A Journey through Categories

Laurent De Rudder

Young Mathematicians Symposium of the Greater Region

September 2018

- if $f: o \longrightarrow o'$ and $g: o' \longrightarrow o''$ then exists $h = g \circ f: o \longrightarrow o''$.

- if $f: o \longrightarrow o'$ and $g: o' \longrightarrow o''$ then exists $h = g \circ f: o \longrightarrow o''$.
- exists $1_o: o \longrightarrow o$ such that $f \circ 1_o = f$ and $1_o \circ f = f$ (the identity arrow)

- if $f: o \longrightarrow o'$ and $g: o' \longrightarrow o''$ then exists $h = g \circ f: o \longrightarrow o''$.
- exists $1_o: o \longrightarrow o$ such that $f \circ 1_o = f$ and $1_o \circ f = f$ (the identity arrow)

- the composition is associative.

Examples of categories :

Set = sets with functions as arrows,

Examples of categories :

- **Set** = sets with functions as arrows,
- **Top** = topological spaces with continuous functions,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Examples of categories :

- **Set** = sets with functions as arrows,
- **Top** = topological spaces with continuous functions,

Top' = topological spaces with functions,

Examples of categories :

- **Set** = sets with functions as arrows,
- **Top** = topological spaces with continuous functions,

- **Top'** = topological spaces with functions,
- **Group** = groups with homomorphisms,

Examples of categories :

- Set = sets with functions as arrows,
- **Top** = topological spaces with continuous functions,

- **Top'** = topological spaces with functions,
- **Group** = groups with homomorphisms,
- **Cat** = Categories with functors.

A functor ${\it F}$ between two categories ${\bf C}$ and ${\bf D}$ is a map such that

-
$$\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$$

A functor ${\it F}$ between two categories ${\bf C}$ and ${\bf D}$ is a map such that

-
$$\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$$

- if
$$f: o \longrightarrow o'$$
 is an arrow in **C**, then

A functor F between two categories C and D is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o'$ is an arrow in **C**, then
 - $F(f): F(o) \longrightarrow F(o')$ is an arrow in **D** (covariant functor)

A functor F between two categories C and D is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o'$ is an arrow in **C**, then
 - $F(f): F(o) \longrightarrow F(o')$ is an arrow in **D** (covariant functor) - $F(f): F(o') \longrightarrow F(o)$ is an arrow in **D** (contravariant functor).

A functor F between two categories C and D is a map such that

- $\forall o \in \mathbf{C}, F(o) \in \mathbf{D}$
- if $f: o \longrightarrow o'$ is an arrow in **C**, then
 - $F(f): F(o) \longrightarrow F(o')$ is an arrow in **D** (covariant functor) - $F(f): F(o') \longrightarrow F(o)$ is an arrow in **D** (contravariant functor).

Two categories **C** et **D** are (dually) equivalent if there are (contravariant) covariant functors $F : \mathbf{C} \longrightarrow \mathbf{D}$ and $G : \mathbf{D} \longrightarrow \mathbf{C}$ such that for every $o \in \mathbf{C}$ and for every $p \in \mathbf{D}$

 $o \cong G(F(o))$ and $p \cong F(G(p))$.

Preamble - Lattice theory

A **lattice** is an ordered set (L, \leq) such that every two elements $a, b \in L$ have an unique supremum $a \lor b$ and an unique infimum $a \land b$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Preamble - Lattice theory

A Boolean algebra is a lattice B with the following conditions

- 1. B is distributive : meaning that $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$,
- 2. B has a top element 1 and a bottom element 0,
- 3. For every $a \in B$, there exists an unique $\neg a \in B$ such that $a \land \neg a = 0$ and $a \lor \neg a = 1$.

M.H. Stone

 ${\bf BAlg}={\rm Boolean}$ algebras with Boolean morphisms ${\bf Stone}={\rm zero-dimensional}$ compact Hausdorff spaces with continuous functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem BAlg is dually equivalent to Stone

BAlg — Stone

(ロ)、(型)、(E)、(E)、 E) のQ(()

Theorem BAlg is dually equivalent to Stone

BAlg — Stone

$$X \in$$
Stone $\longrightarrow B_X = Clp(X) \in$ **BAlg**
 $B \in$ **Balg** $\longrightarrow X_B = Ult(B) \in$ **Stone**

(ロ)、(型)、(E)、(E)、 E) のQ(()

KHaus = Compact Hausdorff spaces with continuous functions (We dropped the zero-dimensional property).

