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ABSTRACT 

The role of endogenous testosterone in the craniofacial growth of the young male rat was 

investigated. First, the effect of neonatal surgical castration was examined in a randomized, cross-

sectional study in which male Wistar rats were allocated to be either castrated or sham-operated 4 

h after birth. Then, the effect of prepubertal chemical castration was analysed in a second, 

randomized longitudinal study in which male Wistar rats were randomly allocated either to a 

control group or to two experimental groups, one injected with triptorelin at day 25 and the other 

injected on day 25 and on day 45. Every tenth day between 20 and 70 days of age for the first study, 

and between 30 and 110 days of age for the second, body length and weight were measured, 

cephalometric X-rays taken, and blood samples obtained. Neonatal and prepubertal castration 

resulted in decreased plasma concentrations of testosterone and in delayed growth of somatic and 

craniofacial components. The initiation, duration and magnitude of the effect was dependent on 

individual bones (cranial base, skull roof) and on the lower incisor, and related to the testosterone 

concentrations. These results suggest that testosterone effects participate in the process of normal 

craniofacial growth, particularly during puberty. 
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1 Introduction 

The increased use of hormone therapy in children (de Zegher et al., 1996) requires a detailed 

understanding of the basic effects of hormones on skeletal growth. Of special interest is 

testosterone therapy in boys with a constitutional delay in puberty, the purpose being to induce 

the pubertal growth spurt (Brown et al., 1995). Its effect on linear growth has been investigated 

(Bourguignon, 1993), but its effect on craniofacial growth is not known. As a number of studies 

show a relation between the craniofacial growth spurt and the peak height velocity in body length 

(Grave, 1973; Thompson and Popovich, 1973; Baughan et al., 1979; Fishman, 1982), it can be 

assumed that an effect will also be reflected in craniofacial growth. 

Androgens influence skeletal growth by direct and indirect (i.e., mediated by the growth 

hormone—IGF-I axis) mechanisms. Independent and additive contributions by gonadal steroid 

hormones and growth hormone to the adolescent growth spurt are evident (Jansson et al., 1985b; 

Kerrigan and Rogol, 1992). These findings were demonstrated in vitro (Corvol et al., 1987; Kasperk 

et al., 1989; 1990), in animals (Schoutens et al., 1984; Jansson et al., 1985a; Turner et al., 1989) and 

in clinical studies (Tanner et al., 1976; Laron et al., 1980; Attie et al., 1990; Keenan et al., 1993). 

Recently, a new concept of the effect of androgens in growth regulation via their conversion to 

oestrogens has been proved (Korach, 1994; Smith et al., 1994; and Morishima et al., 1995). The 

stimulatory effect of testosterone on body growth in rats by modulating their 

hypothalamopituitary functions was shown by Jansson et al. (1983). Neonatally secreted testicular 

androgens imprint on the high-amplitude pulses, characteristic of growth-hormone secretion in 

adult male rats, which are more favourable for somatic growth than the low-amplitude pulses in 

female rats (Jansson et al., 1984, 1985b). Further, the much stronger suppression of longitudinal 

growth by neonatal rather than prepubertal castration indicates the important effect of the 

amplitude of the growth-hormone pulse on growth (Jansson et al., 1985b). 

Very few studies have demonstrated effects of androgens on craniofacial growth (Riesenfeld, 1974; 

Stutzmann and Petrovic, 1978; Duncker et al., 1988), particularly in the pubertal period. Therefore, 

the present study was designed to clarify further the role of testosterone in pubertal craniofacial 

growth. To study the effects of endogenous testosterone secretion on the rat craniofacial complex, 

experiments were designed around neonatal mechanical and prepubertal chemical castration. 
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2. Material and methods 

2.1. COMPOSITION OF THE DIFFERENT GROUPS 

For the first study, pregnant inbred Wistar rats (n = 18) were obtained from the Animal Laboratories 

of the University of Leuven. After birth, 97 male offspring were taken and randomly divided into 

two groups, identified by toe amputation at birth (Reitsma, 1963). The experimental group was 

castrated (n = 52) 4 h after birth and the control group was sham-operated (n = 45). 

