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Abstract 14 

The molecular basis of plant immunity triggered by microbial pathogens is being well characterized 15 

as a complex sequential process leading to the activation of defense responses at the infection site, 16 

but which may also be systemically expressed in all organs, a phenomenon also known as systemic 17 

acquired resistance. Some plant-associated and beneficial bacteria are also able to stimulate their 18 

host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic 19 

resistance phenomenon. Induced systemic resistance resembles systemic acquired resistance 20 

considering its mechanistic principle as it successively involves recognition at the plant cell surface, 21 

stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal 22 

cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient 23 

mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to 24 

restrict pathogen invasion. However, according to our current vision, induced systemic resistance is 25 

specific considering some molecular aspects underpinning these different steps. Here we overview 26 

the chemical diversity of compounds that have been identified as induced systemic resistance 27 

elicitors and thereby illustrating the diversity of plants species that are responsive as well as the 28 

range of pathogens from the micro- and mesofauna that can be controlled via this phenomenon. We 29 

also point out the need for further investigations allowing better understanding how these elicitors 30 

are sensed by the host and the diversity and nature of the stimulated defense mechanisms. 31 
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Introduction  32 

Some bacteria isolated from the root microbiome have been selected for their remarkable beneficial 33 

effect provided to their host plant and are referred to as Plant Growth-Promoting Rhizobacteria 34 

(PGPR) (Backer et al., 2018; Singh et al., 2019). These PGPR favor plant growth notably by 35 

facilitating nutrient availability and modulating the host’s hormonal balance but also display plant 36 

protective activity toward pathogen ingress. This biocontrol potential relies on several traits 37 

including the ability to efficiently compete for space and nutrients with pathogens, a strong direct 38 

antagonistic activity based on secretion of low-size antimicrobials or hydrolytic enzymes and the 39 

capacity to stimulate Induced Systemic Resistance (ISR), a systemically expressed resistance state 40 

that renders the host less susceptible to subsequent infection (Pieterse et al., 2014; Backer et al., 41 

2018; Köhl et al., 2019). ISR is a systemically expressed resistance state that renders the host less 42 

susceptible to subsequent infection, and it is of great interest from an agronomical perspective 43 

because it is effective against a broad spectrum of microbial pathogens, nematodes, and insects 44 

(Pieterse et al., 2014; Grady et al., 2016; Rashid and Chung, 2017; Mhatre et al., 2018). 45 

Phenotypically, ISR resembles the systemic acquired resistance (SAR) mounted upon pathogen 46 

perception, which culminates from a complex immune-related process. At the front line, molecular 47 

features of invading microbes are detected with high specificity and sensitivity in the apoplast by a 48 

range of plasma membrane-anchored immune sensors referred to as pattern recognition receptors 49 

(PRR). These PRRs bind precise structural motifs (epitopes) of larger (macro)molecules retaining 50 

important functions for microbial fitness and thus widely conserved across species and termed 51 

microbe-associated molecular patterns (MAMPs). Some of the best described MAMPs from 52 

bacterial pathogens are flg22, a 22 amino acids portion of the flagellin protein, elf18 which is the 53 

epitope of the elongation factor EF-Tu, and surface-exposed lipopolysaccharides (LipidA), and 54 

peptidoglycan (sugar backbone) (Schellenberger et al., 2019). The binding of MAMP by PRR 55 

initiates within minutes early immune-related events in responsive cells such as ion fluxes, 56 

oxidative burst, and phosphorylation cascade. Furthermore, defense mechanisms sensu stricto such 57 

as cell wall reinforcement and production of antimicrobial enzymes and secondary metabolites, 58 

referred to as phytoalexins, are stimulated (Piasecka et al., 2015). This PRR-mediated immune 59 

response (pattern triggered immunity, PTI) is robust as it can detect MAMPs at nanomolar 60 

concentrations leading to fast and strong defensive responses (high transcriptional activation) but 61 

associated with growth-defense tradeoffs that reduce plant fitness (Huot et al., 2014). However, 62 

adapted pathogens use protein effectors injected into host cells to dampen PTI and subvert this first 63 

line of immune reaction. In turn, plants have evolved intracellular sensors called R (resistance) 64 
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proteins, which interfere with these effectors leading to the effector-triggered type of immunity 65 

(ETI) which may, like PTI, lead to SAR  (Kanyuka and Rudd 2019; Schellenberger et al., 2019).  66 

Due to the conserved nature of MAMPs, the plant’s receptor equipment would enable detection not 67 

only of pathogenic bacteria, but also of beneficials such as rhizobial symbiots and root-associated 68 

epiphytic PGPR (Zipfel and Oldroyd, 2017). These beneficial microbes have thus to evade (by 69 

hiding or changing their MAMPs) or suppress (by secreting effectors that interfere with immune 70 

responses and signaling) PTI in order to establish a mutualistic relationship with their host (Stringlis 71 

et al., 2018; Yu et al., 2019). This has been recently illustrated with the Pseudomonas simiae strain 72 

