A Journey through Categories

Laurent De Rudder

Young Mathematicians Symposium of the Greater Region

September 2018

Preamble - Category theory

A category \mathbf{C} is a pair (O, H) where O is a set of objects and H a set of arrows (or morphisms) between objects such that

Preamble - Category theory

A category \mathbf{C} is a pair (O, H) where O is a set of objects and H a set of arrows (or morphisms) between objects such that

- if $f: o \longrightarrow o^{\prime}$ and $g: o^{\prime} \longrightarrow o^{\prime \prime}$ then exists $h=g \circ f: o \longrightarrow o^{\prime \prime}$.

Preamble - Category theory

A category \mathbf{C} is a pair (O, H) where O is a set of objects and H a set of arrows (or morphisms) between objects such that

- if $f: o \longrightarrow o^{\prime}$ and $g: o^{\prime} \longrightarrow o^{\prime \prime}$ then exists $h=g \circ f: o \longrightarrow o^{\prime \prime}$.
- exists $1_{\circ}: o \longrightarrow o$ such that $f \circ 1_{\circ}=f$ and $1_{\circ} \circ f=f$ (the identity arrow)

Preamble - Category theory

A category \mathbf{C} is a pair (O, H) where O is a set of objects and H a set of arrows (or morphisms) between objects such that

- if $f: o \longrightarrow o^{\prime}$ and $g: o^{\prime} \longrightarrow o^{\prime \prime}$ then exists $h=g \circ f: o \longrightarrow o^{\prime \prime}$.
- exists $1_{\circ}: \circ \longrightarrow o$ such that $f \circ 1_{o}=f$ and $1_{\circ} \circ f=f$ (the identity arrow)
- the composition is associative.

Preamble - Category theory

Examples of categories :

- Set $=$ sets with functions as arrows,

Preamble - Category theory

Examples of categories:

- Set $=$ sets with functions as arrows,
- Top = topological spaces with continuous functions,

Preamble - Category theory

Examples of categories:

- Set $=$ sets with functions as arrows,
- Top = topological spaces with continuous functions,
- Top' = topological spaces with functions,

Preamble - Category theory

Examples of categories :

- Set $=$ sets with functions as arrows,
- Top = topological spaces with continuous functions,
- Top' = topological spaces with functions,
- Group = groups with homomorphisms,

Preamble - Category theory

Examples of categories:

- Set $=$ sets with functions as arrows,
- Top = topological spaces with continuous functions,
- Top' = topological spaces with functions,
- Group = groups with homomorphisms,
- Cat $=$ Categories with functors.

Preamble - Category theory

A functor F between two categories \mathbf{C} and \mathbf{D} is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$

Preamble - Category theory

A functor F between two categories \mathbf{C} and \mathbf{D} is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o^{\prime}$ is an arrow in \mathbf{C}, then

Preamble - Category theory

A functor F between two categories \mathbf{C} and \mathbf{D} is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o^{\prime}$ is an arrow in \mathbf{C}, then
- $F(f): F(o) \longrightarrow F\left(o^{\prime}\right)$ is an arrow in \mathbf{D} (covariant functor)

Preamble - Category theory

A functor F between two categories \mathbf{C} and \mathbf{D} is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o^{\prime}$ is an arrow in \mathbf{C}, then
- $F(f): F(o) \longrightarrow F\left(o^{\prime}\right)$ is an arrow in \mathbf{D} (covariant functor)
- $F(f): F\left(o^{\prime}\right) \longrightarrow F(o)$ is an arrow in \mathbf{D} (contravariant functor).

Preamble - Category theory

A functor F between two categories \mathbf{C} and \mathbf{D} is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o^{\prime}$ is an arrow in \mathbf{C}, then
- $F(f): F(o) \longrightarrow F\left(o^{\prime}\right)$ is an arrow in \mathbf{D} (covariant functor)
- $F(f): F\left(o^{\prime}\right) \longrightarrow F(o)$ is an arrow in \mathbf{D} (contravariant functor).
Two categories \mathbf{C} et \mathbf{D} are (dually) equivalent if there are (contravariant) covariant functors $F: \mathbf{C} \longrightarrow \mathbf{D}$ and $G: \mathbf{D} \longrightarrow \mathbf{C}$ such that for every $o \in \mathbf{C}$ and for every $p \in \mathbf{D}$

$$
o \cong G(F(o)) \text { and } p \cong F(G(p))
$$

Preamble - Lattice theory

A lattice is an ordered set (L, \leq) such that every two elements $a, b \in L$ have an unique supremum $a \vee b$ and an unique infimum $a \wedge b$.

