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Preamble - Category theory

A category C is a pair (O,H) where O is a set of objects and H a set of
arrows (or morphisms) between objects such that

- if f : o −→ o′ and g : o′ −→ o” then exists h = g ◦ f : o −→ o”.

- exists 1o : o −→ o such that f ◦ 1o = f and 1o ◦ f = f (the identity
arrow)

- the composition is associative.
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Examples of categories :

I Set = sets with functions as arrows,

I Top = topological spaces with continuous functions,

I Top' = topological spaces with functions,

I Group = groups with homomorphisms,

I Cat = Categories with functors.



Preamble - Category theory

Examples of categories :

I Set = sets with functions as arrows,

I Top = topological spaces with continuous functions,

I Top' = topological spaces with functions,

I Group = groups with homomorphisms,

I Cat = Categories with functors.



Preamble - Category theory

Examples of categories :

I Set = sets with functions as arrows,

I Top = topological spaces with continuous functions,

I Top' = topological spaces with functions,

I Group = groups with homomorphisms,

I Cat = Categories with functors.



Preamble - Category theory

Examples of categories :

I Set = sets with functions as arrows,

I Top = topological spaces with continuous functions,

I Top' = topological spaces with functions,

I Group = groups with homomorphisms,

I Cat = Categories with functors.



Preamble - Category theory

Examples of categories :

I Set = sets with functions as arrows,

I Top = topological spaces with continuous functions,

I Top' = topological spaces with functions,

I Group = groups with homomorphisms,

I Cat = Categories with functors.



Preamble - Category theory

A functor F between two categories C and D is a map such that

- ∀o ∈ C, F (o) ∈ D

- if f : o −→ o′ is an arrow in C, then

- F (f ) : F (o) −→ F (o′) is an arrow in D (covariant functor)
- F (f ) : F (o′) −→ F (o) is an arrow in D (contravariant
functor).

Two categories C et D are (dually) equivalent if there are
(contravariant) covariant functors F : C −→ D and G : D −→ C such
that for every o ∈ C and for every p ∈ D

o ∼= G (F (o)) and p ∼= F (G (p)).
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Preamble - Lattice theory

A lattice is an ordered set (L,≤) such that every two elements a, b ∈ L
have an unique supremum a ∨ b and an unique in�mum a ∧ b.

a ∧ b

a b

1

c a ∨ b



Preamble - Lattice theory

A Boolean algebra is a lattice B with the following conditions

1. B is distributive : meaning that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ,

2. B has a top element 1 and a bottom element 0,

3. For every a ∈ B, there exists an unique ¬a ∈ B such that
a ∧ ¬a = 0 and a ∨ ¬a = 1.

0

a ¬a

1
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BAlg = Boolean algebras with Boolean morphisms
Stone = zero-dimensional compact Hausdor� spaces with continuous
functions
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First extension

KHaus = Compact Hausdor� spaces with continuous functions
(We dropped the zero-dimensional property).

? KHaus

BAlg Stone



Several answers

KRFrm KHaus

BAlg Stone

DeV

KRFrm (By Isbell) = Compact regular frames with frames
homomorphism
DeV (By de Vries) = de Vries algebras with de Vries morphisms
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Theorem

KHaus is dually equivalent to KRFrm

X ∈ KHaus −→ LX = Ω(X ) ∈ KRFrm
L ∈ KRFrm −→ XL = pt(L) ∈ KHaus



De�nition

A de Vries algebra is a pair (B,≺) where B is a complete Boolean
algebra and ≺ is a binary relation on B satisfying

dV1 1 ≺ 1,

dV2 a ≺ b ⇒ a ≤ b,

dV3 a ≤ b ≺ c ≤ d ⇒ a ≺ d ,

dV4 a ≺ b, c ⇒ a ≺ b ∧ c ,

dV5 a ≺ b ⇒ ¬b ≺ ¬a,

dV6 a ≺ b ⇒ ∃c : a ≺ c ≺ b,

dV7 a 6= 0⇒ ∃b 6= 0 : b ≺ a.