WCS417 first detected as a pathogen via its flg22 epitope, but which then strongly attenuates the 73 

host immune response presumably via T3SS-mediated delivery of effectors (Berendsen et al., 2015; 74 

Stringlis et al., 2019). Subversion of host immune reaction allows PGPR to sustainably colonize the 75 

rhizoplane and establish threshold populations necessary for providing beneficial functions 76 

including priming of ISR triggering via the secretion of other elicitors not related to MAMPs. 77 

Here we provide an updated overview of those PGPR determinants responsible for ISR elicitation 78 

that are in most cases small-size compounds secreted by the colonizing bacteria even if some 79 

proteins isolated from Brevibacillus laterosporus, B. amyloliquefaciens, and Saccharothrix 80 

yanglingensis have also been recently proposed as bacterial triggers (Table 1)(Wang et al., 2015; 81 

Wang et al., 2016; Zhang et al., 2018). We highlight their chemical diversity and structure- and 82 

dose-dependent activity but only refer to compounds that have been tested in pure (proven) form at 83 

biologically relevant concentrations and/or via specifically suppressed mutants and for which the 84 

ability to stimulate systemic resistance was clearly demonstrated to be independent from direct 85 

antimicrobial effect. 86 

 87 

PGPR metabolites identified as elicitors of plant systemic resistance 88 

Acyl-homoserine lactones 89 

Many Gram-negative bacteria produce N-acyl-homoserine lactones (AHLs) as quorum-sensing 90 

molecules involved in cell-to-cell communication in order to monitor their behavior according to 91 

population density. Some AHLs are not only the mean of communication between bacterial cells, 92 

but also may be used as signal in inter-kingdom interaction and act as plant growth promoting 93 

compounds and/or as immunity elicitors (reviewed in Schikora et al., 2016). A first study showed, 94 

by using an AHL-suppressed mutant of Serratia liquefaciens MG1, that induced resistance in 95 
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tomato towards Alternaria alternata by this strain is AHL-dependent (Schuhegger et al., 2006). 96 

Several works performed with purified molecules further revealed that AHL bioactivity is structure-97 

dependent. AHLs with short length acyl chains have been mostly demonstrated to promote plant 98 

growth, whereas AHLs with longer fatty acid (C12, C14) are better described as elicitors of 99 

resistance (Schenk et al., 2012; Zarkani et al., 2013; Schikora et al., 2016). The long-chain N-3-oxo-100 

tetradecanoyl-L-homoserine lactone (oxo-C14-HSL; Figure 1.1) has been amply demonstrated for 101 

immunity elicitation in many pathosystems. Upon treatment at 6 µM, oxo-C14-HSL successfully 102 

induced systemic resistance against biotrophs (Blumeria graminis f. sp. hordei, Puccinia hordei, 103 

Golovinomyces orontii) and hemibiotroph (P. syringae DC3000) in barley and Arabidopsis, but not 104 

against the necrotrophs Botrytis cinerea and Plectosphaerella cucumerina BMM (Schikora et al., 105 

2011; Schenk et al., 2012; Wehner et al., 2019). ISR-eliciting activity of oxo-C14-HSL was also 106 

observed in wheat and tomato against Puccinia graminis f. sp. tritici and Phytophthora infestans, 107 

respectively (Hernández-Reyes et al., 2014). Collectively, these data indicate that the plant 108 

defensive response triggered by the same oxo-C14-HSL molecule may not be efficient in enhancing 109 

resistance against phytopathogens with necrotrophic lifestyle. 110 

 111 

Cyclic lipopeptides 112 

Rhizobacterial cyclic lipopeptides (CLPs) are multifunctional secondary metabolites involved in 113 

developmental processes such as motility and biofilm formation and in biocontrol primarily based 114 

on their antimicrobial activity (Ongena and Jacques, 2008; Guedens and Martins, 2018). However, 115 

some CLPs secreted by beneficial bacilli and pseudomonads have emerged as an important category 116 

of plant immunity elicitors as well. The heptapeptide Ssurfactin is a heptapeptide occurring as a mix 117 

of naturally co-produced homologues varying in the length of the fatty acid chain (Figure 1.2)., and 118 

itThis CLP is among the Bacillus CLP compounds best described as trigger of systemic resistance. 119 

When applied as pure compound (mix of naturally co-produced homologues varying in the length 120 

of the fatty acid chain) at on the roots level and , in micromolar amounts (5-10 µM), surfactin was 121 

demonstrated to induce ISR in bean, tomato, tobacco, against B. cinerea, in melon against 122 

Podosphaera fusca, and peanut infected by B. cinerea, Podosphaera fusca, and against Sclerotium 123 

rolfsii, respectively (Ongena et al., 2007; García-Gutiérrez et al., 2012; Cawoy et al., 2014; 124 