For the second study, pregnant inbred Wistar rats (n = 14) were similarly obtained. After weaning, 

male offspring were randomly divided into three groups: two experimental groups, I (n = 20) and II 

(n = 20), and a control (n = 24). 

Animals were pair-fed a diet adequate for their nutritional needs and were kept in an air-

conditioned and light controlled room with an ambient temperature of 238C. The cages each 

contained five to six rats. The protocol for animal use was reviewed and approved by the Ethics 

Committee of the Medical School, University of Leuven. 

2.2. DRUG ADMINISTRATION 

For the second study, testosterone release was pharmacologically suppressed at the pituitary level 

by the injection of triptorelin (Decapeptyl-Depot®; Ipsen- Biotech, France). As puberty in the Wistar 

rat starts around day 25 (Bourguignon et al., 1990), the animals were treated at day 25; both 

experimental groups were injected intramuscularly with 10 m triptorelin (100- 200 mg/kg body wt). 

Group II received a second injection of the drug on day 45, i.e., in the time period (day 40-50) in 

which the pubertal testosterone rise was observed in the control rats of the first study. The rats of 

the control group received no injections. With this chemical castration we intended to induce a 

delayed pubertal testosterone rise to set up a model for constitutional delay in puberty (Stanhope 

et al., 1985). 

2.3. REGISTRATION OF THE RECORDS 

For the first study, every tenth day from day 20 until day 70, seven to nine rats were taken from 

both groups; for the second study, all rats were taken every tenth day from day 30 to 110. A sagittal 

cephalometric radiograph of the skull was taken under general anaesthesia with a Rontgendevice 

Model D9 (Ritter A.G., Karlsruhe-Durlach) in a specially designed craniostat using a standardized 

technique (Jefferys, 1969) with an occlusal film (Agfa Dentus M2 Comfort 2.25/3). The dose of 

anaesthetic (Nembutal) was adapted to the weight of the rat (25-30 mg/kg). General measures of 

growth, body length (from the nose tip to the anus), and weight (with an electronic balance) were 

also registered. Before anaesthesia, blood was collected from the tail around the same time of day, 

between 7 and 10 a.m. Plasma testosterone, growth hormone and IGF-I were measured by 

radioimmunoassay. 
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2.4. CEPHALOMETRIC ANALYSIS 

Photographic images were taken from the developed X-ray images and recorded on a Kodak CD-

ROM. The craniofacial landmarks were digitized. The linear measurements were extracted from the 

data-points using a specially made program. The cephalometric technique included linear 

measurements from the analyses described by Vilmann (1969), Engstrom et al. (1982), Persson et 

al. (1989) and Kiliaridis et al. (1985). The choice of the craniofacial landmarks was made in relation 

to the function of different structures represented in the skull. The skull-roof measurements were 

represented by the distances 1-2, 4-5, 1-3, 1-5; the vertical height by the distance 6-5; the cranial-

base bones, including the basi-occipital, the basisphenoid, and the presphenoid, by 12-13, 13-14, 

14-15; the mandible by 10-11; and the incisors by 6-7, 8-9 

2.5. BLOOD SAMPLING 

Plasma testosterone was analysed using kits for testosterone 125I radioimmunoassay (Byk-sangtec 

Diagnostica GmbH and Co. KG, von Hevesy-Strasse, D-63128 Dietzenbach). The kit consisted of 

testosterone antiserum from rabbits, testosterone 125I tracer and testosterone standard dissolved 

in human serum and goat antirabbit gammaglobulins in polyethylene glycol solution. The 

detection limit of testosterone was 0.2 ng/ml. All experimental and control groups were assayed at 

the same time. The intra-assay coefficient of variation was between 5.8 and 6.3%. The interassay 

coefficient of variation was between 13.5 and 7.4%. 

Radioimmunoassay for growth hormone was done in duplicate on all samples, using kits provided 

by the National Institute of Diabetes and Digestive and Kidney Diseases (Rockville, MD, U.S.A). The 

kit consisted of rat GH-I-7 for iodination, standard rat GH- RP-2 and monkey antirat GH-S-5. All 

treatment and control groups were assayed at the same time. The within-assay coefficient of 

variation was 1% (Baes and Denef, 1987). 