Theorem

KHaus is dually equivalent to DeV

X ∈ KHaus −→ BX = RO(X ) ∈ DeV

where U ∈ RO(X ) if and only if U = U−◦

.
On RO(X ) we have the following operations

1. 1 = X and 0 = ∅

2. U ∨ O = (U ∪ O)−◦

3. U ∧ O = U ∩ O,

4. ¬U = Uc◦

5. U ≺ O ⇔ U− ⊆ O
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De�nition

If (B,≺) is a de Vries algebra, a round �lter F of (B,≺) is a lattice
�lter such that

a ∈ F ⇒ ∃b ∈ F : b ≺ a.

An end is a round �lter maximal among the set of round �lters. We
denote E(B) the set of ends of (B,≺).

B ∈ DeV −→ XB = E(B) ∈ KHaus.



Review of the situation

It is possible to determine a compact Hausdor� space X thanks to

1. its associated frame of open sets Ω(X ).

2. its associated de Vries algebra of regular open sets RO(X ).

Can we �nd something else which determine a compact Hausdor� space ?
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Uniformly complete bounded Archimedean `-algebras

KRFrm KHaus

BAlg Stone

DeV ubal

ubal(By Bezhanishvili) = Uniformly complete bounded Archimedan
`-algebra with morphisms with the right properties.



Uniformly complete bounded Archimedean `-algebras

De�nition

An `-algebra is an algebra (U, ·,+,∧,∨, 0, 1, r ·) such that :

1. (U,∧,∨) is a lattice,

2. (U, ·,+, 0, 1) is a ring,

3. (U,+, 0, r ·) is a linear space on R,

4. a ≤ b ⇒ a + c ≤ b + c ,

5. 0 ≤ a, b ⇒ 0 ≤ a · b,

6. U 3 a ≥ 0,R 3 r ≥ 0⇒ r · a ≥ 0.



Uniformly complete bounded Archimedean `-algebras

Theorem

KHaus is dually equivalent to ubal

X ∈ KHaus −→ UX = C (X ,R) ∈ ubal
U ∈ KRFrm −→ XU = Max`(U) ∈ KHaus

De�nition

Let U ∈ ubal, then I ⊆ U is an `-ideal if

1. I is a ring ideal,

2. I is convex,

3. I is closed for ∨.
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Second extension

De�nition

A topological space X is stably compact is it is compact, locally
compact, sober and such that saturated compacts are stable by �nite
intersection.

A function f : X −→ Y between topological spaces is proper if the
inverse image of a compact saturated set is a compact saturated set.

StKSp = Stably compact spaces with proper continuous functions.
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Let's shift the problem

StKFrm StKSp KPSp

KRFrm KHaus

BAlg Stone

DeV ubal

PrFrm ?

Theorem

(Folklore) StKSp is equivalent to KPSp



Compact po-spaces

De�nition

A compact po-space is a pair (X ,≤) where X is a compact space and
where ≤ is an order relation closed in X × X .

KPSp = compact po-spaces with continuous increasing functions.
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Why the modi�cation ?

Theorem

If X is a compact po-space, then X is homeomorph to Con(I (X ,R+)),
where

I I (X ,R+) is the set of the continuous increasing functions from X to
R+,

I Con(I (X ,R+)) is the set of maximal congruences on X .

The duality should be

X ∈ KPSp −→ I (X ,R+) ∈ ?
A ∈ ? −→ Con(A) ∈ KPSp
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A ∈ ? −→ Con(A) ∈ KPSp

To do list :

1. �nd a category axiomatizing I (X ,R+)

2. generalize the category ubal

3. establish a duality between this category and KPSp

4. Prove that this duality extends the one between ubal and KHaus
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1. Axiomatizing

De�nition

An `-semi-ring is an algebra (A,+, ·, 0, 1,∧,∨) such that :

1. (A,∧,∨) is a lattice,

2. (A,+, 0) and (A, ·, 1) are commutative monoids,

3. (A,+, ·) is distributive,

4. a ≤ b ⇔ a + c ≤ b + c ,

5. a ≥ 0,

6. a ≤ b ⇒ a · c ≤ b · c .



