is such that, given a multi-index α for which |α| ≤ n, there exists a sequence ξ ∈ `q
satisfying

2−|α|jσj |Dα(Pj,x0
− Pk,x0

)(x0)| ≤ ξj ,

whenever j < k.
In particular, under the same hypothesis, the sequence (DαPj,x0

(x0))j is Cauchy and its
limit does not depend on the chosen sequence of polynomials satisfying (3.6).

Proof. Let ε ∈ `q be such that

σj2
jd/p‖f − Pj,x0

‖Lp(B(x0,2−j )) ≤ εj ,

for any j ∈ N. Given a multi-index α satisfying the hypothesis and j ∈ N, we know
that there exists a constant C > 0 such that

‖Dα(Pj,x0
− Pj+1,x0

)‖Lp(B(x0,2−(j+1)))

≤ C2|α|(j+1)‖Pj,x0
− Pj+1,x0

‖Lp(B(x0,2−(j+1)))

≤ C2|α|(j+1)‖Pj,x0
− f ‖Lp(B(x0,2−(j+1))) + ‖f − Pj+1,x0

‖Lp(B(x0,2−(j+1)))

≤ C2|α|(j+1)(εj2
jd/pσ−1

j + εj+12(j+1)d/pσ−1
j+1),

which implies, from what we have obtained so far,

|Dα(Pj,x0
− Pj+1,x0

)(x0)| ≤ C′(εj + εj+1)2|α|jσ−1
j .
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For j < k, Lemma 1.2.2 then implies

|Dα(Pj,x0
− Pk,x0

)(x0)| ≤ ξj2|α|jσ−1
j ,

for the appropriate sequence ξ ∈ `q.
It remains to show that the limit Dαf (x0) of the sequence (DαPj,x0

(x0))j is inde-
pendent of the peculiar choice of the sequence (DαPj,x0

(x0))j ; let (Qj,x0
)j be another

sequence of polynomials satisfying (3.6). With the same reasoning as before, we get

|Dα(Pj,x0
−Qj,x0

)(x0)| ≤ C2|α|jσ−1
j ,

for j large enough, which is sufficient to assert that

|DαQj,x0
(x0)−Dαf (x0)|

tends to zero as j tends to infinity.

We are now able to show the existence of the unique polynomial Px0
introduced

in the beginning of this section.

Theorem 3.2.3. Let p,q ∈ [1,∞], f ∈ Lploc, x0 ∈ Rd and σ be an admissible sequence such
that 0 ≤ n := bs(σ )c < s(σ ). The following assertions are equivalent:

• f belongs to T σp,q(x0);

• there exists a unique polynomial Px0
of degree less than or equal to n such that

(σj2
jd/p‖f − Px0

‖Lp(B(x0,2−j )))j ∈ `
q. (3.7)

Proof. We need to prove that the first assertion implies the second one. As f belongs
to T σp,q(x0), there exists a sequence of polynomials (Pj,x0

)j of degree less than or equal
to n such that

(σj2
jd/p‖f − Pj,x0

‖Lp(B(x0,2−j )))j ∈ `
q.

Given a multi-index α satisfying |α| ≤ n, let us set

Dαf (x0) := lim
j
DαPj,x0

(x0)

and define the polynomial

Px0
: x 7→

∑
|α|≤n

Dαf (x0)
(x − x0)α

|α|!
. (3.8)

One directly gets

‖Pj,x0
− Px0

‖Lp(B(x0,2−j )) ≤
∑
|α|≤n
|DαPj,x0

(x0)−Dαf (x0)|2−j(|α|+d/p).
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That being said, we know from the previous lemma that, given α, there exists a se-
quence ξ(α) ∈ `q such that

|DαPj,x0
(x0)−Dαf (x0)| ≤ ξ(α)

j 2|α|jσ−1
j .

We thus have
(σj2

jd/p‖Pj,x0
− Px0

‖Lp(B(x0,2−j )))j ∈ `
q,

which proves the first part of the theorem.
Concerning the uniqueness of the polynomial, the idea of the proof is the same as

the one given in [26] for the spaces T pu (x0). Let P and Q be two polynomials satisfying
a relation of type (3.7); one directly gets P (x0) =Q(x0). That being said, let us define

L :=
∑
|α|=m

cα(· − x0)α,

where m is the lowest degree of P −Q, with

cα :=
Dα(P −Q)(x0)

|α|!
.

If m < sup{l ∈Z : l < s(σ )}, one can write

‖L‖L1(B(x0,1)) ≤ C(2−mjσ−1
j + 2−j),

for a constant C, which means L = 0. For m = sup{l ∈ Z : l < s(σ )}, we simply get
‖L‖L1(B(x0,1)) ≤ C2−mjσ−1

j , which implies L = P −Q = 0.

Remark 3.2.4. In the previous result, if σ is the usual sequence u with u ∈ N, it is
easy to check that the polynomial Px0

is unique if one requires its degree to be strictly
smaller than u. This requirement does not modify the functional spaces as, if u ∈N,
for any j ∈N

2j
d
p ‖(x − x0)u‖Lp(B(x0,2−j )) = 2−ju .

3.3 Spaces of generalized smoothness and wavelets

Let now us focus on the quasi-characterization of T σp,q(x0) spaces. As for the wavelet-
based study of pointwise Hölder spaces, we will use wavelet leaders [70]. However, as
we work here with Lp norms, we need to introduce a generalized version.

Definition 3.3.1. Given a dyadic cube λ ∈ Λj at scale j, the p-wavelet leader of λ
(p ∈ [1,∞]) is defined by

d
p
λ = sup

j ′≥j
(

∑
λ′∈Λj′ ,λ′⊂λ

(2(j−j ′)d/p|cλ′ |)p)1/p.

Given x0 ∈Rd , we set
d
p
j (x0) = sup

λ∈3λj (x0)
d
p
λ.
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Remark 3.3.2. The definition of the wavelet leaders given in this thesis is different
from the one presented in [94]. The quantities introduced here are easier to work with
and naturally generalize the usual wavelet leaders dj(x0) introduced in [70], since we
have dj(x0) = d∞j (x0).

Compactly supported wavelets

In this section, we work with compactly supported wavelets of regularity r > s(σ ) (see
[36]). In this context, j0 is a natural number such that the support of each wavelet
is contained in B(0,2j0). We will need the following definition (see [103]), ensuring a
minimum regularity condition for a function.

Definition 3.3.3. Given x0 ∈ Rd , a function f defined on R
d belongs to the Xu space

Ẋsp,q(x0) (s ∈R, p,q ∈ [1,∞]) if there exists a constant C∗ > 0 such that

(
∑

|k−2jx0|<C∗2j
(2(s−d/p)j |c

λ
(i)
j,k
|)p)1/p ∈ `q.

Theorem 3.3.4. If f belongs to the space T σp,q(x0), then

(σjd
p
j (x0))j ∈ `q. (3.9)

Proof. Let ε ∈ `q and (Pj)j be a sequence of polynomials of degree less than or equal to
s(σ ) such that

σj2
jd/p‖f − Pj‖Lp(B(x0,2−j )) ≤ εj ,

for all j ∈ N. Let us choose j1 ∈ N such that 2
√
d + 2j0 ≤ 2j1 and fix n ≥ j1. For

λ
(i)
j,k ⊂ 3λn(x0), we have

| k
2j
− x0| ≤ 2

√
d2−n.

By setting
Λj,n := {λ(i)

j,k ∈Λj : |k − 2jx0| ≤ 2
√
d2j−n},

for λ ∈ 3λn(x0), we can write∑
λ′∈Λj ,λ′⊂λ

2(n−j)d |cλ′ |p ≤
∑

λ′∈Λj,n

2(n−j)d |cλ′ |p,

whenever p ,∞. In this case, let us set

sn,j :=
∑

λ′∈Λj,n

|cλ′ |p

and define
gn,j :=

∑
λ′∈Λj,n

|cλ′ |p−1 sign(cλ′ )ψλ′ .
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One easily checks that the support of gn,j is contained in B(x0,2j1−n) and

sn,j = 2jd〈f ,gn,j〉 = 2jd
∫
B(x0,2j1−n)

(f (x)− Pn−j1(x))gn,j(x)dx,

so that, if we denote by q the conjugate exponent of p,

sn,j ≤ 2jd‖f − Pn−j1‖Lp(B(x0,2j1−n)) ‖gn,j‖Lq .

To estimate ‖gn,j‖Lq , let us remark that there exists a constant C∗ ∈N that depends
neither on λ nor on the scale j such that the cardinal of

{λ′ ∈Λj : supp(ψλ)∩ supp(ψλ′ ) , ∅}

is bounded by C∗. Therefore, given j ∈ N, we can choose a partition E1, . . . ,EC∗ of Λj

such that λ′,λ′′ ∈ Em (1 ≤m ≤ C∗) and

supp(ψλ′ )∩ supp(ψλ′′ ) , ∅

implies λ′ = λ′′. For p , 1, we easily get

|gn,j |q ≤ C
q
∗

∑
λ′∈Λj,n

|cλ′ |p|ψλ′ |q

and thus
‖gn,j‖Lq ≤ C∗2−jd/qs

1/q
n,j max

1≤i<2d
‖ψ(i)‖Lq . (3.10)

If p = 1, one easily checks that

‖gn,j‖L∞ ≤ C∗2−jd/q max
1≤i<2d

‖ψ(i)‖L∞ ,

so that (3.10) is still satisfied in this case.
That being done, since we have

s
1/p
n,j ≤ Cεn−j12(j−n)d/pσ−1

n ,

for a constant C > 0, we get∑
λ′∈Λj ,λ′⊂λ

2(n−j)d |cλ′ |p ≤ 2(n−j)dsn,j ≤ Cε
p
n−j1σ

−p
n ,

which is sufficient to conclude in the case p ,∞.
Finally, let us consider the case p = ∞. The conclusion is straightforward since,

given λ ⊂ 3λn(x0), one easily checks that, using an analogous reasoning, we can write

|cλ| ≤ Cεn−j1σn,

for a constant C > 0.



50 Chapter 3. To a general framework for the WLM

For the sufficient condition, we need the following definition.

Definition 3.3.5. Let p,q ∈ [1,∞], x0 ∈ R
d and f be a function from L

p
loc; if σ is an

admissible sequence such that 2−jd/pσ−1
j tends to 0 as j tends to ∞, we say that f

belongs to T σp,q,log(x0) if there exists J ∈N for which

(
2jd/pσj

| log2(2−jd/pσ−1
j )|

sup
|h|≤2−j

‖∆bs(σ )c+1
h f ‖Lp(Bh(x0,2−j )))j≥J ∈ `

q.

Theorem 3.3.6. Let p,q ∈ [1,∞], x0 ∈ Rd and f be a function from L
p
loc; let also σ be an

admissible sequence such that 2−jd/pσ−1
j tends to 0 as j tends to ∞ and σ1 > 2−d/p. If f

belongs to Ẋsp,q(x0) for some s > 0, then (σjd
p
j (x0))j ∈ `q implies f ∈ T σp,q,log(x0).

Proof. Let us first suppose that s(σ ) ≥ 0 and set n := bs(σ )c. We need to define some
quantities. First, choose m ∈N such that k/2j ∈ B(x,r) implies λ(i)

j,k ⊂ B(x,2mr), for any

x ∈ Rd , k ∈ Zd , j ∈ N and r ≥ 2−j . Let also m′ ∈ N be such that, for any x ∈ Rd and
any j ∈ N, B(x,2−j) is included in some dyadic cube of side length 2m

′−j and define
J0 := j0 +m+m′. Let C∗ > 0 be such that

(
∑

|k−2jx0|≤C∗2j
(2s−d/p)j |c

λ
(i)
j,k
|)p)1/p ∈ `q

and choose a number J1 ∈N for which we have (1+2j0) ≤ C∗2J1 . We also need a sequence
ε ∈ `q satisfying σjd

p
j (x0) ≤ εj , for all j ∈N. Finally, given J ≥max{J0, J1}, define

PJ :=
∑
|α|≤n

(
(· − x0)α

|α|!

J∑
j=−1

Dαfj(x0)),

where
f−1 :=

∑
k∈Zd

Ckϕk and fj :=
∑
λ∈Λj

cλψλ,

for j ≥ 0. We have

2Jd/p‖f − PJ‖Lp(B(x0,2−J ))

≤
J∑

j=−1

2Jd/p‖fj −
∑
|α|≤n

(· − x0)α

|α|!
Dαfj(x0)‖Lp(B(x0,2−J )) (3.11)

+
∞∑

j=J+1

2Jd/p‖fj‖Lp(B(x0,2−J )). (3.12)

Let us fix y ∈ B(x0,2−J ) and |α| = n+ 1. We will first consider the case p ,∞. We
have Dαψ

λ
(i)
j,k

(y) , 0 only if k/2j belongs to B(y,2j0−j); for J0 ≤ j ≤ J , we have

λ
(i)
j,k ⊂ B(y,2m−j−j0) ⊂ λj−J0(x0),
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so that we can write, using the same reasoning as in the previous proof,

|Dαfj(y)| ≤ C2jp(n+1)
∑
λ∈Λj

|cλ|p|Dαψλ(y)|p

≤ C2jp(n+1)
∑

λ∈Λj ,λ⊂λj−J0 (x0)

|cλ|p|Dαψλ(y)|p

≤ C2jp(n+1)ε
p
j−J0σ

−p
j ,

since σ is an admissible sequence. Moreover, as the wavelet coefficients are finite and
there exists a constant Cd which only depends on d such that

#{k ∈Zd : k ∈ B(y,2j0)} ≤ Cd , #{k ∈Zd : k/2j ∈ B(y,2j0−j)} ≤ Cd ,

we also have
|Dαfj(y)|p ≤ C2jp(n+1)σ

−p
j ,

for all j ∈ {−1, . . . , J0 − 1}. As a consequence, we can write, for any j ∈ {−1, . . . , J},

‖fj −
∑
|α|≤n

(· − x0)α

|α|!
Dαfj(x0)‖Lp(B(x0,2−J )) ≤ θj2

−J(n+1+d/p)2j(n+1)σ−1
j ,

for some sequence θ ∈ `q. A similar reasoning gives the same inequality for p = ∞.
Now, since s(σ ) < n+ 1, (3.11) is upper bounded by

C′2−J(n+1)
J∑

j=−1

θj2
j(n+1)σ−1

j ≤ C
′ξJσ

−1
J ,

for some constant C′ > 0, where the sequence ξ is given by Lemma 1.2.2.
For the second term, let us fix j ≥ J + 1 and p ,∞ to define

Λj,J := {λ(i)
j,k ∈Λj : B(k/2j ,2j0/2j)∩B(x0,2

−J ) , ∅}.

By proceeding as before for x ∈ B(x0,2−J ), we get

‖fj(x)‖p
Lp(B(x0,2−J ))

≤ C
∑
λ∈Λj,J

2−dj |cλ|p, (3.13)

for some constant C, which gives

2Jd/p‖fj(x)‖Lp(B(x0,2−J )) ≤ CεJ−J0σ
−1
J .

Moreover, since the coefficient c
λ

(i)
j,k

in the sum (3.13) vanishes always but when

|k − 2jx0| ≤ C∗2j , we also have

‖fj(x)‖p
Lp(B(x0,2−J ))

≤ δpj 2−spj ,
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for a sequence δ ∈ `q, as f belongs to the space Ẋsp,q(x0). Let us obtain upper bounds

for the case p =∞; for x ∈ B(x0,2−J ), k/2j ∈ B(x,2j0−j) implies λ(i)
j,k ⊂ λJ−j0(x0), so that we

have |c
λ

(k)
j,l
| ≤ CεJ−J0σN . The same reasoning as before leads to

‖fj(x)‖L∞(B(x0,2−J )) ≤ Cδj2
−sj .

Let us now set j∗(J) := d| log2(2−Jd/pσ−1
J )|/se and choose s small enough in order to

ensure that we have log2(2d/pσ1)/s > 1. With such a definition, we have j∗(J) = j∗(J ′) if
and only if J = J ′ and we can write

∞∑
j=J+1

2Jd/p‖fj‖Lp(B(x0,2−J ))

=
j∗(J)∑
j=J+1

2Jd/p‖fj‖Lp(B(x0,2−J )) +
∞∑

j=j∗(J)+1

2Jd/p‖fj‖Lp(B(x0,2−J ))

≤ C
j∗(J)∑
j=J+1

εJ−J0σ
−1
J +C2Jd/p

∞∑
j=j∗(J)+1

δj2
−sj

≤ C(εJ−J0 + ξj∗(J)) | log2(2−Jd/pσ−1
J )|σ−1

J ,

for J large enough, where the sequence (ξj∗(J))J belongs to `q.
It only remains to consider the situation where s(σ ) < 0. In this case, let us set

PJ = 0 whenever J ≥max{J0, J1}. Once again, there exists a sequence ξ ∈ `q such that

|fj(y)| ≤ ξjσ−1
J ,

for y ∈ B(x0,2−J ), any J ≥max{J0, J1} and any j ∈ {−1, . . . , J}. As done previously, we get

2Jd/p‖f − PJ‖Lp(B(x0,2−J ))

≤ C
J∑

j=−1

2Jd/p‖fj‖Lp(B(x0,2−J )) +
∞∑

j=J+1

2Jd/p‖fj‖Lp(B(x0,2−J ))

≤ δJ | log2(2−Jd/pσ−1
J )|σ−1

J ,

with δ ∈ `q.

Schwartz wavelets

In practise, compactly supported wavelets are used most of the time; however, for
theoretical applications, it can be handy to have similar results concerning wavelets in
the Schwarz class [102]. We will thus consider such wavelets in this section.
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Lemma 3.3.7. Let p,q ∈ [1,∞], x0 ∈ Rd and σ be an admissible sequence such that either
s(σ ) > −d/p, s(σ ) < 0, or 0 ≤ n := bs(σ )c < s(σ ); if f ∈ Lp belongs to T σp,q(x0), then we have

(σj2
j(d−u)

∫
R
d\B(x0,2−j )

|f (x)− P (x)|
|x0 − x|u

dx)j ∈ `q,

for any u > s(σ ) + d, where P is the polynomial given by Theorem 3.2.3.

Proof. Let us set R := f − P ; without loss of generality, we can assume x0 = 0. Let us
define, for r > 0,

ϕ(r) :=
∫
B(0,r)

|R(x)|dx;

we know that there exists a sequence ε ∈ `q such that

ϕ(2−j) ≤ 2−jdεjσ
−1
j ,

for all j ∈N. Moreover, for r ≥ 1, we have

ϕ(r) ≤ Crd(1−1/p)‖f ‖Lp + crn+d ≤ Crd+s(σ ).

Using spherical coordinates, we can write

ϕ(r) =
∫ r

0
ψ(ρ)dρ,

with

ψ(ρ) := ρd−1
∫ 2π

0

∫ π

0
· · ·

∫ π

0
|R(x(ρ,θ1, . . . ,θd−1))|dΩd ,

where dΩd stands for

sind−2(θ1) · · ·sin(θd−2)dθ1 · · ·dθd−1.

Since, for all r > 0, we have

ϕ(r)
ru
−φ(2−j)2ju =

∫
B(0,2−j )

|R(x)|
|x|u

dx −
∫ r

2−j

u

ρu+1 ϕ(ρ)dρ,

we get ∫
B(0,r)\B(0,2−j )

|R(x)|
|x|u

dx

≤
ϕ(r)
ru

+
∫ r

1

u

ρu+1 ϕ(ρ)dρ+
j∑
k=1

∫ 21−k

2−k

u

ρu+1 ϕ(ρ)dρ.

Since
ϕ(r)/ru ≤ C ≤ C2j(u−d)2−δjσ−1

j ,
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where δ > 0 has been chosen such that δ < u − d − s(σ ), we can write∫ r

1

u

ρu+1 ϕ(ρ)dρ ≤ C2j(u−d)2−jδσ−1
j .

Finally, as σ is admissible and u > s(σ ) + d, we have

j∑
k=1

∫ 21−k

2−k

u

ρu+1 ϕ(ρ)dρ ≤ 2j(u−d)ξjσ
−1
j ,

where ξ ∈ `q is given by Lemma 1.2.2. Putting all these together, we can claim that
there exists a sequence θ ∈ `q such that the inequality∫

B(0,r)\B(0,2−j )

|R(x)|
|x|u

dx ≤ 2j(u−d)θjσ
−1
j

holds for r ≥ 1.

Theorem 3.3.8. Let p,q ∈ [1,∞], x0 ∈ Rd and σ be an admissible sequence such that either
s(σ ) > −d/p, s(σ ) < 0, or 0 ≤ bs(σ )c < s(σ ); if f ∈ Lp belongs to T σp,q(x0), then we have

(σjd
p
j (x0))j ∈ `q.

Proof. Let ε ∈ `q be such that

σj2
jd/p‖f − Pj‖Lp(B(x0,2−j )) ≤ εj ,

for any j ∈N, choose j1 ∈N such that 2
√
d ≤ 2j1 and fix n ≥ j1 + 1.

Let us first suppose that p ∈ (1,∞); define

Λj,n := {λ(l)
j,k ∈Λj : |k − 2jx0| ≤

√
d2j+1−n},

so that λ ∈ 3λn(x0) and λ ∈Λj implies λ ∈Λj,n,

sj,n :=
∑

λ′∈Λj,n

|cλ′ |p

and
gj,n :=

∑
λ′∈Λj,n

|cλ′ |p−1 sign(cλ′ )ψλ′ .

We have

sj,n = 2jd
∫
B(x0,2j1−n+1)

(f (x)− P (x))gj,n(x)dx

+ 2jd
∫
R
d\B(x0,2j1−n+1)

(f (x)− P (x))gj,n(x)dx.
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Using Hölder’s inequality, we can write

2jd
∫
B(x0,2j1−n+1)

(f (x)− P (x))gj,n(x)dx

≤ Cεn−j1−12jd2−nd/p‖gj,n‖Lp′σ
−1
n ,

where p′ is the conjugate exponent of p, with

‖gj,n‖Lp′ ≤ C2−jd/p
′
s

1/p′

j,n ,

for a constant C > 0, thanks to the wavelet characterization of Lp spaces (see e.g. [102]).
Now, for all u > d + s(σ ), it is easy to check, using the fast decay of the wavelets, that
there exists a constant Cd,u > 0 such that, for all x ∈Rd \B(x0,2j1−n+1),

(
∑

λ′∈Λj,n

|ψλ′ |p)1/p ≤ Cd,u/(2j |x − x0|)u .

Using the previous lemma, we can claim that there exists a sequence θ ∈ `q for which

2jd
∫
R
d\B(x0,2j1−n+1)

(f (x)− P (x))gj,n(x)dx ≤ θns
1/p′

j,n 2(j−n)d/pσ−1
n .

As a consequence, there exists a sequence ξ ∈ `q such that

s
1/p
j,n ≤ ξn2(j−n)d/pσ−1

n .

If p = 1, keeping the same notations, we have

sj,n ≤ 2jd
∫
B(x0,2j1−n+1)

|f (x)− P (x)|
∑

λ′∈Λj,n

|ψλ′ |dx

+ 2jd
∫
R
d\B(x0,2j1−n+1)

|f (x)− P (x)|
∑

λ′∈Λj,n

|ψλ′ |dx.

To bound the first integral, remark that
∑
λ′∈Λj

|ψλ′ | is bounded and

‖f − P ‖L1(B(x0,2j1−n+1)) ≤ Cεn−j1−12−ndσ−1
n .

The second integral can be treated as in the case p ∈ (1,∞).
Finally, assume that p =∞, fix j ≥ n and suppose that λ ∈Λj satisfies λ ∈ 3λn(x0).

We have

|cλ| ≤ 2jd
∫
B(x0,2j1−n+1)

|f (x)− P (x)| |ψλ|dx

+ 2jd
∫
R
d\B(x0,2j1−n+1)

|f (x)− P (x)| |ψλ|dx.
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Once again, it is sufficient to bound the first integral, which is easy since we have

2jd
∫
B(x0,2j1−n+1)

|f (x)− P (x)|dx ≤ Cεn−j1−1σ
−1
n ,

for some constant C > 0.

Theorem 3.3.9. Let p,q ∈ [1,∞], f ∈ Lploc, x0 ∈ Rd and σ be an admissible sequence such
that s(σ ) > −d/p and σ1 > 2−d/p. If there exists s > 0 such that f ∈ Bsp,q, then (σjd

p
j (x0))j ∈ `q

implies f ∈ T σp,q,log(x0).

Proof. Let us use the definitions of n, m, J0, J1, J , ε, PJ and fj introduced in the proof of
Theorem 3.3.6. Of course, we have

2Jd/p‖f − PJ‖Lp(B(x0,2−J ))

≤
J∑

j=−1

2Jd/p‖fj −
∑
|α|≤n

(· − x0)α

|α|!
Dαfj(x0)‖Lp(B(x0,2−J )) (3.14)

+
∞∑

j=J+1

2Jd/p‖fj‖Lp(B(x0,2−J )). (3.15)

Let us first consider the term (3.14) of the last bound. Let α be a multi-index such
that |α| = n + 1; from Taylor’s formula, we need to bound |Dαfj(x)| for x ∈ B(x0,2−J ).
Assume now that j is such that j − dj/2e ≥ J0 and define

Λj,0 := {λ(i)
j,k ∈Λj : |2jx0 − k| ≤ 1},

for l such that 1 ≤ l ≤ dj/2e,

Λj,l := {λ(i)
j,k ∈Λj : 2l−1 < |2jx0 − k| ≤ 2l}

and
Λj,∗ := {λ(i)

j,k ∈Λj : |2jx0 − k| ≥ 2dj/2e}.

A sum over Λj can be decomposed into a sum over the sets Λj,l (with l ∈ {0, . . . ,dj/2e})
and Λj,∗. For 1 ≤ l ≤ dj/2e, we have, by Hölder’s inequality,∑

λ∈Λj,l

|cλ| |Dαψλ(x)|

≤ (
∑
λ∈Λj,l

|cλ|p)1/p(
∑
λ∈Λj,l

|Dαψλ(y)|p
′
)1/p′

≤ C(εj−l−J02ld/pσ−1
j−l)(

∑
λ∈Λj,l

(
1

(1 + |2jx − k|)2d+1+u+d/p)p′
)1/p′

≤ Cεj−l−J02−ulσ−1
j−l ,
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where u is such that u > s(σ ) and p′ is the conjugate exponent of p; for l = 0, we can
write ∑

λ∈Λj,0

|cλ| |Dαψλ(x)| ≤ εj−J−J0σ
−1
j .

For the last set, we get ∑
λ∈Λj,∗

|cλ| |Dαψλ(x)| ≤ δjσ−1
j ,

for a sequence δ ∈ `q, as f ∈ Bsp,q. Using these results, we obtain

∑
λ∈Λj

|cλ| |Dαψλ(x)| ≤ δjσ−1
j +

dj/2e∑
l=0

εj−l−J02−ulσ−1
j−l ≤ (δj + ξj)σ

−1
j ,

where ξ ∈ `q is defined as in the proof of Lemma 1.2.2. For the first term (3.14), we
still have to consider the case j − dj/2e < J0; since f ∈ Bsp,q, we can write∑

λ∈Λj

|cλ| |Dαψλ(x)| ≤ δj2−sj2jd/p ≤ Cδjσ−1
j ,

so that |Dαfj(x)| is bounded by C′(δj + ξj)2n+1σ−1
j , for any j ≤ J ; we thus have

‖fj −
∑
|α|≤n

(· − x0)α

|α|!
Dαfj(x0)‖Lp(B(x0,2−J ))

≤ C(δj + ξj)2
−(n+1+d/p)J2(n+1)jσ−1

j .

Finally, as s(σ ) < n+ 1, (3.14) is bounded by

C2−(n+1)J
J∑

j=−1

(δj + ξj)2
(n+1)jσ−1

j ≤ θJσ
−1
J ,

where θ ∈ `q is given by Lemma 1.2.3.
Let us now consider the second term (3.15); we actually need to bound the Lp

norm of fj for j ≥ J . Let us, in the same spirit as before, define

Λ′j,0 := {λ(i)
j,k ∈Λj : |2jx0 − k| ≤ 2j+J0−J },

for l such that 1 ≤ l ≤ J ,

Λ′j,l := {λ(i)
j,k ∈Λj : 2j+J0−J+l−1 < |2jx0 − k| ≤ 2j+J0−J+l}

and
Λ′j,∗ := {λ(i)

j,k ∈Λj : 2j < |2jx0 − k|}.
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Using the wavelet characterization of Lp spaces (see [102]), we can write

‖
∑
λ∈Λ′j,0

cλψλ‖Lp(B(x0,2−J )) ≤ C(
∑

λ∈Λj ,λ⊂λJ (x0)

2−dj |cλ|p)1/p

≤ CεJ2−Jd/pσ−1
J .

For l ∈ {1, . . . , J}, we get this time∑
λ∈Λ′j,l

|cλ| |ψλ(x)| ≤ CεJ−l2−(j−J+l)uσ−1
J−l ≤ C2−ulεJ−lσ lσ

−1
J ,

for x ∈ B(x0,2−J ) and ∑
λ∈Λ′j,∗

|cλ| |ψλ(x)| ≤ C2−δJσ−1
J ,

for some δ > 0. As previously, we get that there exists a sequence ρ ∈ `q such that

2Jd/p‖fj‖Lp(B(x0,2−J )) ≤ ρJσ
−1
J ,

so that we can conclude using the same arguments as in the compactly supported
case.

3.4 A multifractal formalism associated to the
generalized Besov spaces

We show in this section that the generalized Besov spaces, studied in the preceding
chapter, provide a natural framework for the multifractal formalism based on the T σp,q
spaces.

As the wavelet leaders method (WLM) involves the oscillation spaces Os,s
′

p (see
[70, 75]), we will temporarily use them in our general framework.

Definition 3.4.1. Let p,q, r ∈ [1,∞]; a function f belongs to the generalized oscillation
space Oσp,r,q if the sequence (Ck)k defined by (1.11) belongs to `q and if

(
∑
j∈N

(
∑
λ∈Λj

(σj2
−dj/rd

p
λ)r)q/r)1/q ≤ C,

for some positive constant C.

We will show that these spaces are closely related to generalized Besov spaces.
We first need the following definition to introduce a multifractal formalism.
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Definition 3.4.2. Let p,q ∈ [1,∞]; if, given h > −d/p, γ (h) is an admissible sequence, the
family of admissible sequences h 7→ γ (h) is (p,q)-decreasing if it satisfies s(γ (h)) > −d/p,
γ (h)

1
> 2−d/p for any h > −d/p and if −d/p < h < h′ implies

T
γ (h′ )

p,q (x0) ⊂ T γ
(h)

p,q (x0).

In the sequel, we will only consider families of admissible sequences γ (·) that
are implicitly (p,q)-decreasing. This notion was introduced in [90], where criteria to
obtain such families are presented. The idea is to work with a familly of sequences of
the form (σ (h) = (2jg(h)δ

(h)
j )j)h>− dp where g is an increasing function and, for any h, (δ(h)

j )j

is the non-dyadic part of σ (h). To summarize, if the Boyd indices of the sequences (δ(h)
j )j

vary sufficiently slowly compared to g(h), then the family is decreasing. This can be
done, following Corollary 1.2.12, using slowly varying functions.

Definition 3.4.3. Given p,q ∈ [1,∞] and a family of admissible sequences γ (·), the gen-
eralized (p,q)-Hölder exponent associated to f ∈ Lploc and γ (·) at x0 ∈ R

d is defined
by

hp,q(x0) := sup{h > −d/p : f ∈ T γ
(h)

p,q (x0)}. (3.16)

The most natural family of admissible sequences is h 7→ (2jh)j . In this case,
h∞,∞(x0) is the usual Hölder exponent [70], while hp,∞(x0) is the p-exponent consid-
ered in [75].

Given p,q ∈ [1,∞], a family of admissible sequences γ (·) and a function f ∈ Lploc,
we set

Dp,q(h) := dimH({x0 ∈Rd : hp,q(x0) = h}).

In the following, we will implicitly work with indices p,q, r ∈ [1,∞], a function
f that belongs to Lploc, a point x0 ∈ Rd , a family of admissible sequences γ (·) and an
admissible sequence σ .

Lemma 3.4.4. If

γ
(h)
j 2ηjdpj (x0) ∈ `q,

for some η > 0 such that bs(γ (h)) + ηc = bs(γ (h))c, then hp,q(x0) ≥ h.

Proof. We know that there exist a sequence of polynomials (Pj)j of degree at most
s(γ (h)) and a sequence ε ∈ `q such that

γ
(h)
j 2jd/p‖f − Pj‖Lp(B(x0,2−j )) ≤ Cεj2

−ηj | log2(2−ηj−jd/p/γ (h)
j )|,

for j large enough, which implies f ∈ T γ
(h)

p,q (x0).
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Proposition 3.4.5. If the function f belongs to both Bηp,q, for some η > 0, and Oσp,r,q, then

dimH({x0 ∈Rd : hp,q(x0) < h}) ≤ d + rs(
γ (h)

σ
).

Proof. Let ε ∈ `q be such that εj , 0 and

(
∑
λ∈Λj

(σj2
−jd/rd

p
λ)r)1/r ≤ εj ,

for all j ∈N. Let us first consider the case r =∞; if s(γ (h)/σ ) < 0, there exists δ > 0 such

that γ (h)
j 2δjdpj (x0) ≤ Cεj for any j and hp,q(x0) ≥ h for all x0 ∈ Rd . As a consequence, we

have
dimH({x0 ∈Rd : hp,q(x0) < h}) = −∞ = d + rs(γ (h)/σ ).

On the other hand, if s(γ (h)/σ ) ≥ 0,

dimH({x0 ∈Rd : hp,q(x0) < h}) ≤ d ≤ d + rs(γ (h)/σ ).

Now, suppose r < ∞, fix h > −d/p and define, given j ∈N and δ > 0 sufficiently
small,

Ehj,δ := {λ ∈Λj : dpλ ≥ εj2
−δj /γ

(h)
j }

and set n = #Ehj,δ. As f ∈ Oσp,r,q, we have

σ rj 2−jdn(2−δj /γ (h)
j )r ≤ ε−rj σ

r
j 2−jd

∑
λ∈Ehj,δ

(dpλ)r ≤ 1,

so that
n ≤ 2jd(2−δj /γ (h)

j )−r /σ rj .

Now, define Λh
j,δ as the set of the dyadic cubes λ ∈Λj such that there exists a neighbor

λ′ ∈ 3λ that belongs to Ehj,δ. Finally, define

Fhδ := limsup
j
{x0 ∈Rd : λj(x0) ∈Λh

j,δ}.

If x0 does not belong to Fhδ , then there exists J ∈N such that j ≥ J implies λj(x0) <Λh
j,δ

and, from what we have obtained for n, there exists a constant C > 0 for which j ≥ J
implies

2δjγ (h)
j d

p
j (x0) ≤ Cεj

and therefore
{x0 ∈Rd : hp,q(x0) < h} ⊂ Fhδ . (3.17)

Let α > 0, set j1 := inf{j :
√
d2−j < α} and

Eδ := {λ ∈Λh
j,δ : j ≥ j1}.
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It is easy to check that Eδ is an α-covering of Fhδ ; given s,η > 0, we have∑
λ∈Eδ

diam(λ)s ≤
∑
j≥j0

#Fhj (
√
d2−j)s

≤ C
∑
j≥j0

2(d−s)j(2−δj /γ (h)
j )−r /σ rj

≤ C′
∑
j∈N

2rj(s(γ
(h)/σ )+δ+η2(d−s)j .

As a consequence, we have

dimH(Fhδ ) ≤ d + r(s(
γ (h)

σ
) + δ+ η),

for any η > 0 and we can conclude thanks to (3.17).

Of course, for classic examples of families of admissible sequences, the appli-
cation h 7→ s(γ (h)) is continuous (see [90]); in such a case, the previous result can be
improved.

Remark 3.4.6. If there exists a sequence ε converging to 0+ such that

s(
γ (h+εj )

σ
)→ s(

γ (h)

σ
),

we have

dimH{x0 ∈Rd : hp,q(x0) ≤ h} ≤ d + rs(
γ (h)

σ
).

Proposition 3.4.7. If σ is an admissible sequence such that s(σ ) > 0 and s(σ )−d/r > −d/p,
we have Oσp,r,q = Bσr,q.

Proof. We obviously have Oσp,r,q ↪→ Bσr,q. If f belongs to Bσr,q, we have

(
∑
λ∈Λj

(σj2
−jd/rd

p
λ)r)q/r

≤
( ∑
λ∈Λj

(σj2
−jd/r)q

∑
j ′≥j

( ∑
λ′∈Λj′ ,λ′⊂λ

(2(j−j ′)d/p|cλ′ |)p
)r/p)q/r

, (3.18)

for any j ∈N.
Let us first suppose that r ≤ p; in this case, (3.18) is bounded by∑

j ′≥j
(σjσ

−1
j ′ 2(j−j ′)d/p2(j ′−j)d/r)r

∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r


q/r

.
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Let ε > 0 be such that s(σ )− ε − d/r > −d/p; there exists a constant Cε > 0 such that

σjσ
−1
j ′ < Cε2

(s(σ )−ε)(j−j ′).

If q ≤ r, (3.18) is bounded by

C

∑
j ′≥j

(2(s(σ )+ε−d/r−d/r)(j−j ′))q(
∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r)q/r

 .
As f belongs to Bσr,q, we can write

(
∑
j∈N

(
∑
λ∈Λj

(σj2
−jd/rd

p
λ)r)q/r)1/q ≤ C(

∑
j ′∈N

(
∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r)q/r)1/q,

which implies f ∈ Oσp,r,q. If r < q, by denoting s the conjugate exponent of q/r, we can
use Hölder’s inequality to bound (3.18) by

C(
∑
j ′≥j

(2−s(σ )+ε−d/p−d/r)(j ′−j))rs/2)q/(rs)(∑
j ′≥j

(2−s(σ )+ε−d/p−d/r)(j ′−j))q/(2r)(
∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r)q/r

)
≤ C

(∑
j ′≥j

(2−s(σ )+ε−d/p−d/r)(j ′−j))q/(2r)(
∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r)q/r

)
,

so that f belongs to Oσp,r,q, as in the previous case.
We still have to consider the case p < r; by Jensen’s inequality, we can bound

(3.18) by ∑
λ∈Λj

(σj2
−jd/r)r

∑
j≥j ′

∑
λ′∈Λj′ ,λ′⊂λ

2(j−j ′)d |cλ′ |r

q/r

≤

∑
j ′≥j

(σj /σj ′ )
r

∑
λ′∈Λj′

(σj ′2
−j ′d/r |cλ′ |)r


q/r

,

so that we can conclude as in the other cases.

We propose the following formula to estimate the spectrumDp,q related to a func-
tion f ∈ Bσr,s:

Dp,q(h) = d + rs(
γ (h)

σ
)

and we show that, under natural smooth conditions, this equality is satisfied almost
everywhere from a prevalence point of view.
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Definition 3.4.8. An admissible sequence σ and a family of admissible sequences γ (·)

are compatible for p,q, r, s ∈ [1,∞] with s ≤ q if

• s(σ ) > 0,

• s(σ )− d/r > −d/p,

• the function ζ defined on (−d/p,∞) by

ζ(h) := s(
γ (h)

σ
) = s(

γ (h)

σ
)

is non decreasing, continuous and such that

{h > −d/p : ζ(h) < −d/r} , ∅.