Preamble - Lattice theory

A Boolean algebra is a lattice B with the following conditions

1. B is distributive : meaning that $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$,
2. B has a top element 1 and a bottom element 0 ,
3. For every $a \in B$, there exists an unique $\neg a \in B$ such that $a \wedge \neg a=0$ and $a \vee \neg a=1$.

In the beginning

M.H. Stone

In the beginning

M.H. Stone

BAlg = Boolean algebras with Boolean morphisms
Stone $=$ zero-dimensional compact Hausdorff spaces with continuous functions

In the beginning

Theorem
BAIg is dually equivalent to Stone

BAlg - Stone

In the beginning

Theorem
BAIg is dually equivalent to Stone

BAlg - Stone

$$
\begin{aligned}
& X \in \text { Stone } \longrightarrow B_{X}=\operatorname{Clp}(X) \in \mathbf{B A l g} \\
& B \in \text { Balg } \longrightarrow X_{B}=\operatorname{Ult}(B) \in \text { Stone }
\end{aligned}
$$

First extension

KHaus = Compact Hausdorff spaces with continuous functions (We dropped the zero-dimensional property).

Several answers

Several answers

KRFrm (By Isbell) $=$ Compact regular frames with frames homomorphism
DeV (By de Vries) $=$ de Vries algebras with de Vries morphisms

Theorem
KHaus is dually equivalent to KRFrm

$$
\begin{aligned}
& X \in \text { KHaus } \longrightarrow L_{X}=\Omega(X) \in \mathbf{K R F r m} \\
& L \in \text { KRFrm } \longrightarrow X_{L}=\operatorname{pt}(L) \in \mathbf{K H a u s}
\end{aligned}
$$

Definition

A de Vries algebra is a pair (B, \prec) where B is a complete Boolean algebra and \prec is a binary relation on B satisfying
dV1 $1 \prec 1$,
dV2 $a \prec b \Rightarrow a \leq b$,
$\mathrm{dV} 3 a \leq b \prec c \leq d \Rightarrow a \prec d$,
$\mathrm{d} V 4 a \prec b, c \Rightarrow a \prec b \wedge c$,
$\mathrm{dV} 5 \mathrm{a} \prec b \Rightarrow \neg b \prec \neg a$,
dV6 $a \prec b \Rightarrow \exists c: a \prec c \prec b$,
dV7 $a \neq 0 \Rightarrow \exists b \neq 0: b \prec a$.

Theorem
KHaus is dually equivalent to DeV

$$
X \in \mathbf{K H a u s} \longrightarrow B_{X}=\mathcal{R O}(X) \in \mathbf{D e V}
$$

where $U \in \mathcal{R O}(X)$ if and only if $U=U^{-\circ}$

Theorem
KHaus is dually equivalent to DeV

$$
X \in \mathbf{K H a u s} \longrightarrow B_{X}=\mathcal{R O}(X) \in \mathbf{D e V}
$$

where $U \in \mathcal{R O}(X)$ if and only if $U=U^{-\circ}$.
On $\mathcal{R O}(X)$ we have the following operations

1. $1=X$ and $0=\emptyset$
2. $U \vee O=(U \cup O)^{-\circ}$
3. $U \wedge O=U \cap O$,
4. $\neg U=U^{\subset \circ}$
5. $U \prec O \Leftrightarrow U^{-} \subseteq O$

Definition

If (B, \prec) is a de Vries algebra, a round filter F of (B, \prec) is a lattice filter such that

$$
a \in F \Rightarrow \exists b \in F: b \prec a .
$$

An end is a round filter maximal among the set of round filters. We denote $\mathcal{E}(B)$ the set of ends of (B, \prec).

$$
B \in \mathbf{D e V} \longrightarrow X_{B}=\mathcal{E}(B) \in \mathbf{K} \text { Haus. }
$$

Review of the situation

It is possible to determine a compact Hausdorff space X thanks to 1. its associated frame of open sets $\Omega(X)$.

Review of the situation

It is possible to determine a compact Hausdorff space X thanks to 1. its associated frame of open sets $\Omega(X)$.
2. its associated de Vries algebra of regular open sets $\mathcal{R O}(X)$.

Review of the situation

It is possible to determine a compact Hausdorff space X thanks to 1. its associated frame of open sets $\Omega(X)$.
2. its associated de Vries algebra of regular open sets $\mathcal{R O}(X)$.

Can we find something else which determine a compact Hausdorff space?

