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Introduction

In this talk, we will broach an new algebraic environment which:

1.
2.
3.

extends the theory of canonical extensions,
extends the theory of subordination algebras,

solves an open problem related to the (multi-)modal classical
companions of DLE-logics,

. allows for a formal-topological characterization of analytic inductive

inequalities.



Slanted operators

Definition
Let A be a lattice
» a coordinatewise finitely join-preserving ns-ary map f : A° — A% is a
c-slanted operator on A if its range is included in K(A°).
> a coordinatewise finitely meet-preserving ng-ary map g : A° — A° is an
o-slanted operator on A if its range is included in O(A?).
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Examples of slanted operators

Examples of slanted operators occur in the literature in connection with:
» Residuals of o and m-extensions of standard operators:

e A= (A0, 0)a modal algebra, A’ = (A% (1%, {?) its canonical
extension and ¢, M the respective adjoints of (1° and ¢, then

A5 A and B[40 A A

are respectively c-slanted and o-slanted.
e A= (A, F,G) a lattice expansion, the residuals of every f € F
and every g € G are o-slanted or c-slanted operators.
» Quasi-modal algebras and generalised implication lattices:
e A quasi-modal algebra is a pair Q = (Q, ) where Q is a
modal algebra and A is a map Q — Z(Q) such that:
> Al =A,
> A(aAb)=~AanAb,
e A generalised implication lattice is a pair G = (G, =) where G
is a bounded distributive lattice and = is a map
G x G — Z(G) such that, among other properties:
» (avb)=c=(a=c)Nn(b=c),
> a= (bAc)=(a=b)N(a=0).



Examples of slanted operators

Examples of slanted operators occur in the literature in connection with:

» Subordination algebras
A subordination algebra is a pair S = (S, <) where S is Boolean algebra
and < C S? is such that

o <(a,—):={be€S|a=b}isan filter,
o <(—,a):={beS|b=<a}isan ideal.
Then the operators ¢ : S — S° and M : S — S° defined as

<>:S—>55:a»—)/\%(a,—)andl:S—>55:a»—>v<(—,a)

are respectively c-slanted and o-slanted.

» Godel-McKinsey-Tarski translation
For every Heyting algebra A whose Esakia dual is (X, <), then

[£] : Clop(X) — P(X)

is an o-slanted operator. This semantic box provides the interpretation for
the O of the Gddel translation



L languages

» The language Lie(F,G) is constituted by

a denumerable set PROP = {p, g, r,...} of propositional variables,
the classical lattices connectives A and V,

the classical lattices constants T and L,

disjoint sets of connectives F and G. Each connective h € F UG
has an associated arity n, and an associated order-type &p.

» The formulas of Lir are defined recursively as follow

pu=plL|TleAp|eVelh(®)
where p € PROP and h € FUGQG.



Slanted algebras

Definition

A slanted Ly g-algebra is a tuple A = (A, F, G) such that:
e Ais a bounded lattice;
e every f € F is an ns-ary c-slanted operator.

e every g € G is an ng-ary o-slanted operator.
Remark

Since
AC O(A’) N K(AY),

every standard Lrg-algebra is in particular a slanted L1 g-algebra.



Canonical extensions of slanted algebras

Let f: A" — A% be a c-slanted operator, then, we should have

(As)§ f_") (A5)5 (As)6 i) (A5)5
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Canonical extensions of slanted algebras

Let f: A" — A% be a c-slanted operator, then, we should have

(As)é f_(f) (Aé)é (As)(S g"
t t T
— A A5 A

Instead, we will have (as in Gehrke-J6nsson Math Scand section 2.3)



Canonical extensions of slanted algebras

o-extension for c-slanted ‘ m-extension for o-slanted

f7(k) = N{f(3) | 2 >* k} g"(0) = V{g(a) | a <= o}

f7(@) = V{f (k) | k <* @} g"(v)=/Ng"(0) |0 > v}

Lemma
1. f? and g™ are monotone;
2. {9 is coordinatewise completely join-preserving;

3. g" is coordinatewise completely meet-preserving.

Definition
The canonical extension of a slanted Lig-algebra A = (A, F,G) is the perfect
standard Lrg-algebra A% := (A%, F° G°) where

o FOi={f"|fecF},
o G°:={g" |g G}



Slanted canonicity

Definition
Let A = (A, F,G) be a slanted Ly g-algebra, an (admissible) assignment into
A is a map
V : Prop — A.
Definition

Let ¢ < be a Lrg-inequality and A be a slanted Ly g-algebra.
1. (A, V)E @< if (A’ eo V) = ¢ <9 in the standard sense.

2. A=< (or A’ =4 0 < 1) if (A%, e0 V) = @ < 4 for any admissible
assignment.

Definition
An Lig-inequality ¢ < 1) is s-canonical if for every slanted L g-algebra A,

A’ En <t implies A% =g <.

Theorem
Every analytic inductive inequality is s-canonical.



Slanted canonicity projects onto standard canonicity

Let A = (A, F,G) be a standard Lig-algebra.

» The canonical extensions of A qua slanted Lrg-algebra qua standard
L1,5-algebra correspond.

» An inequality ¢ < ¢ is valid in A qua slanted algebra if and only if it is
valid in A qua standard algebra.

Moreover
» If ¢ < 1) is s-canonical, then it is canonical.
» Examples:

e OOp < OOp is s-canonical (and hence canonical);
e p < OOp is canonical but not s-canonical.



Inductive inequalities

Every e-branch must be good, but no restrictions for e2-branches.
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Analytic inductive inequalities
Every branch must be good.
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Canonicity via correspondence

Proof of standard canonicity
If o <4 is a inductive inequality, then for any standard algebra A, we have

A Eap < AMEp<y

A% =4 ALBA(p < %) = A% = ALBA(p < 1)

Proof of slanted canonicity

If o <4 is an analytic inductive inequality, then for any slanted algebra A, we
have

A Eap <y A%soislw

A% =5 ALBA(p < 9) & A% = ALBA(p < %)

Main ingredients for topological Ackermann: compactness and intersection
lemma.



(Strictly) syntactically closed and open formulas

1. Syntactically closed and syntactically open £ -formulas: for every
frfeF, feF,g-€G",andgeg,
SCopu=plilTILleVelere | (3,9)]eg(@ )
SOs¢u=p|m|TILIYVe|vAy]|g (o) (7).

2. Strictly syntactically closed and strictly syntactically open £ -formulas:
for every f* € F*, and g* € G*,

SSCopu=plj|TILleVelene|f (@),
SSOs¢u=p|m|T|L[vVy|vAy]|g (¥,p)



Applications

> Generalise the Sahlqvist theorem for subordination algebras:

1. from tense/modal signatures to arbitrary signatures,
2. from Boolean setting to general lattice one,
3. from a duality based canonical extension to a constructive one,

» The canonicity via the Godel-McKinsey-Tarski translation is now
accessible to arbitrary distributive lattices

A Es@ < AEe<y
BlEr(p) <7(¥) & B Er(p) <n(v)



Conclusions and future work

» New algebraic structures, generalising previous concepts.
» New models for Lig-logics, suitable to solve translations issues.

» An unexpected (7) link with display calculi.

» A categorical and universal algebraic approach of slanted algebras.
» Arbitrary slanted maps.
» Topology in display calculi?



Mandatory last slide

Thank you for your attention!!



Signed generation tree

Example
Consider the language £ = (fi, 2, g) with e, = (1,0, 0), €, = (9) and
eg = (0,1). Then, the positive generation tree of the formula

v :=fi(p,q,R(p))VelpAg,r)
is given by
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