Rodríguez et al., 2018). The structure of this CLP may strongly impact its elicitor activity as 125 

observed on tobacco cells. Linear and/or methylated derivatives are much less efficient and only 126 

homologues with long C14 and C15 acyl chains length are active at inducing early immune-related 127 
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events, unlike C12 and C13 (Jourdan et al., 2009; Henry et al., 2011). Despite its high bioactivity on 128 

dicot plant roots, surfactin shows low competence in mounting immunity when applied on dicots 129 

leaves or monocots roots (Yamamoto et al., 2014; Rahman et al., 2015; Mejri et al., 2018). 130 

Induction of systemic resistance and/or plant defenses by other CLPs produced by biocontrol bacilli 131 

has also been occasionally reported. In tomato and grapevine, fengycin triggered ISR against B. 132 

cinerea and Plasmopara viticola (Farzand et al., 2019; Li et al., 2019), while CLPs from the iturin 133 

group (Figure 1.3) were shown to have a similar role in strawberry (Yamamoto et al., 2015), cotton 134 

(Han et al., 2015), grapevine (Farace et al., 2015) and Arabidopsis (Wu et al., 2018). Additionally 135 

illustrating the dependence of between CLP-mediated ISR on the plant organ, iturin showed 136 

bioactivity on roots at concentration of 50 µM, whereas it was active already at 1-10 µM when 137 

applied on leaves (Yamamoto et al., 2014; Kawagoe et al., 2015; Han et al., 2015; Park et al., 138 

2016). The activation of defense genes in Arabidopsis by iturin foliar treatment was also dependent 139 

on the molecule’s structure, i.e. cyclization and/or length of the b-hydroxy fatty acid chain 140 

(Kawagoe et al., 2015). 141 

Several studies have also reported the involvement of Pseudomonas sp. CLPs in plant resistance 142 

stimulation on various pathosystems. Massetolide A was the first reported for its resistance-143 

inducing activity in tomato against P. infestans (Tran et al., 2007). Recent works conducted with 144 

Pseudomonas sp. strain CMR12a revealed that two other types of CLPs, sessilin and orfamide 145 

(Figure 1.4 and 1.5, respectively) are involved in ISR-triggering albeit differently according to the 146 

pathosystem tested. Works combining the use of biosynthesis mutants and CLP extracts showed 147 

that both sessilin and orfamide are determinants of ISR in bean against Rhizoctonia solani, but that 148 

a balanced production is needed for optimal effect. These two compounds are indeed active at 149 

precise range of concentrations from 0.001 to 0.1 µM for pure orfamide, and 0.001 and 0.01 mg/L 150 

for sessilin as crude extract (Olorunleke et al., 2015; Ma et al., 2016). In monocots, such as rice, 151 

Pseudomonas CLP structure is crucial in determining elicitor effect on a given pathosystem. For 152 

example, orfamide applied at 25 µM was identified as elicitor inducing resistance to Cochliobolus 153 

miyabeanus, but it is not active against Magnaporthe oryzae (Ma et al., 2017). Nevertheless, CLPs 154 

such as WLIP, lokisin, and entolysin were recently described to successfully induce resistance 155 

towards this last pathogen, confirming elicitor specificity for certain pathosystems (Omoboye et al., 156 

2019). 157 

 158 

Rhamnolipids 159 
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Rhamnolipids (RLs) are amphiphilic glycolipids produced by various species including pathogenic 160 

isolates, but also some plant beneficial Pseudomonas and Burkholderia species (Abdel-Mawgoud et 161 

al., 2010; Perneel et al., 2008). They are essential for bacterial surface motility and biofilm 162 

development (Chrzanowski et al., 2012; Vatsa et al., 2010). Mono- and di-RLs (Figure 1.6) tested 163 

as pure compounds have been shown to elicit plant defense responses and to induce resistance 164 

against various pathogens in grapevine, Arabidopsis, and in Brassica napus using a wide range of 165 

concentrations from approximately 10 up to 300 µM (Varnier et al., 2009; Sanchez et al., 2012; 166 

Monnier et al., 2018; 2020).  167 

 168 

N-alkylated benzylamine derivative  169 

Although its function for bacterial life is not clear, an Nn-alkylated benzylamine derivative (NABD; 170 

Figure 1.7) produced by P. putida BTP1, was identified as elicitor (Ongena et al., 2005). Treatment 171 

of bean and cucumber roots with pure NABD at low micromolar concentration elicited similar 172 

protective effect compared to living cells.  On the other hand,while in tomato, the pure elicitor 173 

induced a lower protective effect than observed with the producing strain, suggesting the synthesis 174 

of an additional ISR determinant in that case (Ongena et al., 2008).  175 

 176 

Siderophores 177 

To ensure their growth in iron-limited environments, microorganisms have evolved powerful Fe3+-178 

acquisition systems based on the secretion of high-affinity iron-chelating molecules termed 179 

siderophores. PGPR siderophores are also known to antagonize pathogen populations by decreasing 180 

iron amounts in soil, resulting in competition for this essential element (Kramer et al., 2020). 181 