We call ζ the ratio function. We will also frequently use the quantity

hmin(r) := sup{h > −d/p : ζ(h) < −d/r}.

The following remark stresses the importance of hmin.

Remark 3.4.9. Suppose that σ and γ (·) are compatible as in the previous definition. If
f belongs to Bσp,q, there exists η > 0 such that Bσp,q ↪→ B

η
p,q. For λ ∈ Λj and j ′ ≥ j, we

have  ∑
λ′∈Λj′ ,λ′⊂λ

(2(j−j ′)d/p|cλ′ |)p


1/p

≤ 2jd/p

 ∑
λ′∈Λj′

(σj ′2
−j ′d/p|cλ′ |)p


1/p

σ−1
j ′

≤ 2jd/pεj ′σ
−1
j ′ ,

for a sequence ε ∈ `q. As a consequence, there exist η > 0 and a sequence ξ ∈ `q given
by Lemma 1.2.2 such that, for λ ∈Λj ,

d
p
λ ≤ C

∑
j ′≥j

2jd/pεj ′σ
−1
j ′ ≤ Cξj2

−ηj /γ
(h)
j ,

for all h > −d/p such that s(γ (h)/σ ) < −d/p. Therefore, one has hp,q(x0) ≥ hmin(p), for
any x0 ∈Rd .

In the same spirit, for r ≤ p, one has Bσr,q ↪→ Bθp,q, where θ is the admissible se-
quence defined by θj := 2(d/p−d/r)jσj (j ∈N). As s(σ )−d/r > −d/p implies s(θ) > 0, there
exists η > 0 such that Bσr,q ↪→ B

η
p,q and hp,q(x0) ≥ hmin(r), for any x0 ∈Rd .

That being done, if p < r then, for any f ∈ Bσr,q,

hp,q(x0) ≥ hr,q(x0) ≥ hmin(r).

Thus, if f ∈ Bσr,s, we have f ∈ Bσr,q and hp,q(x0) ≥ hmin(r).
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From what we have done so far, we get the following corollary.

Corollary 3.4.10. Let p,q, r, s ∈ [1,∞], σ be an admissible sequence and γ (·) be a family of
admissible sequences such that σ and γ (·) are compatible. If f belongs to Bσr,s, then

• {x0 ∈Rd : hp,q(x0) ≤ h} = ∅ for any h < hmin(r),

• dimH({x0 ∈Rd : hp,q(x0) ≤ h}) ≤ d + rζ(h) for any h ≥ hmin(r).

To show that, under some general hypothesis, the last upper bound is optimal for
a prevalent set of functions in Bσr,s, we need the following definition.

Definition 3.4.11. Let x0 ∈ Rd and r > 0; the strict cone of influence above x0 of width
r is

Cx0
(r) := {(j,k) ∈N×Zd : ‖ k

2j
− x0‖∞ <

r

2j
},

where ‖x − y‖∞ is the Chebyshev distance between x and y (x,y ∈Rd):

‖x − y‖∞ := max
1≤n≤d

|xn − yn|.

This definition is related to the wavelets as follows: in this context, we set

Kx0
(r) := {λ(i)

j,k ∈Λ : (j,k) ∈ Cx0
(r)}.

The following result explains whyKx0
can be seen as a cone of influence for the wavelets.

Proposition 3.4.12. If f belongs to T σp,q(x0), then

(σj
∑

λ∈Λj∩Kx0 (r)

|cλ|p)1/p)j ∈ `q.

Proof. Choose j1 ∈N such that
√
dr+2j0 ≤ 2j1 ; for j ≥ j1, if λ ∈Λj also belongs toKx0

(r),
then the support of ψλ is included in B(x0,2j1−j). From the proof of Theorem 3.3.4, we
know that there exists a sequence ε ∈ `q such that

σj(
∑

λ∈Λj∩Kx0 (r)

|cλ|p)1/p ≤ εj ,

for any j ≥ j1. The conclusion then comes from the Archimedean property of the real
line.

Given a dyadic cube λ = λ
(i)
j,k, let us denote by k(λ) and j(λ) the numbers such

that k(λ)/2j(λ) is the dyadic irreducible form of k/2j . For α ∈ [1,∞], let us set

h∗(α) := ζ−1(
d
αr
− d
r

).



3.4. A multifractal formalism associated to the generalized Besov spaces 65

We have h∗(α) ≥ hmin(r) = h∗(∞). If ζ(h) > d/αr − d/r, choose ε0 > 0 such that
ζ(h)− ε0 > d/αr − d/r and let m0 ∈N be such that

d − (
d
αr
− d
r
− ζ(h) + ε0)2dm0α < 0. (3.19)

Let us split each cube λ ∈ Λj into 2dm0 cubes at the scale j + m0 and for each
n ∈ {1, . . . ,2dm0}, choose the unique subcube λ(n) of λ such that n , n′ implies λ(n) , λ(n′).
From this, we can consider a function g(n) such that its wavelet coefficients cλ satisfy
the following conditions:

cλ(n) := j−a02jd/r2−j(λ)d/rσ−1
j if λ ∈Λj ∩ [0,1]d ,

with a0 := 1 + 1/r + 1/s and cλ := 0 if λ is not of the form λ(n) for some n.

Proposition 3.4.13. For all n ∈ {1, . . . ,2dm0}, g(n) belongs to Bσr,s.

Proof. For j ≥ 1, we have

(
∑

λ∈Λj+m0

(σj+m0
2−(j+m0)d/r |cλ|)r)1/r

= (
j∑
l=0

∑
λ∈Λj∩[0,1]d

j(λ)=l

(σj+m0
2−(j+m0)d/rj−a02jd/r2−ld/rσ−1

j )r)1/r

and

(
∑

λ∈Λj+m0

(σj+m0
2−(j+m0)d/r |cλ|)r)1/r ≤ (

j∑
l=0

(σm0
2−(j+m0)d/rj−a0)r)1/r

≤ Cj−a0+1/r .

As a0 > 1/r + 1/s, we get

(
∑
j≥1

(
∑

λ∈Λj+m0

(σj+m0
2−(j+m0)d/r |cλ|)r)s/r)1/s ≤ C(

∑
j≥1

j−s(a0−1/r))1/s <∞,

which is sufficient to conclude.

Definition 3.4.14. Let α ≥ 1; a point x0 ∈ [0,1]d is α-approximable by dyadics if there
exist two sequences k and j of natural numbers with kn < 2jn for any n ∈N such that

‖x0 −
kn
jn
‖∞ ≤

1
2αjn

,

for any n ∈N.
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Let us denote the set of points of [0,1]d which are α-approximable by dyadics by
Eα and define

Eαj := {x0 ∈ [0,1]d : ∃k ∈ {0, . . . ,2j − 1}d such that ‖x0 −
k

2j
‖∞ ≤

1
2αj
},

so that Eα = limsupj E
α
j . We also define

Eαj,k := {x0 ∈ [0,1]d : ‖x0 −
k

2j
‖∞ ≤

1
2αj
},

for k ∈ {0, . . . ,2j − 1}d , in order to have

Eαj =
⋃

l∈{0,...,2j−1}d
Eαj,k .

Finally, set E∞ = ∩α≥1E
α; this set is non-empty since it contains the dyadic numbers.

Proposition 3.4.15. Given C > 0, j ∈N and k ∈ {0, . . . ,2j − 1}d , the set

Fα,Cj,k (h) := {f ∈ Bσr,s : (∃x ∈ Eαj,k : ∀n ∈N∀λ ∈Λn ∩Kx(2m0+1), |cλ| ≤ C/γ
(h)
n )}

is closed in Bσr,s.

Proof. Let (fl)l be a sequence of functions of Fα,Cj,k such that fl → f in Bσr,s and denote

by c(l)
λ (resp. cλ) the wavelet coefficients of fl (resp. f ). Since

B
s(σ )+γ
r,s ↪→ Bσr,s ↪→ B

s(σ )−γ
r,s ,

for any γ > 0 and as the application that associates to a function its wavelet coefficients

is continuous on the Besov spaces, we have c(l)
λ → cλ for all λ ∈Λ.

For l ∈ N, let xl ∈ Eαj,k be such that, for all n ∈ N and λ ∈ Λn ∩ Kxl (2
m0+1), we

have |c(l)
λ | ≤ C/γ

(h)
n . As Eαj,k is compact, we can suppose that the sequence (xj)l con-

verges to a point x0 of Eαj,k. Now, let us fix N ∈ N and δ > 0; if l is sufficiently large,

we have Kx0
(2m0+1) ⊂ Kxl (2

m0+1) and, for n ≤ N , we have, for λ ∈ Λn ∩ Kxl (2
m0+1),

|c(l)
λ − cλ| ≤ δ/γ

(h)
n as c(l)

λ converges to cλ. Also, we have |c(l)
λ | ≤ C/γ

(h)
n for λ ∈ Λn ∩

Kxl (2
m0+1). As a consequence, λ ∈Λn ∩Kx0

(2m0+1) implies

|cλ| ≤ (C + δ)/γ (h)
n ,

for all n ≤N . Taking the limit for N →∞ and δ→ 0+ leads to f ∈ Fα,Cj,k (h).

Let us set
Fα,Cj (h) :=

⋃
k∈{0,...,2j−1}d

Fα,Cj,k (h)

and Fα,C(h) := limsupj F
α,C
j (h). All these sets are obviously Borel sets.



3.4. A multifractal formalism associated to the generalized Besov spaces 67

Proposition 3.4.16. The set Fα,C(h) is a Haar-null Borel set.

Proof. Set m1 := 2m0d and let us fix j ∈N and k ∈ {0, . . . ,2j −1}; for f ∈ Bσr,s, suppose that

there exist two points of Rm1 , a(1) = (a(1)
1 , . . . , a

(1)
m1) and a(2) = (a(2)

1 , . . . , a
(2)
m1), such that

fl := f +
m1∑
m=1

a
(l)
m g

(m)

belongs to Fα,Cj,k (h) (l ∈ {1,2}). For l ∈ {1,2}, let us also denote by c(l)
λ the wavelet coef-

ficient of fl associated to the dyadic cube λ ∈ Λ and let xl be a point of Eαj,k such that

λ ∈Λbαjc ∩Kxl (2
m0+1) implies |c(l)

λ | ≤ C/γ
(h)
bαjc.

For λ′ ∈Λbαjc+m0
satisfying λ′ ⊂ λ(i)

bαjc,k, we have

|c(l)
λ′ | ≤ C/γ

(h)
bαjc+m0

.

As a consequence, we get, by denoting c′(m)
λ the wavelet coefficient of g(m) associated to

λ,
|a(1)
m − a

(2)
m | = |a

(1)
m − a

(2)
m | |c

′(m)
λ(m) |/ |c

′(m)
λ(m) | ≤ 2C/(γ (h)

bαjc+m0
|c′(m)
λ(m) |),

for any m ∈ {1, . . . ,m1}. On the other hand, for j ≥ j(λ), we have

|c′(m)
λ(n) | = bαjc−a02bαjcd/q2−j(λ)d/qσ−1

bαjc

≥ C′bαjc−a02bαjcd/q2−bαjcd/αqσ−1
bαjc,

so that there exists a constant C′′ > 0 for which

‖a(1) − a(2)‖∞ ≤ C′′bαjc−a02bαjc(d/αq−d/q)σbαjc/γ
(h)
bαjc. (3.20)

That being done, for f ∈ Bσr,s, we have

{a ∈Rm1 : f + ag ∈ Fα,C(h)} ⊂
⋃
j≥J
{a ∈Rm1 : f + ag ∈ Fα,Cj (h)}

⊂
⋃
j≥J

⋃
k∈{0,...,2j−1}d

{a ∈Rm1 : f + ag ∈ Fα,Cj,k (h)},

for any J ∈N. Thus, from (3.20), we get

L({a ∈Rm1 : f + ag ∈ Fα,C(h)})

≤
∑
j≥J

2jd(C′′bαjca02bαjc(d/αq−d/q)σbαjc/γ
(h)
bαjc)

M

≤ C′′′
∑
j≥J
bαjca0m12j(d−m1α(ζ(h)−d/αq−d/q−ε0)).
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Letting J going to∞, (3.19) implies

L({a ∈Rm1 : f + ag ∈ Fα,C(h)}) = 0,

hence the conclusion.

Theorem 3.4.17. Let p,q, r, s ∈ [1,∞] with s ≤ q, σ be an admissible sequence and γ (·) be
a family of admissible sequences compatible with σ . From the prevalence point of view, for
almost every f ∈ Bσr,s, Dp,q is defined on I = [ζ−1(−d/r),ζ−1(0)] and

Dp,q(h) = d + rζ(h),

for any h ∈ I .
Moreover, for almost every x0 ∈Rd , we have hp,q(x0) = ζ−1(0).

Proof. We know that

{f ∈ Bσr,s : ∃x0 ∈ Eα : f ∈ T σ
(h)

p,q (x0)} ⊂
⋃
l∈N

Fα,l(h),

so that, for any α ≥ 1 and any h > h∗(α), for almost every f ∈ Bσr,s, we have hp,q(x0) ≤ h for
every x0 ∈ Eα. By countable intersection, we thus get that for almost every f ∈ Bσr,s, we
have hp,q(x0) ≤ h(α) for every x0 ∈ Eα. Let f ∈ Bσr,s be such that the preceding assertion
holds.

First, let us fix α ∈ (1,∞); if α is an increasing sequence of rational numbers
converging to α, the sequence (Eαn)n is decreasing and Eα ⊂ ∪nEαn . If x0 belongs to
Eαn , we have hp,q(x0) ≤ h∗(αn) and thus hp,q(x0) ≤ h∗(α), for every x0 ∈ Eα. Let µα be a
measure such that

• supp(µα) ⊂ Eα,

• µα(Eα) > 0,

• µα(F) = 0 whenever dimH(F) < d/α;

let us define
Fα := {x0 ∈ [0,1]d : hp,q(x0) < h∗(α)}

and, for n ∈N,
Fαn := {x0 ∈ [0,1]d : hp,q(x0) < h∗(α)− 1/n}.

For n large enough, we have h(α) − 1/n ≥ −d/p and thus dimH(Fαn ) < d/α. Since Fα is
included in a countable union of µα-measurable null sets, we have µα(Fα) = 0. As a
consequence, we have

µα(Eα \Fα) ≥ d + rζ(h∗(α)).

Since
Eα \Fα ⊂ {x0 ∈ [0,1]d : hp,q(x0) = h∗(α)},
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we get
D(h∗(α)) = d + rζ(h∗(α)).

If α =∞, we know that x0 ∈ E∞ implies hp,q(x0) ≤ h∗(αn) for any n ∈N and thus
hp,q(x0) ≤ hmin(r). As a consequence, the set

{x0 ∈ [0,1]d : hp,q(x0) = hmin(r)}

is non-empty.
It remains to consider the case α = 1. In this case, E1 = [0,1]d and µ1 can be

chosen to be the Lebesgue measure restricted on [0,1]d . For x0 ∈ E1, hp,q(x0) ≤ h∗(1)
and by the same argument as in the first case, we get

µ1({x0 ∈ [0,1]d : hp,q(x0) < h∗(1)}) = 0,

so that E1 is equal to E1 \F1 almost everywhere.
As the proof can be easily adapted to any translated of [0,1]d , the conclusion

follows by countable intersection.

The next theorem shows that, as usual, there is no Fubini-like theorem in the
theory of prevalence.

Theorem 3.4.18. Let p,q, r, s ∈ [1,∞] with s ≤ q, σ be an admissible sequence and γ (·)

be a family of admissible sequences compatible with σ . Let x0 be a point of Rd ; from the
prevalence point of view, for almost every f ∈ Bσr,s, we have hp,q(x0) = ζ−1(−d/r).

Proof. Given n ∈N, let us define the admissible sequence θ(n) by

θ
(n)
j :=

1

γ
(ζ−1(−d/r)+1/n)
j

1
(j + 1)1+1/s

,

j ∈N. We can now define the function g(n) which is a function whose wavelet coeffi-
cients are

c
(n)
λ :=

 θ
(n)
j if λ ∈Λj and λ = λj(x0)

0 if λ ∈Λj and λ , λj(x0).

Since, for n ∈N, there exists Cn > 0 such that

(
∑
λ∈Λj

(σj2
jd/r |c(n)

λ |)
r)1/r ≤ Cn/(j + 1)1+1/s,

g(n) belongs to Bσr,s.
Let us fix n0 ∈N and define

Fn0
:= {f ∈ Bσr,s : ∀j ∈N∀λ ∈Λj ∩Kx0

(2), |cλ| ≤ n0θ
(n)
j /j}.
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As shown before, Fn0
is a Borel set. For f ∈ Bσr,s and a,a′ ∈ R satisfying f + ag(n) ∈ Fn0

and f + a′g(n) ∈ Fn0
, we get

|a− a′ | ≤ 2n0/j,

so that the Lebesgue measure of {a ∈ R : f + ag(n) ∈ Fn0
} vanishes, implying that Fn0

is
Haar-null. As we have

{f ∈ Bσr,s : f ∈ T θ
(n)

p,q (x0)} ⊂
⋃
l∈N

Fl ,

for almost every f ∈ Bσr,s, we have hp,q(x0) ≤ ζ−1(−d/r) + 1/n, which leads to the conclu-
sion.



4Complements with compactly
supported wavelets

As mentioned before, the definition of the p-wavelet leaders given in this thesis slightly
differs from the one of [75, 94]. This choice has been already justified in the previous
chapter by the possibility to obtain a quasi-characterization of the pointwise functional
spaces we consider. In this chapter, we show that, using compactly supported wavelets,
“our” leaders are relevant in different contexts.

First we consider irregularity spaces which is the counterpart of the pointwise
Hölderian regularity, in the spirit of [122, 29, 30]. This gives a complementary infor-
mation about the pointwise behaviour of a function, estimating its oscillation by be-
low. We give here a quasi-characterization of the irregularity, by the mean of p-wavelet
leaders. This generalizes and improves results of [29].

Secondly, we discuss about the logarithm correction which appears in Theorem
3.3.6. We show that, from the prevalence point of view, this correction is necessary
for almost every function satisfying the conditions of this last theorem. In some sense,
this shows that Theorem 3.3.6 is optimal.

In the third section, we give examples of functions displaying a precise given
pointwise regularity and, using the tools presented in the two first sections, we discuss
the relevance of pointwise spaces of generalized smoothness.

Finally, we open some perspectives for applications based on the theoretical frame-
work established in this thesis.

In this chapter, we mainly focus on the case where the exponent q in Definition
3.1.1 is equal to∞. In order to simplify the notation, we will write T σp (x0) instead of
T σp,∞(x0)

Contents
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4.1 Irregularity spaces

Definition 4.1.1. Let p ∈ [1,∞], σ = (σj)j be an admissible sequence such that
s(σ ) > −dp , f ∈ Lploc and x0 ∈ R

d ; f belongs to Iσp (x0) if there exist C > 0, J ∈ N such
that

2j
d
p sup
|h|≤2−j

||∆bs(σ )c+1
h f ||Lp(Bh(x0,2−j )) ≥ Cσ

−1
j ∀ j ≥ J.

Note that the previous definition is not a contradiction of Definition 3.1.1 as the
inequality is assumed to hold for all values of j (sufficiently large), with an uniform
constant C. A particularly interesting situation is when a function belongs to both the
irregularity and the regularity space associated to the same admissible sequence.

Definition 4.1.2. Let p ∈ [1,∞], σ = (σj)j be an admissible sequence such that
s(σ ) > −dp , f ∈ Lploc and x0 ∈Rd ; f belongs to T

σ
p (x0) if f belongs to T σp (x0)∩ Iσp (x0).

Interests and applications of such spaces, with dyadic sequences and p =∞, have
already been discussed in [28, 29, 30]. Here, we will characterize them with the help of
p-wavelet leaders. On this purpose, we introduce the following space, whose definition
is obtained by contradicting the Iσp (x0) condition.

Definition 4.1.3. Let p ∈ [1,∞], σ = (σj)j be an admissible sequence such that
s(σ ) > −dp , f ∈ Lploc and x0 ∈ R

d ; f belongs to T σwp (x0) if for all C > 0 there exists a
sequence (k(j))j with k(j)→ +∞ such that

2k(j) dp sup
|h|≤2−k(j)

||∆bs(σ )c+1
h f ||Lp(Bh(x0,2−k(j))) ≤ Cσ

−1
k(j) ∀n ∈N.

Similarly to Proposition 3.1.2, we can show that polynomials do characterize the
belonging to T σwp (x0).

Proposition 4.1.4. Let p ∈ [1,∞], f ∈ Lploc, x0 ∈ Rd and σ be an admissible sequence such
that s(σ ) > 0. We have f ∈ T σwp (x0) if and only if for all C > 0 there exist a sequence (k(j))j
with k(j) → +∞ and a sequence of polynomials (Pk(j),x0

)j of degree less than or equal to
bs(σ )c such that

2k(j)d/p‖f − Pk(j),x0
‖Lp(B(x0,2−k(j))) ≤ Cσ

−1
k(j). (4.1)

Proposition 4.1.5. Let p ∈ [1,∞], σ = (σj)j be an admissible sequence such that
s(σ ) > −dp , f ∈ Lploc and x0 ∈Rd . If there exist J ∈N and C > 0 such that for all j ≥ J ,

d
p
j (x0) ≥ Cσ−1

j , (4.2)

then f ∈ Iσp (x0).
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Proof. We keep the notation used in the proof of Theorem 3.3.4. Let d0 > 0 be such
that, for all j ∈N, d0σ

−1
j ≤ σ

−1
j+1 and let us set

C∗p :=


Cd

j1
0

2C∗max1≤i<2d ‖ψ
(i)‖q2dj1

if p ∈ [1,∞)

Cd
j1
0

2max1≤i<2d ‖ψ
(i)‖1

if p =∞.

If f ∈ T σwp (x0), there exist a sequence (k(j))j with k(j)→ +∞ and a sequence of polyno-
mials (Pk(j),x0

)j of degree less than or equal to bs(σ )c such that, for all j,

2k(j)d/p‖f − Pk(j),x0
‖Lp(B(x0,2−k(j))) ≤ C

∗
pσ
−1
k(j).

Following the steps of the proof of Theorem 3.3.4, one can see that, for all j,

d
p
k(j)+j1

≤ C
2
σ−1
k(j)+j1

,

which is in contradiction with inequality (4.2).

Theorem 4.1.6. Let p ∈ [1,∞], σ = (σj)j be an admissible sequence such that 2−jd/pσ−1
j

tends to 0 as j tends to∞, f ∈ Lploc and x0 ∈Rd . If f belongs to Ẋsp,q(x0) for some s > 0, then
if f ∈ T σp (x0) there exist C1,C2 > 0 and J ∈N such that

C1

| log2(2−j
d
pσ−1
j )|
≤ σjd

p
j (x0) ≤ C2 ∀ j ≥ J. (4.3)

Proof. The inequality σjd
p
j (x0) ≤ C2 coming from the fact that f ∈ T σp (x0) and Theo-

rem 3.3.4, let us prove the other inequality. Let us first assume that s(σ ) ≥ 0 and set
n := bs(σ )c. We keep the notations used in the proofs of Theorems 3.3.4 and 3.3.6 and
we set

• CB,d = π
d
2

Γ ( d2 +1)
, the volume of the unit ball in R

d ,

• ε > 0 such that s(σ ) + ε < n+ 1 (in particular 1 < 2n+1−s(σ )−ε) and Cε > 0 such that
for all j ∈N,

Cε2
j(s(σ−1)−ε) ≤ σ−1

j , (4.4)

• ξ > 0 such that s(σ )− ξ > −dp and Cξ > 0 such that for all j ∈N,

σ−1
j ≤ Cξ2−j(s(σ )− ξ2 ). (4.5)

Without loss of generality, we can assume that s is small enough, so that

2(s(σ ) +
d
p
− ξ) ≥ s, (4.6)
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• Cσ > 0 such that, for all J ∈N,

J∑
j=−1

2j(n+1)σ−1
j ≤ Cσ2J(n+1)σ−1

J , (4.7)

where we have put σ−1 = 1,

• d0,d1 > 0 such that

d0σ
−1
j ≤ σ

−1
j+1 ≤ d1σ

−1
j ∀ j ∈N, (4.8)

• d′0,d
′
1 > 0 such that, for all j sufficiently large,

d′0
σ−1
j

| log2(2−j
d
pσ−1
j )|
≤

σ−1
j+1

| log2(2−(j+1) dpσ−1
j+1)|

≤ d′1
σ−1
j

| log2(2−j
d
pσ−1
j )|

. (4.9)

We know that there exists C3 > 0 such that for all j ≥ −1, k ∈ N, if |h| ≤ 2−k and if
x ∈ Bh(x0,2−k),

|∆n+1
h fj(x)| ≤ C3|h|n+1 sup

y∈B(x0,2−m)
|α|=n+1

|Dαfj(y)|.

Moreover, as dpj (x0) ≤ C2σj , we know from the proof of Theorem 3.3.6 that there exists
C4 > 0 such that for all k ∈N, if j ≤ k,

sup
y∈B(x0,2−k)
|α|=n+1

|Dαfj(y)| ≤ C42j(n+1)σ−1
j .

It follows that there exists Cn > 0 such that for all k ∈N, if |h| ≤ 2−k and if x ∈ Bh(x0,2−k)
and if −1 ≤ j ≤ k,

|∆n+1
h fj(x)| ≤ Cn2−k(n+1)2j(n+1)σ−1

j . (4.10)

Let C > 0, there exists l ≥max{j0,m′} such that

2j0(n+1)C
1
p

B,d

1
Cε
d
j0
1 CnCσ ≤ (2n+1−s(σ )−ε)l

C
3
. (4.11)

If the first inequality of (4.3) is not true, there exists a sequence (k(r))r with k(r)→ +∞
such that, for all r,

d
p
k(r)(x0) ≤ C∗p

σ−1
k(r)

| log2(2−k(r) dpσ−1
k(r))|

, (4.12)



4.1. Irregularity spaces 75

where we choose

C∗p :=


Cs

42n+12l
d
p 3

d
p (d′0)−l3C∗max1≤i<2d ‖ψ

(i)‖p
if p ∈ [1,∞)

Cs
42n+1(d′0)−l3Cd max1≤i<2d ‖ψ

(i)‖∞
if p =∞.

Let us set for all r, l(r) = k(r) + l and L(r) = d
| log2(2−l(r)

d
p σ−1

l(r))|
s e. If |h| ≤ 2−l(r), we have

2l(r)
d
p ||∆n+1

h f ||Lp(Bh(x0,2−l(r))) ≤
k(r)+j0∑
j=−1

2l(r)
d
p ||∆n+1

h fj ||Lp(Bh(x0,2−l(r)))︸                                   ︷︷                                   ︸
(1)

+
2L(r)∑

j=k(r)+j0+1

2l(r)
d
p ||∆n+1

h fj ||Lp(Bh(x0,2−l(r)))︸                                         ︷︷                                         ︸
(2)

+
+∞∑

j=2L(r)+1

2l(r)
d
p ||∆n+1

h fj ||Lp(Bh(x0,2−l(r)))︸                                       ︷︷                                       ︸
(3)

.

(1) By inequality (4.10), we know that for all j ∈ {−1, . . . , k(r) + j0} and x ∈ Bh(x0,2−l(r)),

|∆n+1fj(x)| ≤ Cn2−l(r)(n+1)2j(n+1)σ−1
j

and it follows that

(1) ≤ C
1
p

B,dCn2−l(r)(n+1)
k(r)+j0∑
j=−1

2j(n+1)σ−1
j

≤ C
1
p

B,dCnCσ2−l(r)(n+1)2(k(r)+j0)(n+1)σ−1
k(r)+j0

≤ C
1
p

B,dCnCσ2j0(n+1)d
j0
1 2−l(n+1)σ−1

k(r)

≤ C
1
p

B,dCnCσ2j0(n+1)d
j0
1

1
Cε

(2n+1−s(σ )−ε)−lσ−1
l(r).

Now, using the definition of l (4.11), we find that

(1) ≤ C
3
σ−1
l(r).

(2) We know that B(x0,2−l(r)) ⊂ λl(r)−m′ (x0) ⊂ λl(r)−l(x0) = λk(r)(x0), but if j > k(r) + j0,

suppψ(i)(2j · −k) ⊂ B(
k

2j
,2j0−j) ⊆ B(

k

2j
,2−k(r))
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and if λ = λ(i)
j,k * 3λk(r)(x0), B( k

2j
,2−k(r))∩λk(r)(x0) = ∅ and so ψ(i)(2jx − k) = 0 for all

x ∈ B(x0,2−l(r)). Therefore, if p ,∞, for all x ∈ B(x0,2−l(r)), we have

|fj(x)|p ≤ Cp∗
∑
λ∈Λj

λ⊆3λk(r)(x0)

|cλ|p|ψλ(x)|p.

Now, using inequality (4.12), we get

‖fj‖
p

Lp(B(x0,2−l(r)))
≤ (C∗p)pCp∗ 3d

 σ−1
k(r)

| log2(2−k(r) dpσ−1
k(r))|


p

2−dk(r) max
1≤i<2d

‖ψ(i)‖p.

Finally, from the choice of C∗p, if r is large enough such that L(r) ≤
| log2(2−l(r)

d
p σ−1

l(r))|
s ,

we have

(2) ≤ C
3
σ−1
l(r).

If p =∞, for all x ∈ B(x0,2−l(r)), we have

|fj(x)| ≤
∑
|cλ||ψλ(x)|

where the sum is taken over all λ = λ
(i)
j,k ∈ Λj such that λ ⊂ 3λk(r)(x0) and

| k
2j
− x0| ≤ 2j0−j . Therefore,

|fj(x)| ≤ CdC∗∞
σ−1
k(r)

| log2(2−k(r) dpσ−1
k(r))|

max
1≤i<2d

||ψ(i)||∞

and, similarly,

(2) ≤ C
3
σ−1
l(r).

(3) If r is sufficiently large, we have

Cξ2−l(r)(s(σ )+ d
p−

ξ
2 ) < 1

and

L(r) ≥ 1
s
| log2(Cξ2−l(r)(s(σ )+ d

p−
ξ
2 ))|

=
l(r)
s
| − (s(σ ) +

d
p
− ξ

2
) +

log2(Cξ)
lr

|.
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But, as s(σ ) + d
p −

ξ
2 > 0, if r is large enough, we can assume that

−(s(σ ) +
d
p
− ξ

2
) +

log2(Cξ)
l(r)

< 0 and
log2(Cξ)
l(r)

≤ ξ
2
.

Therefore,

L(r) ≥ l(r)
s

(s(σ ) +
d
p
− ξ

2
−

log2(Cξ)
l(r)

)

≥ l(r)
s

(s(σ ) +
d
p
− ξ)

≥ l(r)
2
.

Thus, for all j > 2L(r), j ≥ l(r) and, as f ∈ Ẋsp,q(x0), we show, in the same way that in
the proof of Theorem 3.3.6, the existence of a constant C′ > 0 such that for all such
j,

||fj ||Lp(B(x0,2−l(r))) ≤ C
′2−sj

and

(3) ≤ C′
+∞∑

j=2L(r)+1

2l(r)
d
p2n+12−sj

≤ 2l(r)
d
p2−L(r)s2−L(r)sC′′.

But, if r is large enough, we have 2−L(r)sC′′ ≤ C
3 and finally

(3) ≤ C
3
σ−1
l(r).

It follows from these three points that there exists (l(r))r such that l(r)→ +∞ and, for
all r,

2l(r)
d
p ‖∆n+1

h f ‖Lp(Bh(x0,2−l(r))) ≤ Cσ
−1
l(r),

which implies that f ∈ T σ ,wp (x0), as the constant C is arbitrary, hence a contradiction.
The proof for the case s(σ ) < 0 is similar.

4.2 Prevalence of the logarithmic correction

In this section, we aim at showing that, from the prevalence point of view, for almost
every function in a precise functional space, the logarithmic correction induced by
Theorem 3.3.6 is necessary. On this purpose, let us first consider the following lemma
which gives a way to define the probe we will use afterwards.
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Lemma 4.2.1. Let σ = (σj)j be an admissible sequence, x0 ∈ Rd and (E,T ) be a complete
metrisable space of functions defined on R

d such that

S = {g ∈ E : g ∈ T σp (x0)}

is a Borel set of E. If there exists f ∈ E such that for all M ∈N there exists j ∈N for which

σj2
jd/p sup

|h|≤2−j
‖∆bs(σ )c+1

h f ‖Lp(Bh(x0,2−j )) ≥M,

then S is Haar-null in E.

Proof. Let us fix f ′ ∈ E and N ∈N and consider the set

SN = {g ∈ E : σj2
jd/p sup

|h|≤2−j
‖∆bs(σ )c+1

h g‖Lp(Bh(x0,2−j )) ≤N ∀ j ∈N}.

Assume that there exist a,b ∈ R such that f ′ + af ∈ E and f ′ + bf ∈ E. If M ∈N, there
exists j ∈N for which

σj2
jd/p sup

|h|≤2−j
‖∆bs(σ )c+1

h f ‖Lp(Bh(x0,2−j )) ≥M.

It follows that

|a− b| =
|a− b|2jd/p sup|h|≤2−j ‖∆bs(σ )c+1f ‖Lp(Bh(x0,2−j ))

2jd/p sup|h|≤2−j ‖∆bs(σ )c+1f ‖Lp(Bh(x0,2−j ))

≤ 2jd/p

Mσ−1
j

( sup
|h|≤2−j

‖∆bs(σ )c+1
h f ′ + af ‖Lp(Bh(x0,2−j )) + sup

|h|≤2−j
‖∆bs(σ )c+1

h f ′ + bf ‖Lp(Bh(x0,2−j )))

≤ 2N
M

and so, as M is arbitrary, a = b. It follows that the set

{a ∈R : f ′ + af ∈ SN }

contains at most one point. Therefore, the set

{a ∈R : f ′ + af ∈ S} =
⋃
N∈N
{a ∈R : f ′ + af ∈ SN }

is countable and thus of Lebesgue-measure zero. The conclusion follows.

Now, let us fix an admissible sequence σ = (σj)j such that 2−j
d
pσ−1
j tends to 0 as

j tends to ∞ and σ1 > 2−
d
p . We define, for all k ∈ N, the admissible sequence σ (k) =

(j1− 1
k σj)j . As inequalities (1.2) ensure that the sequence (| log2(2−jd/pσj)|/j)j is bounded,

we define the spaces of “under-log" corrected functions in the following way.
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Definition 4.2.2. If x0 ∈ Rd , a function f ∈ L∞loc belongs to T
σ ,p
/s log(x0) if there exists k ∈N

such that f ∈ T σ (k)

p (x0).

The idea is that a function belongs to T
σ ,p
/s log(x0) if its pointwise behaviour at x0

admits a correction from σ which is asymptotically weaker than the absolute value of
the logarithm of 2−·d/pσ .

Let us first consider the case where p =∞ and exhibit a function which satisfies
the condition of Theorem 3.3.6 (with p = q =∞) but which does not belong to T

σ ,∞
/s log(0).

This example is based on one of [67] but some substantive modifications are made to
correct some points and adapt it to our context. For the sake of simpleness, we take
d = 1.

Consider ψ a wavelet of regularity r > bs(σ )c + 1 such that supp(ψ) ⊆ [−1,1] and
ψ(0) = C , 0. Define the sequence (εm)m∈N by εm = 2−2m−1

for all m ≥ 1. For such a m,
define the function

fm = σ−1
2m−1

∑
2m≤j<2m+1

ψ(2j(· − εm)).

As supp(ψ(2j(· − εm))) ⊆ [−1
2j

+ εm, εm + 1
2j

], we have

supp(fm) ⊆ [−εm+1 + εm, εm + εm+1]

so fm(0) = 0 and let us remark that those supports are disjoint as soon as m ≥ 2. It
follows that fm(εk) = δm,kC2mσ−1

2m−1 for all m,k ≥ 2. Let us choose M(σ ) ≥ 2 big enough
such that

εm + εm+1 < l εm < −εm + εm−1 ∀m ≥M(σ ), l ∈ {2, ...,bs(σ )c+ 1}.

It follows that, if m ≥M(σ ), ∆bαc+1
εk fm(0) = δm,kC2mεαm. Let us finally consider the func-

tion f defined by

f =
∑

m≥M(σ )

fm,

with convergence in L∞. Its wavelet coefficients are given by

cj,k :=


σ−1

2m−1 if j ≥M(σ ) and k = εm2j

0 otherwise.

At scale j ∈ [2m,2m+1) there is only one non-vanishing wavelet coefficient whose
value is σ−1

2m−1 and, using (1.2) with ε > 0 small enough such that s(σ )− ε > 0, we find

|cj,k | ≤ 2−2m−1(s(σ )−ε) ≤ 2−
(s(σ )−ε)

4 j .
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This guarantees, from characterization (3.5), that f ∈ B
(s(σ )−ε)

4
∞,∞ , and the minimal regular-

ity assumption of Theorem 3.3.6 is satisfied.
For all j ∈ N, a dyadic cube [εm, εm + 2−j

′
) of scale j ′ ∈ [2m,2m+1) is taken into

account in the value of d∞j (0) if the distance between εm and the origin is less than

2−(j−1) or, in other words, if j ≤ 2m−1 + 1. As σ1 > 1, the sequence σ is increasing and,
using its admissibility, we can conclude than

(σjd
∞
j (0))j ∈ `∞.

But, from what precedes, we have, for all m ≥M(σ ),

|∆bs(σ )c+1
εm f (0)| = C2mσ−1

2m−1 ≥ C′ | log(σ2m−1)|σ−1
2m−1 ,

which shows that f can not belong to T
σ ,∞
/s log(0). Of course, by a translation, this con-

struction holds for any x0 ∈Rd .
Using this last function and Lemma 4.2.1, one can establish a first prevalence

result concerning the logarithm correction. If 0 < ε < s(σ )
4 , x0 ∈Rd , we set

Eε∞(x0) = {f ∈ Bε∞,∞(Rd) : (σjd
∞
j (x0))j ∈ `∞}.

Equipped with the norm

‖ · ‖Eε∞(x0) : Eε∞(x0)→ [0,+∞) : f 7→ ‖f ‖Bε∞,∞ + ‖(σjd∞j (x0))j‖`∞ ,

Eε∞(x0) is a complete normed space.

Theorem 4.2.3. If x0 ∈ Rd , for all 0 < ε < s(σ )
4 , almost every function of Eε∞(x0) belongs to

T σ∞,log(x0) \ T σ ,∞/s log(x0).