Plasma IGF-I was measured by heterologous radioimmunoassay as described by Renaville et al. 

(1994). Dilution series of rat plasma with radioimmunoassay buffer showed good parallelism with 

the standard curve. The intra-assay coefficient of variation was 6.5% and the interassay coefficient 

was 15% (Hybrechts et al., 1985). 

2.6. DATA ANALYSIS 

Cross-sectional data from the first study were tested in the Procedure General Linear Model (2-way 

ANOVA) in SAS. An ANOVA model with two main effects, age and group differences and their 

interaction, was fitted to the data collected over the entire period. For variables showing a 

significant interaction effect, the same analysis was performed over the time period before and 

after physiological puberty (i.e., from day 20 to 40 and from day 40 to 70) (Bourguignon et al., 

1991). Also the tenth-day time period with the largest difference between the two groups was 

examined by the two-sample t-test. 
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Analysis of the longitudinal data in the second study required a statistical technique for repeated 

measurements so a linear mixed model was used. The inter- as well as the intra-animal and the 

group variability were taken into account. An initial check of the data was made with the SAS 

procedure MEANS. The original variables had a normal distribution. The model used was defined 

as follows. For each time-point and group (experimental I, II, and control), a mean response was 

estimated. A deviation of growth in the treated rats (groups I and II) from that of the control group 

was expected from day 25. Owing to the experimental design, groups I and II were combined for 

the day 25-45 period. As the effect of the drug may disappear sometime after the injection, it was 

reasonable to expect a catch-up towards normal growth for group I. Owing to the second injection 

at day 45, group II might have continued to deviate further from the control group, and also from 

group I. Sequential F-tests were used to compare the three groups. For the observed differences, 

we determined the latency as well as the time period during which the deviation was observed. 

Throughout the statistical analysis a significance level of p < 0.05 was used. 

Figure 1. Rat skull in the midsagittal direction with the different anatomical points which are defined in the 

table. 
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Table 1. Definition of the anatomical points 

No. Name Definition 

1 Posterior Lambdoidal suture The midpoint of the external surface of the occipital-interparietal suture 

2 Lambda The midpoint of the external surface of the parieto-interparietal suture 

3 E The intersection between the frontal bone and the most superior-anterior point of the posterior 
limit of the ethmoid bone 

4 Nasion The midpoint of the external surface of the fronto-nasal suture 

5 Rhinion The most anterior margin of the nasal bone 

6  The intersection of the palatal bone and the lingual surface of the upper lingual incisors 

7  The incisal edge of the maxillary incisor 

8  The incisal edge of the mandibular incisor 

9  The intersection between the lingual surface of the lower incisors and the most anterior point of 
the lingual alveolar bone 

10  The deepest point of the antegonial notch curvature 

11  Articulare: the intersection between the mandible and the sphenoid bone 

12  Basion: the anterior limit of the foramen magnum 

13  The midpoint of the endocranial surface of the spheno-occipital synchondrosis 

14  The midpoint of the endocranial surface of the intersphenoidal synchondrosis 

15  The midpoint of the anterior limit of the pre-sphenoid bone 
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Figure 2. Comparison of the significant results of neonatal castration 

 

(A) (means and standard errors of the mean as a function of rat age n = 7-9; control (○) and the 

castrated (●) rats) with these of prepubertal castration (B). The estimation of the means and the 

standard errors of the mean as a function of time for the different groups according to the model. 
Group I (—), experimental group with one injection (n = 20 day 30; n = 15 day 110); group II (- -), 

experimental group with two injections (n = 20 day 30; n =15 day 110), and the control group (• • •) 
(n = 24)) for body length and weight. 
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Figure 3.  