However, some siderophores also act as plant immunity elicitors and pyoverdines (also referred to 182 

as pseudobactines; Figure 1.8) produced by various fluorescent pseudomonads were, in the 90's, 183 

among the first PGPR metabolites proposed as ISR elicitors. Their key role in systemic resistance 184 

induction was notably shown for P. fluorescens CHA0 on tobacco infected by Tobacco necrosis 185 

virus, and in the protection provided by P. fluorescens WCS374 to radish against Fusarium wilt 186 

(Maurhofer et al., 1994; Leeman et al., 1996). These chromopeptides were further described as 187 

inducers of resistance in various plant species such as bean, tomato, Arabidopsis, tobacco, 188 

eucalyptus and rice against a range of microbial pathogens (Meziane et al., 2005; Ran et al., 2005; 189 
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De Vleesschauwer et al., 2008). In addition to pyoverdine, P. aeruginosa 7NSK2 also forms the 190 

chelating agent pyochelin (Figure 1.9) as chelating agent and its precursor salicylic acid (SA). 191 

When tested on pathosystem grapevine/B. cinerea, SA produced by P. aeruginosa 7NSK2 was 192 

crucial for 7NSK2 to mounting the plant immunity (De Meyer et al., 1999; Verhagen et al., 2010). 193 

However, for ISR stimulated in tomato by the same strain, an important role for SA could not be 194 

excluded, but probably combined with the action of other metabolites including pyochelin which 195 

may somehow also retain some eliciting activity (Audenaert et al., 2002). 196 

 197 

Elicitors with antibiotic function 198 

To ensure fitness in the competitive rhizosphere niche, PGPR produce a wide range of secondary 199 

metabolites best identified for their antimicrobial function such as non-ribosomal peptides, 200 

polyketides, bacteriocins, terpenes, phenazines, quinolones, or rhamnolipids (Raaijmakers and 201 

Mazzola, 2012; Zhao and Kuipers, 2016; Tracanna et al., 2017). Interestingly, some of these 202 

antibiotics were also shown to act as signal for ISR stimulation at similar concentrations, making 203 

them promising tools for biocontrol with dual action on pathogen populations (Kenawy et al., 204 

2019). One such antibiotic is 2,4-diacetyl phloroglucinol (Figure 1.10), formed by P. fluorescens, is 205 

triggeringtriggers resistance in Arabidopsis against various pathogens, such as Peronospora 206 

parasitica, P. syringae pv. tomato, and B. cinerea, upon application at relatively high 10-100 µM 207 

concentrations (Iavicoli et al., 2003; Weller et al., 2012; Chae et al., 2020). 2,4-diacetyl 208 

phloroglucinol can also induce resistance against nematodes as shown with P. protegens CHA0 for 209 

the reduction of infection caused by Meloidogyne javanica on tomato roots (Siddiqui and Shaukat 210 

2003). Besides, other Pseudomonas antibiotics of the phenazine-type were also reported to induce 211 

resistance. Nnotably phenazine-1-carboxamide (Figure 1.11) in rice towards M. oryzae at 0.1 - 1 212 

µM, in bean towards R. solani, and pyocyanin produced by P. aeruginosa 7NSK2 in the 213 

pathosystem tomato/B. cinerea (Audenaert et al., 2002; D’aes et al., 2011; Ma et al., 2016).  214 

  215 

Volatile organic compounds  216 

Most of the well-characterized PGPR elicitors are soluble compounds, but some volatile organic 217 

compounds (VOCs) were as welllso reported to induce systemic resistance in the host plant, 218 

showing that these metabolites can also act as infochemicals involved in inter-kingdom 219 

communication (Kai et al., 2016). The most studied VOC immunity elicitor is 2,3-butanediol (2,3-220 
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BD; Figure 1.12) produced from glucose in the central metabolism (Yang et al., 2013). Firstly, iIts 221 

bioactivity was first assessed on Arabidopsis by application on roots, where B. subtilis GB03 222 

induced resistance against Erwinia carotovora subsp. carotovora, while mutants deprived in 2,3-223 

BD or its precursor acetoin production were inactive (Ryu et al., 2004). Bioactivity, when treated on 224 

roots in relatively high mM concentrations, was demonstrated as well in the pathosystems 225 

maize/Setosphaeria turcica, tobacco/Erwinia carotovora, and in pepper against multiple viruses 226 

(Table 1), where the immunity eliciting ability was structure-dependent. Namely, among the three 227 

forms, 2R,3R-BD (R), 2S,3S-BD (S) and 2R,3S-BD (meso), the S form is the least active 228 

(D’Alessandro et al., 2014; Han et al., 2006; Kong et al., 2018). However, on pepper against 229 