Proof. We already know that every function of Eε∞(x0) belongs to T σ∞,log(x0). For all
k ∈N, let us check that the set

Bk = {g ∈ Eε∞(x0) : f ∈ T σ
(k)

∞ }

is Borel. For all N ∈N, we define

BN,k = {g ∈ Eε∞(x0) : σ (k)
j sup
|h|≤2−j

‖∆bs(σ )c+1
h g‖L∞(Bh(x0,2−j )) ≤N ∀ j ∈N},

BN,k is closed as if (gm)m∈N is a sequence of functions of BN,k that converges to g in
Eε∞(x0), then ‖g − gm‖Bεh∞,∞→ 0 and for all m,j ∈N, we have, from (2.2),

sup
|h|≤2−j

‖∆bs(σ )c+1
h g‖L∞(Bh(x0,2−j )) ≤ sup

|h|≤2−j
‖∆bs(σ )c+1

h gm‖L∞(Bh(x0,2−j )) +C‖g − gm‖Bε∞,∞

≤N (σ (k)
j )−1 +C‖g − gm‖Bε∞,∞ .
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Taking the limit for m→∞, we conclude that g ∈ BN,k. It follows that

Bk =
⋃
N∈N

BN,k

is a Borel set. The function f built above belongs to Eε∞(x0) but, for all M ∈N, there
exists j ∈N for which

σ
(k)
j sup
|h|≤2−j

‖∆bs(σ )c+1f ‖L∞(Bh(x0,2−j )) ≥M

and we conclude from Proposition 4.2.1 that Bk is Haar-null. As we have

{g ∈ Eε∞(x0) : g ∈ T σ ,∞/s log(x0)} =
⋃
k∈N

Bk ,

we conclude that almost every function of Eε∞(x0) belongs to T σ∞,log(x0) \ T σ ,∞/s log(x0).

Let us now focus on the case p = 1. In this setting, we recall that the required
property for the admissible sequence σ is that 2−jdσ−1

j tends to 0 as j tends to ∞ and

σ1 > 2−d . Again, we work with d = 1. If we have the additional assumption on the

wavelet1 that
∫ 1

0
ψ(x)dx , 0, and if we redefine the sequence (fm)m by

fm = σ−1
2m−1εm

∑
2m≤j<2m+1

2jψ(2j(· − εm)),

the functions f , set as previously, but with convergence in Ł1 this time, can be used to
define a probe as in the last theorem. Indeed, now, the only non-vanishing coefficient
of scale j, when j ∈ [2m,2m+1), is now σ−1

2m−1ε
1
m2j . First of all, if ε > 0 is now chosen such

that s(σ )− ε > −1,

2−jσ−1
2m−1εm2j ≤ 2−2m−1(s(σ )+1−ε) ≤ 2−j

s(σ )+1/p−ε
4

and f ∈ B
s(σ )+1/p−ε

4
1,∞ . Secondly, if [εm, εm + 2−j

′
) is a dyadic cube of scale j ′ ∈ [2m,2m+1) for

which εm ≤ 2−(j−1), we have

2−(j ′−j)σ−1
2m−1εm2j

′
≤ C′σ−1

j ,

which ensures that (σjd
1
j (0))j ∈ `∞. Finally, let us remark that, increasing M(σ ) if

necessary, one can makes sure that, for all l ∈ {1, ...,bs(σ )c + 1} and x ∈ [εm − εm+1, εm +
εm+1], we have

εm + εm+1 < x+ lεm < εm−1 − εm
1This assumption is satisfied for Daubechies wavelets for instance.
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and so f (x+ lεm) = δl,0fm(x). It follows that

(3εm)−1‖∆bs(σ )c+1
εm f ‖L1(Bεm (0,3εm)) ≥ C1σ

−1
2m−1

∫ εm+εm+1

εm

|
∑

2m≤j<2m+1

2jψ(2j(x − εm))|dx

≥ C1σ
−1
2m−1

∣∣∣∣∣∣∣∣
∑

2m≤j<2m+1

2j
∫ εm+1

0
ψ(2j(x − εm))dx

∣∣∣∣∣∣∣∣
= C1σ

−1
2m−1

∣∣∣∣∣∣∣∣
∑

2m≤j<2m+1

∫ 1

0
ψ(x)dx

∣∣∣∣∣∣∣∣
= C2σ

−1
2m−12m.

If we define, for all 0 < ε < s(σ )+d
4 and x0 ∈Rd , the space

Eε1(x0) = {f ∈ Bε1,∞(Rd) : (σjd
1
j (x0))j ∈ `∞},

equipped with the obviously modified Eε1 norm, one can show, in the same way that
Theorem 4.2.3, the following result.

Theorem 4.2.4. If x0 ∈Rd , for all 0 < ε < s(σ )+d
4 , almost every function of Eε1(x0) belongs to

T σ1,log(x0) \ T σ ,1/s log(x0).

Now, for 1 < p <∞, from what precedes, a judicious choice to obtain the desired
probe seems to take

fm = σ−1
2m−1ε

1
p
m

∑
2m≤j<2m+1

2
j
pψ(2j(· − εm)).

Once again, it is easy to check that the obtained function f checks the two first desired
properties

(σjd
p
j (0))j ∈ `∞ and f ∈ B

s(σ )+ 1
p

4
p,∞ .

But, unfortunately, for all m, if we compute the Lp norm of fm, it is proportional (see
once again the wavelet characterization of Lp spaces in [102]) to

∫
R

 ∑
2m≤j<2m+1

(σ−1
2m−1ε

1
p
m2

1
p )2χ[εm,εm+2−j )


p
2

dx


1
p

= σ−1
2m−1

 ∑
2m≤j<2m+1

2−j


j∑
k=2m

2
2k
p


p
2


1
p

and this last term is itself proportional to σ−1
2m−12m/p, which is not sufficient to establish

a theorem comparable to Theorems 4.2.3 and 4.2.4 for 1 < p < ∞. As the belonging
(σjd

p
j (0))j ∈ `∞ is optimal, one can not add a multiplicative term of order 2m/q without

altering it. We also thought about increasing the number of terms in the sum that
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defines fm up to 2mp but it is also impossible without destroying the belonging to an
uniform Besov space.

The function f exhibited here guarantees the necessity of a correction of order

(| log2(2−jd/pσj)|)1/p for almost every function in2 Eεp, with 0 < ε <
s(σ )+ d

p

4 , but cannot be
used to prove the following conjecture.

Conjecture 4.2.5. If x0 ∈ R
d , for all 1 ≤ p ≤ ∞, there exists ε(p)

sup > 0 such that, for all

0 < ε < ε(p)
sup, almost every function of Eεp(x0) belongs to T σp,log(x0) \ T σ ,p/s log(x0).

4.3 About the importance of pointwise spaces of
generalized smoothness

In this section, we start by giving, for any admissible sequence σ and p ∈ [1,∞], an ex-
ample of function that belongs to T

σ
p (x0). This example leads to discussions concerning

the contribution of pointwise spaces of generalized smoothness.

Example 4.3.1. Let us fix p ∈ [1,∞] and an admissible sequence σ such that s(σ ) > −1
p .

Let us also consider a wavelet ψ with compact support included in [−1,1]. We define
the function fσ by

fσ =
∑
k≥2

σ−1
k 2

k
pψ(22k(· − 2−k)), (4.13)

with convergence in Lp. For all k ≥ 2, ψ(22k(· − 2−k)) is supported in

[2−k(1− 2−k),2−k(1 + 2−k)]

and, in particular, for all k,k′ ≥ 2, with k , k′,

supp(ψ(22k(· − 2−k)))∩ supp(ψ(22k′ (· − 2−k
′
))) = ∅.

Therefore, for all j ≥ 2, we have, with usual modifications if p =∞,

2j/p‖fσ‖Lp(B(0,2−j )) = 2j/p

∫ 2−j

2−j (1−2−2j )
|fσ (x)|p dx+

∑
k>j

∫ 2−k(1+2−k)

2−k(1−2−k)
|fσ (x)|p dx


1/p

= 2j/p
σ−pj 2−j

∫ 0

−1
|ψ(x)|p dx+

∑
k>j

σ
−p
k 2−k

∫ 1

−1
|ψ(x)|p dx


1/p

.

2For 1 < p <∞, Eεp is defined in the obvious way, following the definitions of Eε∞ and Eε∞.
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Finally, using Lemma 1.2.2, it is clear that we can find constants C1,C2 > 0 such that,
for all j ≥ 2,

C1 ≤ 2j/pσj‖fσ‖Lp(B(0,2−j )) ≤ C2. (4.14)

The belonging to T σp (0) is immediately guaranteed by (4.14) together with Propo-
sition 3.1.2 (with Pj,0 = 0, for all j). To show that f ∈ Iσp (0), it suffices to note that, for all
n ∈N, one can find an interval I ⊂ [0,2−j] such that, for all x ∈ [2−k(1−2−k),2−k(1+2−k)],
∆nhfσ = fσ . If s(σ ) > 0, we can also remark that the sequence (σ−1

j )j is decreasing, thus,

for all j ≥ 2, dpj (0) ≥ σ−1
j and we can conclude the desired membership by Proposition

4.1.5.
For different values of p and different admissible sequences σ , Figure 4.1 give a

representation of fσ .
Note that, if we wish to obtain a function in T σp,q(0), with q , ∞, it suffices to

consider a sequence (εk)k ∈ `q and, for all k ≥ 2, to multiply the kth term in the sum
(4.13) by εk (the conclusion follows again by Lemma 1.2.2).

Of course, up to a translation, these affirmations hold for arbitrary x0.

This example is of particular interest to discuss the utility of these new spaces in
the precise characterization of the regularity for functions.

Firstly, it shows that for any sequence σ , there exists functions for which the
belonging to T σp (x0) is optimal, as reflected by the membership fσ ∈ T

σ
p (x0).

That being said, let us consider two distinct slowly varying functions Ψ and Φ ,
u > −dp and the associated admissible sequences σu,Ψ = (2juΨ (2j))j and

σu,Φ = (2juΦ(2j))j , see Corollary 1.2.12. If we assume that Ψ (x)→ 0 and Φ(x)→ 0 as
x→∞, then for all ε > 0, fσu,Ψ and fσu,Φ belong to T u−εp (x0) but not to T up (x0). The usual
spaces of Calderón and Zygmund fail to precisely characterize the regularity at x0 of
fσu,Ψ and fσu,Φ while the generalized versions are more accurate since fσu,Ψ ∈ T

σu,Ψ
p (x0)

and fσu,Φ ∈ T
σu,Φ
p (x0). Therefore, the notion of regularity underlying the usual spaces

may be too coarse in some situations. For example these spaces do not allow to cap-
ture the logarithmic correction in the regularity of the Brownian motion [82, 83]. As a
consequence, the usual spaces also fail to distinguish fσu,Ψ and fσu,Φ while, as soon as

Ψ (x) ∈ o(Φ(x)) as x → ∞, fσu,Ψ ∈ T
σu,Ψ
p (x0) \ T σu,Φp (x0). More generally, if σ and γ are

two admissible sequences such that σj ∈ o(γj) as j→ +∞, fσ ∈ T σp (x0) \ T γp (x0).
This situation occurs in practice when considering for instance the Brownian mo-

tion on (Ω,B,P). If we take the admissible sequence σ = (2
1
2 j | log j |− 1

2 )j , from the Khint-
chine Law of iterated logarithm [82, 60], we know that almost surely for all ω ∈Ω and

for almost every x0 ∈ R, B·(ω) ∈ T σ∞(x0) while B·(ω) < T
1
2
∞(x0). Being able to make a

distinction between a Brownian motion and another process not displaying such log-
arithmic corrections is an important issue in practice (see [83] and the next section
below).
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Figure 4.1: Representations of some functions defined in Example 4.3.1 with p = 2 (up-
per panel) and p =∞ (lower panel) and using dyadic sequence (black) and dyadic se-
quence with a logarithmic correction (red). The wavelet considered is the Daubechies
wavelet of order 2.

All these remarks lead to results of prevalence, using again Lemma 4.2.1.

Theorem 4.3.2. Given p ∈ [1,∞], if σ and γ are admissible sequences such that σj ∈ o(γj)
as j→ +∞ and s(σ ) ≤ s(γ) then, from the prevalence point of view, almost every function in
T σp (x0) does not belong to T γp (x0).

Proof. The assumptions made on the admissible sequences insure the inclusion of
T
γ
p (x0) in T σp (x0), see [90]. From the previous remarks on fσ , we know that for all
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M ∈N there exists j ∈N for which

γj2
jd/p sup

|h|≤2−j
‖∆bs(γ)c+1

h fσ‖Lp(Bh(x0,2−j )) ≥M.

Therefore, from Lemma 4.2.1, it suffices to show that T γp (x0) is a Borel set in
(T σp (x0),‖ · ‖T σp (x0)). We proceed in the same way that for the proof of Theorem 4.2.3.
For all N ∈N, we set

BN = {f ∈ T γp (x0) : ‖f ‖T γp (x0) ≤N }

and show that BN is closed in (T σp (x0),‖ · ‖T σp (x0)): if (fk)k is a sequence of functions of
BN that converges to f then, for all j,k ∈N,

‖f ‖Lp(B(0,1)) +γj2
j/p sup
|h|≤2−j

‖∆bs(γ)c+1
h f ‖Lp(Bh(x0,2−j ))

≤‖f − fk‖Lp(B(0,1)) +γj2
j/p sup
|h|≤2−j

‖∆bs(γ)c+1
h (f − fk)‖Lp(Bh(x0,2−j ))

+ ‖fk‖Lp(B(0,1)) +γj2
j/p sup
|h|≤2−j

‖∆bs(γ)c+1
h fk‖Lp(Bh(x0,2−j )).

Of course,

‖fk‖Lp(B(0,1)) +γj2
j/p sup
|h|≤2−j

‖∆bs(γ)c+1
h fk‖Lp(Bh(x0,2−j )) ≤N

and, using fundamental properties of finite differences,

γj2
j/p sup
|h|≤2−j

‖∆bs(γ)c+1
h (f − fk)‖Lp(Bh(x0,2−j )) ≤ C

γj
σj
σj2

j/p sup
|h|≤2−j

‖∆bs(σ )c+1
h (f − fk)‖Lp(Bh(x0,2−j )).

Taking the limit k→ +∞, we have ‖f ‖T γp (x0) ≤N and thus BN is closed. As,

T
γ
p (x0) =

⋃
N∈N

BN ,

the conclusion follows.

In particular, while working with a decreasing family of admissible sequences,
the assumptions of Theorem 4.3.2 are often met (see [90]) and we can state the follow-
ing corollary without too much restriction.

Corollary 4.3.3. Given p ∈ [1,∞], if (σ (h))h>− 1
p

is a decreasing family of admissible se-

quences such that h < h′ implies σ (h)
j ∈ o(σ (h′)

j ) as j → +∞ and s(σ (h)) ≤ s(σ (h′)) then, from

the prevalence point of view, almost every function in T σ
(h)

p (x0) is of exponent h.
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4.4 From theory to practice: open perspectives

This thesis only focuses on the theoretical background needed to establish new meth-
ods in multifractal analysis based on admissible sequences and generalized Hölder
exponents. Nevertheless, the example presented in the previous section could be used
to make first numerical experimentations of our formalism. In a hope to generate in-
terest from programmers and researchers in signal analysis, one can mention results
obtained by Thomas Kleyntssens in his own thesis [83]. There, he implemented a
numerical method based on a generalization of the Sν spaces, originally defined by
Jaffard [69], adapted to compute generalized Hölder exponents such as the ones we
considered before.

Definition 4.4.1. Let ν be a right-continuous increasing function for which there exists
hmin ∈ R such that ν(h) = −∞ if h < hmin and ν(h) ∈ [0,d] if h ≥ hmin. Let (σ (h))h be a
decreasing family of admissible sequences such that h < h′ implies that σ (h)

j ∈ o(σ (h′)
j )

as j→ +∞.
The set Sν,σ

(·)
is the set of all complex sequences c = (cλ)λ∈Λ such that for any

h ∈R, ε > 0 and C > 0, there exists J > 0 for which for any j ≥ J , we have

#{λ ∈Λj : σ (h)
j |cλ| ≥ C} ≤ 2(ν(h)+ε)j .

Of course, in our context, c = (cλ)λ∈Λ are the (periodized) wavelet coefficients of a
function. One can therefore define the corresponding generalized wavelet profile as the
function

νc,σ (·) : h 7→ lim
ε→0+

limsup
j→+∞

log#{λ ∈Λj : σ (h+ε)
j |cλ| ≥ 1}

log2j

and show that c = (cλ)λ∈Λ ∈ Sν,σ
(·)

if and only if νcσ (·) ≤ ν. Note that, if we consider, for

all h ∈R, σ (h) = (2jh)j , we have Sν,σ
(·)

= Sν .

Let us highlight the fact that these spaces are strongly connected to the ones
considered here. Indeed let us define by bσp,q the set of sequences (cλ)λ∈Λ that satisfy
condition (3.5). We can show [83] that, if we also assume that s(σ (h))→ +∞ as h→ +∞
then, if for all p > 0, γ (p) is an admissible sequence, we have

Sν,σ
(·)
⊆

⋂
p>0

⋂
ε>0

b
γ(p)2·ε/p
p,∞

if and only if for any p,ε > 0 and for any h ≥ hmin, there exists C > 0 such that, for all
j ∈N,

2jε/p ≤ C2jd/p2−jν(h)/pγ
(p)
j (σ (h)

j ).

In [83], Thomas Kleyntssens implements an algorithm based on Sν and Sν,σ
(·)

spaces to estimate the (standard) Hölderian regularity and explores the numerical con-
tribution of admissible sequences by distinguishing three fundamentals cases:
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1. Detection of the Hölderian behaviour for functions with prescribed Hölder expo-
nent defined by their wavelet decomposition.

2. Detection of the Khintchine Law.

3. Detection of the Hölderian behaviour for processes defined in the Schauder basis.

In each case, the methodology is similar: performing repeatedly the algorithm using
the families

(2αj)j , (2
αj | log | log2j ||

−1
2 )j , (2

αj | log | log2j ||−1)j and (2αj | log2j |
−1
2 )j (4.15)

of admissible sequences on randomly generated realization of signals with prescribed
Hölder exponents and precise regularity known among the four families. Then, the
errors between the Hölder exponents estimated by the algorithm and the real exponent
are represented by boxplots.

In case 1, signals defined by their wavelet decomposition, of Hölder exponent H
and having logarithm corrections ((w(2j))−1)j , with

w(·) ∈ {1,
√
| log | log(·)||, | log | log(·)||,

√
| log(·)|}

as precise regularity are considered. The results are quite relevant: the algorithm pro-
viding the smallest error and the fewest dispersion is the one associated with the good
correction in the profile, it is presented in Figure 4.2.

A similar procedure could be used in our setting, using a randomized version of
the function described in Example 4.3.1 to check if the algorithm is able to detect the
precise regularity given by the used admissible sequence.

In case 2, Brownian motion is considered: almost surely it is of Hölder exponent
1/2 and, from the Khintchine law of iterated logarithm, we know that it satisfies a
((| log | log2j ||)−1

2 )j correction. It is compared with a randomized Weierstraß function

W (x) =
∑
j=0

aj cos((bjx+Uj)π),

where (Uj)j is an arbitrary sequence of independent random variables with respect
to the uniform probability measure on [0,1] and 0 < a < 1 < b are chosen such that
− log(a)/ log(b) = 1

2 . In this setting, almost surely, W is of Hölder exponent 1/2 and
satisfies a correction of order 1. Again, for each function, the estimations of the Hölder
exponent with the smallest error and the fewest dispersion are the ones obtained with
the appropriated correction in the profile, as it can be seen in Figure 4.3.

Case 3 is similar to the first two but considers functions represented in Schauder
basis and the relevance of the profiles using admissible sequences is again showed.

Thomas Kleyntssens’ work highlighted the relevance of dealing with admissi-
ble sequences in signal analysis. He provided a method to numerically detect the
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Figure 4.2: Boxplots of the errors of measurement between the prescribed exponent
and the one estimated. The function w corresponds to the known correction present
in the signal and boxplots correspond to the profile using, from left to right, the ad-
missible sequences (2αj)j , (2αj | log | log2j ||−1

2 )j , (2αj | log | log2j ||−1)j and (2αj | log2j |−1
2 )j .

Figure 4.3: Boxplots of the errors of measurement between the prescribed exponent
and the one estimated. On the left panel, the Hölderian regularity of the Brownian
motion is estimated while, on the right panel, a randomized Weierstraß function is
considered. Boxplots correspond to the profile using, from left to right, the admissible
sequences (2αj)j , (2αj | log | log2j ||−1

2 )j , (2αj | log | log2j ||−1)j and (2αj | log2j |−1
2 )j .
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Khintchine Law, which could be of big interested in stock exchange, for example, as
we could detect if a financial market follows a Brownian motion before applying the
Black-Scholes model to it ([13, 58]).

Our work here aimed to pave the way for new methods in signal analysis using
admissible sequences. Indeed, we establish a new multifractal formalism which relied
on them and proved its validity from a prevalence point of view. This gives new op-
portunities for researchers using the Wavelet Leaders Method as we provided a general
framework for it.

Please note also that the Lν spaces have been introduced recently [4]. They consist
in taking advantage of the wavelet leaders by replacing the wavelet coefficients that
appear in the profile by themselves. A common generalization of the Lν and Sν,σ

(·)

spaces is to consider the p-wavelet leaders profile

νc,σ (·) : h 7→ lim
ε→0+

limsup
j→+∞

log#{λ ∈Λj : σ (h+ε)
j d

p
λ ≥ 1}

log2j
.

We already checked that the corresponding functional spaces satisfy fundamental prop-
erties similar to the ones presented in [4, 5], in particular they are independent of the
chosen wavelet basis in the Schwartz class, the proofs are straightforward adaptations.
Again, an implementation of an algorithm based on theses spaces and profiles could
be of great interest to work with the generalized spaces and exponents we introduced
in this thesis.
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The T pu spaces were introduced in essence by Calderón and Zygmund [26]: given a
point x0 of the d-dimensional Euclidean space R

d , p ∈ [1,∞] and a number u ≥ −d/p,
T
p
u (x0) denotes the class of functions f in Lp(Rd) for which there exists a polynomial P

of degree strictly less than u with the property that

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ Cr
u , (5.1)

for a constant C (which does not depend on r). If f ∈ T pu (x0) also satisfies

r−d/p‖f − P ‖Lp(B(x0,r)) = o(ru) as r→ 0+,

where P is a polynomial of degree less than or equal to u (where we have used the
usual Bachmann-Landau notations), then f is said to belong to tpu(x0).

The general idea consists here in replacing the power function r 7→ ru appear-
ing in (5.1) with r 7→ φ(r) (r > 0), where φ is a Boyd function, to obtain generalized
spaces T pφ and tpφ respectively; typically, such a function φ could be r 7→ ru | lnr | for the
detection of the logarithmic corrections (such an idea is exploited in [39, 108] in the
case of Bessel potential spaces) or more generally r 7→ ruψ(r), where ψ is any slowly
varying function. Such a choice is natural and observed in many financial models that
are derived from the Brownian motion (e.g. the geometric Brownian motion used in
the Black and Scholes model [64], the Hull and White one-factor model [17], etc.).

Proposition 1.2.11 allows us to affirm that we already have investigated those
spaces from a multifractal point of view. Now, we wish to explore their properties as
regularity spaces and show that they are still related to some notion of smoothness. In
this context, we prefer to work with Boyd functions instead of admissible sequences, as
it is more convenient to work with a continuum of values, see Remark 5.1.2 below. To
achieve this goal, we follow the ideas of Calderón and Zygmund and show that most
of the properties established in [26] still hold for the generalized versions T pφ and tpφ;
we thus introduce in this thesis some generalizations of the results obtained in [26].

In this chapter, we only focus on the standard properties of the generalized spaces
T
p
φ and tpφ and establish some basic results concerning them (about completeness, den-

sity, embeddings,...). Next, we give a generalization of Whitney extension theorem.
Connections with operators and elliptic partial differential equations will be discussed
in the next chapter.
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Results of the next two chapters were published in [99].
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5.1 Definitions and first properties

Definition 5.1.1. Let x0 ∈Rd , p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. A function
f ∈ Lp(Rd) belongs to the space T pφ (x0) if there exist a polynomial P of degree strictly
less than b(φ) and a constant C > 0 such that

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ Cφ(r) ∀r > 0. (5.2)

Moreover, if we also have

r−d/p‖f − P ‖Lp(B(x0,r)) ∈ o(φ(r)) as r→ 0+, (5.3)

we say that f belongs to tpφ(x0).

Remark 5.1.2. In the previous definition, the condition b(φ) > −d/p is here to ensure
that the spaces T pφ are not degenerated: if r−d/p < Cφ(r) is satisfied in a neighbourhood

of the origin, then any function belongs to T pφ (x0); this inequality is never satisfied if
−d/p < b(φ). This condition could be relaxed in Definition 5.1.1, but the interest of
such an extended definition is not obvious.

Remark 5.1.3. The definitions of T pφ (x0) and T σp,∞(x0) slightly differ :

• The use of a Boyd function instead of an admissible sequence is made in order
to work with a continuum of values. Proposition 1.2.11 and Theorem 3.2.3 con-
nect the two spaces. Note that the T σp,∞ regularity, in a multifractal analysis point
of view, only focuses on small radii around x0 and only requires germs of func-
tions. It is then equivalent, and more convenient, in this context, to work with
sequences. At the opposite, the T pφ (x0) regularity scans all values of r, in a more
functional analysis approach, and considering the whole function is then neces-
sary. Up to multiplication by cut-off functions, if needed, T σp,∞(x0) can be studied
through T pφ (x0) and tpφ(x0) spaces, using the Boyd function defined in Proposition
1.2.11.
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• In Definition 5.1.1, we ask the polynomial P to be of degree strictly less than
b(φ), while in Proposition 3.1.2 it is stated to be less than or equal to s(σ ). This
assures the uniqueness of the polynomial, see Proposition 5.1.5 below, in order to
use its coefficients in the T pφ (x0) norm. Nevertheless, most of the more interesting
results exposed in this chapter hold if the Boyd indices are non-integers. In this
setting, the spaces T pφ (x0) and T σp,∞(x0) are identical (up to multiplication by cut-
off functions), thanks to Theorem 3.2.3.

Remark 5.1.4. Let us highlight the fact that tpφ(x0) is a “true subspace” of T pφ (x0); in-

deed, under the assumptions of the previous definition, if f ∈ Lp(Rd) is such that there
exists a polynomial P of degree strictly less than b(φ) for which

φ(r)−1r−d/p‖f − P ‖Lp(B(x0,r))→ 0 as r→ 0+,

then there exists R > 0 such that

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ φ(r),

for all r ≤ R. Moreover, for r ≥ R, we have

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ r
−d/p‖f ‖Lp(Rd ) +CR(1 + rn)

and an application of Proposition 1.2.6 shows that the right-hand side can be bounded
from above by φ(r), which means that f ∈ T pφ (x0).

Let us study the basic properties of the spaces T pφ .

Proposition 5.1.5. If f ∈ T pφ (x0), then the polynomial P in (5.2) is unique.

Proof. Of course, if b(φ) ≤ 0, the polynomial appearing in (5.2) must be 0. Now, if
b(φ) > 0, let us suppose that there exist two polynomials P and P ′ of degree strictly
less than b(φ) and C,C′ > 0 such that, for all r > 0,

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ Cφ(r)

and

r−d/p‖f − P ′‖Lp(B(x0,r)) ≤ C
′φ(r).

Now, if we define Q := P − P ′, Q is a polynomial of degree n < b(φ). So, if ε > 0
is such that n < b(φ) − ε, then we have from Proposition 1.2.6 that there exists C′′ > 0
such that

r−d/p‖Q‖Lp(B(x0,r)) ≤ C
′′rb(φ)−ε.

But, if Q is a non-zero polynomial, than the left-hand side must decrease at most like
rn, which contradicts this last inequality.
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Remark 5.1.6. If φ ∈ B and if the function f belongs to T pφ (x0) for some p ∈ [1,∞], then,

in particular, f belongs to L1
loc(Rd). Suppose that b(φ) > 0 (otherwise, the polynomial

P in (5.2) is identically zero) and let us assume that x0 is a Lebesgue point of f . If P is
the polynomial of degree strictly less than b(φ) such that

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ Cφ(r) ∀r > 0,

then we also have

r−d‖f − P ‖L1(B(x0,r)) ≤ Cdr
−d/p‖f − P ‖Lp(B(x0,r)) ≤ C

′φ(r)

for all r > 0. From the previous relations, we have

|f (x0)− P (x0)| ≤ Cd r−d‖f (x0)− P (x0)‖L1(B(x0,r))

≤ r−d‖f (x0)− f ‖L1(B(x0,r)) + r−d‖f − P ‖L1(B(x0,r))

+ r−d‖P − P (x0)‖L1(B(x0,r))

≤ r−d‖f (x0)− f ‖L1(B(x0,r)) +C′φ(r)

+Cd
∑

1≤|α|<b(φ)

|D
αP (x0)
α!

|r |α|.

But, as b(φ) > 0, Proposition 1.2.6 implies that φ(r) converges to 0 as r tends to 0+. As
a consequence, as x0 is supposed to be a Lebesgue-point of f , the last upper bound in
the previous inequality tends to 0 as r tends to 0+, which implies f (x0) = P (x0).

Let f ∈ T pφ (x0) and

P :=
∑
|α|<b(φ)

DαP (x0)
α!

(x − x0)α

be the polynomial that appears in (5.2). Let us set

|f |T pφ (x0) := sup
r>0

φ(r)−1r−d/p‖f − P ‖Lp(B(x0,r))

and

‖f ‖T pφ (x0) := ‖f ‖Lp(Rd ) +
∑
|α|<b(φ)

|DαP (x0)|
α!

+ |f |T pφ (x0).

Proposition 5.1.7. Let x0 ∈ Rd , p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. The space
(T pφ (x0),‖ · ‖T pφ (x0)) is a Banach space.

Proof. It is straightforward to show that ‖ · ‖T pφ (x0) is a norm on T pφ (x0).
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Let us now consider a Cauchy sequence (fj)j∈N of (T pφ (x0),‖ · ‖T pφ (x0)). For j ∈N, let

us denote by Pj the polynomial of degree strictly less than b(φ) such that, for all r > 0,

r−d/p‖fj − Pj‖Lp(B(x0,r)) ≤ |fj |T pφ (x0)φ(r).

Let f ∈ Lp(Rd) and cα ∈ C (for |α| < b(φ)) be such that fj → f in Lp(Rd) and
DαPj(x0)/α!→ cα in C for all |α| < b(φ). Let us then define the polynomial P by

P :=
∑
|α|<b(φ)

cα(x − x0)α.

For all q ∈N, we have

φ(r)−1r−d/p‖(f − fq)− (P − Pq)‖Lp(B(x0,r))

= φ(r)−1r−d/p lim
s→∞
‖(fs − fq)− (Ps − Pq)‖Lp(B(x0,r))

≤ limsup
s→∞

‖fq − fs‖T pφ (x0) <∞.

Taking the supremum over r > 0 gives us

|f − fq|T pφ (x0) ≤ limsup
s→∞

‖fq − fs‖T pφ (x0) <∞

and passing to the limit for q→ +∞ allows us to get

lim
q→+∞

|f − fq|T pφ (x0) = 0,

which is enough to conclude, as the finiteness of |f |T pφ (x0) follows from triangular in-

equality.

Proposition 5.1.8. Let x0 ∈ Rd , p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p; tpφ(x0) is a

closed subspace of T pφ (x0).

Proof. Let (fj)j∈N be a sequence of functions in tpφ(x0) for which there exists f ∈ T pφ (x0)

such that fj → f in T
p
φ (x0) and let us show that f ∈ tpφ(x0). Let P and Pj (j ∈ N) be

polynomials of degree strictly less than b(φ) such that

r−d/p‖fj − Pj‖Lp(B(x0,r)) ≤ |fj |T pφ (x0)φ(r) ∀j ∈N

and
r−d/p‖f − P ‖Lp(B(x0,r)) ≤ |f |T pφ (x0)φ(r).

If we set R := f − P and Rj := fj − Pj , we know that

sup
r>0

φ(r)−1r−d/p‖Rj −R‖Lp(B(x0,r)) ≤ ‖fj − f ‖T pφ (x0)→ 0 as j→∞
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and

φ(r)−1r−d/p‖Rj‖Lp(B(x0,r))→ 0 as r→ 0+.

Given ε > 0, let J ∈N be such that j ≥ J implies

sup
r>0

φ(r)−1r−d/p‖Rj −R‖Lp(B(x0,r)) <
ε
2
.

There also exists ρJ such that, for all r ∈ (0,ρJ ],

φ(r)−1r−d/p‖RJ‖Lp(B(x0,r)) <
ε
2
.

As a consequence, we have, for such r,

φ(r)−1r−d/p‖R‖Lp(B(x0,r)) < ε,

which proves that f ∈ tpφ(x0).

There is an obvious link, given by the following remark, between the classical
spaces Ck of k-times continuously differentiable functions and the spaces tpφ(x0).

Remark 5.1.9. Let x0 ∈ R
d , p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. First, if

b(φ) < 0 and f ∈ C0(V ), where V is an open neighbourhood of x0, then f ∈ tpφ(x0).
Indeed, if R > 0 is such that B(x0,R) ⊆ V then there exists C > 0 such that |f | ≤ C on
B(x0,R) and, for r ∈ (0,R], we have

r−d/p‖f ‖Lp(B(x0,r)) ≤ C.

It follows from Proposition 1.2.6 that

r−d/p‖f ‖Lp(B(x0,r)) ∈ o(φ(r)) as r→ 0+.

Also, if there exists n ∈N such that n < b(φ) ≤ b(φ) < n+ 1 and f ∈ Cn+1(V ), then again
f ∈ tpφ(x0). Let P be the Taylor expansion of order n of f at x0. There exists C > 0 such

that |f − P | ≤ C(· − x0)n+1 on B(x0,R). Therefore

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ Cr
n+1,

for r ∈ (0,R] and the conclusion comes again from Proposition 1.2.6.

5.2 A density result

Let ϕ be a non-negative, real-valued function in D(Rd) such that∫
R
d
ϕ(x)dx = 1 and supp(ϕ) ⊂ B(0,1).
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Let f be a function that belongs to Lp(Rd) for some p ∈ [1,∞) and, given λ > 0, define
fλ by

fλ := λdϕ(λ·) ∗ f . (5.4)

It is well known that fλ ∈ Lp(Rd) ∩ C∞(Rd) and ‖fλ − f ‖Lp(Rd ) → 0 as λ → ∞. Let us
show that if f ∈ tpφ(x0), under some basic assumptions on φ, then the convergence also

holds in T pφ (x0).

Proposition 5.2.1. Let x0 ∈ Rd , p ∈ [1,∞) and φ ∈ B be such that b(φ) > −d/p and either
b(φ) ≤ 0 or there exists n ∈N such that n < b(φ) ≤ b(φ) < n+ 1. If a function f belongs to
t
p
φ(x0), then ‖fλ − f ‖T pφ (x0)→ 0 as λ→∞.

Proof. Without loss of generality, we can suppose that x0 = 0. Let us first consider the
case where there exists n ∈ N such that n < b(φ) ≤ b(φ) < n + 1. Given λ > 0, define
Rλ := fλ−Pλ where Pλ is the Taylor expansion of order n of fλ at 0. Let R := f −P , where
P is a polynomial of degree n, be such that

φ(r)−1r−d/p‖R‖Lp(B(0,r))→ 0 as r→ 0+.

For r > 0, we have

r−d‖R‖L1(B(0,r)) ≤ Cdr−d/p‖R‖Lp(B(0,r)) ≤ ε(r)φ(r),

where ε(r)→ 0 as r → 0+. We can make the assumption that ε(r) is decreasing to 0 as
r→ 0+.

Let us remark that, for |α| ≤ n, we have DαPλ(0)→ DαP (0) as λ→∞. Indeed, for
λ > 0,

DαPλ(0) =Dαfλ(0)

=
∫
R
d
λdϕ(−λy)DαP (y)dy +

∫
R
d
(−1)|α|λd+|α|Dαϕ(−λy)R(y)dy.

The first term of the right-hand side tends to DαP (0) as λ tends to infinity and for the
second term, we have

|
∫
R
d
(−1)|α|λd+|α|Dαϕ(−λy)R(y)dy| ≤ Cϕλd+|α|

∫
B(0, 1λ )

|R(y)|dy

≤ ε(
1
λ

)λ|α|φ(
1
λ

),

which proves, since |α| < b(φ), that
∫
R
d (−1)|α|λd+|α|Dαϕ(−λy)R(y)dy tends to 0

as λ→∞.
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Given r > 0 and λ > 0, let us now estimate the quantity ‖Rλ‖Lp(B(x0,r)). For all
x ∈Rd , we have

Rλ(x) = fλ(x)− Pλ(x)

=
∫
R
d
(λdϕ(λ(x − y))−

∑
|α|≤n

λd+|α|D
αϕ(−λy)
α!

xα)(P (y) +R(y))dy

and as ∫
R
d
λdϕ(λ(x − y))P (y)−

∑
|α|≤n

λd+|α|D
αϕ(−λy)
α!

P (y)xα dy

is equal to λdϕ(λ·) ∗ P (which is a polynomial of degree n) minus its Taylor expansion
of order n at 0, this last integral is equal to 0. Therefore,

Rλ(x) =
∫
R
d
(λdϕ(λ(x − y))−

∑
|α|≤n

λd+|α|D
αϕ(−λy)
α!

xα)R(y)dy.

It follows, by Young’s inequality, that

‖Rλ‖Lp(B(0,r)) ≤ Cϕ‖R‖Lp(B(0,2r))

+
∑
α≤n

λd+|α|‖RDαϕ(−λ·)‖L1(B(0,1/λ))‖ ·α ‖Lp(B(0,r))

≤ C′ϕ(rd/pε(2r)φ(r) +
∑
α≤n

ε(
1
λ

)λ|α|φ(
1
λ

)r
d
p+|α|),

for all r ≥ 1/λ. But, as φ(1/λ) ≤ φ(r)φ( 1
rλ ) and 1

rλ ≤ 1, we have, thanks to Remark 1.2.9,

φ(
1
rλ

)(rλ)|α| ≤ Cδ(rλ)−(b(φ)−δ−|α|) ≤ Cδ,

where δ > 0 has been chosen such that b(φ) − δ − n ≥ 0. Consequently, given r,λ > 0
such that r ≥ 1/λ, we have

‖Rλ‖Lp(B(0,r)) ≤ Crd/pε(2r)φ(r). (5.5)

On the other hand, if r < 1/λ, Taylor’s formula provides the following relation:

|λdϕ(λ(x − y))−
∑
|α|≤n

λd+|α|D
αϕ(−λy)
α!

xα | ≤ Cϕ(λ|x|)n+1λd ,

which implies

|Rλ(x)| ≤ Cϕ(λ|x|)n+1λd
∫
B(0, 2λ )

|R(y)|dy

≤ Cϕ,d(λ|x|)n+1ε(
2
λ

)φ(
2
λ

),
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for all x ∈ B(0, r). Therefore, we have

‖Rλ‖Lp(B(0,r)) ≤ Crd/p(λr)n+1ε(
2
λ

)φ(
1
λ

).