? -- KHaus ↑ ↑ BAlg — Stone

・ロト・日本・モト・モート ヨー うへで

Several answers

Several answers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

KRFrm (By Isbell) = Compact regular frames with frames homomorphism DeV (By de Vries) = de Vries algebras with de Vries morphisms Theorem *KHaus* is dually equivalent to *KRFrm*

$$X \in \mathsf{KHaus} \longrightarrow L_X = \Omega(X) \in \mathsf{KRFrm}$$

 $L \in \mathsf{KRFrm} \longrightarrow X_L = \mathsf{pt}(L) \in \mathsf{KHaus}$

Definition

A **de Vries algebra** is a pair (B, \prec) where B is a complete Boolean algebra and \prec is a binary relation on B satisfying

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $dV1 \quad 1 \prec 1,$ $dV2 \quad a \prec b \Rightarrow a \le b,$ $dV3 \quad a \le b \prec c \le d \Rightarrow a \prec d,$ $dV4 \quad a \prec b, c \Rightarrow a \prec b \land c,$ $dV5 \quad a \prec b \Rightarrow \neg b \prec \neg a,$ $dV6 \quad a \prec b \Rightarrow \exists c : a \prec c \prec b,$ $dV7 \quad a \ne 0 \Rightarrow \exists b \ne 0 : b \prec a.$

Theorem *KHaus* is dually equivalent to **DeV**

$$X \in \mathsf{KHaus} \longrightarrow B_X = \mathcal{RO}(X) \in \mathsf{DeV}$$

where $U \in \mathcal{RO}(X)$ if and only if $U = U^{-\circ}$

Theorem *KHaus* is dually equivalent to **DeV**

$$X \in \mathsf{KHaus} \longrightarrow B_X = \mathcal{RO}(X) \in \mathsf{DeV}$$

where $U \in \mathcal{RO}(X)$ if and only if $U = U^{-\circ}$. On $\mathcal{RO}(X)$ we have the following operations

1.
$$1 = X$$
 and $0 = \emptyset$
2. $U \lor O = (U \cup O)^{-\circ}$
3. $U \land O = U \cap O$,
4. $\neg U = U^{c\circ}$

5. $U \prec O \Leftrightarrow U^- \subseteq O$

・ロト ・四ト ・ヨト ・ヨー うくぐ

Definition

If (B, \prec) is a de Vries algebra, a **round filter** F of (B, \prec) is a lattice filter such that

$$a \in F \Rightarrow \exists b \in F : b \prec a.$$

An **end** is a round filter maximal among the set of round filters. We denote $\mathcal{E}(B)$ the set of ends of (B, \prec) .

$$B \in \mathbf{DeV} \longrightarrow X_B = \mathcal{E}(B) \in \mathbf{KHaus}.$$

It is possible to determine a compact Hausdorff space X thanks to

1. its associated frame of open sets $\Omega(X)$.

It is possible to determine a compact Hausdorff space X thanks to

- 1. its associated frame of open sets $\Omega(X)$.
- 2. its associated de Vries algebra of regular open sets $\mathcal{RO}(X)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is possible to determine a compact Hausdorff space X thanks to

- 1. its associated frame of open sets $\Omega(X)$.
- 2. its associated de Vries algebra of regular open sets $\mathcal{RO}(X)$.

Can we find something else which determine a compact Hausdorff space ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Uniformly complete bounded Archimedean ℓ -algebras

ubal(By Bezhanishvili) = Uniformly complete bounded Archimedan ℓ -algebra with morphisms with the right properties.

Uniformly complete bounded Archimedean ℓ -algebras

Definition

An ℓ -algebra is an algebra $(U, \cdot, +, \wedge, \lor, 0, 1, r \cdot)$ such that :

- 1. (U, \wedge, \vee) is a lattice,
- 2. $(U,\cdot,+,0,1)$ is a ring,
- 3. $(U,+,0,r\cdot)$ is a linear space on $\mathbb R$,
- 4. $a \leq b \Rightarrow a + c \leq b + c$,
- 5. $0 \le a, b \Rightarrow 0 \le a \cdot b$,
- 6. $U \ni a \ge 0, \mathbb{R} \ni r \ge 0 \Rightarrow r \cdot a \ge 0.$