Xanthomonas axonopodis pv. vesicatoria, another VOC 3-pentanol (10 µM, 1 mM; Figure 1.13) 230 

showed higher activity than 2,3-BD (Choi et al., 2014). Beside 3-pentanol, long-chain VOCs 231 

tridecane and hexadecane (Figure 1.14 and 15, respectively) showed as well bioactivitybioactivity 232 

as well at µM (100) concentration (Lee et al., 2012; Park et al., 2013).  233 

 234 

Molecular basis of plant immunization: PGPR vs. MAMP elicitors  235 

The potential of PGPR to induce plant immunity thus mainly relies on the secretion of a range of 236 

structurally diverse low-molecular weight metabolites. However, the molecular mechanisms driving 237 

recognition of these elicitors at the plant cell surface are poorly understood. By contrast with 238 

MAMPs from pathogens, there is no indication so far for specific PRRs involved in the perception 239 

of PGPR elicitors.  They activate immune responses only at relatively high µM concentrations 240 

compared to MAMPs, suggesting that they are not sensed via high-affinity receptors. CLPs are 241 

known to promptly insert into biological membranes causing defects, pore formation and cell lysis 242 

in a range of (micro)organisms (Balleza et al., 2019). Furthermore,Based on the fact that the 243 

immune response triggered by the Bacillus CLP surfactin was fully conserved in protease-treated 244 

tobacco cells, andthat successive applications do not lead to some refractory state due to the 245 

saturation of high-affinity binding sites (as receptors). Based on these and the fact that and that it 246 

surfactin readily interact with sphingolipid-enriched microdomains in the plasma membrane, it was 247 

suggested that this CLP is also perceived by plant cells via a lipid-mediated process. This is 248 

supported by the strong structure-dependent activity showing that only long fatty acid chain 249 

homologues are active at triggering early immune-related events in tobacco cells because they 250 

should display stronger interaction with lipid bilayers (Jourdan et al., 2009; Henry et al., 2011). 251 

Rhamnolipids also readily fit into plant lipid-based bilayer models. and it was t Therefore, it was 252 

proposed that by inserting into plasma membranes, these compounds provoke subtle changes in 253 
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lipid dynamics that could be related to plant defense induction (Monnier et al., 2019; Schellenberger 254 

et al., 2019). As other alkyl-chain containing elicitors, AHLs could also be perceived by plant cells 255 

via a receptor-independent but lipid-mediated process, by analogy with data recently obtained on 256 

mammalian cells (Schikora et al., 2016; Song et al., 2018). It may explain why a given compound 257 

does not act at the same level on different targets, considering that the lipid composition in the 258 

plasma membrane differs according to the plant species/ organs. 259 

The way PGPR elicitors are perceived at the plasma membrane level is not clear, but there is still a 260 

clear convergence between PGPR-triggered immunity and pathogen-induced PTI in the early steps 261 

of downstream signaling. The best studied PGPR elicitors induce similar early immune events as 262 

observed upon pathogen perception, such as oxidative burst, ion fluxes, and phosphorylation 263 

cascade (Jourdan et al., 2009; Schikora et al. 2011; Cho et al., 2013; Cawoy et al., 2014; Rahman et 264 

al., 2015; Farace et al., 2015). DThat said, while detection of MAMPs from pathogens leads to a 265 

fast and strong defensive response, but alsoleading to a costly reduction of the plant growth and 266 

fitness (Huot et al., 2014)., On the other hand, PGPR and/or their elicitors usually prime the host to 267 

stimulate defense mechanisms but only after pathogen challenge as observed upon treatment with 268 

surfactin, AHLs, or with bacteria producing NADB or pyoverdines (De Vleesschauwer et al., 2008; 269 

Mariutto et al., 2011; Cawoy et al., 2014; Debois et al., 2015; Schikora et al., 2016). Again by 270 

contrast with PTI, PGPR elicitor-priming is not associated with major transcriptional 271 

reprogramming until the pathogen is detected and does not involve fitness costs but still prepares 272 

the plant for mounting a robust defense (Martinez-Medina et al., 2016; Mauch-Mani et al., 2017). 273 

Globally, the defense mechanisms restricting pathogen ingress that are stimulated by beneficial 274 

bacteria or their elicitors resemble those observed upon pathogen MAMP perception. It notably 275 

means up-regulation of genes involved in the synthesis of antimicrobial enzymes/proteins or 276 

metabolites and in hormone signaling. Higher expression of Such genes such are pathogenesis- 277 

related, lipoxygenase, plant defensin factor, and phenylalanine ammonia lyase, is often reported in 278 

elicitor pretreated plants after pathogen infection.pathogenesis- related (PR) proteins genes involved 279 

in chitinase, glucanase, thaumatin, defensin and thionin production, JA/ET-inducible plant defensin 280 

factor (PDF1.2), lipoxygenase (LOX) that stimulates the oxylipin pathway generating a wide array 281 

of biologically active secondary metabolites, and phenylalanine ammonia lyase (PAL) that plays a 282 

crucial role in the phenylpropanoid pathway leading to synthesis of the precursors of lignins, 283 

flavanoids, and coumarins, serving as weapons against pathogens (Ongena et al., 2007; García-284 