Now, using the second part of Remark 1.2.9, we can write

(λr)n+1φ(
1
λ

) ≤ φ(r)(λr)n+1φ(
1
rλ

)

≤ Cδ′φ(r)(rλ)(n+1−b(φ)−δ′)

≤ Cδ′φ(r),

where δ′ > 0 has been chosen such that n + 1 − b(φ) − δ′ ≥ 0. As a consequence, given
R,λ > 0 such that r < 1/λ, we have

‖Rλ‖Lp(B(0,r)) ≤ Crd/pε(
2
λ

)φ(r). (5.6)

From relations (5.5) and (5.6), we have

φ(r)−1r−d/p‖Rλ‖Lp(B(0,r)) ≤ C(ε(2r) + ε(
2
λ

)),

for all r,λ > 0, which naturally implies

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) ≤ C(ε(2r) + ε(
2
λ

)). (5.7)

Let us now remark that, if we fix ρ > 0 and choose η > 0 such that

b(φ)− η > n,

then, from Proposition 1.2.6, we have

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r))

≤ φ(r)−1r−d/p‖f − fλ‖Lp(B(0,r))

+Cd
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

φ(r)−1r |α|

≤ Cρ r
(−b(φ)+η− dp )‖f − fλ‖Lp(Rd )

+Cd,ρ
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

r(−b(φ)+η+|α|)

≤ Cρρ
(−b(φ)+η− dp )‖f − fλ‖Lp(Rd )

+Cd,ρ
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

ρ(−b(φ)+η+|α|),
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for all r > ρ. As we know that ‖f − fλ‖Lp(Rd )→ 0 and DαPλ(0)→ DαP (0) as λ→∞, for
all |α| ≤ n, we get that

sup
r≥ρ

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r))→ 0 as λ→∞. (5.8)

Gathering (5.7) and(5.8) leads to

sup
r>0

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r))→ 0 as λ→∞, (5.9)

since otherwise there exists ξ > 0 such that for all Λ > 0 there exists λ >Λ for which

sup
r>0

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) ≥ ξ,

which makes us able to build a sequence (λj)j∈N that converges to∞ and satisfying

sup
r>0

φ(r)−1r−d/p‖R−Rλj‖Lp(B(0,r)) ≥ ξ,

for all j. In particular, given j ∈N, there exists rj > 0 such that

φ(rj)
−1r
−d/p
j ‖R−Rλj‖Lp(B(0,rj )) ≥

ξ
2
. (5.10)

As λj →∞, there exists J1 ∈ N such that for all j ≥ J1, ε(2/λj) < ξ/(4C), where C > 0
is the constant appearing in (5.7). Moreover, there also exists ρ > 0 such that, for any
r ∈ (0,ρ], ε(2r) < ξ

4C . From (5.8), we know that there exists J2 ∈ N such that, for all
j ≥ J2,

sup
r>ρ

φ(r)−1r−d/p‖R−Rλj‖Lp(B(0,r)) <
ξ
2
. (5.11)

Therefore, if j ≥max{J1, J2}, (5.11) implies rj ≤ ρ and, by (5.7) and (5.10), we finally get
a contradiction.

If we now assume that b(φ) ≤ 0, then R = f and Rλ = fλ. Therefore, by Young’s
inequality, we have

‖Rλ‖Lp(B(0,r)) ≤ Cϕ‖R‖Lp(B(0,2r)) ≤ Cε(2r)φ(r).

If r ≤ 1/λ, let us recall that ε(2r) ≤ ε(2/λ). As a consequence, relations (5.5), (5.6) and
so (5.7) still hold and we can conclude in the same way, using the fact that

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) = φ(r)−1r−d/p‖f − fλ‖Lp(B(0,r))

and b(φ) > −dp .

The last proposition admits the following useful corollary.
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Corollary 5.2.2. Under the assumptions of the preceding proposition, the space D(Rd) is a
dense subspace of tpφ(x0).

Proof. Let us consider f ∈ tpφ(x0) and the sequence of functions (fj)j∈N defined by

fj := f χ
B(0,2j )

(j ∈N).

By Lebesgue’s dominated convergence theorem, it is clear that fj → f in Lp(Rd); we will
show that fj belongs to tpφ(x0) (j ∈N) and that the convergence also holds in T pφ (x0).

Let P be the polynomial of degree strictly less than b(φ) such that

φ(r)−1r−d/p‖f − P ‖Lp(B(x0,r))→ 0 as r→ 0+.

First, as fj = f on B(x0,1), we have

φ(r)−1r−d/p‖fj − P ‖Lp(B(x0,r))→ 0 as r→ 0+,

for any j ∈N. Therefore, given j ∈N, fj ∈ t
p
φ(x0) and

‖f − fj‖T pφ (x0) = ‖f − fj‖Lp(Rd ) + sup
r>0

φ(r)−1r−d/p‖fj − f ‖Lp(B(x0,r)).

On the one hand, if r ∈ (0,2j] then

φ(r)−1r−d/p‖fj − f ‖Lp(B(x0,r)) = 0

and, on the other hand, if r > 2j , by Proposition 1.2.6,

φ(r)−1r−d/p‖fj − f ‖Lp(B(x0,r)) ≤ Cr
−(b(φ)−ε+ d

p )‖fj − f ‖Lp(Rd )

≤ C2−j(b(φ)−ε+ d
p )‖fj − f ‖Lp(Rd ),

where ε > 0 is such that b(φ) − ε + d
p ≥ 0 and C > 0 is such that r(b(φ)−ε) ≤ Cφ(r) for all

r ≥ 1. Therefore, we have

‖f − fj‖T pφ (x0) ≤ ‖f − fj‖Lp(Rd ) +C2−j(b(φ)−ε+ d
p )‖fj − f ‖Lp(Rd )→ 0,

as j→∞, which provides the convergence in T pφ (x0).
The conclusion then follows from Proposition 5.2.1.

5.3 Some embeddings

Notation 5.3.1. Given φ,ψ ∈ B, we will write φ 4 ψ to mean that there exist R,C > 0
such that, for all r ∈ (0,R), we have φ(r) ≤ Cψ(r).
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Of course, by continuity, one has φ 4 ψ if and only if, for all R > 0, there exists
C > 0 such that φ(r) ≤ Cψ(r) for all r ∈ (0,R).

Proposition 5.3.2. Let φ,ψ ∈ B; if b(ψ) < b(φ) then φ 4 ψ. Conversely, if φ 4 ψ, then
b(ψ) ≤ b(φ).

Proof. Let us first assume that b(ψ) < b(φ) and let ε > 0 be such that

b(ψ) + ε < b(φ)− ε.

By Proposition 1.2.6, given R > 0, there exists C > 0 such that for all r ∈ (0,R),

φ(r) ≤ Crb(φ)−ε ≤ C′rb(ψ)+ε ≤ C′′ψ(r),

which means φ 4 ψ.
If we now assume φ 4 ψ then, in particular, there exists C > 0 such that for all

r ∈ (0,1),

φ(1/r)−1 ≤ Cψ(r).

Therefore, for such r, we have

log(φ(1/r))
log(1/r)

≥
log(C)
log(r)

+
log(ψ(r)

log(r)

and taking the limit as r→ 0+ gives b(φ) ≥ b(ψ).

Proposition 5.3.3. Let x0 ∈ R
d , p ∈ [1,∞] and φ,ψ ∈ B be such that either b(ψ) < 0 or

there exists n ∈ N for which n < b(ψ) ≤ b(ψ) < n + 1; if φ 4 ψ, then T pφ (x0) ↪→ T
p
ψ (x0).

Moreover, if φ(r) ∈ o(ψ(r)) as r→ 0+, then T pφ (x0) ↪→ t
p
ψ(x0).

Proof. Let f ∈ T pφ (x0); there exists a polynomial P of degree strictly less than b(φ) such
that

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ |f |T pφ (x0)φ(r) ∀r > 0.

Let Q = 0, k = l = 0 if b(ψ) < 0 and

Q =
∑
|α|≤n

DαP (x0)
α!

(· − x0)α,

k = n + 1, l = n if n ∈ N satisfies n < b(ψ) ≤ b(ψ) < n + 1. For any r ≤ 1, we obviously
have, by Proposition 1.2.6,

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ r
−d/p‖f − P ‖Lp(B(x0,r)) + r−d/p‖P −Q‖Lp(B(x0,r))

≤ |f |T pφ (x0)φ(r) +Cd‖f ‖T pφ (x0)r
k

≤ Cφ,ψ‖f ‖T pφ (x0)ψ(r),
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while for r > 1,

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ r
−d/p‖f ‖Lp(B(x0,r)) + r−d/p‖Q‖Lp(B(x0,r))

≤ r−d/p‖f ‖Lp(Rd ) +Cd,p‖f ‖T pφ r
l

≤ Cφ‖f ‖T pφ (x0)ψ(r),

which leads to the first part of the proposition.
The second part comes from the inequality

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ |f |T pφ (x0)φ(r) +Cd‖f ‖T pφ (x0)r
k ,

valid for all 0 < r ≤ 1 and the relations φ(r) ∈ o(ψ(r)) and rk ∈ o(φ(r)).

Proposition 5.3.4. Let x0 ∈Rd , p1,p2 ∈ [1,∞], p3 be such that

0 ≤ 1
p3

:=
1
p1

+
1
p2
≤ 1

and φ ∈ B be such that there exists n ∈ N for which n < b(φ) ≤ b(φ) < n + 1. Given
f1 ∈ T

p1
φ (x0) and f2 ∈ T

p2
φ (x0), we have f1f2 ∈ T

p3
φ (x0), with

‖f1f2‖T p3
φ (x0) ≤ Cd,p1,p2,φ‖f1‖T p1

φ (x0)‖f2‖T p2
φ (x0).

Moreover, if f1 ∈ t
p1
φ (x0) and f2 ∈ t

p2
φ (x0), then f1f2 ∈ t

p3
φ (x0).

Proof. We know that, given k ∈ {1,2}, there exists a polynomial Pk of degree less or
equal to n such that Rk := fk − Pk satisfies

r−d/pk‖Rk‖Lpk (B(x0,r)) ≤ |fk |T pkφ (x0)φ(r). (5.12)

Therefore, if we denote by P the sum of the terms of degree less than or equal to n in
P1P2, we have

f1f2 = P1P2 +R1P2 +R2f1 = P + P1P2 − P +R1P2 +R2f1.

Let R := P1P2 − P +R1P2 +R2f1; clearly,∑
|α|≤n

|DαP (x0)|
α!

≤ ‖f1‖T p1
φ (x0)‖f2‖T p2

φ (x0).

Let us first consider r ≤ 1; by Proposition 1.2.6, since

|P1P2(x)− P (x)| ≤ (x − x0)n+1‖f1‖T p1
φ (x0)‖f2‖T p2

φ (x0),
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for x ∈ B(x0, r), we have

r−d/p3‖P1P2 − P ‖Lp3 (B(x0,r)) ≤ Cd,p3
‖f1‖T p1

φ (x0)‖f2‖T p2
φ (x0)r

n+1

≤ Cd,p1,p2,φ‖f1‖T p1
φ (x0)‖f2‖T p2

φ (x0)φ(r).

Also, for all x ∈ B(x0, r), since |Pk(x)| ≤ ‖fk‖T pkφ (x0) (k ∈ {1,2}),

r−d/p3‖R1P2‖Lp3 (B(x0,r)) ≤ r
−d/p2‖P2‖Lp2 (B(x0,r))r

−d/p1‖R1‖Lp1 (B(x0,r))

≤ Cd,p2
‖f2‖T p2

φ (x0)|f1|T p1
φ (x0)φ(r).

Using again Proposition 1.2.6, we get

r−d/p1‖f1‖Lp1 (B(x0,r)) ≤ r
−d/p1‖f1 − P1‖Lp1 (B(x0,r)) + r−d/p1‖P1‖Lp1 (B(x0,r))

≤ |f1|T p1
φ (x0)φ(r) +Cd,p1

‖f1‖T p1
φ (x0)r

n

≤ Cd,p1,φ‖f1‖T p1
φ (x0)

and thus

r−d/p3‖f1R2‖Lp3 (B(x0,r)) ≤ r
−d/p1‖f1‖Lp1 (B(x0,r))r

−d/p2‖R2‖Lp2 (B(x0,r))

≤ Cd,p1,φ‖f1‖T p1
φ (x0)|f2|T p2

φ (x0)φ(r).

As a consequence, we can write, for r < 1,

r−d/p3‖R‖Lp3 (B(x0,r)) ≤ Cd,p1,p2,φ‖f1‖T p1
φ (x0)‖f2‖T p2

φ (x0)φ(r). (5.13)

If we now consider r > 1, as |R| ≤ |f1| |f2|+ |P |, we get

r−d/p3‖R‖Lp3 (B(x0,r))

≤ r−d/p3‖f1‖Lp1 (Rd )‖f2‖Lp2 (Rd ) +Cd,pr
n‖f1‖T p1

φ (x0)‖f2‖T p2
φ (x0),

so that inequality (5.13) still holds in this case, by Proposition 1.2.6.
Finally, if f1 ∈ t

p1
φ (x0) and f2 ∈ t

p2
φ (x0), we can write

r−d/pk‖Rk‖Lpk (B(x0,r)) ≤ εk(r)φ(r),

with εk(r) > 0 for r > 0 and εk(r)→ 0 as r → 0+ (k ∈ {1,2}). By replacing |fk |T pkφ (x0) with

εk(r) in the preceding relations, one gets

φ(r)−1r−d/p3‖R‖Lp3 (B(x0,r))→ 0+,

as r→ 0+, which is sufficient to conclude.
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Corollary 5.3.5. Let x0 ∈Rd , p1,p2 ∈ [1,∞], p3 be such that

0 ≤ 1
p3

:=
1
p1

+
1
p2
≤ 1

and φ,ψ be two functions of B satisfying b(φ) > 0, b(ψ) ≥ − dp2
, φ 4 ψ and either b(ψ) ≤ 0 or

n < b(ψ) ≤ b(ψ) < n+1 for some n ∈N. If f1 ∈ T
p1
φ (x0) and f2 ∈ T

p2
ψ (x0), then f1f2 ∈ T

p3
ψ (x0),

with
‖f1f2‖T p3

ψ (x0) ≤ Cd,p1,p2,φ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ψ (x0).

Moreover, if f1 ∈ t
p1
φ (x0) and f2 ∈ t

p2
ψ (x0), then f1f2 ∈ t

p3
ψ (x0).

Proof. If b(ψ) ≤ 0, the embedding is obvious since T pφ (x0) ↪→ t
p
0(x0) and so, for r > 0,

r−d/p3‖f1f2‖Lp3 (B(x0,r)) ≤ r
−d/p1‖f1‖Lp1 (B(x0,r))r

−d/p2‖f2‖Lp2 (B(x0,r))

≤ Cp1,φ,0‖f1‖T p1
φ (x0)|f2|T p2

ψ (x0)ψ(r).

Otherwise, we have b(ψ) > 0 and f1 ∈ T
p1
ψ (x0), with

‖f1‖T p1
ψ (x0) ≤ Cφ,ψ‖f1‖T p1

φ (x0).

Using the previous proposition, we get f1f2 ∈ T
p3
ψ (x0) and

‖f1f2‖T p3
ψ (x0) ≤ Cd,p,ψ‖f1‖T p1

ψ (x0)‖f2‖T p2
ψ (x0)

≤ Cd,p,φ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ψ (x0),

which allows us to conclude. The second part can be obtained using the usual argu-
ments.

Proposition 5.3.6. Let p1,p2 ∈ [1,∞], p3 be such that 0 ≤ 1
p3

:= 1
p1

+ 1
p2
≤ 1 and φ,ϕ ∈ B be

such that − dp2
≤ b(ϕ), 0 < b(φ). Let also f1 ∈ T

p1
φ (x0), f2 ∈ T

p2
ϕ (x0), where x0 is a Lebesgue-

point of f1; finally let ψ ∈ B be such that b(ψ) > − dp2
, φ 4 ψ and

• b(ψ)− b(ϕ) < b(φ) if b(φ) ≤ 1,

• b(ψ) − b(ϕ) < 1 if b(φ) > 1 and either b(ψ) < 1 or there exists n ∈ N for which
n < b(ψ) ≤ b(ψ) < n+ 1.

There exists a polynomial P of degree strictly less than b(ψ) such that, for all r > 0,

r−d/p3‖(f1 − f1(x0))f2 − P ‖Lp3 (B(x0,r))

≤ Cp1,p2,φ,ϕ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r).

Consequently, if f2 ∈ Lp3(Rd), then (f1 − f1(x0))f2 belongs to T p3
ψ (x0), with

‖(f1 − f1(x0))f2‖T p3
ψ (x0)

≤ Cp1,p2,φ,ϕ,ψ‖f1‖T p1
ϕ (x0)(‖f2‖T p2

ϕ (x0) + ‖f2‖Lp3 (Rd )).
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Proof. We keep here the same notations as in the proof of Proposition 5.3.4 and set
g1 := f1 − f1(x0). Let us first consider the case b(φ) ≤ 1; P1 must be a constant and, by
Remark 5.1.6, we have P1 = f1(x0), which allows us to write

r−d/p1‖g1‖Lp1 (B(x0,r)) ≤ |f1|T p1
φ (x0)φ(r). (5.14)

Let us consider each case separately. If b(ϕ) ≤ 0, then

r−d/p2‖f2‖Lp2 (B(x0,r)) ≤ |f2|T p2
ϕ (x0)ϕ(r).

Therefore, if ψ ∈ B is such that b(ψ) < b(φ) + b(ϕ), then, by choosing ε > 0 such that
b(ψ) + ε < b(φ) + b(ϕ)− 2ε, we get, by Proposition 1.2.6,

r
− d
p3 ‖g1f2‖Lp3 (B(x0,r)) ≤ r

− d
p1 ‖g1‖Lp1 (B(x0,r)r

− d
p2 ‖f2‖Lp2 (B(x0,r))

≤ |f1|T p1
φ (x0)|f2|T p2

ϕ (x0)φ(r)ϕ(r)

≤ C|f1|T p1
φ (x0)|f2|T p2

ϕ (x0)r
b(φ)+b(ϕ)−2ε

≤ C′‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r),

for 0 < r ≤ 1, where C,C′ > 0 only depend on φ, ϕ and ψ. If r > 1, as −d/p2 < b(ψ), we
can use Proposition 1.2.6 to get

r−d/p3‖g1f2‖Lp3 (B(x0,r))

≤ r−d/p3‖f1f2‖Lp3 (B(x0,r)) + r−d/p3 |f1(x0)| ‖f2‖Lp3 (B(x0,r))

≤ r−d/p3‖f1‖Lp1 (Rd )‖f2‖Lp2 (Rd ) +Cp2,p3
r−d/p2‖f1‖T p1

φ (x0)‖f2‖Lp2 (B(x0,r))

≤ Cp1,p2,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r).

If b(ϕ) > 0, let us consider ψ ∈ B such that b(ψ) > − dp2
, b(ψ) < b(φ)+b(ϕ) and φ 4 ψ. For

0 < r ≤ 1, Proposition 1.2.6 allows us to write

r−d/p3‖g1f2‖Lp3 (B(x0,r))

≤ r−d/p3‖g1P2‖Lp3 (B(x0,r)) + r−d/p3‖g1R2‖Lp3 (B(x0,r))

≤ Cd,p2
|f1|T p1

φ (x0)φ(r)(
∑
|α|<b(ϕ)

|DαP2(x0)|
α!

) + |f1|T p1
φ (x0)|f2|T p2

ϕ (x0)φ(r)ϕ(r)

≤ Cp2,φ,ϕ,ψ‖f1‖T p1
φ (x0)‖f2‖T pϕ (x0)ψ(r).

Again, the previous inequality holds for r > 1 as well.
Let us now investigate the case b(φ) > 1. For 0 < r ≤ 1 we have, as we know that

P1(x0) = f1(x0),

r−d/p1‖g1‖Lp1 (B(x0,r)) ≤ |f1|T p1
φ (x0)φ(r) +Cd,p1

(
∑

1≤|α|<b(φ)

|DαP1(x0)|
α!

)r

≤ Cp1,φ‖f1‖T p1
φ (x0)r.
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Obviously, this inequality still holds for r > 1. If b(ϕ) ≤ 0, then for all ψ ∈ B such that
b(ψ) > − dp2

and b(ψ) < b(ϕ) + 1, we have, by Proposition 1.2.6,

r
− d
p3 ‖g1f2‖Lp3 (B(x0,r)) ≤ Cp1,φ‖f1‖T p1

φ (x0)|f2|T p2
ϕ (x0)ϕ(r)r

≤ Cp1,φ,ϕ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r),

for 0 ≤ r < 1. As b(ψ) > − dp3
, this inequality is also satisfied for r > 1. If b(ϕ) > 0, let us

consider ψ ∈ B such that b(ψ) > − dp2
, b(ψ) < b(ϕ) + 1 and φ 4 ψ. On the one hand, if

b(ψ) < 1, Proposition 1.2.6 implies

r
− d
p3 ‖g1f2‖Lp3 (B(x0,r)) ≤ r

− d
p3 ‖g1P2‖Lp3 (B(x0,r)) + r−

d
p3 ‖g1R2‖Lp3 (B(x0,r))

≤ Cp1,φ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)r

+Cp1,φ‖f1‖T p1
φ (x0)|f2|T p2

ϕ (x0)ϕ(r)r

≤ Cφ,ϕ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r),

for 0 < r ≤ 1; again one easily checks that this inequality also holds for r > 1. On the
other hand, if n ∈N is such that n < b(ψ) ≤ b(ψ) < n+ 1, let us define P as the sum of
terms of degree less than or equal to n in (P1 − f1(x0))P2; we have

g1f2 = (P1 − f1(x0))P2 +R1P2 +R2g1

= P + (P1 − f1(x0))P2 − P +R1P2 +R2g1.

By setting R := (P1 − f1(x0))P2 − P +R1P2 +R2g1, Proposition 1.2.6 gives

r−d/p3‖R‖Lp3 (B(x0,r)) ≤ r
−d/p3‖g1f2‖Lp3 (B(x0,r)) + r−d/p3‖P ‖Lp3 (B(x0,r))

≤ Cp3,ψ‖f1‖Lp1 (Rd )‖f2‖Lp2 (Rd )ψ(r)

+Cp3,p2,ψ‖f1‖T p1
φ (x0)‖f2‖Lp2 (Rd )ψ(r)

+Cd,p3
‖f1‖T p1

φ (x0)‖f2‖T p2
ϕ (x0)r

n

≤ Cψ,p1,p2
‖f1‖T p1

φ (x0)‖f2‖T p2
ϕ (x0)ψ(r),

for r > 1, while for 0 < r < 1, we have

r−d/p3‖R1P2‖Lp3 (B(x0,r)) ≤ Cd,p2
|f1|T p1

φ (x0)‖f2‖T p2
ϕ (x0)φ(r)

≤ Cp2,φ,ψ |f1|T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r),

r−d/p3‖R2g1‖Lp3 (B(x0,r)) ≤ Cp1,φ‖f1‖T p1
φ (x0)|f2|T p2

ϕ (x0)ϕ(r)r

≤ Cp1φ,ϕ,ψ‖f1‖T p1
φ (x0)|f2|T p2

ϕ (x0)ψ(r)
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and

r−d/p3‖(P1 − f1(x0))P2 − P ‖Lp3 (B(x0,r)) ≤ Cd,p3
‖f1‖T p1

φ (x0)‖f2‖T p2
ϕ (x0)r

n+1

≤ Cp1,p2,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r).

This proves that there exists a constant Cp1,p2φ,ϕ,ψ > 0 such that, for all r > 0,

r−d/p3‖g1f2 − P ‖Lp3 (B(x0,r)) ≤ Cp1,p2,φ,ϕ,ψ‖f1‖T p1
φ (x0)‖f2‖T p2

ϕ (x0)ψ(r).

If f2 ∈ Lp3(Rd), then

‖g1f2‖Lp3 (Rd ) ≤ ‖f1‖Lp1 (Rd )‖f2‖Lp2 (Rd ) + |f1(x0)|‖f2‖Lp3 (Rd ),

hence the conclusion.

Proposition 5.3.7. Let x0 ∈ Rd , p1,p2 ∈ [1,∞] be such that p1 ≤ p2 and φ be a function of
B such that −d/p2 < b(φ). If f belongs to T p2

φ (x0)∩Lp1(Rd), then f ∈ T p1
φ (Rd), with

‖f ‖T p1
φ (Rd ) ≤ ‖f ‖T p2

φ (x0) + ‖f ‖Lp1 (Rd ).

Moreover, in this case, f ∈ tp2
φ (x0) implies f ∈ tp1

φ (x0).

Proof. Let P be the polynomial of degree strictly less than b(φ) such that, for r > 0,

r−d/p2‖f − P ‖Lp2 (B(x0,r)) ≤ |f |T p2
φ (x0)φ(r).

For such r, we have

r−d/p1‖f − P ‖Lp1 (B(x0,r)) ≤ r
−d/p1Cd,p1,p2

r
d
p1
− d
p2 ‖f − P ‖Lp2 (B(x0,r))

≤ Cd,p1,p2
|f |T p2

φ (x0)φ(r),

which is sufficient to conclude, as f ∈ Lp1(Rd).
The second part can be obtained using the same arguments as usual.

5.4 A generalization of Whitney extension theorem

In this section, we show that some uniform conditions on a closed set E involving
spaces T pφ and tpφ imply the belonging to spaces Bφ(E) and bφ(E) respectively, that will
be defined in this section. Then, we show that a function which has such properties can
be extended in an open neighbourhood of E into a function which satisfies generalized
Hölderian condition type (see [87]).

In the sequel we will heavily need the following lemma. Its proof can be found
in [130] for example.
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Lemma 5.4.1. Given n ∈N, there exists a function ϕ ∈ D(Rd) whose support is included
in B(0,1) such that, for any polynomial P of degree less than or equal to n and any ε > 0, we
have

ϕε ∗ P = P .

We now introduce the spaces Bφ(E) and bφ(E) of functions that admit a formal
Taylor expansion on a set E ⊂ R

d for which the behaviour can be characterized by a
Lipschitz-type condition given by a function φ ∈ B.

Definition 5.4.2. Let E be a subset of Rd and φ ∈ B be such that b(φ) > 0; a bounded
function f on E belongs to the space Bφ(E) if there exist C,M > 0 such that, for all
x0 ∈ E, there exists a polynomial Px0

of degree strictly less than b(φ),

Px0
:=

∑
|α|<b(φ)

fα(x0)
α!

(· − x0)α,

such that f0(x0) = f (x0), |fα(x0)| ≤M for all |α| < b(φ) and meeting the condition

|DαPx(x)−DαPx0
(x)| ≤ Cφ(|x − x0|)|x − x0|−|α|,

for all x ∈ E satisfying x , x0 and all |α| < b(φ).

Definition 5.4.3. Let E be a subset of Rd and φ ∈ B be such that b(φ) > 0; a function f
defined on E belongs to the space bφ(E) if, for any x0 ∈ E, there exists a polynomial Px0

of degree strictly less than b(φ),

Px0
:=

∑
|α|<b(φ)

fα(x0)
α!

(· − x0)α,

for which f0(x0) = f (x0) and

lim
x→x0
x∈E

φ(|x − x0|)−1|x − x0||α||DαPx(x)−DαPx0
(x)| = 0

uniformly in x0 ∈ E.

Definitions 5.4.2 and 5.4.3 generalize the Taylor chain condition (see Definition
1.7.2) by the mean of T pφ and tpφ spaces. Indeed, in Definition 5.4.2, the power function
which appears in (1.13) is replaced by a Boyd function while, in Definition 5.4.3 the
bound is replaced by an asymptotic behaviour. Our aim here is to show that these
adaptations lead to a generalization of Whitney extension theorem.

Proposition 5.4.4. Let E be a closed subset of R
d and φ be a function of B satisfying

b(φ) > 0;
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1. if there exists M > 0 such that f ∈ T pφ (x0) with ‖f ‖T pφ (x0) ≤ M for all x0 ∈ E, then

f ∈ Bφ(E) (in the sense that f is equal almost everywhere to a function that belongs to
Bφ(E)),

2. if f ∈ tpφ(x0) for all x0 ∈ E, with (5.3) holding uniformly in x0 ∈ E, then f ∈ bφ(E).

Proof. Let us prove the first point. We know that for any x0 ∈ E, there exists a polyno-
mial Px0

of degree strictly less than b(φ) such that Rx0
:= f − Px0

satisfies

r−d/p‖Rx0
‖Lp(B(x0,r)) ≤Mφ(r), (5.15)

for r > 0, with |DαPx0
(x0)|/α! ≤ M for all |α| < b(φ). Moreover, in the light of Re-

mark 5.1.6, one can modify f on a negligible set in order to have f (x0) = Px0
(x0) for all

x0 ∈ E. In particular |f (x0)| ≤M for all x0 ∈ E and f is bounded on E.
Let us take a function ϕ ∈ D(Rd) such as in Lemma 5.4.1, let x,x0 be two distinct

points of E and set ε := |x − x0|. Let us define, for |α| < b(φ),

Iα :=Dα(ϕε ∗ f )(x).

On the one hand, we have

Iα =Dα(ϕε ∗ (Px0
+Rx0

))(x)

= (ϕε ∗DαPx0
)(x) + (Dαϕε ∗Rx0

)(x)

=DαPx0
(x) + (Dαϕε ∗Rx0

)(x),

and, on the other hand,

Iα =DαPx(x) + (Dαϕε ∗Rx)(x).

Thus we get, for |α| < b(φ),

DαPx(x) =DαPx0
(x) + (Dαϕε ∗ (Rx0

−Rx))(x)

=DαPx0
(x) +

∫
B(x,ε)

ε−d+|α|Dαϕ(
x − y
ε

)(Rx0
(y)−Rx(y))dy.

Setting Cϕ := sup|α|<b(φ) ‖Dαϕ‖∞, we finally get, for |α| < b(φ),

|DαPx(x)−DαPx0
(x)| ≤ Cϕε−|α|(ε−d‖Rx0

‖L1(B(x,ε)) + ε−d‖Rx‖L1(B(x,ε)))

≤ CϕCdε−|α|((2ε)−d/p‖Rx0
‖Lp(B(x0,2ε))

+ ε−d/p‖Rx‖Lp(B(x,ε)))

≤ Cφ(|x − x0|)|x − x0|−α,

where the constant C > 0 only depends on Cϕ, M, d and φ.
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For the second part of the proposition, let us consider

r−d/p‖Rx0
‖Lp(B(x0,r)) ∈ o(φ(r)) as r→ 0+

uniformly in x0 ∈ E, instead of (5.15). Since the inequality

|DαPx(x)−DαPx0
(x)| ≤ CϕCdε−|α|((2ε)−d/p‖Rx0

‖Lp(B(x0,2ε))

+ ε−d/p‖Rx‖Lp(B(x,ε)))

holds for all x,x0 ∈ E, we can conclude that, given C > 0, there exists η > 0 such that if
0 < |x − x0| < η (x,x0 ∈ E) then we have

|DαPx(x)−DαPx0
(x)| ≤ Cφ(|x − x0|)|x − x0|−α,

which means that f belongs to bφ(E).

The theorem concluding this section relies on the following lemma, which es-
tablishes the existence of a smooth function on a neighbourhood of a closed subset E
which is comparable to the distance to E (see e.g. [130, 26]).

Lemma 5.4.5. Let E ⊂ R
d be a closed set and U = {x ∈ R

d : d(x,E) < 1}; there exist
δ ∈ C∞(U \E) and C > 0 such that

C−1d(x,E) ≤ δ(x) ≤ Cd(x,E) ∀x ∈U \E

and
|Dαδ(x)| ≤ C(α)d(x,E)1−|α| ∀x ∈U \E, |α| ≥ 0.

In the sequel, we will also need the following combinatorial lemma, which can
be easily proved by induction on l ∈N.

Lemma 5.4.6. Let l ∈N;

• if l = 0 mod 4, then

−1
2

(
l
l/2

)
=

l
2−1∑
j=0

(−1)j
(
l
j

)
=

l∑
j= l

2 +1

(−1)j
(
l
j

)
,

• if l = 1 mod 4, then

(
l − 1
l−1
2

)
=

l−1
2∑
j=0

(−1)j
(
l
j

)
= −

l∑
j= l−1

2 +1

(−1)j
(
l
j

)
,
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• if l = 2 mod 4, then

1
2

(
l
l/2

)
=

l
2−1∑
j=0

(−1)j
(
l
j

)
=

l∑
j= l

2 +1

(−1)j
(
l
j

)
,

• if l = 3 mod 4, then

−
(
l − 1
l−1
2

)
=

l−1
2∑
j=0

(−1)j
(
l
j

)
= −

l∑
j= l−1

2 +1

(−1)j
(
l
j

)
.

Theorem 5.4.7. Let E ⊂ R
d be a closed set, U = {x ∈ Rd : d(x,E) < 1}, n ∈N and φ ∈ B be

such that n < b(φ). If f ∈ T pφ (x0) satisfies ‖f ‖T pφ (x0) ≤M for some M > 0 and all x0 ∈ E, then

there exists F ∈ Cn(U ) such that F = f almost everywhere on E.
Moreover, if m ∈N is such that n < b(φ) ≤ b(φ) < m, then there exists C > 0 such that

for any x ∈U and any h ∈Rd \ {0} for which [x,x+ (m−n)h] ⊂U , we have

|∆m−nh DαF(x)| ≤ Cφ(|h|)|h|−n, (5.16)

for any |α| = n.

Proof. Let us consider the functions ϕ and δ from Lemmata 5.4.1 and 5.4.5 respec-
tively. We know that we can modify f on a set of measure zero so that f ∈ Bφ(E). Let
us define the function F on U by

F(x) :=
{
f (x) if x ∈ E
δ(x)−d

∫
R
d ϕ((x − y)δ(x)−1)f (y)dy otherwise.

One obviously has F ∈ C∞(U \E). Let x ∈U \E and x0 ∈ E be such that |x−x0| = d(x,E).
As x0 ∈ E, there exists a polynomial Px0

of degree less than or equal to n such that
Rx0

:= f − Px0
satisfies

r−d/p‖Rx0
‖Lp(B(x0,r)) ≤Mφ(r),

for all r > 0. For any x ∈U \E, by setting

Φα(x, ·) =Dαx (δ(x)−dϕ((x − ·)δ(x)−1)),

we have, by Lemma 5.4.1,

DαF(x) =DαPx0
(x) +

∫
R
d
Φα(x,y)Rx0

(y)dy.

One can easily check (by induction) that Φα(x, ·) is of the form

δ(x)−d−kDαϕ((x − ·)δ−1(x))(x − ·)γP (x),
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where P (x) is a product of derivatives of the function δ evaluated at x with t factors
and whose sum of orders is equal to w and where k +w − t − |γ | = |α|. Thanks to the
property of the function δ, we have |P (x)| ≤ Cd(x,E)t−w, δ(x)−d−k ≤ C∗d(x,E)−d−k and

|Dαϕ((x − ·)δ−1(x))(x − y)γ | ≤ Cγ,αd(x,E)|γ |,

as Dαϕ((x − ·)δ−1(x))(x − ·)γ does not vanish if |x − ·| ≤ δ(x). We thus have the following
estimate:

|
∫
R
d
Φα(x,y)Rx0

(y)dy| ≤ C1d(x,E)−d−|α|
∫
B(x,δ(x))

|Rx0
(y)|dy,

for all α ∈ Nd
0 and x ∈ U \ E. As there exists C′ > 0 such that δ(x) ≤ C′d(x,E) for all

x ∈U \E, we can write

|DαF(x)−DαPx0
(x)| ≤ C1d(x,E)−d−|α|

∫
B(x,C′d(x,E))

|Rx0
(y)|dy

≤ C1d(x,E)−|α|d(x,E)−d
∫
B(x0,(C′+1)d(x,E))

|Rx0
(y)|dy

≤ C2Mφ(d(x,E))d(x,E)−|α|

= C2Mφ(|x − x0|)(|x − x0|)−|α|,

where C2 > 0 is a constant which only depends on ϕ, φ, C1, C′ and d. Moreover, as f ∈
Bφ(E), we know that Px0

(x0) = f (x0) and for all x1 ∈ E such that x1 , x0,
DαPx0

(x0) =DαPx1
(x0) +Rα(x0,x1), where Rα satisfies

|Rα(x0,x1)| ≤ Cφ(|x0 − x1|)(|x0 − x1|)−|α|, (5.17)

for all |α| ≤ n. Therefore, thanks to Taylor’s formula, we have, for |α| ≤ n and x ∈Rd ,

DαPx0
(x) =

∑
|β|≤n−|α|

1
β!
Dα+βPx0

(x0)(x − x0)β

=
∑

|β|≤n−|α|

1
β!

(Dα+βPx1
(x0) +Rα+β(x0,x1))(x − x0)β

=
∑

|β|≤n−|α|

1
β!

( ∑
|γ |≤n−(|α|+|β|)

1
γ!
Dα+β+γPx1

(x1)(x0 − x1)γ

+Rα+β(x0,x1)
)
(x − x0)β
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and ∑
|β|≤n−|α|

1
β!

∑
|γ |≤n−(|α|+|β|)

1
γ!
Dα+β+γPx1

(x1)(x0 − x1)γ (x − x0)β

=
∑

|γ |≤n−|α|

1
γ!

∑
|β|≤n−(|α|+|γ |)

1
β!
Dα+β+γPx1

(x1)(x − x0)β(x0 − x1)γ

=
∑

|γ |≤n−|α|

1
γ!
Dα+γPx1

(x − x0 + x1)(x0 − x1)γ

=DαPx1
(x).

Finally, we have

DαPx0
(x) =DαPx1

(x) +
∑

|β|≤n−|α|

1
β!
Rα+β(x0,x1)(x − x0)β ,

for all x0,x1 ∈ E and x ∈Rd . In particular, for |α| ≤ n,

|DαPx0
(x)−DαPx1

(x)| ≤ C
∑

|β|≤n−|α|
φ(|x0 − x1|)|x0 − x1|−|α|−|β||x − x0||β|

and as |x − x0| ≤ |x − x1|, we have |x0 − x1| ≤ 2|x − x1|. Therefore,

φ(|x0 − x1|)|x0 − x1|−|α|−|β|

≤ φ(|x − x1|)|x − x1|−|α|−|β|φ(
|x0 − x1|
|x − x1|

)(
|x0 − x1|
|x − x1|

)−|α|−|β|

and, as |α|+ |β| ≤ n < b(φ), Remark 1.2.9 implies that

φ(
|x0 − x1|
|x − x1|

)(
|x0 − x1|
|x − x1|

)−|α|−|β|

is bounded (by a constant which only depends on φ). We thus have

|DαPx0
(x)−DαPx1

(x)| ≤ Cφ(|x − x1|)|x − x1|−|α|,

for |α| ≤ n. This inequality and the upper bound obtained for DαF(x) −DαPx0
(x) give

the following relation, valid for all x1 ∈ E:

|DαF(x)−DαPx1
(x)|

≤ C(φ(|x − x0|)|x − x0|−|α| +φ(|x − x1|)|x − x0|−|α|)

and as |x − x0| ≤ |x − x1|, we get, as before,

|DαF(x)−DαPx1
(x)| ≤ Cφ(|x − x1|)|x − x1|−|α|. (5.18)
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Let Fα be the function defined on U by

Fα(x) :=
{
DαPx(x) if x ∈ E
DαF(x) otherwise.