Uniformly complete bounded Archimedean ℓ-algebras

ubal(By Bezhanishvili) = Uniformly complete bounded Archimedan ℓ-algebra with morphisms with the right properties.

Uniformly complete bounded Archimedean ℓ-algebras

Definition

An ℓ-algebra is an algebra $(U, \cdot,+, \wedge, \vee, 0,1, r \cdot)$ such that :

1. (U, \wedge, \vee) is a lattice,
2. $(U, \cdot,+, 0,1)$ is a ring,
3. $(U,+, 0, r \cdot)$ is a linear space on \mathbb{R},
4. $a \leq b \Rightarrow a+c \leq b+c$,
5. $0 \leq a, b \Rightarrow 0 \leq a \cdot b$,
6. $U \ni a \geq 0, \mathbb{R} \ni r \geq 0 \Rightarrow r \cdot a \geq 0$.

Uniformly complete bounded Archimedean ℓ-algebras

Theorem
KHaus is dually equivalent to ubal

$$
\begin{aligned}
& X \in \text { KHaus } \longrightarrow U_{X}=C(X, \mathbb{R}) \in \text { ubal } \\
& U \in \mathbf{K R F r m} \longrightarrow X_{U}=\operatorname{Max}_{\ell}(U) \in \mathbf{K H a u s}
\end{aligned}
$$

Uniformly complete bounded Archimedean ℓ-algebras

Theorem
KHaus is dually equivalent to ubal

```
\(X \in\) KHaus \(\longrightarrow U_{X}=C(X, \mathbb{R}) \in\) ubal
\(U \in \mathbf{K R F r m} \longrightarrow X_{U}=\operatorname{Max}_{\ell}(U) \in\) KHaus
```

Definition
Let $U \in$ ubal, then $I \subseteq U$ is an ℓ-ideal if

1. I is a ring ideal,
2. I is convex,
3. I is closed for V.

Second extension

Second extension

Second extension

Definition

A topological space X is stably compact is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

Second extension

Definition

A topological space X is stably compact is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

A function $f: X \longrightarrow Y$ between topological spaces is proper if the inverse image of a compact saturated set is a compact saturated set.

Second extension

Definition

A topological space X is stably compact is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

A function $f: X \longrightarrow Y$ between topological spaces is proper if the inverse image of a compact saturated set is a compact saturated set.

StKSp = Stably compact spaces with proper continuous functions.

Let's shift the problem

Theorem
(Folklore) StKSp is equivalent to KPSp

Compact po-spaces

Definition

A compact po-space is a pair (X, \leq) where X is a compact space and where \leq is an order relation closed in $X \times X$.

Compact po-spaces

Definition

A compact po-space is a pair (X, \leq) where X is a compact space and where \leq is an order relation closed in $X \times X$.

KPSp $=$ compact po-spaces with continuous increasing functions.

Why the modification?

Theorem
If X is a compact po-space, then X is homeomorph to $\operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)$, where

- $I\left(X, \mathbb{R}^{+}\right)$is the set of the continuous increasing functions from X to \mathbb{R}^{+},
- $\operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)$is the set of maximal congruences on X.

Why the modification?

Theorem
If X is a compact po-space, then X is homeomorph to $\operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)$, where

- $I\left(X, \mathbb{R}^{+}\right)$is the set of the continuous increasing functions from X to \mathbb{R}^{+},
- $\operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)$is the set of maximal congruences on X.

The duality should be

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

To do list :

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

To do list :

1. find a category axiomatizing $I\left(X, \mathbb{R}^{+}\right)$

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

To do list :

1. find a category axiomatizing $I\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

To do list :

1. find a category axiomatizing $I\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal
3. establish a duality between this category and KPSp

$$
\begin{aligned}
& X \in \mathbf{K P S p} \longrightarrow I\left(X, \mathbb{R}^{+}\right) \in ? \\
& A \in ? \longrightarrow \operatorname{Con}(A) \in \mathbf{K P S p}
\end{aligned}
$$

To do list :

1. find a category axiomatizing $I\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal
3. establish a duality between this category and KPSp
4. Prove that this duality extends the one between ubal and KHaus

1. Axiomatizing

Definition

An ℓ-semi-ring is an algebra $(A,+, \cdot, 0,1, \wedge, \vee)$ such that :

1. (A, \wedge, \vee) is a lattice,
2. $(A,+, 0)$ and $(A, \cdot, 1)$ are commutative monoids,
3. $(A,+, \cdot)$ is distributive,
4. $a \leq b \Leftrightarrow a+c \leq b+c$,
5. $a \geq 0$,
6. $a \leq b \Rightarrow a \cdot c \leq b \cdot c$.