Uniformly complete bounded Archimedean *l*-algebras

Theorem *KHaus* is dually equivalent to **ubal**

$$X \in \mathsf{KHaus} \longrightarrow U_X = C(X, \mathbb{R}) \in \mathsf{ubal}$$

 $U \in \mathsf{KRFrm} \longrightarrow X_U = \mathsf{Max}_\ell(U) \in \mathsf{KHaus}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Uniformly complete bounded Archimedean ℓ -algebras

Theorem *KHaus* is dually equivalent to **ubal**

$$X \in \mathsf{KHaus} \longrightarrow U_X = C(X, \mathbb{R}) \in \mathsf{ubal}$$

 $U \in \mathsf{KRFrm} \longrightarrow X_U = \mathsf{Max}_\ell(U) \in \mathsf{KHaus}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Let $U \in \mathbf{ubal}$, then $I \subseteq U$ is an ℓ -ideal if

- 1. *I* is a ring ideal,
- 2. 1 is convex,
- 3. *I* is closed for \lor .
Second extension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Second extension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Second extension

Definition

A topological space X is **stably compact** is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

Definition

A topological space X is **stably compact** is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

A function $f : X \longrightarrow Y$ between topological spaces is **proper** if the inverse image of a compact saturated set is a compact saturated set.

Definition

A topological space X is **stably compact** is it is compact, locally compact, sober and such that saturated compacts are stable by finite intersection.

A function $f : X \longrightarrow Y$ between topological spaces is **proper** if the inverse image of a compact saturated set is a compact saturated set.

StKSp = Stably compact spaces with proper continuous functions.

Let's shift the problem

イロト 不得下 イヨト イヨト

2

Theorem (Folklore) **StKSp** is equivalent to **KPSp**

Compact po-spaces

Definition

A compact po-space is a pair (X, \leq) where X is a compact space and where \leq is an order relation closed in $X \times X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compact po-spaces

Definition

A compact po-space is a pair (X, \leq) where X is a compact space and where \leq is an order relation closed in $X \times X$.

KPSp = compact po-spaces with continuous increasing functions.

Why the modification ?

Theorem

If X is a compact po-space, then X is homeomorph to $Con(I(X, \mathbb{R}^+))$, where

▶ $I(X, \mathbb{R}^+)$ is the set of the continuous increasing functions from X to \mathbb{R}^+ ,

• Con $(I(X, \mathbb{R}^+))$ is the set of maximal congruences on X.

Why the modification ?

Theorem

If X is a compact po-space, then X is homeomorph to $Con(I(X, \mathbb{R}^+))$, where

- ▶ $I(X, \mathbb{R}^+)$ is the set of the continuous increasing functions from X to \mathbb{R}^+ ,
- $Con(I(X, \mathbb{R}^+))$ is the set of maximal congruences on X.

The duality should be

$$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in \mathbf{?}$$
$$A \in \mathbf{?} \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$$

$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in ?$ $A \in ? \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$

To do list :

$$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in ?$$

 $A \in ? \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$

<u>To do list</u> :

1. find a category axiomatizing $I(X, \mathbb{R}^+)$

$$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in \mathbf{?}$$
$$A \in \mathbf{?} \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$$

<u>To do list</u> :

- 1. find a category axiomatizing $I(X,\mathbb{R}^+)$
- 2. generalize the category **ubal**

$$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in \mathbf{?}$$

 $A \in \mathbf{?} \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>To do list</u> :

- 1. find a category axiomatizing $I(X,\mathbb{R}^+)$
- 2. generalize the category **ubal**
- 3. establish a duality between this category and KPSp

$$X \in \mathsf{KPSp} \longrightarrow I(X, \mathbb{R}^+) \in \mathbf{?}$$

 $A \in \mathbf{?} \longrightarrow \mathsf{Con}(A) \in \mathsf{KPSp}$

<u>To do list</u> :

- 1. find a category axiomatizing $I(X,\mathbb{R}^+)$
- 2. generalize the category **ubal**
- 3. establish a duality between this category and KPSp
- 4. Prove that this duality extends the one between ubal and KHaus

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Definition

An ℓ -semi-ring is an algebra $(A,+,\cdot,0,1,\wedge,\vee)$ such that :

- 1. (A, \wedge, \vee) is a lattice,
- 2. (A, +, 0) and (A, $\cdot, 1)$ are commutative monoids,
- 3. $(A, +, \cdot)$ is distributive,
- 4. $a \leq b \Leftrightarrow a + c \leq b + c$,

5. a≥0,

6. $a \leq b \Rightarrow a \cdot c \leq b \cdot c$.