We have proved that, for |α| ≤ n, Fα ∈ C∞(U \ E) and for x ∈ E and h , 0 such that
x+ h ∈U , we have

Fα(x+ h) =
∑

|β|≤n−|α|
Dα+βPx(x)hβ +Rα(x,x+ h), (5.19)

where
|Rα(x,x+ h)| ≤ Cφ(|h|)|h|−|α|,

with a uniform constant. More precisely, if h is such that x+h ∈ E, the previous inequal-
ity is satisfied because f belongs to Bφ(E); otherwise x + h ∈ U \ E and the inequality
follows from (5.18). This is sufficient to show that F ∈ Cn(U ) and DαF = Fα on U for
all |α| ≤ n. Indeed, (5.19) implies that Fα is continuous on E and so on U . Given n ≥ 1,
let us fix x ∈ E; if h ∈R \ {0} is sufficiently small, for j ∈ {1, . . . ,d}, we have

F(x+ hej)−F(x) =
n∑
|β|=1

DβPx(x)(hej)
β +R0(x,x+ h),

which allows us to write

|
F(x+ hej)−F(x)

h
−Fej (x)| ≤

n∑
|β|=2

|DβPx(x)||h||β|−1 +
|R0(x,x+ h)|

|h|

≤
n∑
|β|=2

|DβPx(x)||h||β|−1 +C
φ(|h|)
|h|

and, as the right-hand side tends to 0 as h tends to 0, we can conclude, since
1 ≤ n < b(φ), that F is differentiable at x and DjF(x) = Fej (x). If we now assume that F is
(n− 1)-times continuously differentiable at x, with DαF(x) = Fα(x) for every |α| ≤ n− 1,
we have, for |α| = n− 1, h ∈R \ {0} sufficiently small and j ∈ {1, . . . ,d},

|
Fα(x+ hej)−Fα(x)

h
−F

α+ej (x)|

≤
∑
|β|=1

|Dα+βPx(x)| |h||β|−1 +
|Rα(x,x+ h)|

|h|

≤
∑
|β|=1

|Dα+βPx(x)| |h||β|−1 +C
φ(|h|)
|h|n

and we can conclude, in the same way, that Fα is differentiable at x, with
DjFα(x) = Fα+ej (x).
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Let us now prove that if n < b(φ) ≤ b(φ) < m, then there exists C > 0 such that, for
all x ∈U and h ∈Rd such that [x,x+mh] ⊂U , we have

|∆m−nh DαF(x)| ≤ Cφ(|h|)|h|−n,

for all |α| = n. So far, we know from (5.17) and (5.18) that the following inequality
holds for all |α| = n, x ∈U and y in E satisfying x , y:

|Fα(x)−Fα(y)| ≤ Cφ(|x − y|)|x − y|−n.

If x ∈ U and h ∈ R
d \ {0} are such that there exists k ∈ {0, . . . ,m − n} for which

x+ kh ∈ E, we can use Lemma 5.4.6 to obtain, setting l =m−n,

|∆lhD
αF(x)| = |

l∑
j=0

(−1)j
(
l
j

)
DαF(x+ jh)|

= |
l∑
j=0

(−1)j
(
l
j

)
(DαF(x+ jh)−DαF(x+ kh))|

≤
l∑
j=0

(
l
j

)
Cφ(|(j − k)h|)|(j − k)h|−n

≤ C′φ(|h|)|h|−n.

Let us now consider the case for which we have, for all k ∈ {0, . . . , l}, x+kh ∈U \E;
let us first suppose that d(x,E) ≤ (l + 1)|h| and take x0 ∈ E such that |x0 − x| = d(x,E). Of
course |x0 − x| ≤ (l + 1)|h| and, for all j ∈ {0, . . . , l}, we have |x0 − (x + jh)| ≤ (2l + 1)|h|. As
before, we have

|∆lhD
αF(x)| ≤

l∑
j=0

(
l
j

)
|DαF(x+ jh)−DαF(x0)|

≤ C
l∑
j=0

(
l
j

)
φ(|x+ jh− x0|)|x+ jh− x0|−n

and, for all j ∈ {0, . . . , l},

φ(|x+ jh− x0|)|x+ jh− x0|−n

≤ φ(|h|)|h|−nφ(
|x+ jh− x0|
|h|

)(
|x+ jh− x0|
|h|

)−n.

That being said, we have |x+jh−x0|
h ≤ 2l + 1 and so, by Remark 1.2.9,

φ(
|x+ jh− x0|
|h|

)(
|x+ jh− x0|
|h|

)−n ≤ C,
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where the constant C only depends on φ and l. Therefore, we can write

|∆lhD
αF(x)| ≤ C′φ(|h|)|h|−n.

It remains to consider the case where x + kh ∈ U \ E for all k ∈ {0, . . . , l} and
(l + 1)|h| < d(x,E). As before, let x0 stand for a point in E such that |x0 − x| = d(x,E).
We already know that, for any y ∈U \E,

DαF(y) =DαPx0
(y) +

∫
R
d
Φα(y,ξ)Rx0

(ξ)dξ.

The function y 7→
∫
R
d Φα(y,ξ)Rx0

(ξ)dξ belongs to C∞(U \E) and, for all β ∈Nd
0,

Dβ
∫
R
d
Φα(y,ξ)Rx0

(ξ)dξ =
∫
R
d
Φα+β(y,ξ)Rx0

(ξ)dξ.

As the segment [x,x+ lh] is included in U \E, we know, by Taylor’s formula, that there
exist points xβ with |β| = l on the segment [x,x+ lh] such that

∆lhD
αF(x) = ∆lh

∫
R
d
Φα(x,ξ)Rx0

(ξ)dξ

=
∑
|β|=l

hβ
∫
R
d
Φα+β(xβ ,ξ)Rx0

(ξ)dξ

=
∑
|β|=l

hβ
∫
B(xβ ,Cd(xβ ,E))

Φα+β(xβ ,ξ)Rx0
(ξ)dξ,

where C is a constant such that δ(y) ≤ Cd(y,E) for all y ∈ U \E. Moreover, for such y,
we have already obtained that

|Φα+β(y)| ≤ C′d(y,E)−d−(|α|+|β|) = C′d(y,E)−d−m.

If |β| = l, as xβ ∈ [x,x+ lh], we have

d(xβ ,E) ≥ d(x,E)− |x − xβ | ≥ (l + 1)|h| − l|h| = |h|

and so, if ξ ∈ B(xβ ,Cd(xβ ,E)),

|ξ − x0| ≤ |ξ − xβ |+ |xβ − x|+ |x − x0|
≤ Cd(xβ ,E) + l|h|+ d(x,E)

≤ Cd(xβ ,E) + ld(xβ ,E) + d(xβ ,E) + l|h|
≤ C′′d(xβ ,E).
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Therefore,

|
∫
B(xβ ,Cd(xβ ,E))

Φα+β(xβ ,ξ)Rx0
(ξ)dξ |

≤ C′d(xβ ,E)−d−m
∫
B(x0,C′′d(xβ ,E))

|Rx0
(ξ)|dξ

≤ C′Md(xβ ,E)−mφ(d(xβ ,F))

≤ C′Mφ(|h|)|h|−mφ(
d(xβ ,E)

|h|
)(
d(xβ ,E)

|h|
)−m.

Now, as d(xβ ,E)/ |h| ≥ 1, and b(φ) < m, we know that

φ(
d(xβ ,E)

|h|
)(
d(xβ ,E)

|h|
)−m

is bounded by a constant which only depends on φ and m. We can thus write

|∆lhD
αF(x)| ≤ C′φ(|h|)|h|−n,

which is what we need to conclude the proof.

Theorem 5.4.8. Let E ⊂ R
d be a closed set, U = {x ∈ Rd : d(x,E) < 1}, n ∈N and φ be a

function of B such that n < b(φ). If f ∈ tpφ(x0) for all x0 ∈ E, with (5.3) holding uniformly
in x0 ∈ E, then there exists F ∈ Cn(U ) such that F = f almost everywhere on E.

Moreover, if m ∈N is such that n < b(φ) ≤ b(φ) < m, then, for all |α| = n, x ∈ E, and
ε > 0, there exists η > 0 such that, for all 0 < |h| ≤ η for which [x,x+ (m−n)h] ⊂ E,

|∆m−nh DαF(x)| ≤ εφ(|h|)|h|−n.

Proof. The proof is essentially the same as the previous one, using this time the fact
that f ∈ bφ(E) and

r−d/p‖Rx0
‖Lp(B(x0,r)) ∈ o(φ(r)) as r→ 0+,

uniformly in x0 ∈ E.

Remark 5.4.9. Let us highlight the fact that inequality (5.16) characterizes the belong-
ing to a generalized Hölder space, originally stated in [87], and corresponds to the
condition in Corollary 2.3.3 for p = q =∞, γ = (2j)j and σ = (φ−1(2j))j .
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φ regularity, operators and elliptic

partial differential equations

In their seminal paper [26], Calderón and Zygmund use the T pu and tpu spaces to ob-
tain pointwise estimates for solutions of elliptic partial differential equations Ef = g.
Such equations are remarkable because the coefficients in the differential operator E,
which are functions, satisfy some kind of invertibility condition, see Definition 6.4.1
below. This condition is expressed in term of so-called symbols which link elliptic par-
tial differential equations to standard operators such as the Bessel transform, Laplace
operator and convolution singular integrals.

The main theorem in [26] can be stated as follows: if all the coefficients of E are
of class T∞u (x0), if all components fj and gk are of class Lp and gk ∈ T

p
v with p ∈ (1,∞),

−d/p ≤ v ≤ u, v <Z, then there exists a constant C for which

‖Dαfj‖T qv+m−|α|(x0) ≤ C(
∑
k

‖gk‖T pv (x0) +
∑
j

‖fj‖W p
m

), (6.1)

for all j, |α| ≤m, where q is a number satisfying

• p ≤ q ≤∞ if 1/p < (m− |α|)/d,

• p ≤ q <∞ if 1/p = (m− |α|)/d,

• 1/p ≤ 1/q ≤ 1/p − (m− |α|)/d otherwise.

Moreover, if g belongs to tpv (x0), then Dαf belongs to tqv+m−|α|(x0). Another theorem
states that if E is elliptic almost everywhere on a set of positive measure whose points
x0 satisfy µ(x0) > c for some constant c > 0, if the coefficients of E are in T∞u (x0) and
g ∈ T pv (x0) for almost every x0 and if f ∈ Lpm, then Dαf belongs to tqv+m−|α|(x0) for almost
every x0. Let us remark that there is a common misunderstanding when stating the
hypothesis of this main theorem: the coefficients of E have to belong to T∞u (x0) (see
page 172 of [26], where Tu is defined as T∞u ); the case where these coefficients belong
to T pu (x0) with p <∞ is not considered in [26].

In this chapter, we wish to extend this result by considering both T pφ functions
and conditions based on Lp norm, with p < ∞, for the coefficients of E. To achieve
this goal, we first need to investigate the action of the Bessel operator, derivatives and
singular integrals operators on a T pφ function. Let us highlight the fact that the main
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source of difficulty is the introduction of Lp conditions for the coefficients of E. As
usual, most of the properties of the standard spaces are preserved in the generalized
version.

Contents
6.1 The Bessel operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Singular integral operators . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Elliptic partial differential equations . . . . . . . . . . . . . . . . . . . 152

6.1 The Bessel operator

In this section we look at the action of the Bessel operator of order s,

J sf := F −1
(
(1 + | · |2)−s/2F f

)
(s ∈R, f ∈ S ′),

onto spaces T pφ (x0) and tpφ(x0). If φ is a function of B and s belongs to R, then φs will
denote the function

φs : (0,+∞)→ (0,+∞) x 7→ φ(x)xs.

It is obvious thatφs is again a function ofB such that b(φs) = b(φ)+s and b(φs) = b(φ)+s.
Let us recall that if 0 < s < d+1, then we have J sf = us∗f , where us is the function

defined for x , 0 by

us(x) =
1

(2π)
d−1

2 2s/2Γ (s/2)Γ (d−s+1
2 )

e|x|
∫ +∞

0
e−|x|t(t + t2/2)

d−s−1
2 dt.

The following inequality holds for all 0 < s < d and α ∈Nd
0:

Dαus(x) ≤ Cs,αe−|x|(1 + |x|−d+s−|α|). (6.2)

For the sake of simplicity, let us introduce the notion of admissible value for a real
number.

Definition 6.1.1. Given φ ∈ B, a value s > 0 is said to be admissible (for φ) if one of the
following two conditions is satisfied:

• b(φ) + s < 0,

• there exists n ∈N such that n < b(φ) + s ≤ b(φ) + s < n+ 1.

Theorem 6.1.2. Let x0 ∈ Rd , p ∈ (1,∞], φ ∈ B be such that b(φ) > −d/p and s > 0 be an
admissible value for φ. The operator J s maps continuously T pφ (x0) into T qφs(x0), where
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• 1/p ≥ 1/q ≥ 1
p −

s
d if p < d/s,

• p ≤ q ≤∞ if d/s < p ≤∞,

• p ≤ q <∞ if d/s = p.

Proof. Let f be a function of T pφ (x0); we know that there exists a polynomial P of degree
strictly less than b(φ) such that R := f − P satisfies

r−d/p‖R‖Lp(B(x0,r)) ≤ |f |T pφ (x0)φ(r), (6.3)

for all r > 0. Without loss of generality, we can assume that x0 = 0. We first want to
estimate the following two quantities, for all r > 0 and u ∈R:∫

B(0,r)
|R(x)| |x|−u dx and

∫
R
d\B(0,r)

|R(x)| |x|−u dx.

For this purpose, we use the same idea that in Lemma 3.3.7 and set

ϕ(r) :=
∫
B(0,r)

|R(x)|dx;

from inequality (6.3), we have

ϕ(r) ≤ Cd |f |T pφ (0)r
dφ(r). (6.4)

Moreover, using the spherical coordinates in R
d , we can write

ϕ(r) =
∫ r

0
ψ(ρ)dρ, (6.5)

where

ψ(ρ) := ρd−1
∫ 2π

0

∫ π

0
· · ·

∫ π

0
|R(x(ρ,θ1, · · · ,θd−1))|dΩd ,

and we recall that dΩd stands for sind−2(θ1) · · ·sin(θd−2)dθ1 · · ·dθd−1. Therefore, we
have, for ε > 0,

ϕ(r)r−u −ϕ(ε)ε−u =
∫ r

ε
ρ−uψ(ρ)dρ −

∫ r

ε
uρ−(u+1)ϕ(ρ)dρ

=
∫
B(0,r)\B(0,ε)

|R(x)| |x|−u dx −
∫ r

ε
uρ−(u+1)ϕ(ρ)dρ.

Consequently, ∫
B(0,r)\B(0,ε)

|R(x)| |x|−u dx ≤ ϕ(r)r−u +u
∫ r

0
ρ−(u+1)ϕ(ρ)dρ.
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If b(φ) + d −u > 0, then∫ r

0
ρ−(u+1)ϕ(ρ)dρ ≤ Cd |f |T pφ (0)

∫ r

0
ρd−u−1φ(ρ)dρ

≤ Cd |f |T pφ (0)φ(r)
∫ r

0
ρd−u−1φ(

ρ

r
)dρ

= Cd |f |T pφ (0)φ(r)rd−u
∫ 1

0

φ(ξ)ξd−u

ξ
dξ

≤ Cu |f |T pφ (0)φ(r)rd−u ,

thanks to Proposition 1.2.10. Hence, for all r > 0 and u ∈R such that b(φ) + d −u > 0,∫
B(0,r)

|R(x)| |x|−u dx ≤ Cd,u |f |T pφ (x0)φ(r)rd−u . (6.6)

If we now assume that b(φ) + d −u < 0, then, for all N > 0,∫
B(0,N )\B(0,r)

|R(x)| |x|−u dx = ϕ(N )N−u −ϕ(r)r−u +u
∫ N

r
ρ−u−1ϕ(ρ)dρ

and, since ϕ(N )N−u tends to 0 asN →∞, we get, thanks to (6.4) and Proposition 1.2.6,∫
R
d\B(0,r)

|R(x)| |x|−u dx ≤ Cu |f |T pφ (x0)φ(r)rd−u , (6.7)

using the same technique as before.
Let us first assume that 0 < s < d; we have

J sf = us ∗ P +us ∗R,

where us∗P is a polynomial of degree strictly less than b(φ) whose sum of coefficients is
bounded by the sum of the coefficients of P . We thus need to estimate
us ∗ R. Let us fix r > 0 and x ∈ R

d such that 2|x| < r; if there exists n ∈ N for which
n < b(φ) + s ≤ b(φ) + s < n+ 1, by Taylor’s formula, we find

(us ∗R)(x) =
∫
B(0,r)

us(x − y)R(y)dy +
∑
|α|≤n

xα

α!

∫
R
d
Dαus(−y)R(y)dy

−
∑
|α|≤n

xα

α!

∫
B(0,r)

Dαus(−y)R(y)dy

+
∑
|α|=n+1

∫
R
d\B(0,r)

Dαus(Θ(x)x − y)R(y)dy,
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for a Θ(x) ∈ (0,1). Using inequalities (6.2) and then (6.6), we get, for all |α| ≤ n,

|
∫
R
d
Dαus(−y)R(y)dy| ≤ C(

∫
B(0,1)

|y|−d+s−|α||R(y)|dy

+
∫
R
d\B(0,1)

e−|y||f (y)|dy +
∫
R
d\B(0,1)

e−|y||P (y)|dy)

≤ Cα,s|f |T pφ (0) +Cp‖f ‖Lp(Rd )

+C
∑
|β|<b(φ)

|DβP (0)|
β!

∫
R
d\B(0,1)

e−|y||y|β dy

≤ Cα,s,p,d‖f ‖T pφ (0),

so that ∑
|α|≤n

xα

α!

∫
R
d
Dαus(−y)R(y)dy

is a polynomial of degree n whose coefficients are bounded by ‖f ‖T pφ (0). For all |α| ≤ n,

we also have, thanks to (6.6),

|
∫
B(0,r)

Dαus(−y)R(y)dy| ≤ C
∫
B(0,r)

|y|−d+s−|α||R(y)|dy

≤ Cα |f |T pφ (x0)φ(r)rs−|α|.

Now, if |α| = n+ 1 and if |y| ≥ r, then |Θ(x)x − y| ≥ |y|/2 and, assuming that s < d,

|Dαus(Θ(x)x − y)| ≤ C|Θ(x)x − y|−d+s−|α| ≤ C′ |y|−d+s−|α|.

From (6.7), we get

|
∫
R
d\B(0,r)

Dαus(Θ(x)x − y)R(y)dy| ≤ Cα |f |T pφ (x0)φ(r)rs−|α|.

If we also assume that 1
p −

s
d < 0 and if p′ is the conjugate exponent of p, then, from

−(d − s)p′ < d, since

|us| ≤ C| · |−d+s,

we can affirm that us ∈ Lp
′
(Rd) and, for all r > 0,

‖us‖Lp′ (B(0,2r)) ≤ Cr
sr−d/p.

Therefore, by Hölder’s inequality,

|
∫
B(0,r)

us(x − y)R(y)dy| ≤ ‖us‖Lp′ (B(0,2r))‖R‖Lp(B(0,r))

≤ Crsr−d/p‖R‖Lp(B(0,r))

≤ C|f |T pφ (0)r
sφ(r).
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This shows that

P ′ = us ∗ P −
∑
|α|≤n

·α

α!

∫
R
d
Dαus(−y)R(y)dy

is a polynomial of degree n such that

‖J sf − P ′‖L∞(B(0,2r)) ≤ Cs,φ,p,d |f |T pφ (0)φs(2r), (6.8)

which means that J sf belongs to ∈ T∞φs (0). Moreover, by Young’s inequality,

‖J sf ‖L∞(Rd ) ≤ ‖us‖Lp′ (Rd )‖f ‖Lp(Rd ). (6.9)

From this relation, inequality (6.8) and the fact that the sum of the coefficients of P ′ is
bounded by ‖f ‖T pφ (0), we get

‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0).

If we now assume that 1
p −

s
d > 0, then

|
∫
B(0,r)

us(x − y)R(y)dy| ≤ C
∫
R
d

|RχB(0,r)|
|x − y|d−s

dy

= CIs(|RχB(0,r)|),

for r > 0, where Is is the Riesz potential of order s. As a consequence, if q is such that
1/q = 1

p −
s
d , we have, by the Hardy-Littlewood-Sobolev lemma (see e.g. [118]),

‖Is(RχB(0,r))‖Lq(Rd ) ≤ C‖R‖Lp(B(0,r))

≤ C|f |T pφ (0)r
d/pφ(r)

= C|f |T pφ (0)r
d
q rsφ(r).

This implies

r−
d
q ‖J sf − P ′‖Lq(B(0,2r)) ≤ Cs,φ,p,d |f |T pφ (0)φs(2r),

for r > 0, which means that J sf belongs to T
q
φs

(0). One more use of the Hardy-
Littlewood-Sobolev lemma gives

‖J sf ‖Lq(Rd ) ≤ C‖f ‖Lp(Rd )

and we obtain, using the same arguments as before,

‖J sf ‖T qφs (0) ≤ C‖f ‖T pφ (0). (6.10)
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If b(φ) + s < 0, let us decompose (us ∗R)(x) as follows:

(us ∗R)(x) =
∫
B(0,r)

us(x − y)R(y)dy +
∫
R
d\B(0,r)

us(x − y)R(y)dy.

We can use inequality (6.7) again to estimate the second term in this equality; more
precisely, we have

|
∫
R
d\B(0,r)

us(x − y)R(y)dy| ≤ Cs|f |T pφ (x0)φ(r)rs.

That being done, we can use the same reasoning to show that (6.9) and (6.10) still hold
in this case.

Let us extend inequalities (6.9) and (6.10) to all admissible values of s > 0. If s = d,
let 0 < ε < d be such that the quantity v := s − ε satisfies 0 < v < d and
n < b(φ) + v ≤ b(φ) + v < n + 1. Suppose first that 1

p −
s
d > 0; we have 1

p −
v
d > 0, which

implies J vf ∈ T rφv (0), with 1/r = 1
p −

v
d and ‖J vf ‖T rφv (0) ≤ C‖f ‖T pφ (0). From J sf = J εJ vf

and

1
r
− ε
d

=
1
p
− s
d
> 0,

we know that J sf ∈ T qφs(0) with 1/q := 1
r −

ε
d = 1

p −
s
d and

‖J sf ‖T qφs (0) ≤ C‖J
vf ‖T rφv (0) ≤ C‖f ‖T pφ (0).

Now, let us suppose that 1
p−

s
d < 0; by choosing ε such that 1

p−
v
d < 0, we getJ vf ∈ T∞φv (0),

with ‖J vf ‖T∞φv (0) ≤ C‖f ‖T pφ (0) and we obtain J sf ∈ T∞φs (0), with ‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0).

Let us consider the case s = kd + v with k ∈N and 0 < v ≤ d; let us first remark
that if n ∈N satisfies

n < b(φ) + s < b(φ) + s < n+ 1,

then d ≤ n implies

0 ≤ n− d < b(φ) + s − d ≤ b(φ) + s − d < n− d + 1

and s − d is still an admissible value. Otherwise, n < d and so n+ 1 ≤ d, which means
that we have b(φ)+s−d < 0 and therefore that s−d is also an admissible value. Suppose
first that 1

p −
s
d > 0; let us prove by induction that J sf belongs to T qφs(0) with 1/q := 1

p −
s
d

and ‖J sf ‖T qφs (0) ≤ C‖f ‖T pφ (0). The case k = 0 being already known, let us show that if the

assertion is true for k − 1, then it is also true for k (k ≥ 1). Since s − d is an admissible
value, J s−df ∈ T rφs−d (0) with 1/r = 1

p −
s−d
d and

‖J s−df ‖T rφs−d (0) ≤ C‖f ‖T pφ (0).
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As

1
r
− d
d

=
1
p
− s
d
> 0,

we have J sf ∈ T qφs(0) with 1/q := 1
p −

s
d and ‖J sf ‖T qφs (0) ≤ C‖f ‖T pφ (0). Now, let us suppose

that 1
p −

s
d < 0; let us prove by induction that J sf ∈ T∞φs (0) and

‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0).

It remains to show that if the assertion is true for k −1, then it is also true for k (k ≥ 1).
If 1

p −
s−d
d < 0, then J s−df ∈ T∞φs−d (0) and ‖J s−df ‖T∞φs−d (0) ≤ C‖f ‖T pφ (0). From what we have

obtained before for the case s = d, we get J sf ∈ T∞φs (0) and

‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0).

Otherwise, if 1
p −

s−d
d > 0, from the previous point, J s−df ∈ T rφs−d (0) with 1/r := 1

p −
s−d
d ,

‖J s−df ‖T rφs−d (0) ≤ C‖f ‖T pφ (0) and

1
r
− d
d

=
1
p
− s
d
< 0.

The case s = d leads to J sf ∈ T∞φs (0) and ‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0). Finally, if 1
p −

s−d
d = 0,

let 0 < ε < d be such that s − d + ε is still an admissible value. As 1
p −

s−d+ε
d < 0, we have

J s−d+εf ∈ T∞φs−d+ε
(0) and ‖J s−d+εf ‖T∞φs−d+ε

(0) ≤ C‖f ‖T pφ (0). We can thus write

‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0).

Let us now remark that if f ∈ T pφ (x0) and J sf ∈ T qφs(x0) with q > p, then we can
define Rs := J sf − Ps where Ps is a polynomial of degree strictly less than b(φ) + s such
that

r−d/q‖Rs‖Lq(B(x0,r) ≤ |J
sf |T qφs (x0)φs(r).

If p ≤ p′ ≤ q and q′ ≥ 1 is such that 1
q + 1

q′ = 1/p′, for r > 0, we have

r−d/p
′
‖Rs‖Lp′ (B(x0,r))

≤ Cdr−d/p
′
rd/q

′
‖Rs‖Lq(B(x0,r))

≤ Cd |J sf |T qφs (x0)φs(r),

which means that J sf belongs to T p
′

φs
(x0) (using the estimation made by the same poly-

nomial as the one that gives the belonging to T qφs(x0)). Moreover, if 0 ≤ θ ≤ 1 is such
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that 1/p′ = θ
q + 1−θ

p , we know that

‖J sf ‖Lp′ (Rd ) ≤ ‖J
sf ‖θ

Lq(Rd )‖J
sf ‖1−θ

Lp(Rd )

≤ C‖J sf ‖θ
Lq(Rd )‖f ‖

1−θ
Lp(Rd )

≤ ‖J sf ‖Lq(Rd ) + ‖f ‖Lp(Rd ).

We are finally able to prove the three points of the theorem. If p < d/s, let us set
1/p∗ := 1

p −
s
d ; p∗ ≥ 1 and from the first part of the proof, J sf belongs to T p

∗

φs
(0) and

‖J sf ‖
T
p∗
φs

(0)
≤ C‖f ‖T pφ (0). Now, from the second part, for q satisfying 1/p ≥ 1/q ≥ 1/p∗,

J sf belongs to T p
∗

φs
(0) and

‖J sf ‖T qφs (0) ≤ C(‖J sf ‖
T
p∗
φs

(0)
+ ‖f ‖Lp(Rd ))

≤ c‖f ‖T pφ (0).

Let us consider the case p > d/s. The first part of the proof implies that J sf belongs to
T∞φs (0) and ‖J sf ‖T∞φs (0) ≤ C‖f ‖T pφ (0). Using the second part of the proof, for p ≤ q ≤ ∞,

we get that J sf belongs to T qφs(0) and

‖J sf ‖T qφs (0) ≤ C‖f ‖T pφ (0).

For the case p = d/s, let 0 < ε < s be such that

1
p
− ε
d
>

1
p
− s
d

= 0,

ε being chosen sufficiently close to s so that it is an admissible value; the first point of
the proof gives that J εf belongs to T qφε(0) and ‖J εf ‖T qφε (0) ≤ C‖f ‖T pφ (0) for q such that

1/p ≥ 1/q > 1
p −

ε
d . Now,

1
q
− s − ε

d
>

1
p
− ε
d
− s − ε

d
= 0

and, from the first part of the proof, J sf belongs to T qφs(0) and

‖J sf ‖T qφs (0) ≤ C‖f ‖T pφ (0).

We can conclude by letting ε tends to s−.

This theorem admits the following corollary, regarding tpφ(x0) spaces.

Corollary 6.1.3. Let x0 ∈Rd , p ∈ (1,∞),φ ∈ B be such that either b(φ) > −d/p and b(φ) ≤ 0
or there exists n ∈N such that n < b(φ) ≤ b(φ) < n+ 1. Let us consider an admissible value
s > 0 for φ; if the function f belongs to tpφ(x0), then J sf ∈ tqφs(x0), where
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• 1/p ≥ 1/q ≥ 1
p −

s
d , if p < d/s,

• p ≤ q ≤∞, if d/s < p <∞,

• p ≤ q <∞, if d/s = p.

Proof. By Corollary 5.2.2, we know that there exists a sequence of functions (fj)j∈N
in D(Rd)∩ tpφ(x0) such that fj → f in T pφ (x0). For such a function, J sfj ∈ C∞(Rd) and
Remark 5.1.9 implies that J sfj belongs to trφs(x0), for all r ∈ [1,∞]. But, for all values
of q that we consider, the preceding theorem implies

‖J s(fj − f )‖T qφs (x0) ≤ C‖fj − f ‖T pφ (x0).

Therefore, J sfj converges to J sf in T
q
φs

(x0). From Proposition 5.1.8, we know that

t
q
φs

(x0) is a closed subspace of T qφs(x0), which gives us the conclusion.

6.2 Derivatives

In this section, we investigate the estimates that can be made for a function whose
derivatives are known to belong to T pφ (x0) (or tpφ(x0)). For such a task, we will need the
following classical lemma of Sobolev spaces theory (see e.g. [130]).

Lemma 6.2.1. Let 1 ≤ p < d and q be defined by 1/q := 1
p −

1
d . There exists Cp,d > 0 such

that, for all f ∈ D(Rd),

‖f ‖Lq(Rd ) ≤ Cp,d
d∑
j=1

‖Djf ‖Lp(Rd ).

Let us remind that, if φ ∈ B, then φ1 is the Boyd function defined by

φ1(x) = xφ(x) ∀x > 0.

Theorem 6.2.2. Let x0 ∈ R
d , p ∈ [1,∞), φ ∈ B be such that b(φ) > −d/p and either

b(φ) < −1 or there exists n ∈N∪ {−1} for which n < b(φ) ≤ b(φ) < n+ 1. If f is such that
Djf ∈ T

p
φ (x0) for all j ∈ {1, . . . ,d} and

1. if 1 ≤ p < d and f ∈ Lq(Rd) with 1/q := 1
p −

1
d , then f ∈ T qφ1

(x0) and

‖f ‖T qφ1
(x0) ≤ Cp,φ

d∑
j=1

‖Djf ‖T pφ (x0), (6.11)

2. if f ∈ Lq(Rd) where q ∈ [1,∞) is such that 1/p ≥ 1/q > 1
p −

1
d , then f ∈ T qφ1

(x0) and

‖f ‖T qφ1
(x0) ≤ Cp,φ

d∑
j=1

‖Djf ‖T pφ (x0) + ‖f ‖Lq(Rd ). (6.12)
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Moreover, if Djf belongs to tpφ(x0) for all j ∈ {1, . . . ,d}, then f also belongs to tqφ1
(x0),

with q satisfying one of the two preceding points.

Proof. Let us first suppose that f belongs to D(Rd); for j ∈ {1, . . . ,d}, let us set

kj : Rd \ {0} →R x 7→ 1
ωd

xj

|x|d
,

where ωd is the area of the hyper-sphere in R
d . It is easy to check that for x , 0, we

have
∑d
j=1Djkj(x) = 0.

Let us fix x ∈ R
d , set, given r > 0, Ωr := {y ∈ R

d : |x − y| ≥ r} and denote by
∂Ωr := {y ∈ Rd : |x − y| = r} the boundary of this set. Using Green’s first identity (see
Theorem 1.7.4), we get

d∑
j=1

∫
Ωr

Djf (y)kj(x − y)dy =
1
ωd

∫
∂Ωr

f (y)
|x − y|d−1

dσ.

Lebesgue’s dominated convergence theorem implies that the right-hand side tends to
f (x) as r tends to 0+, while the left-hand side tends to

d∑
j=1

∫
R
d
Djf (y)kj(x − y)dy.

Therefore, we have the following representation for f :

f =
d∑
j=1

∫
R
d
Djf (y)kj(· − y)dy. (6.13)

Let us prove the second point in the case q = p. Let us first deal with the case
b(φ) < −1; for r > 0 and x ∈Rd such that |x − x0| ≤ r, we can write

f (x) =
d∑
j=1

(f1,j(x) + f2,j(x)),

where we have set

f1,j(x) :=
∫
B(x0,2r)

Djf (y)kj(x − y)dy

and

f2,j(x) :=
∫
R
d\B(x0,2r)

Djf (y)kj(x − y)dy.
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By Young’s inequality, we have

r−d/p‖f1,j‖Lp(B(x0,r)) ≤ r
−d/p‖Djf ‖Lp(B(x0,2r))‖kj‖L1(B(x0,3r))

≤ Cφ(2)|Djf |T pφ (x0)φ(r)r. (6.14)

To estimate r−d/p‖f2,j‖Lp(B(x0,r)), let us define the function Fj for r > 0 by

Fj(r) :=
∫
B(x0,r)

|Djf (y)|dy =
∫ r

0
ψj(ρ)dρ,

where we have set, using spherical coordinates in R
d centered at x0,

ψj(ρ) := ρd−1
∫ 2π

0

∫ π

0
· · ·

∫ π

0
|Djf (y(ρ,θ1, · · · ,θd−1))|dΩd .

We know that, for r > 0,

r−dFj(r) ≤ Cd |Djf |T pφ (x0)φ(r) (6.15)

and, for all R > 0, we have

Fj(R)R1−d −Fj(2r)(2r)1−d

=
∫ R

2r
ψj(ρ)ρ1−d dρ+

∫ R

2r
Fj(ρ)(1− d)ρ−d dρ. (6.16)

Thanks to inequality (6.15) and Proposition 1.2.6, as b(φ) < −1, Fj(R)R1−d tends to 0 as
R tends to +∞. Therefore,∫ +∞

2r
ψj(ρ)ρ1−d dρ ≤ (d − 1)

∫ +∞

2r
Fj(ρ)ρ−d dρ

≤ Cd(d − 1)|Djf |T pφ (x0)

∫ +∞

2r
φ(ρ)dρ

≤ Cd(d − 1)|Djf |T pφ (x0)φ(2)φ(r)
∫ +∞

2r
φ(
ρ

2r
)dρ

= Cd(d − 1)|Djf |T pφ (x0)φ(2)2φ(r)r
∫ +∞

1
φ(t)dt.

By Proposition 1.2.10, this last integral is bounded and thus∫ +∞

2r
ψj(ρ)ρ1−d dρ ≤ CdCφ,1|Djf |T pφ (x0)φ1(r),

where

Cφ,1 := φ(2)
∫ +∞

1
φ(t)dt. (6.17)
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As

|fj,2(x)| ≤
∫
R
d\B(x0,2r)

|Djf (y)|
|x − y|d−1

dy

≤
∫
R
d\B(x0,2r)

|Djf (y)|
(1

2 |x0 − y|)d−1
dy

= Cd

∫ +∞

2r
ρ1−dψj(ρ)dρ,

we finally obtain

r−d/p‖fj,2‖Lp(B(x0,r)) ≤ CdCφ,1|Djf |T pφ (x0)φ1(r).

Inequality (6.12) follows from this estimate and (6.14). Now, let us suppose that
−1 < b(φ) ≤ b(φ) < 0 and fix r > 0. For any x ∈ B(x0, r), we have

f (x)− f (x0) =
d∑
j=1

(fj,1 + fj,2 − fj,3)(x),

where we have set,

fj,1(x) :=
∫
B(x0,2r)

Djf (y)kj(x − y)dy,

fj,2(x) :=
∫
R
d\B(x0,2r)

Djf (y)(kj(x − y)− kj(x0 − y))dy

and

fj,3(x) :=
∫
B(x0,2r)

Djf (y)kj(x0 − y)dy.

Once again, we have

r−d/p‖f1,j‖Lp(B(x0,r)) ≤ Cφ(2)|Djf |T pφ (x0)φ1(r).

Moreover, if x ∈ B(x0, r) and |x0 − y| ≥ 2r, then, for all |h| ≤ |x− x0|, |x0 − y +h| ≥ |x0 − y|/2
and so, by the mean value theorem and the fact that |Dαkj(z)| ≤ C/ |z|d for all z , 0 and
|α| = 1,

|kj(x − y)− kj(x0 − y)| ≤ Cr |x0 − y|−d .

Therefore,

|fj,2(x)| ≤ Cr
∫ +∞

2r
ψj(ρ)ρ−d dρ
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and by the same reasoning as before, using this time b(φ) < 0, we get

r−d/p‖fj,2‖Lp(B(x0,r)) ≤ CdCφ,2|Djf |T pφ (x0)φ1(r),

where

Cφ,2 := φ(2)
∫ +∞

1

φ(t)
t
dt. (6.18)

For the last term, we have

|fj,3(x)| ≤ r
∫ 2r

0
ψj(ρ)ρ1−d dρ

and using an equality similar to (6.16), we have∫ 2r

0
ψj(ρ)ρ1−d dρ ≤ Fj(2r)(2r)1−d + d

∫ 2r

0
Fj(ρ)ρ−d dρ.

As −1 < b(φ), we have

r−d/p‖fj,3‖Lp(B(x0,r)) ≤ CdCφ,3|Djf |T pφ (x0)φ1(r),

where

Cφ,3 := φ(2)(1 +
∫ 1

0
φ(t)dt). (6.19)

Again, inequality (6.12) follows from the estimate made of r−d/p‖fj,k‖Lp(B(x0,r)), for all
r > 0 and k ∈ {1,2,3}. Finally, if there exists n ∈N such that n < b(φ) ≤ b(φ) < n+ 1, let
P be the Taylor expansion of f at x0 of order n+ 1, set f̃ := f − P and, for j ∈ {1, . . . ,d},
f̃j :=Dj f̃ . For r > 0, we have∫

B(x0,r)
|f̃ (y)|p dy

=
∫ r

0

∫ 2π

0

∫ π

0
· · ·

∫ π

0
|f̃ (x0 + y(ρ,θ1,...,θd−1))|pρd−1dΩddρ,

where y(ρ,θ1,...,θd−1) is the point defined by

[y(ρ,θ1,...,θd−1)]j := ρ
∏
k<j

sin(θk)cos(θj)∀j ∈ {0, . . . ,d − 1}

and

[y(ρ,θ1,...,θd−1)]d := ρ
∏
k<d

sin(θk).
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Let us set
gj(θ1, . . . ,θd−1) :=

∏
k<j

sin(θk)cos(θj)

and
gd(θ1, . . . ,θd−1) :=

∏
k<d

sin(θk).

Using Taylor’s formula, we have, as f̃ (x0) = 0,

f̃ (x0 + y(ρ,θ1,...,θd−1)) =
d∑
j=1

∫ ρ

0
f̃j(x0 + y(t,θ1,...,θd−1))gj(θ1, . . . ,θd−1)dt.

Therefore, as |gj | ≤ 1, Hölder’s inequality leads to∫
B(x0,r)

|f̃ (y)|p dy

≤ Cd,p
∫ r

0

∫ 2π

0

∫ π

0
· · ·

∫ π

0
ρd−1

∫ ρ

0

d∑
j=1

|f̃j(x0 + y(t,θ1,...,θd−1))|p dtρp−1dΩddρ

≤ Cd,prd+p−2
d∑
j=1

∫ 2π

0

∫ π

0
· · ·

∫ π

0

∫ r

0

∫ r

t
|f̃j(x0 + y(t,θ1,...,θd−1))|p dρdtdΩd

≤ Cd,prd+p−1
d∑
j=1

∫ 2π

0

∫ π

0
· · ·

∫ π

0

∫ r

0
|f̃j(x0 + y(t,θ1,...,θd−1))|p dtdΩd

= Cd,pr
d+p−1

d∑
j=1

∫
B(x0,r)

|f̃j(y)|p

|y − x0|d−1
dy.