 

(A) Means and standard error of the mean of blood analysis parameters as a function of rat age for the control (○) and 

the neonatally castrated (●) rats: (i) testosterone level (ng/ml), (ii) growth hormone level (ng/ml) (n = 7-9). (B) The 

estimations of the means and the standard errors of the mean, for the testosterone level (ng/ml) as a function of time, for 
the different groups, according to the model. Group I (—), experimental group with one injection (n = 20 day 30; n =15 day 
110); Group II (—), experimental group with two injections (n = 20 day 30; n = 15 day 110), and the control group (••••) (n = 

24 day 30; n = 15 day 110) 

3. Results 

3.1. GENERAL GROWTH AND BLOOD ANALYSIS 

In the surgically castrated rats of the first study, body lengths and weights were significantly lower 

than in the control group. The effect was more pronounced at days 40-50 (p < 0.05) and days 50-60 

(p < 0.05), respectively (Fig. 2A). Testosterone and growth hormone were both significantly lower in 
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the neonatally castrated rats than in the control group. The reduction was most pronounced at 

days 40-50 for testosterone ( p < 0.05) and days 50-60 for growth hormone (p < 0.05) (Fig. 3A). 

For group II (second injection at day 45) of the chemically castrated rats, both total length and 

weight were affected from day 50 and remained lower than normal for the complete duration of 

the study (p < 0.005, p < 0.05, respectively) (Fig. 2B). Their blood showed reduced testosterone 

between day 50 and 80 (p < 0.0005) (Fig. 3B). No significant difference between the groups was 

found for growth hormone and IGF-I. 

3.2. CRANIOFACIAL VARIABLES 

The total length of the skull roof (1-5) was significantly shorter in the surgically castrated rats than 

in the control group; this growth inhibition was most pronounced from day 40 onward (p < 0.0005). 

Also, a smaller value from day 50 to 90 was found for group II (second injection at day 45) of the 

chemically castrated rats (p < 0.001) compared to controls (Fig. 4A/B(a)). 

The concatenation of some skull-roof bones (1-3) was significantly shorter (interaction effect) in 

the surgically castrated rats than in the control group, and this difference was the most 

pronounced at days 40-70 (p < 0.0005). A smaller length from day 50 to 100 was found in group II of 

the chemically castrated rats (p < 0.05) (Fig. 4A/B(b)). 

The nasal bone (4-5) in the surgically castrated group showed only a significant group difference 

and no significant interaction. Prepubertal chemical castration did not affect this bone. 

For the vertical dimension of the skull, the measurement (6-5) was significantly shorter (interaction 

effect) in the surgically castrated group than in the control group; this was most evident at days 40-

70 (p < 0.001). This measurement was significantly different from day 60 to 90 in the chemically 

castrated rats given two injections (group II) (with lower and higher values compared to the other 

groups) (p < 0.005). 

For the three bones of the cranial base, only the basisphenoid (13-14) was significantly smaller in 

the surgically castrated group; this reduction in growth was most pronounced at days 40-70 (p < 

0.005) (Fig. 4A(c)). The basi-occipital (12-13) and presphenoid (14-15) bones, and the total 

craniofacial base (12-15), showed the same tendency, although only a significant group difference 

not a significant interaction was found. A shorter basisphenoid (13-14) at day 70 and 80 (p < 

0.0005)(Fig. 4B(c)) and a shorter presphenoid (14-15) from day 50 to the end of the study (p < 

0.0005) were found in the group II chemically castrated rats. The basi-occipital bone in group II was 

shorter only on day 50 (p < 0.05). The total length of the cranial base in group II was shorter only on 

day 110 (p < 0.05). 

The overall length of the mandible (10-11) was not affected by neonatal surgical or by prepubertal 

chemical castration. 

The lower incisor (8-9) was significantly shorter in the surgically castrated group than in the control 

group. This length was shorter from day 60 in group II chemically castrated rats (p < 0.05) (Fig. 

4A/B(d)). For the upper incisor, no significant difference was found in either group. 



Published in : Archives of oral biology (1998), vol. 43, n° 11, pp. 861-871 
DOI: 10.1016/S0003-9969(98)00071-5 
Status : Postprint (Author’s version)  

 

 

 

4. Discussion 

Our experiments with neonatally and prepubertally castrated rats provide evidence for an effect of 

endogenous testosterone on the craniofacial complex. 

4.1. GENERAL GROWTH 

In both of our experiments, body length was significantly less in the castrated groups. The growth-

inhibition effects observed here were in line with published results on the effects of neonatal 

castration, and also with those for peri-and postpubertal castrated rats (Jansson et al. 1985a, 

Turner et al., 1989; Wakley et al., 1991); they all report a decrease of long-bone growth. 