Gutiérrez et al., 2012; Zarkani et al., 2013; Song et al., 2015; Park et al., 2016; Yi et al., 2016; Kong 285 

et al., 2018; Song et al., 2019). Besides, PGPR elicitors also trigger stomatal closure and enhance 286 

cell wall reinforcement which serves as a structural barrier to pathogen invasion via callose 287 
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deposition or accumulation of phenolic compounds and lignin (De Vleesschauwer et al., 2006; 288 

García-Gutiérrez et al., 2012; Schenk et al., 2014; Rodríguez et al., 2018). 289 

 290 

Discussion 291 

 292 

From an agronomic perspective, ISR triggered by PGPR is interesting since the phenomenon is 293 

considered to provide long-lasting and broad-spectrum protection without causing growth cost and 294 

is not a priori conducive for development of resistance in pathogens (Köhl et al., 2019). However, 295 

the success of PGPR as stimulators of plant defenses is so far rather limited due to a range of 296 

factors. Theseis includes our global lack of knowledge about the nature and mode of action of their 297 

elicitors. Indeed, ISR determinants were identified mainly from a limited number of species 298 

(Pseudomonas spp. and Bacillus spp.), leaving elicitors from many other PGPR to be discovered. 299 

Moreover, in the last decades, tremendous advances have been done on understanding the basics of 300 

MAMP perception during PTI, but the mechanistic of PGPR elicitor recognition at theby plant 301 

plasma membrane level cells and the molecular events underlying PGPR-induced priming remain 302 

largely obscure. As the lipid phase is suspected to act as docking platform for some of these 303 

elicitors, experimental biophysics and in silico dynamic modeling using appropriate biomimetic 304 

vesicles represent interesting approaches to get further insights into the physico-chemical basis of 305 

the interactions (Deleu et al., 2014; Balleza et al., 2019; Nishimura and Matsumori 2020).  More 306 

research It would help to explain why some compounds are only efficient on specific plants/tissues 307 

according to the nature and proportions of lipids in their domain-structured plasma membranes 308 

(Gronnier et al., 2018)., triggering resistance against a broad range but not all pathogens. Also, the 309 

variety of pathosystems tested so far is still limited and additional research on agriculturally 310 

important crops and pathogens is needed in order to better appreciate their potential at a larger 311 

market scale.  312 

Furthermore, PGPR elicitors in most instances are active at micromolar doses but, however only in 313 

a few studies it was demonstratedsuggest that quantities produced by bacteria in planta are 314 

sufficient to locally reach such threshold around the roots (D’Alessandro et al., 2014; Debois et al., 315 

2015). Determining the amounts of elicitors produced by PGPR under natural conditions is still 316 

important, but not an easy task. It would require optimal extraction from rhizosphere samples and 317 

the most-advanced MS-based metabolomics allowing high sensitivity for their detection and 318 

quantification. Also, the impacts of environmental factors may affect ISR efficiency (Williams et al, 319 

2018), but their impact on the production of elicitors by PGPR remains poorly appreciated. Low 320 



 11 

temperature, acidic pH or poor oxygen availability are among the rhizosphere specific abiotic 321 

parameters that affect bacterial physiology and which may also modulate the production of 322 

secondary metabolites including elicitors as reported for Bacillus lipopeptides (Pertot et al., 2013; 323 

Zhao and Kuipers, 2016; Fahim et al., 2012). Biotic factors such as and biotic factors (interactions 324 

with other microbial species of the rhizosphere soil microbiome or, chemical cross-talk with the 325 

host plant) that , may also influencemodulate thelicitore production of under natural conditions 326 

these ISR determinants (Debois et al., 2015; Wu et al., 2015; Venturi and Keel, 2016; Andrić et al., 327 

2020). under natural conditions are largely unknown and A better evaluation of the impact of all 328 

these factors deserve further investigations and is necessary if we want to better understand and 329 

anticipate inconsistencies in PGPR efficacy observed in the PGPR performance when appliedupon 330 

application in theunder field conditions. 331 

 Integrating all this missing information should also lead to more rationally determinedefine the 332 

range of pathosystems, and environmental conditions in which PGPR-based bioproducts would be 333 

the bestmost efficient. An alternative is to make from these bacterial immunogenic compounds 334 

microbial-derived products for the phytosanitary market provided that they can be mass produced 335 

and formulated in cost-effective industrial processes. This is feasible for some metabolites with high 336 

production rate in bioreactors, such as Bacillus lipopeptides (Zannoto et al., 2019; Brück et al., 337 

2020), but the dose and structure dependent activity should guideimposes a rational selection of the 338 

strain, optimization of culture conditions and extensive testing in field experiments in comparison 339 

with chemical products. 340 
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 771 