1. Axiomatizing

Definition

1. An ℓ-semi-ring A is bounded if

$$
a \in A \Rightarrow \exists n \in \mathbb{N}: a \leq \overbrace{1+\ldots+1}^{n \text { times }}
$$

1. Axiomatizing

Definition

1. An ℓ-semi-ring A is bounded if

$$
a \in A \Rightarrow \exists n \in \mathbb{N}: a \leq \overbrace{1+\ldots+1}^{n \text { times }}:=n \cdot 1 .
$$

1. Axiomatizing

Definition

1. An ℓ-semi-ring A is bounded if

$$
a \in A \Rightarrow \exists n \in \mathbb{N}: a \leq \overbrace{1+\ldots+1}^{n \text { times }}:=n \cdot 1 .
$$

2. An ℓ-semi-ring is Archimedean if

$$
((\forall n \in \mathbb{N}) n \cdot a+b \leq n \cdot c+d) \Rightarrow a \leq c .
$$

1. Axiomatizing

Definition

1. An ℓ-semi-ring A is bounded if

$$
a \in A \Rightarrow \exists n \in \mathbb{N}: a \leq \overbrace{1+\ldots+1}^{n \text { times }}:=n \cdot 1 .
$$

2. An ℓ-semi-ring is Archimedean if

$$
((\forall n \in \mathbb{N}) n \cdot a+b \leq n \cdot c+d) \Rightarrow a \leq c .
$$

3. An ℓ-semi-algebra is an ℓ-semi-ring which is also an \mathbb{R}^{+}-algebra.

1.Axiomatizing

Theorem
If $X \in \operatorname{KPS} \boldsymbol{p}$ then $I\left(X, \mathbb{R}^{+}\right)$is a bounded Archimedean ℓ-semi-algebra.

1.Axiomatizing

Theorem
If $X \in \operatorname{KPS} \boldsymbol{p}$ then $I\left(X, \mathbb{R}^{+}\right)$is a bounded Archimedean ℓ-semi-algebra.

To do list :

1. find a category axiomatizing $/\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal
3. establish a duality between this category and KPSp
4. Prove that this duality extends the one between ubal and KHaus

1.Axiomatizing

Theorem
If $X \in \operatorname{KPS} \boldsymbol{p}$ then $I\left(X, \mathbb{R}^{+}\right)$is a bounded Archimedean ℓ-semi-algebra.

To do list :

1. find a category axiomatizing $I\left(X, \mathbb{R}^{+}\right): I\left(X, \mathbb{R}^{+}\right) \in$ sbal
2. generalize the category ubal
3. establish a duality between this category and KPSp
4. Prove that this duality extends the one between ubal and KHaus

2. Generalizing

We have to determine the functors between ubal and sbal

2. Generalizing

We have to determine the functors between ubal and sbal

- (ubal \longrightarrow sbal)

$$
U \in \text { ubal } \longrightarrow U^{+}:=\{a \in U: a \geq 0\} \in \text { sbal. }
$$

2. Generalizing

We have to determine the functors between ubal and sbal

- (ubal \longrightarrow sbal)

$$
U \in \text { ubal } \longrightarrow U^{+}:=\{a \in U: a \geq 0\} \in \text { sbal. }
$$

- (sbal $\longrightarrow \mathbf{u b a l})$

$$
A \in \text { sbal } \longrightarrow A^{u}:=(A \times A / \sim) \in \mathbf{b a l}
$$

where

$$
(a, b) \sim(c, d) \Leftrightarrow a+d=b+c .
$$

2. Generalizing

Theorem
If $U \in \boldsymbol{u b a l}$, then

$$
U \cong\left(U^{+} \times U^{+}\right) / \sim .
$$

2. Generalizing

Theorem If $U \in \boldsymbol{u b a l}$, then

$$
U \cong\left(U^{+} \times U^{+}\right) / \sim .
$$

To do list :

1. find a category axiomatizing $/\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal-
3. establish a duality between this category and KPSp
4. Prove that this duality extends the one between ubal and KHaus

3. Dualizing

We already know that if $X \in$ KPSp, then

$$
X \cong \operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)
$$

3. Dualizing

We already know that if $X \in \mathbf{K P S p}$, then

$$
X \cong \operatorname{Con}\left(I\left(X, \mathbb{R}^{+}\right)\right)
$$

On the other side, if $A \in$ sbal, we do not have

$$
A \cong I\left(\operatorname{Con}(A), \mathbb{R}^{+}\right)
$$

3. Dualizing

Theorem
If $A \in$ sbal then $A \cong I\left(\operatorname{Con}(A), \mathbb{R}^{+}\right)$if and only if