In our study, body weight was also significantly reduced in the castrated groups. Schoutens et al. 

(1984) also reported a decrease in weight with postpubertal castration and Jansson et al. (1985a) 

found that neonatal castration only resulted in decreased body weight. 

4.2. BLOOD 

In both of our studies, an increase in testosterone was found in the control groups from day 40-50, 

which is in agreement with others' findings (Dohler and Wuttke, 1975; Eden et al., 1978). 

Bourguignon et al. (1991) studied the onset of puberty in rats and found an increase in testicular 

growth between day 20 and 50, which corresponds to the onset of testosterone release. In our 

neonatally surgically castrated rats, testosterone never reached the detection level, which 

indicates the effectiveness of the castration procedure. In our prepubertally chemically castrated 

rats, testosterone was temporarily reduced from days 50 to 80, which proved that the drug was 

effective while having only a temporary effect. The age at which the testosterone suppression 

became effective (day 50) was in the same period in which the pubertal rise in testosterone 

occurred in control rats (day 40-50). 

4.3. EFFECTIVENESS OF TRIPTORELIN 

Measurements in group I (drug given at day 25) rarely differed from those of the control group. In 

contrast, some measurements in group II (drug given at day 25 and day 45) were significantly 

different from those of the control group. This difference in effect between one and two injections 

can be explained as follows. The target area for the drug, i.e., the neuroendocrine activity, although 

promoting the onset of puberty at day 25 in rats (Bourguignon et al., 1990), may not be fully active 

at the time of the first injection, as testosterone release is not detectable before day 35 (Piascek 

and Goodspeed, 1978). The drug may therefore be most effective only at the time at which 

testosterone reaches a maximum in the control group. For the control rats, this pubertal increase 

in testosterone occurred between days 40 and 50 [in accordance with the age of 37-58 days 

described by Dohler and Wuttke (1975)]. The effect of the first treatment may have already 

disappeared before that time, while the second injection was timed in that period (day 45). It 

should be mentioned that we did not detect an initial increase in serum testosterone in any of the 
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experimental groups after the administration of triptorelin, as found in some studies (Redding et 

al., 1984), but not others (Asch et al., 1985). 

4.4. INTERPRETATION OF THE CEPHALOMETRIC RESULTS 

With neonatal surgical castration, the absence of testosterone effects on craniofacial bones may be 

responsible for the shorter bones, as the mechanism responsible for a decrease in the craniofacial 

variables after neonatal castration may be explained by the absence of the neonatal testosterone 

imprinting on the high-amplitude pulses of growth hormone in 30-day- old rats (Eden, 1979). 

The significant effect observed for the total skull roof indicates the effect of castration on sutural 

growth. As the individual bones of the skull roof did not show a significant interaction as compared 

to the total skull roof and concatenations of individual bones, the effect on the individual 

constituent pieces was apparently too small to be detected. However, when measurements for the 

pieces were combined, there was a summation of sutures, bringing the effect on the total skull roof 

to significance. In a study by Persson et al. (1989), the effect of hormonal manipulation (thyroxine 

injections) on craniofacial growth was investigated. In analogy with their findings the total length 

of the skull roof was smaller, indicating that the roof is a target for hormones. In our study, there 

was a greater effect on the anterior part of the skull roof than on the posterior part. The anterior 

part includes the frontonasal suture, which has a higher growth rate than the other skull-roof 

sutures (Cleall et al., 1969). This finding is also consistent with the observation that growth of the 

anterior part exceeds that of the neurocranium during the adolescent period of the rat (Moss and 

Baer, 1956; Engstrom et al., 1982). 

The effect observed for the vertical dimensions of the rat skull supports the idea that appositional 

growth is affected by testosterone deprivation. In line with these findings are those of Turner et al. 

(1989), who demonstrated that castration decreased periosteal growth in the rat tibia. 

For the cranial base, only the length of the basisphenoid bone had a significant interaction. The 

bipolar cartilage growth of the basisphenoid bone in contrast to the unipolar cartilage growth of 

the two other bones may explain the stronger effect on the basisphenoid. The non-significance of 

the effect on the measurement of the concatenation of the three bones of the cranial base may 

thus be explained by the smaller effect on two of the three bones. Alternatively, a possible change 

in the angle between the bones of the cranial base must also be considered (Vilmann, 1969). 