Figure and Table Legends 772 
 773 
Figure 1. Chemical structures of PGPR produced ISR elicitors. 1.N-3-oxo-tetradecanoyl-L-774 

homoserine lactone; 2. Surfactin; 3. Iturin; 4. Sessilin; 5. Orfamide; 6. Rhamnolipid, L-775 

rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid; 7. N,N-dimethyl-N- tetradecyl-N-776 
benzylammonium; 8. Pyoverdine; 9. Pyochelin; 10. 2,4-diacetyl phloroglucinol; 11. phenazine-777 
1-carboxamide; 12. 2,3-butanediol; 13. 3-pentanol; 14. Tridecane; 15. Hexadecane  778 

 779 
 780 
Table 1. PGPR produced elicitors of systemic resistance  781 
 782 

Elicitor Strain Plant Pathogen Method  Reference 

Acyl-homoserine lactones 
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https://doi.org/10.1111/pce.13632
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2014 
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Ongena et al., 
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pure 10 µM 
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et al., 2012 
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S499 / FZB42/ 

QST713, B. 

subtilis 98S/ 
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Paenibacillus 
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strains,  

pure 10 µM 

Cawoy et al., 

2014 
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2014 
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oryzae 
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Rahman et al., 

2015  
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rolfsii 

Pure 5, 10 µM Rodríguez et al., 

2018 
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Le Mire et al., 

2018 
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BBG125/ 
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idem idem Pure surfactin 

+mycosubtilin 

100 µM, 50/50 

Mejri et al., 2018 

 

Mycosubtilin 

 

 

idem idem idem Pure ~100 µM same study 

Fengycin 

 

 

B. 

amyloliquefaciens 

FZB42 

Tomato S. sclerotiorum Pure ~60 µM Farzand et al., 

2019 
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amyloliquefaciens 

S13-3 

Strawberry Colletotrichum 

gloeosporioides 

Pure 10µM 

 

Yamamoto et al., 

2014 
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amyloliquefaciens 

41B-1 

Cotton Verticillium 

dahliae 

Pure 50 µM  Han et al., 2015 

 

  

 

Arabidopsis C. 

gloeosporioides 

Pure 10 µM Kawagoe et al., 

2015 

 B. vallismortis 

EXTN-1 

Chili pepper Phytophthora 

capsici  

Pure 1, 10 µM  Park et al., 2016 

Massetolide A   

 

 

Pseudomonas 

fluorescens 

SS101 

Tomato  P. infestans Mutant,  

pure ~ 45, 90 µM 

 

Tran et al., 2007 

 

Orfamide 

 

Pseudomonas sp. 

CMR12a 

Brassica 

chinensis 

R. solani AG 2-1  

R. solani AG 4-

Mutant  Olorunleke et al., 

2015 



 25 

 Bean HGI 

 Pseudomonas sp. 

CMR12a 

Bean R. solani AG2-2 Mutant, 

pure 1 - 100 nM 

Ma et al., 2016 

 Pseudomonas sp. 

CMR12a 

Rice Cochliobolus 

miyabeanus 

 

Mutant,  

pure 25 µM 

Ma et al., 2017 

Sessilin 

 

 

Pseudomonas sp. 

CMR12a 

Bean R. solani AG 2-2 

R. solani AG 4 - 

HGI 

Mutant  D’aes et al., 

2011 

 

 Pseudomonas sp. 

CMR12a 

 

 

Brassica 

chinensis 

Bean 

 

R. solani AG 2-1  

R. solani AG 4-

HGI 

Mutant  Olorunleke et al., 

2015 

 

 

 

Pseudomonas sp. 

CMR12a 

 

 

Bean R. solani AG2-2 Mutant,  

crude extract 1, 

10 µg/L 

Ma et al., 2016 

Lokisin 

 

Pseudomonas sp. 

COR10 

Rice M. oryzae Crude extract 25 

µg/ml, 

one CLP-

producing strains 

Omoboye et al., 

2019 

 

WLIP Pseudomonas sp. 

COW10  

idem idem Idem same study 

Entolysin 

 

 

Pseudomonas sp. 

COR5 

 

idem idem idem same study 

Rhamnolipids     

 

 

P. aeruginosa Grapevine B. cinerea Pure ~150 µM Varnier et al., 

2009 

 

 P. aeruginosa Arabidopsis P. syringae pv 

tomato, 

Hyaloperonospo

ra arabidopsidis, 

B. cinerea 

Pure ~300 µM Sanchez et al., 

2012 

 P. aeruginosa Brassica napus B. cinerea Pure 10, 100 μM Monnier et al., 

2018 

N-alkylated benzylamine derivative 



 26 

NABD P. putida BTP1  Bean B. cinerea Mutant,  

pure 0.2 μM 

Ongena et al., 

2005 

 

 P. putida BTP1 Bean 

Cucumber 

B. cinerea 

Colletotrichum 

lagenarium 

Pure 1 μM Ongena et al., 

2008 

 