Moreover, using a similar technique as before, we have, for j ∈ {1, . . . ,d},∫
B(x0,r)

|f̃j(y)|p

|y − x0|d−1
dy ≤ |Djf |

p

T
p
φ (x0)

φ(r)pr(1 +
∫ 1

0
φ(t)p dt),

which allows us to conclude, as b(φ) > 0, that

r−d/p‖f̃ ‖Lp(B(x0,r)) ≤ Cd,pCφ,4
d∑
j=1

|Djf |T pφ (x0)φ1(r), (6.20)

where

Cφ,4 := (1 +
∫ 1

0
φ(t)p dt)1/p. (6.21)
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In order to estimate ‖f ‖T pφ1
(x0), we need information about

∑
|α|≤n+1 |DαP (x0)|/α!. We

have

∑
0<|α|≤n+1

|DαP (x0)|
α!

≤ C
d∑
j=1

∑
0<|β|≤n

DβPj(x0)

β!
, (6.22)

where, given j ∈ {1, . . . ,d}, Pj is the Taylor expansion of Djf at x0 of order n. It remains
to work on P (x0) = f (x0). For this purpose, let us choose ϕ ∈ D(Rd) such that ϕ = 1 on
B(0,1) and supp(ϕ) ⊆ B(0,2). Using representation (6.13), we obtain

f (x0) = f (x0)ϕ(x0 − x0) =
d∑
j=1

(
∫
R
d
kj(x0 − y)Djf (y)ϕ(y − x0)dy

+
∫
R
d
kj(x0 − y)f (y)Djϕ(y − x0)dy).

For the first term of the right-hand side, we have

|
∫
R
d
kj(x0 − y)Djf (y)ϕ(y − x0)dy| ≤ Cϕ

∫
B(x0,2)

|Djf (y)|
|x0 − y|d−1

dy.

For r > 0, we have

r−d/p‖Djf − Pj‖Lp(B(x0,r)) ≤ |Djf |T pφ (x0)φ(r)

and so

r−d/p‖Djf ‖Lp(B(x0,r)) ≤ |Djf |T pφ (x0)φ(r) +Cd
∑
|β|≤n

|DβPj(x0)|
β!

r |β|.

As ∑
|β|≤n

|DβPj(x0)|
β!

≤ ‖Djf ‖T pφ (x0),

we can write, using the same technique as before,∫
B(x0,2)

|Djf (y)|
|x0 − y|d−1

dy ≤ CdCφ,5‖Djf ‖T pφ (x0),

where

Cφ,5 := φ(2) + 2n + 2φ(2)
∫ 1

0
φ(t)dt. (6.23)
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For the second term, we have

|
∫
R
d
kj(x0 − y)f (y)Djϕ(y − x0)dy|

≤
∫
B(x0,2)\B(x0,1)

|kj(x0 − y)| |f (y)| |Djϕ(y − x0)|dy

≤ Cϕ
∫
B(x0,2)\B(x0,1)

|f (y)|dy

≤ Cϕ,d‖f ‖Lp(Rd ),

which gives

|f (x0)| ≤ Cϕ,d(Cφ,5
d∑
j=1

‖Djf ‖T pφ (x0) + ‖f ‖Lp(Rd )).

This relation, equations (6.20) and (6.22) lead to inequality (6.12). That being done,
we have thus obtained the second part of the theorem in the case p = q.

Let us now prove the first point of the theorem, still considering a function f from
D(Rd). As previously, let us denote by ϕ a function in D(Rd) such that ϕ = 1 on B(0,1)
and supp(ϕ) ⊆ B(0,2). If there exists n ∈N∪{−1} such that n < b(φ) ≤ b(φ) < n+1, let P
be the Taylor expansion of f at x0 of order n+ 1, otherwise we set P = 0. Finally, define
f̃ := f − P and, for j ∈ {1, . . . ,d}, f̃j := Dj f̃ . If 1/q := 1

p −
1
d , thanks to Lemma 6.2.1, we

have, for all r > 0,

r−d/q‖f̃ ‖Lq(B(x0,r)) ≤ r
−d/q‖f̃ ϕ(

· − x0

r
)‖Lp(Rd )

≤ Cp,dr−d/q
d∑
j=1

(‖f̃jϕ(
· − x0

r
)‖Lp(Rd )

+ r−1‖f̃ Djϕ(
· − x0

r
)‖Lp(Rd ))

= CϕCp,d
d∑
j=1

(rr−d/p‖f̃j‖Lp(B(x0,2r))

+ r−d/p‖f̃ ‖Lp(B(x0,2r))).

Moreover, by hypothesis,

rr−d/p‖f̃j‖Lp(B(x0,2r)) ≤ 2d/pφ(2)|Djf |T pφ (x0)φ1(r) (6.24)

and, using what we have proved so far,

r−d/p‖f̃ ‖Lp(B(x0,2r)) ≤ Cd,pCφ
d∑
j=1

|Djf |T pφ (x0)φ1(r). (6.25)
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As before,

∑
|α|≤n+1

|DαP (x0)|
α!

≤ Cϕ,d(Cφ,5
d∑
j=1

‖Djf ‖T pφ (x0) + ‖f ‖Lq(Rd )). (6.26)

That being done, another use of Lemma 6.2.1 gives

‖f ‖Lq(Rd ) ≤ Cp,d
d∑
j=1

‖Djf ‖Lp(Rd ) (6.27)

and inequality (6.11) is proved, thanks to relations (6.24) to (6.27).
Now, let us come back to the second point of the theorem and investigate the

case where q ≥ 1 is such that 1/p ≥ 1/q > 1
p −

1
d ; we still consider a function f ∈ D(Rd).

Again, we use equality (6.13); as 1/p ≥ 1/q > 1
p −

1
d , there exists p′ ∈ [1,∞) such that

1/q = 1
p + 1

p′ − 1 and, by Young’s inequality,

‖
∫
R
d
kj(· − y)f̃j(y)ϕ(

y − x0

r
)dy‖Lq(B(x0,r))

≤ Cϕ‖kj‖Lp′ (B(x0,3r))
‖f̃j(y)‖Lp(B(x0,2r))

and

‖kj‖Lp′ (B(x0,3r))
≤ Cd,p((3r)(d−1)(1−p′)+1)1/p′ = Cd,p(3r)

d
q−

d
p+1,

which gives us

r−d/q‖
∫
R
d
kj(· − y)f̃j(y)ϕ(

y − x0

r
)dy‖Lq(B(x0,r))

≤ Cϕ,d,pφ(2)|Djf |T pφ (x0)φ1(r).

Similarly, using the first part of the proof, we obtain

‖
∫
R
d
kj(· − y)f̃ (y)r−1Djϕ(

y − x0

r
)dy‖Lq(B(x0,r))

≤ Cϕ,d,pr−d/pr
d
q ‖f̃ (y)‖Lp(B(x0,2r))

≤ Cϕ,d,pCφφ(2)r
d
q

d∑
j=1

|Djf |T pφ (x0)φ1(r).

This upper bound and equation (6.26) lead to inequality (6.12).
Now that the theorem has been obtained for the functions belonging toD(Rd), let

us consider a compactly-supported function f such that Djf ∈ t
p
φ(x0), for all

j ∈ {1, . . . ,d}. Given λ > 0, let fλ be the function defined by (5.4) and, for j ∈ {1, . . . ,d},
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define fλ,j := Djfλ. By Proposition 5.2.1, we know that fλ,j converges to Djf in T pφ (x0)
(j ∈ {1, . . . ,d}). Inequalities (6.11) and (6.12) imply that (fλ)λ>0 is a Cauchy sequence
in T

q
φ1

(x0) (with appropriate q) and thus, by Proposition 5.1.7, (fλ)λ>0 converges in

T
q
φ1

(x0). As fλ converges to f in Lq(Rd), we conclude that fλ converges to f in T qφ1
(x0).

Moreover, by passing to the limit, we can affirm that inequalities (6.11) and (6.12) still
hold for f . Now, as fλ belongs to D(Rd) and tqφ1

(x0) for all λ > 0, by Proposition 5.1.8,

f also belongs to tqφ1
(x0).

Let us now consider a general function f such that, for all j ∈ {1, . . . ,d}, Djf be-
longs to t

p
φ(x0) and let us again take ϕ ∈ D(Rd) with ϕ = 1 on B(0,1) and

supp(ϕ) ⊆ B(x0,2). Given ε > 0, we define

fε := f ϕ(ε(· − x0)).

By assumption, we know that, for all j ∈ {1, . . . ,d}, there exists a polynomial Pj of degree
strictly less than b(φ) such that

φ(r)−1r−d/p‖Djf − Pj‖Lp(B(x0,r))→ 0 as r→ 0+.

Moreover, since we assume that f ∈ Lq(Rd) for some q ≥ p, f belongs to Lploc(Rd) and

Djfε =Djf ϕ(ε(· − x0)) + εf Djϕ(ε(· − x0))

belongs to Lp(Rd) for all ε > 0. Of course, we have

φ(r)−1r−d/p‖Djfε − Pj‖Lp(B(x0,r))

≤ φ(r)−1r−d/p‖Djf ϕ(ε(· − x0))− Pj‖Lp(B(x0,r))

+φ(r)−1r−d/p‖εf Djϕ(ε(· − x0))‖Lp(B(x0,r)).

Now, for r sufficiently small, we have ϕ(ε(· − x0)) = 1 and Djϕ(ε(· − x0)) = 0 on B(x0, r)
and, for such r,

φ(r)−1r−d/p‖Djfε − Pj‖Lp(B(x0,r)) ≤ φ(r)−1r−d/p‖Djf − Pj‖Lp(B(x0,r)),

which shows that Djfε belongs to tpφ(x0). As fε is compactly-supported, the previous

case reveals that fε belongs to tqφ1
(x0) (for appropriate q). Let us prove that Djfε tends

to Djf in T pφ (x0), as ε tends to 0+. We have

‖Djfε −Djf ‖T pφ (x0)

= sup
r>0

φ(r)−1r−d/p‖Djfε −Djf ‖Lp(B(x0,r)) + ‖Djfε −Djf ‖Lp(Rd )

and

Djfε −Djf =Djf (ϕ(ε(· − x0))− 1) + εf Djϕ(ε(· − x0)). (6.28)
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A simple application of Lebesgue’s dominated convergence theorem shows that the Lp

norm of the first term of the right-hand side of (6.28) tends to 0 as ε tends to 0+, while

‖εf Djϕ(ε(· − x0))‖Lp(Rd ) ≤ Cϕε‖f ‖Lp(B(x0,2/ε)\B(x0,1/ε))

≤ Cϕ,p,q,dε
1− dp+ d

q ‖f ‖Lq(Rd\B(x0,1/ε)).

Since 1 − d
p + d

q ≥ 0 by hypothesis and ‖f ‖Lq(Rd\B(x0,1/ε)) tends to 0 as ε tends to 0+,
so does ‖Djfε − Djf ‖Lp(Rd ). Moreover, for 0 < ε < 1, if 0 < r < 1/ε, then Djfε − Djf
vanishes on B(x0, r). If r > 1/ε, then r > 1 and if δ > 0 satisfies b(φ)− δ + d

p > 0, then by
Proposition 1.2.6,

φ(r)−1r−d/p ≤ Cδ,φr
−(b(φ)−δ+ d

p ) ≤ Cδ,φε
(b(φ)−δ+ d

p ),

which finally leads to

sup
r>0

φ(r)−1r−d/p‖Djfε −Djf ‖Lp(B(x0,r))

≤ Cδ,φε
(b(φ)−δ+ d

p )‖Djfε −Djf ‖Lp(Rd ),

so thatDjfε tends toDjf in T pφ (x0) as ε→ 0+. Using again the completeness of the space

T
q
φ1

(x0) and the closeness of tqφ1
(x0), we conclude, by inequalities (6.11) and (6.12), that

fε tends to f in T qφ1
(x0) and f ∈ tqφ1

(x0). By passing to the limit in (6.11) and (6.12), we
obtain that those inequalities still hold for f .

It remains to consider the case of a function f such that, for j ∈ {1, . . . ,d}, Djf
belongs to T pφ (x0). Let ε > 0 be such that

−d/p < b(φ)− ε ≤ b(φ)− ε < −1,

if b(φ) < −1 and
n < b(φ)− ε ≤ b(φ)− ε < n+ 1

if n ∈ N ∪ {−1} satisfies n < b(φ) ≤ b(φ) < n + 1. For such a number, Djf belongs
to tpφ−ε(x0) for j ∈ {1, . . . ,d} and it follows from the previous case that Djf belongs to

t
q
φ1−ε

(x0). Moreover, if 1 ≤ p < d and f belongs to Lq(Rd) with 1/q := 1
p −

1
d , then f

belongs to T qφ1−ε
(x0) and

‖f ‖T qφ1−ε
(x0) ≤ Cp,φ−ε

d∑
j=1

‖Djf ‖T pφ−ε(x0). (6.29)

Otherwise, if f belongs to Lq(Rd) with q ∈ [1,∞) satisfying 1/p ≥ 1/q > 1
p −

1
d , then f

belongs to T qφ1−ε
(x0) and

‖f ‖T qφ1−ε
(x0) ≤ Cp,φ−ε

d∑
j=1

‖Djf ‖T pφ−ε(x0) + ‖f ‖Lq(Rd ). (6.30)
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Let us analyse the constants defined in (6.17), (6.18), (6.19), (6.21) and (6.23). For a
chosen ε > 0, we have for example

Cφ−ε,1 = φ−ε(2)
∫ +∞

1
φ−ε(t)dt

= φ(2)2−ε
∫ +∞

1
φ(t)t−ε dt

≤ Cφ

and a similar reasoning applied to (6.18), (6.19), (6.21) and (6.23) shows that we can
find a constant C > 0 such that, for ε small enough, the constant Cp,φ−ε appearing in
(6.29) and (6.30) is bounded by CCp,φ. Moreover, since

‖Djf ‖T pφ−ε(x0) ≤ ‖Djf ‖T pφ (x0),

we can conclude by taking the limit as ε tends to 0+.

6.3 Singular integral operators

Let us now study the action of convolution singular integral operators on the space
T
p
φ (x0). This class of operators was particularly studied by Calderón and Zygmund in

[24, 25], where the authors proved the following crucial theorem.

Theorem 6.3.1. Let us set, for ε > 0,

Kεf =
∫
R
d\B(·,ε)

k(· − y)f (y)dy,

where

• k is homogeneous1 of degree −d,

• k has mean value zero on the sphere Σ = {x ∈Rd : |x| = 1},

• k ∈ Lq(Σ) for a 1 < q <∞,

• f ∈ Lp(Rd) with 1 < p <∞.

Then, there exists Kf ∈ Lp(Rd) such that Kεf tends to Kf in Lp(Rd), and pointwise almost
everywhere as ε→ 0+. Moreover, if we set

K∗f = sup
ε>0
|Kεf |,

then K∗f belongs to Lp(Rd) and

‖K∗f ‖Lp(Rd ) ≤ Cp,q‖k‖Lq(Σ)‖f ‖Lp(Rd ). (6.31)
1It means that k(λx) = λ−dk(x) for all λ > 0 and x ∈Rd \ {0}.
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Remark 6.3.2. In the theorem originally stated by Calderón and Zygmund, the inte-
grability assumption made on k is the following: k + k(−·) ∈ L logL(Σ). This condition
is a little less restrictive, since for a finite measure space (X,A ,µ), we have (see [6] for
example)

Lq(X,A ,µ) ↪→ L logL(X,A ,µ),

for all 1 < q <∞. In the sequel, we will need to consider k ∈ Lq(Σ), with 1 < q <∞, in
order to take advantage of inequality (6.31).

We will use the following notation:

Notation 6.3.3. Given φ ∈ B, we set

db(φ)e
N

:= inf{k ∈N : b(φ) < k}.

Proposition 6.3.4. Let K be the convolution singular integral operator defined by

Kf = p.v.
∫
k(· − y)f (y)dy,

where the kernel k ∈ C∞(Rd \ {0}) is homogeneous of degree −d. We also assume that k has
mean value zero on the sphere Σ.

Let p ∈ (1,∞), x0 ∈ Rd and φ ∈ B be such that −d/p < b(φ) and either b(φ) < 0 or
there exists n ∈N for which

n < b(φ) ≤ b(φ) < n+ 1. (6.32)

If a function f belongs to T pφ (x0), then Kf ∈ T pφ (x0) and

‖Kf ‖T pφ (x0) ≤ Cφ,pM‖f ‖T pφ (x0), (6.33)

where we have set

M = sup
|x|=1

0≤|α|≤db(φ)e
N

|Dαk(x)|.

Moreover, if f ∈ tpφ(x0), then we also have Kf ∈ tpφ(x0).

Proof. We can assume, without loss of generality, that x0 = 0. If f ∈ T pφ (0) then there
exists a polynomial P of degree strictly less than b(φ) such that, for all r > 0,

r−d/p‖f − P ‖Lp(B(x0,r)) ≤ |f |T pφ (0)φ(r).

Let ϕ be a function in D(Rd) such that ϕ = 1 on B(0,1) and supp(ϕ) ⊆ B(0,2); we set

f1 := ϕP and f2 := f − f1.
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If b(φ) < 0, then f1 = 0 and obviously f1 ∈ T
p
φ (0) with ‖f1‖T pφ (0) ≤ ‖f ‖T pφ (0). Otherwise,

(6.32) holds and if r ≤ 1,r−d/p‖f1 − P ‖Lp(B(x0,r)) = 0. If r > 1, then, by Proposition 1.2.6,

r−d/p‖f1 − P ‖Lp(B(x0,r)) ≤ r
−d/pCϕ,p‖P ‖Lp(B(x0,r))

≤ Cϕ,d,p
∑
|α|≤n

|DαP (0)|
α!

r |α|

≤ Cϕ,d,pCφ‖f ‖T pφ (0)φ(r),

which means that f1 ∈ T
p
φ (0), with

‖f1‖T pφ (0) ≤ Cϕ,d,pCφ‖f ‖T pφ (0).

As a consequence, we have

‖f2‖T pφ (0) ≤ (1 +Cϕ,d,pCφ)‖f ‖T pφ (0).

Let us now consider ψ ∈ D(Rd) such that supp(ψ) ⊆ B(0,2) and set, for ε > 0 and x ∈Rd ,

Iε(x) =
∫
R
d\B(0,ε)

k(y)ψ(x − y)dy =
∫
B(0,2+|x|)\B(0,ε)

k(y)ψ(x − y)dy.

We have, using the notation used in the proof of Theorem 6.1.2, as k is homogeneous
of degree −d, ∫

B(0,2+|x|)\B(0,ε)
k(y)ψ(x)dy

= ψ(x)
∫ 2+|x|

ε

∫ 2π

0

∫ π

0
· · ·

∫ π

0
k(y(ρ,θ1,...,θd−1))ρ

d−1dΩddρ

= ψ(x)
∫ 2+|x|

ε

∫ 2π

0

∫ π

0
· · ·

∫ π

0
k(y(1,θ1,...,θd−1))ρ

−1dΩddρ

= ψ(x)(ln(2 + |x|)− ln(ε))
∫ 2π

0

∫ π

0
· · ·

∫ π

0
k(y(1,θ1,...,θd−1))dΩd

= 0,

as k has mean value zero on Σ. Therefore, for ε > 0 and x ∈Rd ,

Iε(x) =
∫
B(0,2+|x|)\B(0,ε)

k(y)(ψ(x − y)−ψ(x))dy.

We will use this last equality to show that the sequence (Iε)ε>0 converges uniformly
as ε tends to 0+. Indeed, for all x ∈ R

d , if 0 < ε < ε′, we have, since for all y , 0,
|k(y)| ≤M |y|−d by the homogeneity of k,

|Iε′ (x)− Iε(x)| ≤M
∫
B(0,ε′)\B(0,ε)

|y|−d |y| sup
|α|=1
‖Dαψ‖∞dy

= Cψ,dM(ε′ − ε),



142 Chapter 6. T pφ regularity, operators and elliptic partial differential equations

which shows that (Iε)ε>0 is uniformly Cauchy. It follows that Kψ is well defined and Iε
uniformly converges to K(ψ) as ε tends to 0+. Moreover, for 0 < ε < 1, we have

|Iε(x)| ≤ |I1(x)− Iε(x)|+ |I1(x)|

≤ Cψ,dM(1− ε) +M
∫
R
d\B(0,1)

|y|−d |ψ(x − y)|dy

≤ Cψ,dM(1− ε) +M
∫
R
d
|ψ(y)|dy

≤ C′ψ,dM,

so that ‖K(ψ)‖
R
d ≤ C′ψ,dM. Using the same reasoning, we can show that, for ε > 0 and

α ∈Nd
0,

DαIε =
∫
R
d\B(0,ε)

k(y)Dαψ(· − y)dy,

DαIε uniformly converges to DαK(ψ) and ‖K(Dαψ)‖
R
d ≤ Cψ,d,αM. As a consequence,

K(ψ) belongs to C∞(Rd) with DαK(ψ) =K(Dαψ). Moreover, if |x| ≥ 3, then, for ε > 0,

|Iε(x)| ≤M
∫
{(x,y):|x−y|>ε,|y|<2}

|x − y|−d |ψ(y)|dy

≤M3d |x|−d
∫
R
d
|ψ(y)|dy

= CψM3d |x|−d

and so, by Lebesgue’s dominated convergence theorem, K(ψ) ∈ Lp(Rd), with
‖K(ψ)‖Lp(Rd ) ≤ Cψ,d,pM. Gathering all these relations, we can claim, using Remark 5.1.9,
that K(ψ) belongs to T pφ (0) and there exists Cψ,d,p > 0 such that ‖K(ψ)‖T pφ (x0) ≤ Cψ,d,pM.

Now, let us apply this result to the function x 7→ xαϕ(x) in order to obtain a
constant Cϕ,α,d,p such that ‖K(·αϕ)‖T pφ (0) ≤ Cϕ,α,d,pM, which gives

‖K(f1)‖T pφ (0) ≤
∑
|α|≤n

|DαP (x0)|
α!

‖K(·αϕ)‖T pφ (0) ≤ Cϕ,d,pM‖f ‖T pφ (0). (6.34)

For ‖K(f2)‖T pφ (0), we use Hölder’s inequality to get, for r > 0,

r−d
∫
B(0,r)

|f2(y)|dy ≤ C′ϕ,d,p‖f ‖T pφ (0)φ(r)

and, as for (6.6) and (6.7), we can write∫
B(0,r)

|f2(y)| |y|−s dy ≤ Cϕ,d,p,s‖f ‖T pφ (0)φ(r)rd−s, (6.35)
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if b(φ) + d − s > 0, and∫
R
d\B(0,r)

|f2(y)| |y|−s dy ≤ Cϕ,d,p,s‖f ‖T pφ (0)φ(r)rd−s (6.36)

if b(φ) + d − s < 0.
That being done, let us consider the case where condition (6.32) holds and fix

r > 0; for x ∈ B(0, r/2), we have, using Taylor’s formula,

Kf2(x) = lim
ε→0+

∫
{(x,y):|x−y|>ε,|y|≤r}

k(x − y)f2(y)dy

+ lim
ε→0+

∫
{(x,y):|x−y|>ε,|y|>r}

k(x − y)f2(y)dy

= lim
ε→0+

∫
{(x,y):|x−y|>ε,|y|≤r}

k(x − y)f2(y)dy

+
∫
R
d\B(0,r)

k(x − y)f2(y)dy

= lim
ε→0+

∫
{(x,y):|x−y|>ε,|y|≤r}

k(x − y)f2(y)dy

+
∑
|α|≤n

xα

α!
(
∫
R
d
Dαk(−y)f2(y)dy −

∫
B(0,r)

Dαk(−y)f2(y)dy)

+
∑
|α|≤n+1

xα

α!

∫
R
d\B(0,r)

Dαk(Θ(x)x − y)f2(y)dy,

for a Θ(x) belonging to (0,1).
Thanks to the homogeneity of k, we have, for |α| ≤ n + 1 and y , 0,

|Dαk(−y)| ≤ M |y|−d−|α|. Using inequality (6.35) and Hölder’s inequality, we get, if
q ∈ (1,∞) is the conjugate exponent of p,

|
∫
R
d
Dαk(−y)f2(y)dy|

≤
∫
B(0,1)

|f2(y)| |y|−d−|α|dy +
∫
R
d\B(0,1)

|f2(y)| |y|−d−|α|dy

≤ C‖f ‖T pφ (0)φ(1) + ‖f2‖Lp(Rd )‖ | . |−d−|α|‖Lq(Rd\B(0,1))

≤ C′‖f ‖T pφ (0) +C′′‖f ‖T pφ (0),

for |α| ≤ n. As a consequence,

P ′ :=
∑
|α|≤n

·α

α!

∫
R
d
Dαk(−y)f2(y)dy
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is a polynomial whose sum of the coefficients is bounded by Cφ,p‖f ‖T pφ (0). Similarly, we

have, for |α| ≤ n,

|
∫
B(0,r)

Dαk(−y)f2(y)dy| ≤ Cα,dφ(r)r−α.

Given x ∈ B(0, r/2) and |y| ≥ r, we have |Θ(x)x − y| ≥ |y|/2 and so, by inequality (6.36),

|
∫
R
d\B(0,r)

Dαk(Θ(x)x − y)f2(y)dy| ≤M2d+|α|
∫
R
d\B(0,r)

|f2(y)‖y|−d−|α|dy

≤MCα,dφ(r)r−α,

for |α| = n+ 1. Finally, using Theorem 6.3.1, we have

‖ lim
ε→0+

∫
{(·,y):|·−y|>ε,|y|≤r}

k(· − y)f2(y)dy‖Lp(Rd )

≤ CpM‖f2‖Lp(B(x0,r))

≤ (1 +Cϕ,d,pCφ)M‖f ‖T pφ (0)φ(r)rd/p

and we can conclude that there exists a constant Cφ,p,d > 0 such that, for r > 0,

r−d/p‖Kf2 − P ′‖Lp(B(0,r)) ≤ Cφ,p,dMφ(r).

If we now assume b(φ) < 0, then, for r > 0 and x ∈ B(0, r/2), we have

Kf2(x) = lim
ε→0+

∫
{(x,y):|x−y|>ε,|y|≤r}

k(x − y)f2(y)dy

+
∫
R
d\B(0,r)

k(x − y)f2(y)dy.

We can deal with the first term of the right-hand side just as we did before, while for
the second we use the estimation

|
∫
R
d\B(0,r)

k(x − y)f2(y)dy| ≤M
∫
R
d\B(0,r)

|y|−d |f2(y)|dy

≤ CdMφ(r),

which follows from (6.36). This leads to the following relation, holding for r > 0,

r−d/p‖Kf2‖Lp(B(0,r)) ≤ Cφ,p,dMφ(r).

One more use of Theorem 6.3.1 ensures

‖Kf2‖Lp(Rd ) ≤ CpM‖f2‖Lp(Rd ),
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which allows us to conclude, with (6.34), that the desired inequality (6.33) holds.
If we moreover assume that f belongs to tpφ(0), then we know that there exists a

sequence of functions (fj)j∈N in D(Rd) such that fj converges to f in T pφ (0) as j tends to
infinity. By a reasoning similar to the one we made for the function ψ at the beginning
of the proof, we can conclude that, for all j ∈ N, Kfj belongs to C∞(Rd) and so to
t
p
φ(0) as well, by Remark 5.1.9. In addition, it follows from inequality (6.33) that Kfj

converges to Kf in T pφ (0) as j tends to infinity and, as tpφ(0) is a closed subspace, we get

that Kf ∈ tpφ(0).

Corollary 6.3.5. Let us denote by Yl,m the convolution singular integral operator defined as

Yl,mf := p.v.
∫
kl,m(· − y)f (y)dy,

whose kernel is

kl,m := Yl,m(
·
| · |

)| . |−d ,

where (Yl,m)l,m forms a complete system of orthogonal spherical harmonics (for more details
on spherical harmonics , see e.g. [104, 106]), m being the degree of the harmonic. Under the
assumption of Proposition 6.3.4, there exist constants Cp,Cφ,p > 0 such that

‖Yl,mf ‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ), ‖Y ∗l,mf ‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ) (6.37)

and

‖Yl,mf ‖T pφ (x0) ≤ Cφ,pm
d−2

2 +db(φ)e
N‖f ‖T pφ (x0). (6.38)

Proof. Inequalities (6.37) come from (6.31) and the fact that ‖kl,m‖L2(Σ) is equal to 1.
Inequality (6.38) is obtained from (6.33), using the fact that, for α ∈ N

d
0, we have

|DαYl,m| ≤ Cαm( d−2
2 +|α|) on Σ (see [25]).

A fundamental example of convolution singular integral operators is given by
the Riesz transform (Rj)1≤j≤d , defined for j ∈ {1, . . . ,d} by

Rjf (x) := p.v.
−iΓ (d+1

2 )

π
d+1

2

∫ (xj − yj)
|x − y|d+1

f (y)dy.

Let us fix 1 < p < ∞ and k ≥ 1; it is known that the following facts hold (see e.g.
[25, 26]):

• if f ∈W p
k (Rd), we haveRjf ∈W

p
k (Rd) andRj is a continuous operator onW p

k (Rd),

• for l ∈ {1, . . . ,d} and f ∈ W
p
k (Rd), we have Dl(Rjf ) = Rj(Dlf ) and

Rj(Dlf ) =Rl(Djf ),
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• if f ∈ Lp(Rd), we have
∑d
j=1R

2
j f = f .

The operator

Λ := i
d∑
j=1

RjDj

continuously maps W p
k (Rd) into W p

k−1(Rd) and, if k ≥ 2,

Λ2f = −∆f ,

for all f ∈W p
k (Rd). We also have the identity Djf = −iRjΛf for all f ∈W p

k (Rd). It can
also be shown that for all m ∈ N such that 2m + 1 ≥ d, there exist a1, . . . am < 0 and a
positive integrable function hm with derivatives continuous and bounded up to order
2m+ 1− d such that

ΛJ f = f +
m∑
j=1

ajJ 2jf − hm ∗ f ,

for all f ∈ Lp(Rd) (see [26]).

Proposition 6.3.6. Let p ∈ (1,∞), x0 ∈Rd and φ ∈ B be such that either b(φ) < −1 or there
exists n ∈N∪{−1} for which n < b(φ) ≤ b(φ) < n+1. The operator DjJ continuously maps
T
p
φ (x0) into itself.

Proof. Let f be a function of T pφ (x0); from what precedes, we have

DjJ f = −iRjΛJ f = −iRj(f +
m∑
j=1

ajJ 2jf − hm ∗ f ),

where m has been chosen sufficiently large so that hm belongs to Cdb(φ)e
N(Rd). Using

Remark 5.1.9, we thus have hm ∗ f ∈ t
p
φ(x0). Moreover, by Theorem 6.1.2 and Propo-

sition 5.3.3, we know that J continuously maps T pφ (x0) into itself. The conclusion is
obtained by applying Proposition 6.3.4 to Rj .

The decomposition of functions into spherical harmonics will lead us to singular
integral operators whose kernel depends on several variables.

Definition 6.3.7. Let q ∈ [1,∞], φ ∈ B be such that b(φ) > 0 and x0 ∈ Rd . Let K be the
singular integral operator of the form

f 7→ a(·)f (·) + p.v.
∫
k(·, · − y)f (y)dy,

where
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• a is a bounded measurable function,

• for all x ∈ Rd , k(x, ·) is homogeneous of degree −d, has mean value zero on Σ and
belongs to C∞(Rd \ {0}).

The symbol of K is the function

σ (K) : (x,z) 7→ a(x) + k̂(x,z),

where, given x ∈ R
d , k̂(x, ·) is the Fourier transform of k(x, ·) (understood in the dis-

tribution sense). We know that for all x ∈ R
d , k̂(x, ·) belongs to C∞(Rd \ {0}) and is

homogeneous of degree 0 (see e.g. [55]). We say that K is in the class T qφ(x0) if, for all

|α| ≤ 2d + db(φ)e
N

and z , 0, the function

x 7→Dαz σ (K)(x,z)

is in T qφ(x0)∩L∞(Rd), uniformly on Σ. We then define

‖K‖T qφ(x0) = max{ sup
|z|=1

0≤|α|≤2d+db(φ)e
N

‖Dαz σ (K)(·, z)‖T qφ(x0),

sup
|z|=1

0≤|α|≤2d+db(φ)e
N

‖Dαz σ (K)(·, z)‖L∞(Rd )}.

If moreover, for all |α| ≤ 2d + db(φ)e
N

and z , 0, the function x 7→ Dαz k(x,z) belongs to
t
q
φ(x0) uniformly on Σ, then we say that K is in the class tqφ(x0).

Remark 6.3.8. Given x ∈Rd , σ (K)(x, ·) is an homogeneous function of degree zero; it is
proved in [104, 25] that the following decompositions hold: for (x,z) ∈Rd ×Rd \{0}, we
have

k(x,z) =
∑
l,m

al,m(x)Yl,m(
z
|z|

)|z|−d

and

σ (K)(x,z) = a(x) +
∑
l,m

al,m(x)γmYl,m(
z
|z|

),

where γm := imπ
d
2 Γ (m2 )

Γ (m+d
2 )

and

al,m(x) := (−1)v(m(m+ d − 2))−v
∫
Σ

Yl,mL
vk(x, ·)dσ

= (−1)v(m(m+ d − 2))−vγ−1
m

∫
Σ

Yl,mL
vσ (K)(x, ·)dσ,

with LF(z) = |z|2∆F(z) and v ∈N.
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Theorem 6.3.9. Let q ∈ [1,∞], x0 ∈Rd and φ ∈ B be such that b(φ) > 0. LetK be a singular
integral operator of class T qφ(x0); we have

1. al,m ∈ T
q
φ(x0)∩L∞(Rd) and

max{‖al,m‖T qφ(x0),‖al,m‖L∞(Rd )} ≤ Cφm
d
2−2v‖K‖T qφ(x0),

2. if p ∈ (1,∞) is such that 0 ≤ 1/p∗ := 1
q + 1

p ≤ 1 and if f ∈ Lp(Rd), then, for almost every

x ∈Rd , Kf (x) and Yl,mf (x) exist and the series

a(x)f (x) +
∑
l,m

al,m(x)Yl,mf (x)

converges absolutely to Kf (x),

3. K is a bounded operator from Lp(Rd) to Lp
∗
(Rd) ∩ Lp(Rd): there exists a constant

Cp,q > 0 such that, for all f ∈ Lp(Rd),

max{‖Kf ‖Lp∗ (Rd ),‖Kf ‖Lp(Rd )} ≤ Cp,q‖K‖T qφ(x0)‖f ‖Lp(Rd ),

4. let ψ ∈ B be such that b(ψ) ≥ −d/p, φ 4 ψ and either b(ψ) ≤ 0 or
n < b(ψ) ≤ b(ψ) < n + 1 for some n ∈ N; K is a bounded operator from T

p
ψ (x0) to

T
p∗

ψ (x0): there exists a constant Cp,q,φ,ψ > 0 such that, for all f ∈ T pψ (x0),

‖Kf ‖
T
p∗
ψ (x0)

≤ Cp,q,φ,ψ‖K‖T qφ(x0)‖f ‖T pψ (x0),

5. if moreover K is of class tqφ(x0), then al,m belongs to tqφ(x0) and, for all f ∈ tpψ(x0), Kf

belongs to tp
∗

ψ (x0).

Proof. We keep the same notations as in Remark 6.3.8 with v := d + db(φ)−1
2 e

N
.

Let us show the first point. For all x ∈Rd and z ∈ Σ, let us write

Lvσ (K)(x,z) :=
∑
|α|≤2v

gα(z)Dαz σ (K)(x,z),

where gα is a product of powers of zj (j ∈ {1, . . . ,d}). From the definition of the class of
operators in T qφ(x0), for z ∈ Σ, we have

‖Lvσ (K)(·, z)‖Lq(Rd ) ≤ Cv‖K‖T qφ(x0).

Let us also recall that ‖Yl,m‖L2(Σ) is equal to 1. If q ≥ 2, then, if we denote by q′ the con-
jugate exponent of q, q′ ≤ 2, we have by Hölder’s inequality (with usual modification if
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q =∞),

‖al,m‖Lq(Rd )

= (m(m+ d − 2))−vγ−1
m (

∫
R
d
|
∫
Σ

Yl,m(z)Lvσ (K)(x,z)dσ (z)|q dx)1/q

≤ Cdm
d
2−2v(

∫
R
d
‖Yl,m‖

q

Lq
′ (Σ)
‖Lvσ (K)(x, ·)‖qLq(Σ)dx)1/q

≤ Cdm
d
2−2v(

(2π)d/2

Γ (d/2)
)

1
q′ −

1
2 ‖Yl,m‖L2(Σ)(

∫
Σ

∫
R
d
|Lvσ (K)(x,z)|q dxdσ (z))1/q

≤ Cd,vm
d
2−2v‖K‖T qφ(x0)(

(2π)d/2

Γ (d/2)
)1/2

= Cd,vm
d
2−2v‖K‖T qφ(x0).

From this, we get ‖al,m‖Lq(Rd ) ≤ Cm
d
2−2v‖K‖T qφ(x0) and a similar argument can be applied

to obtain the same inequality with ‖al,m‖L∞(Rd ). Now, if q ≤ 2, we have

‖al,m‖Lq(Rd )

= (m(m+ d − 2))−vγ−1
m (

∫
R
d
|
∫
Σ

Yl,m(z)Lvσ (K)(x,z)dσ (z)|q dx)1/q

≤ Cdm
d
2−2v(

(2π)d/2

Γ (d/2)
)1− 1

q (
∫
R
d

∫
Σ

|Yl,m(z)|q|Lvσ (K)(x,z)|q dσ (z)dx)1/q

≤ Cd,vm
d
2−2v(

(2π)d/2

Γ (d/2)
)1− 1

q ‖K‖T qφ(x0)‖Yl,m‖Lq(Σ)

≤ Cd,vm
d
2−2v(

(2π)d/2

Γ (d/2)
)1/2‖K‖T qφ(x0)‖Yl,m‖L2(Σ)

= Cd,vm
d
2−2v‖K‖T qφ(x0).

Moreover, we know that, for |α| ≤ 2d + b(φ) + 1 and z ∈ Σ, there exists a polynomial

Pα,z :=
∑
|β|≤n

C
(β)
z,α(· − x0)β

of degree n such that ∑
|β|≤n
|C(β)
z,α | ≤ ‖K‖T qφ(x0)

and, for r > 0,

r−d/q‖Dαz σ (K)(·, z)− Pα,z‖Lq(B(x0,r) ≤ ‖K‖T qφ(x0)φ(r).

Thus,

P =
∑
|β|≤n

(−1)v(m(m+ d − 2))−vγ−1
m

∫
Σ

Yl,m(z)(
∑
|α|≤2v

gα(z)C(β)
z,α)dσ (· − x0)β
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is a polynomial of degree n for which∑
|β|≤n
|(m(m+ d − 2))−vγ−1

m

∫
Σ

Yl,m(z)(
∑
|α|≤2v

gα(z)C(β)
z,α)dσ |

≤ Cφm
d
2−2v‖K‖Tφ(x0)

and, for r > 0, we can show, in the same way as before, that

r−d/q‖al,n − P ‖Lq(B(x0,r)) ≤ Cd,qm
d
2−2v‖K‖T qφ(x0)φ(r).