Definition

1. An ℓ -semi-ring A is **bounded** if

$$a \in A \Rightarrow \exists n \in \mathbb{N} : a \leq \overbrace{1 + \ldots + 1}^{n \text{ times}}$$

Definition

1. An ℓ -semi-ring A is **bounded** if

$$a \in A \Rightarrow \exists n \in \mathbb{N} : a \leq \overbrace{1 + \ldots + 1}^{n \text{ times}} := n \cdot 1.$$

Definition

1. An ℓ -semi-ring A is **bounded** if

$$a \in A \Rightarrow \exists n \in \mathbb{N} : a \leq \overbrace{1 + \ldots + 1}^{n \text{ times}} := n \cdot 1.$$

2. An ℓ -semi-ring is Archimedean if

$$((\forall n \in \mathbb{N})n \cdot a + b \leq n \cdot c + d) \Rightarrow a \leq c.$$

(ロ)、(型)、(E)、(E)、 E) のQ()

Definition

1. An ℓ -semi-ring A is **bounded** if

$$a \in A \Rightarrow \exists n \in \mathbb{N} : a \leq \overbrace{1 + \ldots + 1}^{n \text{ times}} := n \cdot 1.$$

2. An *l*-semi-ring is Archimedean if

$$((\forall n \in \mathbb{N})n \cdot a + b \leq n \cdot c + d) \Rightarrow a \leq c.$$

3. An ℓ -semi-algebra is an ℓ -semi-ring which is also an \mathbb{R}^+ -algebra.

Theorem If $X \in KPSp$ then $I(X, \mathbb{R}^+)$ is a bounded Archimedean ℓ -semi-algebra.

Theorem

If $X \in KPSp$ then $I(X, \mathbb{R}^+)$ is a bounded Archimedean ℓ -semi-algebra.

<u>To do list</u> :

- 1. find a category axiomatizing $I(X, \mathbb{R}^+)$
- $2. \ \ \text{generalize the category} \ \ \textbf{ubal}$
- 3. establish a duality between this category and $\boldsymbol{\mathsf{KPSp}}$
- 4. Prove that this duality extends the one between **ubal** and **KHaus**

Theorem

If $X \in KPSp$ then $I(X, \mathbb{R}^+)$ is a bounded Archimedean ℓ -semi-algebra.

<u>To do list</u> :

- 1. find a category axiomatizing $I(X, \mathbb{R}^+)$: $I(X, \mathbb{R}^+) \in \mathsf{sbal}$
- $2. \ \ \text{generalize the category} \ \ \textbf{ubal}$
- 3. establish a duality between this category and $\boldsymbol{\mathsf{KPSp}}$
- 4. Prove that this duality extends the one between **ubal** and **KHaus**

We have to determine the functors between **ubal** and **sbal**

・ロト・4日ト・4日ト・4日・9000

We have to determine the functors between **ubal** and **sbal**

▶ (ubal
$$\longrightarrow$$
 sbal)
 $U \in$ ubal $\longrightarrow U^+ := \{a \in U : a \ge 0\} \in$ sbal.

・ロト・4日ト・4日ト・4日・9000

We have to determine the functors between ${\bf ubal}$ and ${\bf sbal}$

Theorem If $U \in ubal$, then

 $U\cong (U^+\times U^+)/\sim .$

Theorem If $U \in ubal$, then

$$U\cong (U^+\times U^+)/\sim .$$

<u>To do list</u> :

- 1. find a category axiomatizing $I(X, \mathbb{R}^+)$ -
- 2. generalize the category **ubal**
- 3. establish a duality between this category and KPSp
- 4. Prove that this duality extends the one between **ubal** and **KHaus**