Siderophores      

Pyoverdine  P. fluorescens 

CHA0 

Tobacco  Tobacco 

necrosis virus 

(TNV) 

Mutant Maurhofer et al., 

1994 

 P. fluorescens 

WCS374 

 

Radish  Fusarium 

oxysporum f. sp. 

raphani  

Mutant, 

pure 70 µg/root 

Leeman et al., 

1996 

 P. putida 

WCS358 

Tomato 

Bean 

Arabidopsis 

Colletotrichum 

lindemuthianum 

B. cinerea 

P. syringae pv. 

tomato 

Mutant, 

Pure 3.02 μg 

pyoverdine/g 

soil 

Meziane et al., 

2005 

 

 P. putida 

WCS358r  

 

Eucalyptus 

urophylla 

Ralstonia 

solanacearum 

Mutant,  

pure 10–100 

µg/ml 

Ran et al., 2005 

 P. fluorescens 

WCS374r 

Rice M. oryzae Mutant,  

pure 70 µg per 

root 

De 

Vleesschauwer 

et al., 2008 

Salicylic acid P. aeruginosa 

7NSK2 

Bean  B. cinerea Pure 100 nM De Meyer et al., 

1999 

 P. aeruginosa 

7NSK2 

Grapevine B. cinerea Mutant Verhagen et al., 

2009 

Pyochelin 

+SA/pyoverdine 

P. aeruginosa 

7NSK2 

Tomato  B. cinerea Mutant Audenaert et al., 

2002 

Elicitors with antibiotic function 

DAPG  P. fluorescens 

CHA0 

Tomato  Meloidogyne 

javanica 

Mutant 

 

Siddiqui and 

Shaukat, 2003 

 P. fluorescens 

CHA0 

Arabidopsis Peronospora 

parasitica 

Mutant,  

pure 10, 100 µM 

Iavicoli et al., 

2003 

 P. fluorescens 

Q2-87 

Arabidopsis P. syringae pv. 

tomato 

Mutant,  

pure 10 - 250 

µΜ 

Weller et al., 

2012 



 27 

 

 

 Arabidopsis P. syringae pv. 

tomato 

B. cinerea 

Pure 10, 100, 

200 µM 

Chae et al., 2020 

Phenazine Pseudomonas sp. 

CMR12a 

 

Bean R. solani AG 2-2 

 R. solani AG 4- 

HGI 

Mutant D’aes et al., 

2011 

 

 Pseudomonas sp. 

CMR12a 

Brassica 

chinensis 

Bean  

R. solani AG 2-1  

R. solani AG 4-

HGI. 

Mutant 

 

Olorunleke et al., 

2015 

 Pseudomonas sp. 

CMR12a 

Rice 

Bean 

R. solani AG2-2 Mutant  

pure 0.1, 1 µM 

Ma et al., 2016 

Volatile Organic Compounds 

2,3-butanediol  

 

B. subtilis GB03, 

B. 

amyloliquefaciens 

IN937a 

Arabidopsis Erwinia 

carotovora 

subsp. 

carotovora 

Mutant  

 

Ryu et al., 2004 

 P. chlororaphis 

O6 

Tobacco E. carotovora  

 

Pure 100 μg/root   Han et al., 2006 

  Pepper  Cucumber 

mosaic virus, 

Tobacco mosaic 

virus, Pepper 

mottle virus, 

Tomato yellow 

leaf curl virus, 

Tomato spotted 

wilt virus 

Pure 1, 5, 10 

mM   

Kong et al., 2018 

 

 

 

Enterobacter 

aerogenes 

Maize Setosphaeria 

turcica 

Pure 22 mM D’Alessandro et 

al., 2014 

3-pentanol 

 

 

B. 

amyloliquefaciens 

IN937a 

Pepper Xanthomonas 

axonopodis pv. 

vesicatoria 

Pure 10 µM, 1 

mM 

Choi et al., 2014 

 

 

 

B. subtilis GB03 

 

Arabidopsis P. syringae pv. 

tomato DC3000 

Pure 100 nM, 10 

µM  

Song et al., 2016 

Tridecane Paenibacillus 

polymyxa E681 

 

Arabidopsis Pseudomonas 

syringae pv. 

maculicola 

ES4326 

Pure 100 µM Lee et al., 2012 

Hexadecane 

 

Paenibacillus 

polymyxa E681 

Arabidopsis P. syringae pv 

maculicola, 

Pectobacterium 

carotovorum 

Pure 1, 100 µM Park et al., 2013 
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  subsp. 

carotovorum 

Abbreviations: oxo-C14-HSL:  N,N-dimethyl-N- tetradecyl-N-benzylammonium; NABD: N,N-dimethyl-N- 783 
tetradecyl-N-benzylammonium; DAPG: 2,4-diacetyl phloroglucinol 784 
 785 
 786 