Let us show the second point. It is well known that there exists a constant Cd > 0
such that, for m ∈ N, the number of spherical harmonics of degree m is bounded by
Cdm

d−2 (see e.g. [106]). Moreover, if f belongs to Lp(Rd), from Corollary 6.3.5, we also
know that ‖Y ∗l,mf ‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ). From this, using the first point, we can claim
that if p∗ ≥ 1 is such that 1/p∗ := 1

p + 1
q , then∑
l,m

al,mY ∗l,mf

converges in Lp
∗
(Rd). As a consequence, for almost every x ∈Rd ,∑

l,m

al,m(x)Y ∗l,mf (x)

is finite.
Let us fix ε > 0 and x ∈Rd such that |al,m(x)| ≤ Cφm

d
2−2v ; we have∫

R
d\B(x,ε)

k(x,x − y)f (y)dy

=
∫
R
d\B(x,ε)

∑
l,m

al,m(x)Yl,m(
x − y
|x − y|

)|x − y|−df (y)dy

=
∑
l,m

al,m(x)
∫
R
d\B(x,ε)

Yl,m(
x − y
|x − y|

)|x − y|−df (y)dy,

because, y 7→ |x − y|−df (y) is integrable (using Hölder’s inequality) on R
d \B(x,ε) and

|
∑
l,m

al,m(x)Yl,m(
x − ·
|x − ·|

)| ≤ Cd,q
∑
m∈N

m
d
2−2vmd−2m

d−2
2 ‖K‖T qφ(x0)

≤ Cd,q‖K‖T qφ(x0).

Now, if x is a point for which
∑
l,m al,m(x)Y ∗l,mf (x) is finite and Yl,mf (x) exists for all l,m,

then, for ε > 0, ∫
R
d\B(x,ε)

Yl,m(
x − y
|x − y|

)|x − y|−df (y)dy ≤ Y ∗l,mf (x),



6.3. Singular integral operators 151

which allows us to take the limit as ε tends to 0+ to obtain

Kf (x) = a(x)f (x) +
∑
l,m

al,m(x)Yl,mf (x).

The conclusion follows from the fact that almost every x ∈ Rd is such that the quan-
tity

∑
l,m al,m(x)Y ∗l,mf (x) is finite, |al,m(x)| ≤ Cφm

d
2−2v and Y ∗l,mf (x) exists for all l,m, by

countable intersection.
Let us prove the third point. For f ∈ Lp(Rd), we have, from the previous point

and Corollary 6.3.5,

‖Kf ‖Lp∗ (Rd ) = ‖af +
∑
l,m

al,mYl,mf ‖Lp∗ (Rd )

≤ ‖a‖Lq(Rd )‖f ‖Lp(Rd ) +
∑
l,m

‖al,m‖Lq(Rd )‖Yl,mf ‖Lp(Rd )

≤ ‖a‖Lq(Rd )‖f ‖Lp(Rd )

+Cp,q,d‖K‖T qφ(x0)‖f ‖Lp(Rd )

∑
m∈N

m
d
2−2vmd−2

≤ Cp,q‖K‖Tφ(x0)‖f ‖Lp(Rd ).

The upper bound for ‖Kf ‖Lp(Rd ) can be obtained in the same way.
Let us prove the fourth point. Again, from point 2, Proposition 5.3.2, Corollar-

ies 6.3.5 and 5.3.5, for f ∈ T pφ (x0), we have

‖Kf ‖
T
p∗
ψ (x0)

≤ Cp,q,φ,ψ(‖a‖T qφ(x0)‖f ‖T pψ (x0) +
∑
l,m

‖al,m‖T qφ(x0)‖Yl,mf ‖T pψ (x0))

≤ Cp,q,φ,ψ(‖a‖T qφ(x0)‖f ‖T pψ (x0)

+ ‖f ‖T pψ (x0)‖K‖T qφ(x0)

∑
m∈N

md−2m
d
2−2vm

d−2
2 +db(ψ)e

N)

≤ Cp,q,φ,ψ(‖a‖T qφ(x0)‖f ‖T pψ (x0)

+ ‖f ‖T pψ (x0)‖K‖T qφ(x0)

∑
m∈N

md−2m
d
2−2vm

d−2
2 +db(φ)e

N)

≤ Cp,q,φ,ψ‖K‖T qφ(x0)‖f ‖T pψ (x0).

Let us prove the last point. We keep here the notations from the first point. By
definition of the class tqφ(x0), there exist ε > 0 and ε(r) converging to 0 as r → 0+ such

that, for |α| ≤ 2d + b(φ) + 1, z ∈ Σ and r > 0 sufficiently small,

r−d/q‖Dασ (K)(·, z)− Pα,z‖Lq(B(x0,r) ≤ ε(r)φ(r).

As a consequence, for such r,

r−d/q‖al,n − P ‖Lq(B(x0,r)) ≤ Cε(r)m
d
2−2vφ(r)
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and al,n belongs to tqφ(x0). The conclusion comes from the second part of Corollary 5.3.5

and the fact that tp
∗

ψ (x0) is closed.

Remark 6.3.10. Let us come back to the convolution singular integral operators we
considered in Theorem 6.3.4. For such an operator, the kernel k is independent of the
variable x and ‖K‖∗

T
p
φ (x0)

is bounded by the derivatives of k on Σ. Following the path

taken in the last theorem, we can also bound this norm using now the derivatives of
σ (K). Indeed, as k does not depend on x, so do σ (K) and al,m. Let us consider p ∈ (1,∞)
and φ ∈ B as in Theorem 6.3.4, define

v(φ) :=

 d ifb(φ) < 0

d + db(φ)−1
2 e

N
otherwise

and

N := sup
|z|=1

0≤|α|≤v(φ)

|Dασ (K)(z)|.

Using an argument similar to the one used in Theorem 6.3.9, we have

|al,m| ≤ Cm
d
2−2vN,

for all l,m. For all f ∈ Lp(Rd),

Kf =
∑
l,m

al,mYl,mf

almost everywhere, Kf ∈ Lp(Rd) and, if f ∈ T
p
φ (x0), then Kf ∈ T

p
φ (x0) with

‖Kf ‖T pφ (x0) ≤ Cp,φN‖f ‖T pφ (x0).

6.4 Elliptic partial differential equations

Definition 6.4.1. An elliptic partial differential equation at x0 ∈ Rd of order m ∈N is a
partial differential equation of the form

Ef =
∑
|α|≤m

aαD
αf = g,

where, for all |α| ≤m, aα is a s × r matrix of functions and

f =


f1
...
fr

 , g =


g1
...
gs


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are vector valued functions with fj ∈ W
p
m(Rd) for all j ∈ {1, . . . , r}; Dα stands for the

weak derivative and

µ(x0) := inf
|ξ |=1

det[(
∑
|α|=m

a∗α(x0)ξα)(
∑
|α|=m

aα(x0)ξα)] > 0

is the ellipticity constant of E at x0.

In [25], Calderón and Zygmund proved that if E is elliptic with constant coeffi-
cients (aα)|α|=m all of the same order, then we can write

E =KΛm,

where K is a s × r matrix of convolution singular operators, whose matrix of symbols
is, for z , 0,

σ (K)(z) = (−i)m
∑
|α|=m

aαz
α |z|−m.

They also showed in [26] that, in this case, there exists a r × s matrix of convolution
singular operators whose matrix of symbols is2

σ (H) = [σ (K)∗σ (K)]−1σ (K)∗

and for which HK is the identity operator. From Remark 6.3.10, we can estimate the
dual norm of H on the spaces T pφ (x0), using the ellipticity constant of E and (|aα |)|α|=m.

Now, if

Ef =
∑
|α|≤m

aαD
αf = g

is a general elliptic partial differential equation at x0 ∈Rd of order m ∈N, we set

Ex0
:=

∑
|α|=m

aα(x0).

By what precedes, we have Ex0
= KΛm, where K is a matrix of convolution singular

operators for which HK is the identity operator. Then, let us define

h :=
{

(1−∆)m/2f if m is even
(i +Λ)(1−∆)

m−1
2 f if m is odd.

Applying H on Ex0
f + (E −Ex0

)f = g gives

Λmf =Hg +H(Ex0
−E)f

2The ellipticity of the equation allows us to take the inverse matrix of σ (K)∗σ (K).
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and, as Λ2 = −∆, we obtain, if m is even,

h =Hg +H(Ex0
−E)f + [(1−∆)m/2 − (−∆)m/2]f

=Hg +H(Ex0
−E)f +L1(D)f ,

where L1(D) is a differential operator of order m−2 with constant coefficients. Assum-
ing that m is odd, we get

h =Hg +H(Ex0
−E)f + [(i +Λ)(1−∆)

m−1
2 −Λ(−∆)

m−1
2 ]f

=Hg +H(Ex0
−E)f +L2(D)f +ΛL3(D)f ,

where L2(D) (resp. L3(D)) is a differential operator of order m − 1 (resp. m − 3) with
constant coefficients.

In the sequel, we choose as the norm of a vector-valued function the sum of the
norm of its components.

Proposition 6.4.2. Let p1 ∈ (1,∞) and p2 ∈ [1,∞] be such that

0 ≤ 1
p3

:=
1
p1

+
1
p2
≤ 1,

x0 ∈Rd and φ,ϕ,ψ ∈ B be such that

• 0 < b(φ) and the coefficients of E are functions in T p1
φ (x0) for which x0 is a Lebesgue-

point,

• φ 4 ψ,

• −d/p2 < b(ψ) and there exists n ∈Z such that n < b(ψ) ≤ b(ψ) < n+1 and g ∈ T p3
ψ (x0),

• −d/p2 < b(ϕ) and there exists l ∈Z such that l < b(ϕ) ≤ b(ϕ) < l + 1 and h ∈ T p2
ϕ (x0),

• b(ψ)− b(ϕ) <min{b(φ),1}.

We also assume that there exists p∗ ∈ [1,p3] such that f ∈W p∗
m (Rd). In this case, h belongs

to T p3
ψ (x0) with

‖h‖T p3
ψ (x0) ≤ ‖Hg‖T p3

ψ (x0) +Cp1,p2,ϕ,ψ,φ((1 +MN )‖h‖T p2
ϕ (x0) + ‖f ‖W p3

m (Rd )),

where M is the least upper bound of the norm of the coefficients of E in T p2
φ (x0) and

N = sup
|z|=1

0≤|α|≤v(ψ)

|Dασ (K)(z)|,

where v(ψ) is defined as in Remark 6.3.10.
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Proof. Let us first consider the case where m is even; we have f = J mh and therefore3,
for |α| ≤m,

Dαf = (DJ )αJ m−|α|h.

As a consequence, for |α| < m, we have b(ψ) < b(ϕ) + 1, ϕm−|α| 4 ψ and, following
Proposition 6.3.6 and Theorem 6.1.2,

‖Dαf ‖T p2
ψ (x0) ≤ Cp2,ψ‖J

m−|α|h‖T p2
ψ (x0)

≤ Cp2,ϕ,ψ‖J
m−|α|h‖T p2

ϕm−|α| (x0)

≤ Cp2,ϕ,ψ‖h‖T p2
ϕ (x0).

If |α| =m, Proposition 6.3.6 gives

‖Dαf ‖T p2
ϕ (x0) = ‖(DJ )αh‖T p2

ϕ (x0)

≤ Cp2,ϕ‖h‖T p2
ϕ (x0).

Let us consider the operators

E1 =
∑
|α|<m

aαD
α and E2 =

∑
|α|=m

(aα(x0)− aα)Dα;

by Corollary 5.3.5, we have

‖HE1f ‖T p3
ψ (x0) ≤ Cp3,ψN‖E1f ‖T p3

ψ (x0)

≤ Cp1,p2,φ,ψNM
∑
|α|<m
‖Dαf ‖T p2

ψ (x0)

≤ Cp1,p2,φ,ϕ,ψNM‖h‖T p2
ϕ (x0).

Let us remark that the assumption b(ψ)− b(ϕ) <min{b(φ),1} allows us to use Proposi-
tion 5.3.6 to get

‖HE2f ‖T p3
ψ (x0) ≤N‖E2f ‖T p3

ψ (x0)

≤ Cp1,p2,φ,ψNM
∑
|α|=m

(‖Dαf ‖T p2
ϕ (x0) + ‖Dαf ‖Lp3 (Rd ))

≤ Cp1,p2,φ,ϕ,ψNM(‖h‖T p2
ϕ (x0) + ‖f ‖W p3

m (Rd )).

Finally, by Proposition 5.3.7, we have

‖L1(D)f ‖T p3
ψ (x0) ≤ C

∑
|α|≤m−2

‖Dαf ‖T p3
ψ (x0)

≤ Cp2,p3

∑
|α|≤m−2

‖Dαf ‖T p2
ψ (x0) + ‖Dαf ‖Lp3 (Rd )

≤ Cp2,p3,ϕ,ψ(‖h‖T p2
ϕ (x0) + ‖f ‖W p3

m (Rd )),

3(DJ )α stands for (D1J )α1 . . . (DdJ )αd
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which leads to the conclusion.
Let us now assume that m is odd; in this case, we have

J m+1h = (i +Λ)J 2f ⇒ (−i +Λ)J m+1h = (1−∆)J 2f

⇒ (−i +Λ)J m+1h = f

and therefore, for |α| ≤m,

Dαf = (i
d∑
j=1

Rj(DjJ )− iJ )(DJ )αJ m−|α|h.

Given |α| < m and j ∈ {1, . . . ,d}, we have, by Proposition 6.3.4, Proposition 6.3.6 and
Theorem 6.1.2,

‖Rj(DjJ )(DJ )αJ m−|α|h‖T p2
ψ (x0) ≤ Cp2,ϕ,ψ‖h‖T p2

ϕ (x0).

From Theorem 6.1.2 and Proposition 5.3.3, we know that J continuously maps T p2
ψ (x0)

into itself and so we also have

‖J (DjJ )J m−|α|h‖T p2
ψ (x0) ≤ Cp2,ϕ,ψ‖h‖T p2

ϕ (x0).

As a consequence, the inequality

‖Dαf ‖T p2
ψ (x0) ≤ Cp2,ϕ,ψ‖h‖T p2

ϕ (x0)

still holds for all |α| < m. By a similar reasoning, we can get the following inequality:

‖Dαf ‖T p2
ϕ (x0) ≤ Cp2,ϕ‖h‖T p2

ϕ (x0),

for |α| = m. Therefore, the upper bounds for ‖HE1f ‖T p3
ψ (x0) and ‖HE2f ‖T p3

ψ (x0) are still

satisfied. Finally, we also have

‖L2(D)f ‖T p3
ψ (x0) ≤ Cp2,p3,ϕ,ψ(‖h‖T p2

ϕ (x0) + ‖f ‖W p3
m (Rd ))

and, as Λ = i
∑d
j=1RjDj , Proposition 6.3.4 implies

‖ΛL3(D)f ‖T p3
ψ (x0) ≤ Cp3,ψ

∑
|α|≤m−2

‖Dαf ‖T p3
ψ (x0)

≤ Cp2,p3,ϕ,ψ(‖h‖T p2
ϕ (x0) + ‖f ‖W p3

m (Rd )),

which gives the conclusion in this second case.

Remark 6.4.3. It is still possible to obtain an inequality of this kind if we consider the
case ϕ(r) = r−d/p2 .
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• If d/p2 < N, then Theorem 6.1.2 still holds for ϕ, since the assumption
b(φ) > −d/p is just assumed in order to guarantee the relation r−d/p ≤ Cφ(r) for r
sufficiently large; it can thus be relaxed in this case. Therefore, Proposition 6.3.6
can also be applied with ϕ and the inequalities

‖Dαf ‖T p2
ψ (x0) ≤ Cp2,ϕ,ψ‖h‖T p2

ϕ (x0) ∀|α| < m

and

‖Dαf ‖T p2
ϕ (x0) ≤ Cp2,ϕ‖h‖T p2

ϕ (x0) ∀|α| =m

are still valid in this case. Let us also remark that we have

‖h‖T p2
ϕ (x0) ≤ 2‖h‖Lp2 (Rd ) ≤ Cm,p2

‖f ‖W p2
m (Rd ).

• If d/p2 ∈N with p2 < d, let us consider |α| < m; we have

Dαf ∈W p2
1 (Rd) ↪→ Lp∗(Rd),

with 1/p∗ := 1
p2
− 1
d , by Sobolev’s embedding. Therefore, for r > 0,

r−d/p2‖Dαf ‖Lp2 (B(x0,r)) ≤ Cd,p2,p∗r
−d/p2r

d( 1
p2
− 1
p∗ )‖Dαf ‖Lp∗ (B(x0,r))

≤ Cd,p2,p∗‖D
αf ‖

W
p∗
1 (Rd )

r−d/p
∗

and Dαf ∈ T p2
−d/p∗(x0), with

‖Dαf ‖T p2
−d/p∗ (x0) ≤ Cd,p2,p∗‖f ‖W p2

m (Rd ).

Moreover, as b(ψ) < − dp2
+ 1 = −d/p∗, we get

‖Dαf ‖T p2
ψ (x0) ≤ Cd,p2,p∗,ψ‖f ‖W p2

m (Rd ).

Of course, for |α| =m, we have

‖Dαf ‖T p2
ϕ (x0) ≤ 2‖Dαf ‖Lp2 (Rd ) ≤ 2‖f ‖W p2

m (Rd )

and we can now conclude that

‖h‖T p3
ψ (x0)

≤ ‖Hg‖T p3
ψ (x0) +Cp1,p2,ϕ,ψ,φ((1 +MN )‖f ‖W p2

m (Rd ) + ‖f ‖W p3
m (Rd )).

• If d/p2 ∈N, let us first prove the following lemma.
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Lemma 6.4.4. If d > 1, for d ≤ q < ∞, we have the continuous embedding
W d

1 (Rd) ↪→ Lq(Rd).

Proof. Let g be a function ofW d
1 (Rd); let us first remark that g ∈ L

d2
d−1 (Rd). Indeed,

gd ∈ L1(Rd), with
‖gd‖L1(Rd ) = ‖g‖d

Ld(Rd ) ≤ ‖g‖
d
W d

1 (Rd )

and, for |α| = 1, by Hölder’s inequality,

‖Dαgd‖L1(Rd ) = ‖dgd−1Dαg‖L1(Rd )

≤ d‖g‖d−1
Ld(Rd )‖D

αg‖Ld(Rd )

≤ d‖g‖d
W d

1 (Rd )
.

Therefore, gd belongs to W 1
1 (Rd) with ‖gd‖W 1

1 (Rd ) ≤ C‖g‖
d
W d

1 (Rd )
and, as d > 1,

Sobolev’s embedding gives W 1
1 (Rd) ↪→ L

d
d−1 (Rd) and finally g ∈ L

d2
d−1 (Rd), with

‖g‖
L
d2
d−1 (Rd )

≤ C‖g‖W d
1 (Rd ).

Let us prove by induction that any g ∈W d
1 (Rd) belongs to L

(d+k)d
d−1 (Rd) with

‖g‖
L
d(d+k)
d−1 (Rd )

≤ Ck‖g‖W d
1 (Rd ),

for all k ∈ N. Let us suppose that this property holds for some k ∈ N and
let (ϕj)j∈N be a sequence of functions in D(Rd) such that ϕj converges to g in

W d
1 (Rd). In particular, by induction, ϕj converges to g in L(d+k) d

d−1 (Rd). Let us
recall that for ϕ ∈ D(Rd), we have (see e.g. Lemma 8.7. in [121])

(
∫
R
d
|ϕ(x)|(d+k+1) d

d−1 dx)
d−1
d

≤ d + k + 1
2

(
d∏
l=1

‖Dlϕ‖Ld(Rd ))
1/d(

∫
R
d
|ϕ(x)|(d+k) d

d−1 dx)
d−1
d ,

which holds if and only if

‖ϕ‖d+k+1

L
(d+k+1) d

d−1 (Rd )
≤ d + k + 1

2
(
d∏
l=1

‖Dlϕ‖Ld(Rd ))
1/d‖ϕ‖d+k

L
(d+k) d

d−1 (Rd )
.

This proves that (ϕj)j∈N is a Cauchy sequence in L(d+k+1) d
d−1 (Rd). As a conse-

quence, g belongs to L(d+k+1) d
d−1 (Rd), with

‖g‖
L

(d+k+1) d
d−1 (Rd )

≤ Ck(
d + k + 1

2
)

1
d+k+1 ‖g‖W d

1 (Rd ).
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Let us finish the ongoing remark. If |α| < m, then Dαf belongs to W d
1 (Rd), so as

−1 < b(ψ) < 0, we can choose d ≤ q < ∞ such that b(ψ) < −d/q. By the previous
lemma, Dαf belongs to Lq(Rd) and

‖Dαf ‖Lq(Rd ) ≤ Cq‖Dαf ‖W d
1 (Rd ).

It follows that, for r > 0,

r−1‖Dαf ‖Ld(B(x0,r)) ≤ Cd,qr
−1rd( 1

d−
1
q )‖Dαf ‖Lq(B(x0,r))

≤ Cd,qr−d/q‖Dαf ‖W d
1 (Rd ).

Hence, Dαf belongs to T p−d/q(x0), with

‖Dαf ‖T p−d/q(x0) ≤ Cd,q‖D
αf ‖W d

1 (Rd ).

Since b(ψ) < −d/q, we can write

‖Dαf ‖T dψ (x0) ≤ Cψ,q‖D
αf ‖T d−d/q(x0) ≤ Cd,q,ψ‖D

αf ‖W d
1 (Rd ).

The previous reasoning for the case |α| =m is still valid and we get again

‖h‖T p3
ψ (x0)

≤ ‖Hg‖T p3
ψ (x0) +Cp1,p2,ϕ,ψ,φ((1 +MN )‖f ‖W p2

m (Rd ) + ‖f ‖W p3
m (Rd )).

Definition 6.4.5. Let, p ∈ (1,∞), φ,ϕ ∈ B be such that 0 < b(φ), −d/p < b(ϕ) and such
that there exists n ∈Z such that n < b(ϕ) ≤ b(ϕ) < n+ 1; let us define kp as follows:

• if b(ϕ) = b(ϕ),

kp(φ,ϕ) := min{k ∈N :
1
k

(b(ϕ) +
d
p

) <min{1,b(φ)}},

• if n < b(ϕ) < b(ϕ) < n+ 1,

kp(φ,ϕ) := kp(φ, · b(ϕ)) + min{k ∈N :
b(ϕ)− b(ϕ)

k
<min{1,b(φ)}}.

Theorem 6.4.6. Let p ∈ (1,∞), q ∈ (1,∞], x0 ∈ Rd and φ,ϕ ∈ B be such that −d/p < b(ϕ),
0 < b(φ) and such that there exists n ∈ Z such that n < b(ϕ) < b(ϕ) < n+ 1. Let Ef = g be
an elliptic differential equation of order m at x0 such that the coefficients of E are functions
in T qφ(x0) for which x0 is a Lebesgue-point. Let us suppose that

• g ∈ T p1
ϕ (x0) with 1/p1 := 1

p + 1
q ,
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• φ 4 ϕ and b(ϕ) ≤ b(φ) or b(ϕ)− b(ϕ) ≤min{1,b(φ)},

• 0 <
1
p′

:=
kp(φ,ϕ)

q
+

1
p
< 1,

• f ∈W p
m(Rd) and p∗ := inf{s ≥ 1 : f ∈W s

m(Rd)} ≤ p′.

Then there exists a constant Cp′ ,φ,ϕ,m such that, for all |α| ≤ m, Dαf belongs to the space

T
q′

ϕm−|α|(x0) and

‖Dαf ‖
T
q′
ϕm−|α| (x0)

≤ Cp′ ,φ,ϕ(N (1 +MN )kp(φ,ϕ)−1‖g‖T p1
ϕ (x0)

+ kp(φ,ϕ)(1 +MN )kp(φ,ϕ)(‖f ‖W p
m(Rd ) + ‖f ‖

W
p′
m (Rd )

)),

for all q′ ≥ 1 such that

• 1/p′ ≥ 1/q′ ≥ 1
p′ −

m−|α|
d if 1/p′ > m−|α|

d ,

• p′ ≤ q′ ≤∞ if 1/p′ < m−|α|
d ,

• p′ ≤ q′ <∞ if 1/p′ = m−|α|
d ,

where M is the least upper bound of the norm of the coefficients of E in T qφ(x0) and

N = sup
|z|=1

0≤|α|≤v(ϕ)

|Dασ (K)(z)|.

Proof. Let us first suppose that b(ϕ) = b(ϕ) and set k = kp(φ,ϕ). Let us choose 0 ≤ ε < 1
such that

• 0 < (1−ε)
k (b(ϕ) + d

p ) ≤ (1+ε)
k (b(ϕ) + d

p ) <min{1,b(φ)},

• −dp + j+ε
k (b(ϕ) + d

p ) <Z for all j ∈ {1, . . . , k − 1}.

We can then define, for j ∈ {0, . . . , k}, the function ψj by

ψj(r) :=


r−d/p if j = 0

r−d/p(ϕ(r)rd/p)
j+ε
k if 1 ≤ j < k

ϕ if j = k.

For 0 ≤ j < k, we have b(ψj) < b(ϕ) and so ϕ 4 ψj . Moreover, for 1 ≤ j ≤ k,

b(ψj) = b(ψj) = −d
p

+
j + ε
k

(b(ϕ) +
d
p

) <Z.
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We also have

b(ψ1)− b(ψ0) =
(1 + ε)
k

(b(ϕ) +
d
p

) <min{1,b(φ)}

and, for 1 ≤ j < k,

b(ψj+1)− b(ψj) = −d
p

+
j + 1 + ε

k
(b(ϕ) +

d
p

) +
d
p
−
j + ε
k

(b(ϕ) +
d
p

)

=
1
k

(b(ϕ) +
d
p

) <min{1,b(φ)},

as well as

b(ψk)− b(ψk−1) =
(1− ε)
k

(b(ϕ) +
d
p

) <min{1,b(φ)}.

Given j ∈ {0, . . . , k}, let us also define pj ∈ (1,∞) by

1
pj

:=
j

q
+

1
p
.

Since we have h ∈ Lp(Rd), h ∈ T p0
ψ0

(x0) and φ 4 ψ1, we can write, using the previous
remark,

‖h‖T p1
ψ1

(x0) ≤ ‖Hg‖T p1
ψ1

(x0) +C1(1 +MN )(‖f ‖W p
m(Rd ) + ‖f ‖W p1

m (Rd )).

Now, since f belongs toW p1
m and the coefficients of E are in Lq(Rd), g belongs to Lp2(Rd)

and, from Proposition 5.3.7, also to T p2
ψ2

(x0). Furthermore, by Proposition 6.4.2, we
have

‖h‖T p2
ψ2

(x0) ≤ ‖Hg‖T p2
ψ2

(x0) +C0(1 +MN )(‖h‖T p1
ψ1

(x0) + ‖f ‖W p2
m (Rd )).

By iterating the reasoning, we find, for 1 ≤ j ≤ k,

‖h‖
T
pj
ψj

(x0)
≤ ‖Hg‖

T
pj
ψj

(x0)
+Cj(1 +MN )(‖h‖

T
pj−1
ψj−1

(x0)
+ ‖f ‖

W
pj
m (Rd )

).

Now, for 1 ≤ j ≤ k, we have

‖Hg‖
T
pj
ψj

(x0)
≤ Cpj ,ψjN‖g‖T pjψj (x0)

≤ Cp1,pj ,ψjN‖g‖T p1
ψj

(x0) +N‖g‖Lp1 (Rd )

≤ Cp1,p′ ,φN‖g‖T p1
φ (x0)

and

‖f ‖
W
pj
m (Rd )

≤ ‖f ‖
W
p′
m (Rd )

+ ‖f ‖W p
m(Rd ),
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this allows us to claim the existence of a constant Cp,p′ ,φ,ϕ > 0 such that

‖h‖
T
p′
ϕ (x0)

≤ Cp,p′ ,φ,ϕ(N (1 +MN )k−1‖g‖T p1
ϕ (x0) + k(1 +MN )k(‖f ‖

W
p′
m (Rd )

+ ‖f ‖W p
m(Rd ))).

That being done, let us establish the same inequality under the assumption
n < b(ϕ) < b(ϕ) < n+ 1. If b(ϕ) ≤ b(φ), then we set k1 := kp(φ, · b(ϕ)) and

k2 := min{k ∈N :
b(ϕ)− b(ϕ)

k
<min{1,b(φ)}}.

We also define, for 0 ≤ j < k2,

ψj(r) := rb(ϕ)+ j
k2

(b(ϕ)−b(ϕ))
,

and ψk2
:= ϕ. For 0 ≤ j < k, we have

b(ψj) = b(ϕ) +
j

k2
(b(ϕ)− b(ϕ)) < b(ϕ) ≤ b(φ),

and so φ 4 ψj . Also,

b(ψj+1)− b(ψj) =
1
k2

(b(ϕ)− b(ϕ)) <min{1,b(φ)}.

From the first part of the proof, we can write, if p0 is defined by 1/p0 := k1
q + 1

p ,

‖h‖T p0
ψ0

(x0) ≤ Cp,p0,φ,ϕ(N (1 +MN )k1−1‖g‖T p1
ϕ (x0)

+ (k1)(1 +MN )k1(‖f ‖
W
p′
m (Rd )

+ ‖f ‖W p
m(Rd ))).

We can proceed as we did in the first part to get the desired inequality.
Let us now consider the case where b(ϕ) > b(φ) and b(ϕ)−b(ϕ) <min{1,b(φ)}. Let

us choose α such that max{−d/p,n} < α < b(ϕ) and b(ϕ) − α < b(φ); in particular, α is
not an integer. From the first part of the proof, we know that there exists a constant
Cp,p′φ,ϕ > 0 such that

‖h‖
T
p′′
α (x0)

≤ Cp,p′ ,φ,ϕ(N (1 +MN )k−2‖g‖T qϕ(x0)

+ (k − 1)(1 +MN )k−1(‖f ‖
W
p′
m (Rd )

+ ‖f ‖W p
m

)),

with 1/p′′ := k−1
q + 1

p . Now, Proposition 6.4.2 implies

‖h‖
T
p′
ϕ (x0)

≤ Cp,p′ ,φ,ϕ(N‖g‖
T
p′
ϕ (x0)

+ (1 +MN )(‖h‖
T
p′′
α (x0)

+ ‖f ‖
W
p′
m (Rd )

))

≤ Cp,p′ ,φ,ϕ(N (1 +MN )k−1‖g‖T p1
ϕ (x0)

+ k(1 +MN )k(‖f ‖
W
p′
m (Rd )

+ ‖f ‖W p
m

)),
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which gives the desired inequality.
Let us now consider |α| ≤ m and q′ ≥ 1 such as in the assumption. If m is even

then

‖Dαf ‖
T
q′
ϕm−|α| (x0)

= ‖J m−|α|(DJ)αh‖
T
q′
ϕm−|α| (x0)

≤ Cϕ‖(DJ)αh‖T p′ϕ (x0)

≤ Cϕ‖h‖T p′ϕ (x0)
,

by Theorem 6.1.2 and Proposition 6.3.6. If m is odd, we get

‖Dαf ‖
T
q′
ϕm−|α| (x0)

= ‖J m−|α|(i
d∑
j=1

Rj(DjJ )− iJ )(DJ )αh‖
T
q′
ϕm−|α| (x0)

≤ Cϕ‖(i
d∑
j=1

Rj(DjJ )− iJ )(DJ )αh‖
T
p′
ϕ (x0)

≤ Cϕ‖h‖T p′ϕ (x0)
,

by Theorem 6.1.2, Proposition 6.3.4 and Proposition 6.3.6. From this, the inequality
obtained in the first part of the proof allows us to conclude the desired membership
and inequality.





7Continuously differentiable functions
on compact sets

An intermediate between uniform regularity, as we studied in Chapter 2 and pointwise
regularity, Chapters 3 to 6, is to consider functions defined on compact sets. There,
using the structure of the compact, one can define a notion of differentiability.

In most analysis textbooks differentiability is only treated for functions on open
domains and, if needed, e.g., for the divergence theorem, an ad hoc generalization for
functions on compact sets is given. We propose instead to define differentiability on
arbitrary sets as the usual affine-linear approximability – the price one has to pay is
then the definite article: instead of the derivative there can be many. We will only
consider compact domains in order to have a natural norm on our space. The results
are easily extended to σ -compact (and, in particular, closed) sets.

An R
n-valued function f on a compact set K ⊆ R

d is said to belong C1(K,Rn) if
there exists a continuous function df on K with values in linear maps from R

d to R
n

such that, for all x ∈ K ,

lim
y→x
y∈K

f (y)− f (x)− df (x)(y − x)
|y − x|

= 0, (7.1)

where | · | is the Euclidean norm. For n = 1 we often identify R
d with its dual and write

〈·, ·〉 for the evaluation which is then the scalar product. Questions about C1(K,Rn)
easily reduce to the case C1(K) = C1(K,R).

Of course, equality (7.1) means that df is a continuous (Fréchet) derivative of f
on K . As in the case of open domains, every f ∈ C1(K) is continuous and we have the
chain rule: for all (continuous) derivatives df of f on K and dg of g on f (K) the map
x 7→ dg(f (x)) ◦ df (x) is a (continuous) derivative of g ◦ f on K .

In general, a derivative need not be unique. For this reason, a good tool to study
C1(K) is the jet space

J 1(K) = {(f ,df ) : df is a continuous derivative of f on K}

endowed with the norm

‖(f ,df )‖J 1(K) = ‖f ‖K + ‖df ‖K ,
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where ‖ · ‖K is the uniform norm on K and |df (x)| = sup{|df (x)(v)| : |v| ≤ 1}. For the pro-
jection π(f ,df ) = f we have C1(K) = π(J 1(K)), and we equip C1(K) with the quotient
norm, i.e.

‖f ‖C1(K) = ‖f ‖K + inf{‖df ‖K : df is a continuous derivative of f on K}.

It seems that the space C1(K) did not get much attention in the literature. This
is in sharp contrast to the “restriction space” C1(Rd |K) = {f |K : f ∈ C1(Rd)}. Obviously,
the inclusion C1(Rd |K) ⊆ C1(K) holds but it is well known that, in general, it is strict.
Simple examples are domains with inward directed cusps like

K = {(x,y) ∈ [−1,1]2 : |y| ≥ e−1/x for x > 0}.

The function f (x,y) = e−1/(2x) for x,y > 0 and f (x,y) = 0 elsewhere is in C1(K) but it is
not the restriction of a C1-function on R

2 because it is not Lipschitz continuous near
the origin.

In a famous paper from 1934 [128], Whitney proved Theorem 1.7.3 which, in
this context, states that C1(Rd |K) = π(E 1(K)) where E 1(K) is the space of jets (f ,df )
for which the limit (7.1) is uniform in x ∈ K . Moreover, E 1(K) endowed with the norm

‖(f ,df )‖E 1(K) = ‖(f ,df )‖J 1(K) + sup
{
|f (y)− f (x)|
|y − x|

: x,y ∈ K,y , x
}

is a Banach space. Thus, C1(Rd |K) equipped with the quotient norm
‖ · ‖C1(Rd |K) inherited from ‖ · ‖E 1(K) is also a Banach space.

Since their introduction, Whitney jets (also of higher orders) have been widely
studied, in particular in the context of extension operators [46, 51, 52, 53]. General-
izations of them have been defined in various contexts such as Baire functions [85],
holomorphic functions [18], Sobolev spaces [131, 132], so-called Cm,ω(Rd) spaces [45]
or (generalized) Hölder spaces as we did in Chapter 5.

In this chapter, we prove that E 1(K) is always a dense subset of J 1(K). The
density of C1(Rd |K) in C1(K) is then an immediate consequence. Together with a char-
acterization of the completeness of (C1(K),‖ · ‖C1(K)), it leads to a simple geometric
criterion for the equality C1(K) = C1(Rd |K) as Banach spaces. In the one-dimensional
case, we also give a characterization of the mere algebraic equality.

If the compact setK is topologically regular, i.e. the closure of its interior, another
common way to define differentiability is the space

C1
int(K) = {f ∈ C(K) : f |K̊ ∈ C

1(K̊) and df extends continuously to K},

see for instance [49, 130]. For f ∈ C1
int(K) we will denote again by df the unique

continuous extension to K of the derivative.
In this topologically regular situation, the derivative of a continuously differen-

tiable function on K is uniquely determined by the function, which means that the
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projection π is injective on J 1(K) and therefore C1(K) and J 1(K) as well as C1(Rd |K)
and E 1(K), respectively, can be identified.

Equipped with the norm ‖f ‖K + ‖df ‖K , it is clear that C1
int(K) is always a Banach

space that contains C1(K). Despite this nice aspect we will see by an example of Sauter
[114] that C1

int(K) has a dramatic drawback: compositions of C1
int(K)-functions need

not be differentiable.
We will present some results about equalities between C1

int(K), C1(Rd |K) and
C1(K) which are related the so-called “Whitney conjecture” ([132, 129]).

Results in this chapter were found during a research stay in Trier Universität with
Leonhard Frerick and Jochen Wengenroth and were published in [54].
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7.1 Path integrals

A function f ∈ C1(K) need not be Lipschitz continuous because segments with end-
points in K , to which one would like to apply the mean value theorem, need not be
contained in K . Instead of segments one then has to consider rectifiable paths in K , i.e.
continuous functions γ : [a,b]→ K such that the length

L(γ) = sup


n∑
j=1

|γ(tj)−γ(tj−1)| : a = t0 < · · · < tn = b


is finite. The function `(t) = L(γ |[a,t]) is then continuous: Given ε > 0 and a partition
such that the length of the corresponding polygon is bigger than L(γ)−ε every interval
[r, s] lying between two consecutive points of the partition satisfies

`(s)− `(r) = L(γ[r,s]) ≤ |γ(s)−γ(r)|+ ε.

For the minimal length of the subintervals of the partition one then easily gets the
required continuity estimate.

Proposition 7.1.1 (Mean value inequality). Let f ∈ C1(K) and x,y ∈ K . If df is a deriva-
tive of f on K and if x and y are joined by a rectifiable path γ : [a,b]→ K , then

|f (y)− f (x)| ≤ L(γ)sup{|df (z)| : z ∈ γ([a,b])}. (7.2)
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Proof. We essentially repeat Hörmander’s proof [63, Theorem 1.1.1]. For each
c > sup{|df (z)| : z ∈ γ([a,b])} the set T = {t ∈ [a,b] : |f (γ(t))− f (x)| ≤ c`(t)} is non-empty
and closed because of the continuity of f ◦ γ and `, hence it has a largest element
t ∈ [a,b]. If t is different from b, the differentiability of f at z = γ(t) gives a neighbour-
hood U of z such that

|f (z)− f (w)| ≤ |f (z)− f (w)− df (z)(z −w)|+ |df (z)(z −w)| ≤ c|z −w|

for all w ∈U . By the continuity of γ we find s > t with γ(s) ∈U so that

|f (γ(s))− f (x)| ≤ |f (γ(s))− f (γ(t))|+ c`(t) ≤ c|γ(s)−γ(t)|+ c`(t) ≤ c`(s),

contradicting the maximality of t.