1. A is complete for the uniform norm and
2. A has the difference with constants property, i.e.

$$
(\forall r \in \mathbb{R})(\forall a \in A)(r \cdot 1 \leq a \Rightarrow \exists b \in A: a=b+r \cdot 1) .
$$

3. Dualizing

Theorem
If $A \in$ sbal then $A \cong I\left(\operatorname{Con}(A), \mathbb{R}^{+}\right)$if and only if

1. A is complete for the uniform norm and
2. A has the difference with constants property, i.e.

$$
(\forall r \in \mathbb{R})(\forall a \in A)(r \cdot 1 \leq a \Rightarrow \exists b \in A: a=b+r \cdot 1) .
$$

Definition
usbal $=$ uniformly complete bounded Archimedean ℓ-semi-algebra with the difference with constants property with the right morphisms.

3. Dualizing

Remark : The category usbal still works for the first (Axiomatizing) and second (Generalizing) point !

3. Dualizing

Remark : The category usbal still works for the first (Axiomatizing) and second (Generalizing) point !

To do list :

1. find a category axiomatizing $/\left(X, \mathbb{R}^{+}\right)$
2. generalize the category ubal
3. establish a duality between this category and KPSp
4. Prove that this duality extends the one between ubal and KHaus
5. Extending

4. Extending

1. If $X \in \mathbf{K H a u s}$, then

$$
C(X, \mathbb{R})^{+}=I\left(X, \mathbb{R}^{+}\right)
$$

4. Extending

1. If $X \in \mathbf{K H a u s}$, then

$$
C(X, \mathbb{R})^{+}=I\left(X, \mathbb{R}^{+}\right)
$$

2. If $U \in \mathbf{u b a l}$, then

$$
\operatorname{Max}_{\ell}(U) \cong \operatorname{Con}\left(\left(U^{+} \times U^{+}\right) / \sim\right)
$$

Completed square

Further problems

1. We know how to go from usbal to KPSp and from KPSp to StKSp. Is there a way to bypass this and go directly from usbal to StKSp? (We can ask the existence of the other compositions as well)

Further problems

1. We know how to go from usbal to KPSp and from KPSp to StKSp. Is there a way to bypass this and go directly from usbal to StKSp? (We can ask the existence of the other compositions as well)
2. $X \in$ KHaus can be determined by the set $C(X, \mathbb{R}) \in$ usbal, which is mainly a \mathbb{R}-linear space, but also by $C(X, \mathbb{C}) \in C^{\star}$-alg, which is a \mathbb{C}-linear space. Do we have a complex counterpart of $I\left(X, \mathbb{R}^{+}\right)$?
C^{\star}-alg $\rightarrow \quad ?$
!
KHaus \rightarrow KPSp
।
ubal \longrightarrow usbal

Further problems

3. What if we change the way we extended the original problem ? Consider DLat $=$ distributive lattices with lattices morphisms (We dropped the complemented property)

Priest(Priestley) $=$ Priestley spaces with continuous increasing functions.

Further problems

4. If we consider $(B, \prec) \in \mathbf{D e V}$, then the Boolean component $B \in$ BAlg has a dual $X \in$ Stone and the relation \prec can be associated to a binary relation R on X.

Further problems

4. If we consider $(B, \prec) \in \mathbf{D e V}$, then the Boolean component $B \in$ BAlg has a dual $X \in$ Stone and the relation \prec can be associated to a binary relation R on X.
Then, there is a duality between $\mathbf{D e V}$ and the category representing (X, R).

Further problems

4. If we consider $(B, \prec) \in \mathbf{D e V}$, then the Boolean component $B \in$ BAlg has a dual $X \in$ Stone and the relation \prec can be associated to a binary relation R on X.
Then, there is a duality between $\mathbf{D e V}$ and the category representing (X, R).
Do we have the same behaviour if we consider (L, \prec) where L is a distributive lattice and \prec is an adequate binary relation on L ?

Further problems

4. If we consider $(B, \prec) \in \mathbf{D e V}$, then the Boolean component $B \in$ BAlg has a dual $X \in$ Stone and the relation \prec can be associated to a binary relation R on X.
Then, there is a duality between $\mathbf{D e V}$ and the category representing (X, R).
Do we have the same behaviour if we consider (L, \prec) where L is a distributive lattice and \prec is an adequate binary relation on L ?
5. DeV can be considered as a extension of modal algebras. Do we have a logic associated to this category ?

Red panda