1. Axiomatizing

De�nition

1. An `-semi-ring A is bounded if

a ∈ A⇒ ∃n ∈ N : a ≤
n times︷ ︸︸ ︷

1 + ... + 1

:= n · 1.

2. An `-semi-ring is Archimedean if

((∀n ∈ N)n · a + b ≤ n · c + d)⇒ a ≤ c .

3. An `-semi-algebra is an `-semi-ring which is also an R+-algebra.
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2. Generalizing

We have to determine the functors between ubal and sbal

I (ubal −→ sbal)

U ∈ ubal −→ U+ := {a ∈ U : a ≥ 0} ∈ sbal.

I (sbal −→ ubal)

A ∈ sbal −→ Au := (A× A/ ∼) ∈ bal

where
(a, b) ∼ (c , d)⇔ a + d = b + c .
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3. Dualizing

We already know that if X ∈ KPSp, then

X ∼= Con(I (X ,R+)).

On the other side, if A ∈ sbal, we do not have

A ∼= I (Con(A),R+).
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3. Dualizing

Theorem

If A ∈ sbal then A ∼= I (Con(A),R+) if and only if

1. A is complete for the uniform norm and

2. A has the di�erence with constants property, i.e.

(∀r ∈ R)(∀a ∈ A)(r · 1 ≤ a⇒ ∃b ∈ A : a = b + r · 1).

De�nition

usbal = uniformly complete bounded Archimedean `-semi-algebra with
the di�erence with constants property with the right morphisms.
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3. Dualizing

Remark : The category usbal still works for the �rst (Axiomatizing) and
second (Generalizing) point !

To do list :

1. �nd a category axiomatizing I (X ,R+)

2. generalize the category ubal

3. establish a duality between this category and KPSp

4. Prove that this duality extends the one between ubal and KHaus
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4. Extending

KHaus KPSp

ubal usbal

1. If X ∈ KHaus, then

C (X ,R)+ = I (X ,R+)

2. If U ∈ ubal, then

Max`(U) ∼= Con((U+ × U+)/ ∼).
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Completed square

StKFrm StKSp KPSp

KRFrm KHaus

BAlg Stone

DeV ubal

PrFrm usbal



Further problems

1. We know how to go from usbal to KPSp and from KPSp to
StKSp. Is there a way to bypass this and go directly from usbal to
StKSp ? (We can ask the existence of the other compositions as
well)

2. X ∈ KHaus can be determined by the set C (X ,R) ∈ usbal, which
is mainly a R-linear space, but also by C (X ,C) ∈ C?-alg, which is a
C-linear space. Do we have a complex counterpart of I (X ,R+) ?

C?-alg ?

KHaus KPSp

ubal usbal
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Further problems

3. What if we change the way we extended the original problem ?
Consider
DLat = distributive lattices with lattices morphisms
(We dropped the complemented property)

KRFrm KHaus

BAlg Stone

DeV

DLat Priest

Priest(Priestley) = Priestley spaces with continuous increasing
functions.



Further problems

4. If we consider (B,≺) ∈ DeV, then the Boolean component
B ∈ BAlg has a dual X ∈ Stone and the relation ≺ can be
associated to a binary relation R on X .

Then, there is a duality between DeV and the category representing
(X ,R).
Do we have the same behaviour if we consider (L,≺) where L is a
distributive lattice and ≺ is an adequate binary relation on L ?

5. DeV can be considered as a extension of modal algebras. Do we
have a logic associated to this category ?
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