The mean value inequality does not use the continuity of a derivative and has
the usual consequences. For example, if df = 0 is a derivative of f and K is rectifiably
pathwise connected (a certainly self-explaining notion) then f is constant.

Our next aim is to show that a continuous derivative integrates back to the func-
tion along rectifiable paths. We first recall the relevant notions. If F : K → R

d is
continuous and γ is a rectifiable path in K we define the path integral

∫
γ
F as the limit

of Riemann-Stieltjes sums

n∑
j=1

〈F(γ(τj)),γ(tj)−γ(tj−1)〉

where a = t0 < . . . < tn = b are partitions with max{tj − tj−1 : 1 ≤ j ≤ n} → 0 and
tj−1 ≤ τj ≤ tj . The existence of the limit is seen from an appropriate Cauchy condi-
tion (or by using the better known one-dimensional case where rectifiable paths are
usually called functions of bounded variation). If γ is even absolutely continuous, i.e.
there is a Lebesgue integrable γ̇ : [a,b]→ R

d with γ(β)−γ(α) =
∫ β
α
γ̇(t)dt for all α ≤ β,

one gets from the uniform continuity of F ◦γ the familiar representation∫
γ
F =

∫ b

a
〈F(γ(t)), γ̇(t)〉dt.

If γ is even continuously differentiable and F = df for a function f ∈ C1(K), the inte-
grand in the last formula is the derivative of f ◦γ (by the chain rule) and the fundamen-
tal theorem of calculus gives

∫
γ
df = f (γ(b))− f (γ(a)). Since continuous differentiabil-

ity of γ is a not a realistic assumption in our considerations (interesting phenomena
typically occur for quite rough compact sets K), we need a more general version.

Theorem 7.1.2 (Fundamental theorem of calculus). For each f ∈ C1(K) with a continu-
ous derivative df and each rectifiable path γ : [a,b]→ K we have∫

γ
df = f (γ(b))− f (γ(a)). (7.3)
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Proof. Given a partition a = t0 < . . . < tn = b and a fixed j ∈ {1, . . . ,n} we set z = γ(tj) and
apply the mean value inequality to the function

g(x) = f (x)− f (z)− 〈df (z),x − z〉

on γ([tj−1, tj]). Since dg(x) = df (x)− df (z) is a derivative of g, we obtain∣∣∣f (γ(tj))− f (γ(tj−1))− 〈df (γ(tj)),γ(tj)−γ(tj−1)〉
∣∣∣

= |g(γ(tj−1))− g(z)|
≤ L(γ |[tj−1,tj ])sup{|df (γ(t))− df (γ(tj−1)| : t ∈ [tj−1, tj]}.

The uniform continuity of df ◦ γ yields that this supremum is small whenever the
partition is fine enough. The theorem then follows by writing f (γ(b)) − f (γ(a)) as a
telescoping sum and inserting these estimates together with the obvious additivity of
the length.

Remark 7.1.3. Below, we will need a slightly more general version of the fundamental
theorem: The formula

∫
γ
df = f ◦γ |ba holds if f and df are continuous on K and df (x)

is a derivative of f at x for all but finitely many x ∈ γ([a,b]).
Indeed, if only the endpoints γ(a) and γ(b) are exceptional, this follows from

a simple limiting argument, the general case is then obtained by decomposing the
integral

∫
γ
df into a sum.

In the proof of Proposition 7.2.5, we will have to find a rectifiable path by using
the Arzelá-Ascoli theorem. It is then essential to have a “tame” parametrization which
we explain briefly; more details can be found, e.g., in [56]. Given a rectifiable path
γ : [a,b]→ R

d with length L = L(γ) and length function `(t) = L(γ |[a,t]), the function
α(s) = inf{t ∈ [a,b] : `(t) ≥ s} is again increasing but not necessarily continuous, it jumps
over the intervals where ` is constant. Nevertheless, γ̃ = γ ◦α : [0,L]→ R

d is a contin-
uous path with γ̃([0,L]) = γ([a,b]) such that all path integrals along γ and γ̃ coincide
and such that L(γ̃ |[0,t]) = t for all t ∈ [0,L]; in particular, γ̃ is Lipschitz with constant 1.
This path γ̃ is called the parametrization of γ by arclength.

If {γi : i ∈ I} is a family of curves with equal length, it then follows that
{γ̃i : i ∈ I} is equicontinuous. Moreover, Rademacher’s theorem implies that γ̃ is al-
most everywhere differentiable and absolutely continuous.

We have seen that the behaviour of functions f ∈ C1(K) concerning compositions
and the fundamental theorem together with its consequences is essentially as in the
case of open domains. We will now present Sauter’s example [114] showing that is not
the case for f ∈ C1

int(K).
Let C be the ternary Cantor set and U its complement in (0,1). The open set Ω is

constructed from U × (0,1) by removing disjoint closed balls (Bj)j∈N that accumulate
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precisely at C × [0,1] and such that the sum of the diameters is less than 1/4. This
implies that there exist horizontal lines in K = Ω that do not intersect any of the balls.

If f is the Cantor function on [0,1], we consider the function F defined on K by
F(x,y) = f (x). We have F ∈ C1

int(K) because it is continuous and dF = 0 on Ω = K̊ , as
f is locally constant on U . If now γ : [0,1]→ K is the obvious left-to-right arclength
parametrization of one of the horizontal lines crossing K , we have∫

γ
dF = 0

while

F(γ(1))−F(γ(0)) = f (1)− f (0) = 1.

This proves F < C1(K). This example shows that the fundamental theorem does not
hold for C1

int and also reveals the catastrophe that compositions (namely F ◦ γ) of
C1

int-functions need not be C1
int.

7.2 Completeness

We study here the completeness of (C1(K),‖ · ‖C1(K)) and (J 1(K),‖ · ‖J 1(K)). We show
that, if K has infinitely many connected components, then these spaces are not com-
plete. In contrast, if K has finitely many connected components, the completeness of
both spaces is characterized by a pointwise geometric condition whose uniform ver-
sion goes back to Whitney in [129]. It is interesting to note that this characterization is
conjectured in [34] in the context of complex differentiability.

First we consider the case of compact sets with infinitely many connected com-
ponents. This is similar to [14, Theorem 2.3].

Proposition 7.2.1. If K is a compact set with infinitely many connected components, then
(C1(K),‖ · ‖C1(K)) is incomplete.

Proof. We can partition S0 = K into two non-empty, disjoint sets S1 and K1, both closed
and open subsets of K , such that S1 has infinitely many connected components. Iterat-
ing this procedure we obtain a sequence (Kj)j∈N of pairwise disjoint non-empty closed
and open subsets of K .

We fix xj ∈ Kj and, by compactness and passing to a subsequence, we can assume
that xj converges in K . The limit x0 cannot belong to any Kj because they are open and
pairwise disjoint.

We consider the functions fn : K → R defined by fn(x) = |xj − x0| for x ∈ Kj with
1 ≤ j ≤ n and fn(x) = 0, otherwise. These functions are locally constant and hence
fn ∈ C1(K). It is easy to check that (fn)n∈N is a Cauchy sequence in (C1(K),‖ · ‖C1(K)).
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The only possible limit is the function f (x) = |xj − x0| for all x ∈ Kj and j ∈ N and
f (x) = 0 otherwise. But, for all j ∈N, we have

|f (xj)− f (x0)|
|xj − x0|

= 1,

and since dfn = 0 this shows that f cannot be the limit in C1(K).

The characterization of the completeness of C1(K) will rely on the following no-
tion.

Definition 7.2.2. A set K ⊆ R
d is called Whitney regular if there exists C > 0 such that

any two points x,y ∈ K can be joined by a rectifiable path in K of length bounded by
C|x − y|; sometimes this condition is called quasiconvexity, e.g., in the book [19].

We say that K is pointwise Whitney regular if, for every x ∈ K , there are a neigh-
bourhood Vx of x and Cx > 0 such that any y ∈ Vx is joined to x by a rectifiable path in
K of length bounded by Cx|x − y|.

The inward cusp mentioned in the introduction distinguishes these two notions.
If K is geodesically bounded (i.e. any two points can be joined by a curve of length
bounded by a fixed constant) one can take Vx = K in the definition so that the crucial
difference is then the non-uniformity of the constants Cx.

Proposition 7.2.3. If K is a pointwise Whitney regular compact set, then the space
(J 1(K),‖ · ‖J 1(K)) is complete.

Proof. For a Cauchy sequence ((fj ,dfj))j∈N in J 1(K) we get, from the completeness of
C(K), uniform limits f and df and we only have to show that df is a derivative of f .

Given x ∈ K and a path γ from x to y of length L(γ) ≤ Cx|x − y|, the formula in
the fundamental theorem of calculus immediately extends from fj and dfj to the limits
and thus gives

f (y)− f (x)− 〈df (x), y − x〉 =
∫
γ

(df − df (x)).

The continuity of df and the bound on L(γ) then easily imply the desired differentia-
bility.

To obtain the converse of this simple result we first apply the uniform bounded-
ness principle to show that the completeness of (C1(K),‖ · ‖C1(K)) is equivalent to some
bounds for the difference quotient of a function f ∈ C1(K). This is the same as in the
case of complex differentiability [62, 14].

Proposition 7.2.4. The following assertions are equivalent:
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1. The space (J 1(K),‖ · ‖J 1(K)) is a Banach space;

2. The space (C1(K),‖ · ‖C1(K)) is a Banach space;

3. For every x ∈ K , there exists Cx > 0 such that for all f ∈ C1(K) and y ∈ K \ {x}

|f (y)− f (x)|
|y − x|

≤ Cx‖f ‖C1(K). (7.4)

Proof. The fact that assertion 1 implies assertion 2 is a standard fact from Banach space
theory. Let us show that the second assertion implies the third one. For fixed x ∈ K
and each y ∈ K \ {x} we define a linear and continuous functional on C1(K) by

Φy(f ) =
f (y)− f (x)
|y − x|

.

For fixed f ∈ C1(K), we get a bound for supy∈K\{x} |Φy(f )| because of the differentiability
at x.

The Banach-Steinhaus theorem thus gives

Cx = sup{|Φy(f )| : ‖f ‖C1(K) ≤ 1, y ∈ K \ {x}} <∞.

Now we assume that inequality (7.4) holds and show that (J 1(K),‖ · ‖J 1(K)) is
complete. For a Cauchy sequence ((fj ,dfj))j∈N in J 1(K) we have uniform limits f and
df . In particular, for all ε > 0, x ∈ K , and p < q big enough, we have

‖fp − fq‖C1(K) ≤ ‖(fp,dfp)− (fq,dfq)‖J 1(K) <
ε

4Cx
and ‖dfp − df ‖K <

ε
4
.

Now, there exists δ > 0 such that, for all y ∈ B(x,δ) \ {x},

B =
|fp(y)− fp(x)− 〈dfp(x), y − x〉|

|y − x|
<
ε
4
.

Finally, for all such y, if q is large enough,

A =
|(f (y)− fq(y))− (f (x)− fq(x))|

|y − x|
<
ε
4

and

|f (y)− f (x)− 〈df (x), y − x〉|
|x − y|

≤ A+
|(fp(y)− fq(y))− (fp(x)− fq(x))|

|y − x|
+B+ |dfp(x)− df (x)|

< ε,

which shows that df is a derivative of f on K .
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Next we show that, for connected sets K , inequality (7.4) implies pointwise reg-
ularity. This is a simple adaptation of a result in [63, Theorem 2.3.9]; we repeat the
proof for the sake of completeness.

Proposition 7.2.5. Let K be a compact connected set. If, for any x ∈ K , there exists Cx > 0
such that for all f ∈ C1(K) and y ∈ K \ {x} we have

|f (y)− f (x)|
|y − x|

≤ Cx‖f ‖C1(K), (7.5)

then K is pointwise Whitney regular.

Proof. For any ε > 0,

Kε = {x ∈Rd : inf
y∈K
|x − y| < ε}

is an open connected neighbourhood of K . Let us fix x ∈ K and define the function dε
on K2ε by

dε(y) = inf{L(γ) : γ is a rectifiable path from x to y in K2ε}.

Then, for fixed y0 ∈ K , we set uε(y) = min{dε(y),dε(y0)}. If y and y′ are close enough in
K2ε, we have

|uε(y)−uε(y′)| ≤ |y − y′ |, (7.6)

as any rectifiable path from x to y can be prolonged by the segment between y and y′

to a rectifiable path from x to y′.
If φ is a positive smooth function with support in B(0, ε) and integral 1, the con-

volution uε∗φ, defined inKε, is a smooth function for which |d(uε∗φ)| ≤ 1 onK , because
of inequality (7.6). Then, from (7.5), we have

|(uε ∗φ)(x)− (uε ∗φ)(y0)| ≤ Cx(dε(y0) + 1)|x − y0|

which gives us, passing to the limit supp(φ)→ {0},

dε(y0) ≤ Cx(dε(y0) + 1)|x − y0|.

For y0 ∈ B(x, 1
2Cx

) ∩ K , this implies dε(y0) ≤ 1 and thus dε(y0) ≤ 2Cx|x − y0|. Hence,
there exists a rectifiable path from x to y0 in K2ε of length bounded by 2Cx|x − y0|+ ε.
Using the parametrization by arclength gives an equicontinuous family of paths and
the conclusion follows from the Arzelá-Ascoli Theorem 1.7.7.

Remark 7.2.6. If the constant Cx in the previous proposition is uniform with respect
to x ∈ K , then inequality (7.6) is equivalent to the Whitney regularity of K , as stated in
Hörmander’s book [63].
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Collecting all results of this section, we have the following characterization of the
completeness of (C1(K),‖ · ‖C1(K)).

Theorem 7.2.7. (C1(K),‖·‖C1(K)) is complete if and only if K has finitely many components
which are pointwise Whitney regular.

Remark 7.2.8. In this pointwise Whitney regular situation, the jet space J 1(K) can
be described as a space of continuous irrotational vector fields F on K , i.e. vector
fields F for which

∫
γ
F = 0 for all closed rectifiable paths γ in K . More precisely, if

(f ,df ) ∈ J 1(K), the fundamental theorem of calculus implies that df is circulation
free and if F is circulation free and continuous we can define, for some fixed x0 ∈ K ,
for all x ∈ K

f (x) =
∫
γ
F,

where γ is a path in K from x0 to x. This definition makes sense as F is circulation free
and F is a continuous derivative of f on K , by a similar argument as in the proof of
Proposition 7.2.3.

7.3 Density of restrictions

In this section we will show that the space C1(Rd |K) of restrictions of continuously
differentiable functions on R

d to K is always dense in C1(K). As D(Rd), the space of
C∞-functions with compact support, is dense in C1(Rd); this is the same as the density
of test functions restricted to K in C1(K) and again, it is advantageous to consider this
question on the level of jets, that is, we will show that

i :D(Rd)→J 1(K), ϕ 7→ (ϕ|K ,dϕ|K )

has dense range.
For general K , the standard approximation procedures like convolution with

smooth bump functions do not apply easily, and we will use the Hahn-Banach the-
orem instead, see Theorem 1.7.8 and the remark below.

A continuous linear functional Φ on J 1(K) ⊆ C(K)d+1 is, by the Hahn-Banach
and Riesz representation theorem, given by signed measures µ,µ1, · · · ,µd on K via

Φ(f ,df ) =
∫
f dµ+

d∑
j=1

∫
djf dµj ,

where djf are the components of df . If Φ vanishes on the image of i we have, for all
ϕ ∈ D(Rd), ∫

ϕdµ+
d∑
j=1

∫
∂jϕdµj = 0.
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For the distributional derivatives of the measures this means that

µ =
d∑
j=1

∂jµj = div(T )

where T = (µ1, . . . ,µd) is a vector field of measures or a charge.
Fortunately, such charges were thoroughly investigated by Smirnov in [117].

Roughly speaking, he proved a kind of Choquet representation of charges in terms
of very simple ones induced by Lipschitz paths in K . If γ : [a,b]→ K is Lipschitz with
a.e. derivative γ̇ = (γ̇1, . . . , γ̇d) and F = (F1, . . . ,Fd) is a continuous vector field, we have,
as noted in section 7.2,∫

γ
F =

∫ b

a
〈F(γ(t)), γ̇(t)〉dt =

d∑
j=1

∫ b

a
Fj(γ(t))γ̇j(t)dt.

In order to see this as the action 〈T ,F〉 =
d∑
j=1

∫
Fjdµj of a charge T = (µ1, . . . ,µd), we

denote by µj the image (or push-forward) under γ of the measure with density γ̇j on
[a,b] so that

∫
Fj(γ(t))γ̇j(t)dt =

∫
Fjdµj . For the charge Tγ = (µ1, . . . ,µd) we then have

〈Tγ ,F〉 =
∫
γ
F.

The fundamental theorem of calculus forϕ ∈ D(Rd) with derivative dϕ then gives

div(Tγ )(ϕ) = −
∫
γ
dϕ = ϕ(γ(a))−ϕ(γ(b)) = (δγ(a) − δγ(b))(ϕ),

that is
div(Tγ ) = δb(γ) − δe(γ),

where b(γ) and e(γ) denote the beginning and the end of γ (the change of signs comes
from the minus sign in the definition of distributional derivatives).

To formulate Smirnov’s results we write Γ for the set of all Lipschitz paths in R
d .

Moreover, for a charge T we denote by

‖T ‖(E) = sup


∑
j∈N
|T (Ej)| : (Ej)j∈N is a partition of E


the corresponding variation measure.

Given a set S of charges, endowed with the Borel σ -algebra with respect to the
weak topology induced by the evaluation

〈(µ1, . . . ,µd), (ϕ1, . . . ,ϕd)〉 =
d∑
j=1

∫
ϕj dµj , ϕj ∈ D(Rd),
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a charge T is said to decompose into elements of S if there is a finite, positive measure
ν on S such that

T =
∫
S
R dν(R) and ‖T ‖ =

∫
S
‖R‖dν(R),

where these integrals are meant in the weak sense, i.e. 〈T ,ϕ〉 =
∫
S〈R,ϕ〉dν(R) for all

ϕ ∈ (D(Rd))d . By density and the continuity of charges with respect to the uniform
norm, this extends to all ϕ ∈ (Cc(Rd))d , where Cc(Rd) is the space of continuous func-
tions with compact support.

We can now state a consequence of Smirnov’s results (theorem C of [117] is some-
what more precise than we need).

Theorem 7.3.1. Every charge T with compact support such that div(T ) is a signed measure
can be decomposed into elements of Γ , i.e. there is a positive finite measure ν on Γ such that

T =
∫
Γ

Tγdν(γ) and ‖T ‖ =
∫
Γ

‖Tγ‖dν(γ).

The decomposition of the corresponding variation measures has the important
consequence that the supports of ν-almost all Tγ are contained in the support of T
(where the supports are meant as the supports of signed measures which coincide with
the supports of the corresponding distributions). After removing a set of ν-measure 0
we can thus assume that all paths involved in the decomposition of T have values in
the support of T . Using the definition of the distributional derivative we also obtain a
decomposition of the divergences:

div(T ) =
∫
Γ

div(Tγ )dν(γ) =
∫
Γ

δb(γ) − δe(γ)dν(γ).

We are now prepared to state and prove the main result of this section.

Theorem 7.3.2. For each compact set K , the space C1(Rd |K) is dense in C1(K).

Proof. We will show that i : D (Rd) → J 1(K) : ϕ 7→ (ϕ|K ,dϕ|K ) has dense range, the
conclusion then follows by projecting onto the first components.

Let us consider Φ ∈ (C(K)d+1)′ such that Φ vanishes on the range of i. By the
Hahn-Banach theorem it is enough to show that Φ |J 1(K) = 0.

As explained at the beginning of this section we get signed measures µ and µj on
K with

Φ((f , f1, · · · , fd)) =
∫
f dµ+

∫
f1dµ1 + · · ·+

∫
fddµd

for all (f , f1, · · · , fd) ∈ C(K)d+1, and T = (µ1, · · · ,µd) satisfies div(T ) = µ. We can thus
apply Theorem 7.3.1 and get a measure ν and S ⊆ Γ such that all paths in S have
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values in K and

T =
∫
S
Tγdν(γ).

For (f ,df ) = (f ,d1f , . . . ,ddf ) ∈ J 1(K) we extend all components to Cc(Rd) by Tietze
extension theorem and obtain from the fundamental theorem of calculus for C1(K)-
functions ∫

d1f dµ1 + · · ·+
∫
ddf dµd = 〈T ,df 〉

=
∫
S
〈Tγ ,df 〉dν(γ)

=
∫
S
δe(γ)(f )− δb(γ)(f )dν(γ)

= −div(T )(f )

= −
∫
f dµ,

which means that Φ |J 1(K) = 0.

The use of the Hahn-Banach theorem has the disadvantage of not giving any
concrete approximations. Let us therefore very briefly mention two situations where
approximations can be described explicitly.

A natural idea is to glue the local approximation given by the definition of differ-
entiability together with a partition of unity. If K is Whitney regular, there exists C > 0
such that any two points x,y ∈ K can be joined by a rectifiable path in K of length at
most C|x − y|. For all δ > 0, let Pδ = (ϕj ,Cj)j∈Nbe a grid partition of unity of Rd , such
as considered in Theorem 1.4.6 of [63], made of cubes (Cj)j∈N of diameter δ. We know
there exist C(1),C(2) > 0, independent of δ, such that

sup
x∈Rd

k∈{1,...,d}
j∈N

|∂kϕj(x)| ≤ C
(1)

δ
, (7.7)

and such that at mostC(2) cubesCj have no empty intersection. We setC∗ = CC(1)C(2)d.
Let f ∈ C1(K), df be a continuous derivative of f on K and ε > 0, there exists

λ > 0 such that

|f (y)− f (x)| < ε
4
∀x,y ∈ K : |x − y| < λ,

|dfk(y)− dfk(x)| < ε
4d

∀x,y ∈ K : |x − y| < λ, k ∈ {1, . . . ,d},

|df (y)− df (x)| < ε
4C∗

∀x,y ∈ K : |x − y| < Cλ.



178 Chapter 7. Continuously differentiable functions on compact sets

Then, we take δ <min( ε
4(‖df ‖K+1 ),λ); if Cj∩K , ∅, we choose xj in this intersection,

otherwise we remove Cj from Pδ. The function

fPδ =
∑
j

ϕj(f (xj) + 〈df (xj), · − xj〉)

belongs to C∞(Rd) and, for all k ∈ {1, . . . ,d), we have

∂kfPδ =
∑
j

∂kϕj(f (xj) + 〈df (xj), · − xj〉) +
∑
j

ϕjfk(xj).

Then, fPδ |K ∈ C
1(Rd |K) and it is easy to check, with Theorem 7.1.2, that

‖fPδ |K − f ‖C1(K) < ε.

The next family of compact sets we consider is defined as follows in [47].

Definition 7.3.3. We say that S ⊆R
d is radially self-absorbing if for each r > 1, we have

S ⊆
◦

(rS), (7.8)

where rS := {rx : x ∈ S}. A set S is locally radially self-absorbing if any point x ∈ S admits
a radially self-absorbing neighbourhood in E.

It is easy to see that a compact set is radially self-absorbing if and only if 0 ∈
◦
K and

K is star-shaped from 0 in such a way that for all x ∈ K , the segment [0,x) is included

in
◦
K . If K is locally radially self-absorbing1, we can cover it by finitely many radially

self-absorbing sets (Sj)1≤j≤J , star-shaped from xj . Then, if (ϕj ,Vj)1≤j≤J is a partition of
unity associated to this covering and if f ∈ C1(K), then, for all n ∈N, from (7.8),

fn =
J∑
j=1

ϕjf (
1

n+ 1
(n ·+xj))

is defined and differentiable on an open neighbourhood of K , so fn|K ∈ C1(Rd |K). If
x ∈ Vj , we have

| 1
n+ 1

(n ·+xj)− x| ≤
diam(Vj)

n+ 1

and the convergence of (fn|K )n∈N to f in C1(K) is then straightforward.
Finally, the following strategy can be applied for compact sets where finitely

many points forbid to use one of the two preceding cases. Namely, if x1, · · · ,xJ ∈ K
are such that, for any δ small enough,

K (δ) = K \
J⋃
j=1

B(xj ,δ)

1In particular, K is topologically regular.
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is a compact set for which an explicit approximation of J 1(K (δ)) jets by E 1(K (δ)) jets
is known, then we build an explicit approximation for C1(K) functions by C1(Rd |K)
functions. Indeed, we know that for all j ∈ {1, . . . , J} and δ > 0, one can find ϕ(δ)

j smooth

function, supported on B(xj ,δ) such that 0 ≤ ϕ(δ)
j ≤ 1 and ϕ(δ)

j = 1 on B(xj ,
δ
3 ). Moreover,

if ϕ(δ)
0 := 1−

∑J
j=1ϕ

(δ)
j , supp(ϕ(δ)

0 ) ⊂ K (δ′) for all δ′ < δ
3 . Moreover, one can find C(1) > 0

such that inequality (7.7) holds for all j ∈ {0, . . . , J}.
Let f ∈ C1(K), df be a continuous derivative of f and ε > 0; if δ > 0 is small

enough, δ < ε
4(‖df ‖K+1 , the balls (B(xj ,δ))1≤j≤J are disjoint and for all j ∈ {1, . . . , J} and

x ∈ B(xj ,δ)∩K ,

|f (x)− f (xj)− df (xj)(x − xj)| ≤
ε

4C1
|x − xj |,

|f (x)− f (xj)| <
ε
4
,

|dfk(x)− dfk(xj)| <
ε

4d
∀k ∈ {1, . . . ,d}.

Then, if δ′ < δ
3 , let us take (g;dg) ∈ E 1(K (δ′)) such that

‖(f ;df )− (g;dg)‖J 1(K (δ′ )) <
ε

4d
δ
C1
.

It is easy to check that if we define on K

fε = ϕ(δ)
0 g +

J∑
j=1

ϕ
(δ)
j (f (xj) + 〈df (xj), · − xj〉),

and

dfε,k = ∂kϕ
(δ)
0 g +ϕ(δ)

0 gk +
J∑

=1

∂kϕ
(δ)
j (f (xj) + 〈df (xj), · − xj〉) +

J∑
j=1

ϕ
(δ)
j fk(xj),

for all k ∈ {1, . . . ,d}, then (fε;dfε) ∈ E 1(K) and

‖(f ;df )− (fε;dfε)‖J 1(K) < ε.

In particular, fε ∈ C1(Rd |K) and

‖f − fε‖C1(K) < ε.

7.4 Comparison

In this section, we compare the spaces C1(Rd |K), C1(K) and C1
int(K).
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Theorem 7.4.1. C1(K) = C1(Rd |K) with equivalent norms if and only if K has only finitely
many components which are all Whitney regular.

Proof. Assuming the stated isomorphism of normed spaces we get that C1(K) is com-
plete and Proposition 7.2.1 implies that K has only finitely many components. More-
over, the equivalence of norms implies |f (y)−f (x)|

|y−x| ≤ C‖f ‖C1(K) for some constant so that
Remark 7.2.6 implies that each component is Whitney regular.

For the other implication we first note that the global Whitney condition for each
of the finitely many components implies, by the mean value inequality, the equivalence
of the norms ‖ · ‖C1(Rd |K) and ‖ · ‖C1(K) on C1(Rd |K). This is thus a complete and hence
closed subspace of C1(K) and, on the other hand, it is dense by Theorem 7.3.2.

If we assume, a priori, the completeness of C1(K), i.e. K has finitely many compo-
nents which are pointwise Whitney regular, then the algebraic equality
C1(K) = C1(Rd |K) already implies the equivalence of norms by the open mapping the-
orem. However, in the next section we will see that K = {0} ∪ {2−n : n ∈ N} satisfies
C1(K) = C1(R|K) although C1(K) is incomplete. This means that the algebraic equality,
in general, does not imply the equivalence of norms. Except for the one-dimensional
case, we do not know a characterization of the algebraic equality C1(K) = C1(Rd |K).
Nevertheless, we would like to remark that this property has very poor stability prop-
erties. The example of the inward directed cusp mentioned in the introduction is the
union of two convex sets whose intersection is an interval (sadly, the two halfs of a
broken heart behave better than the intact heart). More surprising is perhaps the fol-
lowing example showing that the property C1(K) = C1(Rd |K) is not stable with respect
to cartesian products.

Example 7.4.2. ForM = {0}∪{2−n : n ∈N} and K =M×[0,1] we have C1(K) , C1(R2|K).

Proof. We construct a function f ∈ C1(K) which is equal to 0 everywhere except for
some tiny bumps on the segments Sn = {2−n} × [0,1]. More precisely, we fix ϕ ∈ C∞(R)
with support in [−1,1] which is bounded in absolute value by 1, and satisfies ϕ(0) = 1.
For (x,y) ∈ Sn we then set f (x,y) = n−3ϕ(n2(y − 1/n)). It is easy to check that f is
differentiable on K (the only non-obvious point is (0,0) where the derivative is 0), and
that one can choose a continuous derivative (because the second partial derivatives on
Sn are bounded by c/nwhere c is a bound for the derivative of ϕ). Hence f ∈ C1(K) but
f < C1(R2|K) because f is not Lipschitz continuous as f (2−n,1/n)− f (2−n+1,1/n)) = n−3

which is much bigger than the distance between the arguments.

Let us consider now a topologically regular compact set K ⊆ R
d . We can formu-

late the main theorem of [129] in this context as follows.

Theorem 7.4.3. Let K be a topologically regular compact set. If K̊ is Whitney regular, then
C1

int(K) = C1(Rd |K).
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In Example 7.4.5 we proved that the reverse implication doesn’t hold. This should
be compared with a theorem of [132] about Sobolev regularity: For an open, connected,
and finitely connected set Ω ⊆R

2 every element of

W̃ k
∞(Ω) = {f ∈ Ck−1(Ω) : ∂αf ∈ L∞(Ω) for all |α| = k}

is the restriction of a function in W k
∞(R2) if and only if Ω is Whitney regular. As a

preparation, we establish the following proposition.

Proposition 7.4.4. Let K be a topologically regular compact set and assume that, for all
x ∈ ∂K , there exist Cx > 0 and a neighbourhood Vx of x in K such that each y ∈ Vx can
be joined from x by a rectifiable path in K̊ ∪ {x,y} of length bounded by Cx|x − y|. Then
C1

int(K) = C1(K).

Proof. Let us take f ∈ C1
int(K). In order to prove that f ∈ C1(K), we just have to show

the differentiability at x ∈ ∂K . For all y ∈ Vx we get, from Remark 7.1.3,

f (y)− f (x)− 〈df (x), y − x〉 =
∫
γ

(df − df (x)),

where γ is as stated in the assumptions. This is enough to get the differentiability at x,
as we did previously in Proposition 7.2.3.

We now construct a topologically regular compact connected set whose interior
is not Whitney regular, but where equality C1

int(K) = C1(Rd |K) holds.

Example 7.4.5. Let Ω be the open unit disk in R
2 from which we remove, as in Sauter’s

example, sufficiently tiny disjoint balls which accumulate precisely at S = {0} × [−1
2 ,

1
2 ].

Then K = Ω is connected, topologically regular and Whitney regular (by the same ar-
gument as explained below). In particular, from Theorem 7.4.1, we know that
C1(R2|K) = C1(K).

Of course, K̊ is not Whitney regular, because S is not contained in K̊ , but the
assumptions of Proposition 7.4.4 are satisfied and hence C1(K) = C1

int(K): Indeed, a
boundary point x of K is either a boundary point of the unit disc, or of one of the tiny
removed discs in which cases the condition is clear, or x is on the segment S. If then y is
a point of K̊ not lying on the segment {0}× [−1,1], we consider the line from y to x and,
whenever this line intersects one of the removed discs, we replace this intersection by
a path through K̊ which is parallel to the boundary of the little disc. The total length
increase of this new path is by a factor π. Finally, if z ∈ K is arbitrary, we can use the
preceding argument to connect z by a very short path to some y as considered before
that we then connect to x.

To give a partial converse of Whitney’s theorem 7.4.3, we state the following con-
sequence of Theorem 7.2.7.
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Proposition 7.4.6. Let K be a topologically regular compact set. If C1
int(K) = C1(K) (in par-

ticular, if C1
int(K) = C1(Rd |K) holds), then K has only finitely many connected components

which are all pointwise Whitney regular.

Proof. If C1
int(K) = C1(K), then (C1(K),‖ · ‖C1(K)) is complete and hence Theorem 7.2.7

implies the stated properties of K .

7.5 The one-dimensional case

In this last section we completely characterize the equality between the three spaces of
C1-functions for compact subsets of R. Of course, all three spaces coincide for topolog-
ically regular compact sets with only finitely many components, and otherwise C1(K)
is incomplete by Proposition 7.2.1 and thus different from C1

int(K). The remaining
question of when C1(K) = C1(R|K) will depend on the behaviour of the bounded con-
nected components of R \K which we call gaps of K . These are thus maximal bounded
open intervals G in the complement, and we denote their length by `(G).

The simple idea is that small gaps are dangerous for the Lipschitz continuity
on K which is a necessary condition for C1-extendability. In fact, we will show that
C1(K) , C1(R|K) whenever there are ξ ∈ K and nearby gaps of K of length much
smaller than the distance of the gap to ξ. To be precise, we define, for positive ε,

σε(ξ) = sup
{

sup{|y − ξ | : y ∈ G}
`(G)

: G ⊆ (ξ − ε,ξ + ε) is a gap of K
}
,

with sup∅ = 0. Of course, these [0,∞]-valued functions are increasing with respect to
ε and thus we can define the gap-structure function

σ (ξ) = lim
ε→0

σε(ξ).

Theorem 7.5.1. For a compact set K ⊆R we have C1(K) = C1(R|K) if and only if σ (ξ) <∞
for all ξ ∈ K .

Before giving the proof let us discuss some examples. The Cantor set K satisfies
σ (ξ) =∞ for all ξ ∈ K so that C1(K) , C1(R|K).

Other simple examples are sets of the form K = {0} ∪ {xn : n ∈N} for decreasing
sequences xn→ 0. Then σ (xn) = 0 for all n ∈N and only the behaviour of σ (0) depends
on the sequence. Since the gaps of K are (xn+1,xn) we get σ (0) = limsup xn

xn−xn+1
. This

quantity is finite for fast sequences like xn = a−n with a > 1 but infinite for slower
sequences like xn = n−p for p > 0.

This class of examples can be easily modified to topologically regular sets of the
form K = {0} ∪

⋃
n∈N[xn,xn + rn]. For rn = e−2n we get σ (0) < ∞, e.g., for xn = e−n and

σ (0) =∞ for xn = 1/n.
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We are now going to prove Theorem 7.5.1. We invite the reader to have Figure 7.1
in mind while discovering the proof, to have a correct image of the built and described
functions.

Proof. We will use Whitney’s characterization that f ∈ C1(R|K) if and only if, for all
non-isolated ξ ∈ K ,

lim
x,y→ξ

f (x)− f (y)
x − y

= f ′(ξ),

see [128]. Let us first assume σ (ξ) = ∞ for some ξ ∈ K . There is thus a sequence of
gaps Gn = (an,bn) ⊆ (ξ − 1/n,ξ + 1/n) with sup{|y − ξ | : y ∈ Gn}/ |an − bn| > 2n. Passing
to a subsequence, we may assume that all these gaps are on the same side of ξ, say
ξ < an < bn, so that bn − ξ > 2n(bn − an).

Moreover, again by passing to a subsequence and using σε(ξ) = ∞ for
ε = (bn − an)/2, we can reach bn+1 < an and that the midpoints yn = (an + bn)/2 of the
gaps satisfy

yn − yn+1

bn − an
≥ n.

We now define f : K → R by f (x) = (yn − ξ)/n for x ∈ K ∩ (yn, yn−1) (with y0 = ∞) and
f (x) = 0 for x ≤ ξ. Since the jumps of f are outside K it is clear that f is differentiable
at all points x ∈ K \ {ξ} with f ′(x) = 0. To show the differentiability at ξ with f ′(ξ) = 0
we calculate for x ∈ K ∩ (yn, yn−1),∣∣∣∣∣f (x)− f (ξ)

x − ξ

∣∣∣∣∣ =
∣∣∣∣∣(yn − ξ)/n

x − ξ

∣∣∣∣∣ ≤ ∣∣∣∣∣(yn − ξ)/n
yn − ξ

∣∣∣∣∣ ≤ 1
n
.

Thus, f ∈ C1(K) but f < C1(R|K) because

f (bn)− f (an)
bn − an

=
(yn − ξ)/n− (yn+1 − ξ)/(n+ 1)

bn − an
≥

(yn − yn+1)/n
bn − an

≥ 1.

Let us now assume σ (ξ) <∞ for all ξ ∈ K . To prove that every f ∈ C1(K) belongs
to C1(R|K), we first show that we can assume f ′ = 0. Indeed, we extend f ′ : K → R to
a continuous function ϕ : R→ R and consider g(x) = f (x)−

∫ x
0
ϕ(t)dt. Then g ∈ C1(K)

satisfies g ′ = 0 and g ∈ C1(R|K) implies f ∈ C1(R|K).
Let us thus fix f ∈ C1(K) with f ′ = 0. We have to show Whitney’s condition stated

above at any non-isolated point ξ which, for notational convenience, we may assume
to be ξ = 0. We fix c >max{σ (0),1} and ε ∈ (0,1). There is thus δ > 0 such that, because
of the differentiability at ξ = 0 with f ′(0) = 0, we have∣∣∣∣∣f (x)− f (0)

x − 0

∣∣∣∣∣ < ε
2c
, (7.9)

for all x ∈ K with |x| < δ and, because of σδ(ξ) < c for small enough δ,

sup{|y| : y ∈ G} ≤ c`(G),
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for all gaps G ⊆ (−δ,δ). For x,y ∈ K ∩ (−δ,δ) we will show∣∣∣∣∣f (x)− f (y)
x − y

∣∣∣∣∣ ≤ ε.
If x,y are in the same component of K this quotient is 0 because f is locally constant.
Moreover, if x,y are on different sides of 0, the quotient is bounded by ε because of
(7.9) and c ≥ 1. It remains to consider the case 0 < x < y. Then there is a gap G between
x and y and, since f is locally constant, we may decrease y so that y ∈ ∂K without
changing f (y) which thus increases the difference quotient we have to estimate. This
implies that y is the endpoint of gap G = (a,y) with a ≥ x, which leads to

|y − x| ≥ |y − a| = `(G) ≥ y/c ≥ x/c.

Therefore, ∣∣∣∣∣f (x)− f (y)
x − y

∣∣∣∣∣ ≤ ∣∣∣∣∣f (x)− f (0)
x − y

∣∣∣∣∣+
∣∣∣∣∣f (y)− f (0)

x − y

∣∣∣∣∣
≤ c

∣∣∣∣∣f (x)− f (0)
x − 0

∣∣∣∣∣+ c
∣∣∣∣∣f (y)− f (0)

y − 0

∣∣∣∣∣ ≤ ε.

bn−1
yn−1an−1bnynanbn+1

yn+1an+1ξ

Figure 7.1: Part of the allure of function which causes the inequality C1(R|K) , C1(K).
The compact set K , partially drawn in blue, is included in R \

⋃
n(an,bn). The value of

the function on K , in thick black, is determined by jumps occurring outside of K , in
yn = (an + bn)/2.
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