For the growth of the mandible, no significant effect was demonstrated. As the condyle embodies 

the cartilaginous growth site of the mandible and an effect could be demonstrated in the cranial 

base, which also grows by a cartilaginous mechanism (synchondrosis), an effect was expected. 

Imperfect identification of the condylion on the sagittal radiograph, which proved to be a diffcult 

mark to locate due to the superimposition of the surrounding structures (Killiany et al., 1987), may 

be responsible for the absence of a significant effect. 

For the length of the lower incisor a significant effect was observed, which indicates the effect of 

testosterone deprivation, and might result from compensatory growth of the tooth. The significant 

reduction in skullroof growth but not in mandibular growth could reduce the need for lower-



Published in : Archives of oral biology (1998), vol. 43, n° 11, pp. 861-871 
DOI: 10.1016/S0003-9969(98)00071-5 
Status : Postprint (Author’s version)  

 

 

 

incisor growth required for upper-incisor contact. However, an effect of growth hormone on root 

formation and enamel mineralization has been demonstrated in dwarf rats (Symons et al., 1995). 

With prepubertal chemical castration, the total skull roof, concatenations of skull-roof bones, 

basisphenoid length, presphenoid length, and the lower incisor were significantly shorter. This 

growth suppression followed the suppression of testosterone (at day 50). The effect of triptorelin 

on the testosterone was only temporary (from day 50 to 80). In most craniofacial structures with 

suppressed growth, a catch-up effect was observed related to the normalization of the 

testosterone. In some structures the growth suppression lasted longer than the duration of the 

testosterone suppression. The presphenoid bone (19-20) of the cranial base, the lower-incisor 

length, and the general growth measures of body length and weight, had not caught up, even by 

the end of the study (day 110). These results are in line with those of Turner et al. (1990), who 

proved an effect of prepubertal castration on radial growth of the tibia. 

Testosterone has an important role in bone growth (Kasperk et al., 1990), which has also been 

documented in histological studies on sutures, synchondroses and periosteal surfaces of normal 

rat skulls (Cleall et al., 1969). It may therefore be that the altered growth in the rat skull is primarily 

caused by a modified bone growth through changed concentrations of testosterone. These 

craniofacial effects could be possibly related to the absence of the pubertal testosterone surge, to 

the absence of the neonatal testosterone peak, or to a combination of these effects. 

Comparing the effects of neonatal castration with those of prepubertal castration, in both, 

structures showing periosteal growth (the total skull roof and concatenations of skull-roof bones) 

as well as structures showing cartilaginous growth (basisphenoid and body length), and also 

lower-incisor length, were affected. The growth-suppression effect was, however, larger for the 

neonatally castrated than for the prepubertally castrated rats. In the investigation by Jansson et al. 

(1985a), a more pronounced effect on long-bone length in neonatally than in prepubertally 

castrated rats was also found. On the other hand, in the chemically prepubertally castrated rat, the 

testosterone is reduced, but, at most time-points is still higher than in the neonatally castrated rat. 

In conclusion, our comparison of the effects of neonatal surgical castration and prepubertal 

chemical castration indicates that testosterone plays an important part in the normal pubertal 

growth of the craniofacial complex. No distinction based on growth mechanisms (periosteal or 

cartilaginous) could be made on basis of this study. 
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Figure 4. 

 

Comparison of the significant results of neonatal castration (A) (means and standard error of the mean as a function of 

rat age n = 7-9) (control (○) and the castrated (●) rats) with these of prepubertal castration (B) (The estimation of the 

means and the standard errors of the mean as a function of time for the different groups according to the model. Group I 

(—), experimental group with one injection (n = 20 day 30; n = 15 day 110); group II (- -), experimental group with two 
injections (n = 20 day 30; n =15 day 110), and the control group (••••) (n = 24)) for total skull-roof length (1-5) (a), 
concatenation of skull roof bones (1-3) (b), basisphenoid bone (13-14) (c) and lower-incisor length (8-9) (d) 
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