We already know that if $X \in \mathbf{KPSp}$, then

$$X \cong \operatorname{Con}(I(X, \mathbb{R}^+)).$$

We already know that if $X \in \mathbf{KPSp}$, then

 $X \cong \operatorname{Con}(I(X, \mathbb{R}^+)).$

On the other side, if $A \in \mathbf{sbal}$, we do **not** have

 $A \cong I(\operatorname{Con}(A), \mathbb{R}^+).$

・ロト・日本・モト・モート ヨー うへで

Theorem If $A \in sbal$ then $A \cong I(Con(A), \mathbb{R}^+)$ if and only if

1. A is complete for the uniform norm and

2. A has the difference with constants property, i.e.

$$(\forall r \in \mathbb{R})(\forall a \in A)(r \cdot 1 \leq a \Rightarrow \exists b \in A : a = b + r \cdot 1).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem If $A \in sbal$ then $A \cong I(Con(A), \mathbb{R}^+)$ if and only if

- 1. A is complete for the uniform norm and
- 2. A has the difference with constants property, i.e.

$$(\forall r \in \mathbb{R})(\forall a \in A)(r \cdot 1 \leq a \Rightarrow \exists b \in A : a = b + r \cdot 1).$$

Definition

usbal = uniformly complete bounded Archimedean ℓ -semi-algebra with the difference with constants property with the right morphisms.

 \underline{Remark} : The category usbal still works for the first (Axiomatizing) and second (Generalizing) point !

(ロ)、(型)、(E)、(E)、 E) のQ()

 \underline{Remark} : The category usbal still works for the first (Axiomatizing) and second (Generalizing) point !

<u>To do list</u> :

- 1. find a category axiomatizing $I(X, \mathbb{R}^+)$
- 2. generalize the category **ubal**
- 3. establish a duality between this category and KPSp
- 4. Prove that this duality extends the one between **ubal** and **KHaus**

4. Extending

 $\begin{array}{c} \mathsf{KHaus} \to \mathsf{KPSp} \\ | & | \\ \mathsf{ubal} \to \mathsf{usbal} \end{array}$

4. Extending

1. If $X \in \mathbf{KHaus}$, then

$$C(X,\mathbb{R})^+ = I(X,\mathbb{R}^+)$$
4. Extending

1. If $X \in \mathbf{KHaus}$, then

$$C(X,\mathbb{R})^+ = I(X,\mathbb{R}^+)$$

2. If $U \in \mathbf{ubal}$, then

$$\operatorname{Max}_{\ell}(U) \cong \operatorname{Con}((U^+ \times U^+)/\sim).$$

Completed square

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 We know how to go from usbal to KPSp and from KPSp to StKSp. Is there a way to bypass this and go directly from usbal to StKSp ? (We can ask the existence of the other compositions as well)

- We know how to go from usbal to KPSp and from KPSp to StKSp. Is there a way to bypass this and go directly from usbal to StKSp ? (We can ask the existence of the other compositions as well)
- X ∈ KHaus can be determined by the set C(X, ℝ) ∈ usbal, which is mainly a ℝ-linear space, but also by C(X, ℂ) ∈ C*-alg, which is a ℂ-linear space. Do we have a complex counterpart of I(X, ℝ⁺) ?

 What if we change the way we extended the original problem ? Consider
DLat = distributive lattices with lattices morphisms (We dropped the complemented property)

Priest(Priestley) = Priestley spaces with continuous increasing functions.

イロト 不得 トイヨト イヨト

 If we consider (B, ≺) ∈ DeV, then the Boolean component B ∈ BAlg has a dual X ∈ Stone and the relation ≺ can be associated to a binary relation R on X.

4. If we consider (B, ≺) ∈ DeV, then the Boolean component B ∈ BAlg has a dual X ∈ Stone and the relation ≺ can be associated to a binary relation R on X. Then, there is a duality between DeV and the category representing (X, R).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 If we consider (B, ≺) ∈ DeV, then the Boolean component B ∈ BAlg has a dual X ∈ Stone and the relation ≺ can be associated to a binary relation R on X.

Then, there is a duality between **DeV** and the category representing (X, R).

Do we have the same behaviour if we consider (L, \prec) where L is a distributive lattice and \prec is an adequate binary relation on L?

 If we consider (B, ≺) ∈ DeV, then the Boolean component B ∈ BAlg has a dual X ∈ Stone and the relation ≺ can be associated to a binary relation R on X.
Then, there is a duality between DeV and the category representi

Then, there is a duality between **DeV** and the category representing (X, R).

Do we have the same behaviour if we consider (L, \prec) where L is a distributive lattice and \prec is an adequate binary relation on L?

5. **DeV** can be considered as a extension of modal algebras. Do we have a logic associated to this category ?

Red panda

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで