Chapitre 2

L'apport de la télédétection à l'étude des modèles éoliens du Niger méridional

Salifou KARIMOUNE et André OZER

Sommaire

Introduction
1. Les données climatiques récentes
 1.1. Les données pluviométriques
 1.2. Les vents
2. Mise en évidence du modèle éolien et détection des indicateurs de désertification
 2.1. Méthodologie
 2.1.1. La composition colorée
 2.1.2. Les filtrages directionnels
 2.1.3. Le seuillage interactif
 2.2. Les résultats
 2.2.1. Résultats des interprétations des photographies aériennes
 2.2.2. Les résultats des traitements de l'image SPOT
3. Apports de la campagne de vérité-terrain
 3.1. Observations morphologiques
 3.2. La remise en mouvement des sables
 3.3. Les processus de déflation

Conclusion

Références bibliographiques
Nous voudrions exprimer toute notre gratitude aux institutions suivantes pour l'aide financière ou logistique qu'elles ont apportée à nos recherches :
L'AGCD (l'Administration générale de la coopération au développement) qui a accordé une bourse de doctorat à S. KARIMOUNE et assumé le coût des photographies de la couverture aérienne de 1975.
L'AUPELF-UREF qui a fourni les subsides nécessaires à l'achat de la couverture aérienne de 1957 et d'une image SPOT dans le cadre d'une recherche partagée du Réseau Télédétection.
Les universités de Niamey et de Liège pour leur soutien logistique.

Résumé

Toute la partie méridionale du Niger, au sud d'une ligne Tahoua-Tanout-N'Guigmi, considérée comme la zone agricole du pays, est aujourd'hui affectée par la sécheresse et la désertification.

L'interprétation de photographies aériennes, acquises en 1957 et 1975, a permis de mettre en évidence, dans la région de Zinder, plusieurs familles de dunes, transversales, longitudinales, paraboliques, témoins de phases arides du Quaternaire. Il a été, en outre, possible de déceler des secteurs d'érosion et d'accumulations éoliennes actuelles.

L'analyse de l'image satellitaire SPOT, prise le 22 novembre 1987 et couvrant le même territoire, est venue confirmer et compléter les informations recueillies par photo-interprétation. Les différents traitements, composition colorée, filtrages, etc., font ressortir les systèmes dunaire déjà reconnus et permettent de localiser les zones de déflation et de réactivation éolienne par les différences de réflectances entre sables mobiles et sables fixés. Ils mettent aussi en évidence d'importants linéaments qui soulignent des fractures du socle.

La comparaison de situations, séparées par plus de 10 ans d'intervalle, permet d'apprécier les modifications morphologiques intervenues entre les trois dates de prise de vues. On peut ainsi suivre l'évolution de la désertification et cerner les secteurs les plus sensibles.

La télédétection, en rendant possible des observations diachroniques, apparaît comme un outil précieux du suivi de l'évolution de l'environnement et, par conséquent, aide à mieux appréhender les processus de sa dégradation.
INTRODUCTION

Une des caractéristiques morphologiques des régions sahéliennes qui a retenu l'attention de nombreux chercheurs est le modèle dunaire hérité. Mis en place pendant les phases arides quaternaires, il subit aujourd'hui des retouches par l'amplification des processus éoliens et la réduction de la couverture végétale, conséquences de la persistance de la sécheresse dans la région depuis une vingtaines d'années.

Au Niger, cette dégradation des milieux qui affecte la quasi-totalité de la zone agricole située au sud d'une ligne Tahoua-Tanout-N'Guigmi, menace constamment la survie des populations par la précarité des productions vivrières, l'érosion des sols et la réduction des superficies cultivables. Aussi s'avère-t-il nécessaire d'élaborer des stratégies visant à endiguer le phénomène. Ces stratégies doivent être fondées sur la connaissance de l'évolution des processus de désertification. D'où l'intérêt de déceler des indices de désertification et de suivre leur évolution dans le temps.

Les modifications morphologiques qu'impriment les vents actuels sur les paysages et notamment sur le modèle dunaire ancien, constituent l'un de ces indices dont le suivi permet d'appréhender la sensibilité des milieux à la désertification. Ce suivi est rendu possible grâce aux images diachroniques que nous fournit la télédétection. Ainsi, dans la région de Zinder (figure 2.1), l'analyse de photographies aériennes et divers traitements appliqués à une image satellitaire SPOT mettent en évidence l'existence de trois types d'édifices éoliens hérités du Quaternaire récent : des dunes transversales, des dunes longitudinales et des dunes paraboliques.

Les trois familles ont une répartition spatiale préférentielle : les dunes transversales sont quasi exclusivement dans la partie orientale du secteur d'étude, alors que les dunes longitudinales se localisent surtout à l'ouest d'un alignement NO-SE de massifs de quartzite. Les dunes paraboliques se situent au N et au NE de la localité de Zinder.

L'amplification récente des processus éoliens se traduit par la remobilisation des sables dunaire superficiels et la déflation des sédiments plus fins. Les sables mobiles sont caractérisés par une forte réfléctance alors que les secteurs d'intense déflation apparaissent sombres sur l'image satellitaire. La télédétection et l'évaluation de l'importance de ces phénomènes paraissent donc relativement aisées si l'on dispose d'images couvrant un même secteur et prises à des dates différentes. La remise à vif des sables intéresse surtout les parties sommitales des dunes. La déflation est très efficace dans les zones situées sous le vent des massifs résiduels. Elle y dégage, soit le substratum, soit des épandages caillouteux (essentiellement de la grenaille latéritique) souvent associés à des dépôts fins glacés en surface.
1. LES DONNÉES CLIMATIQUES RÉCENTES

L'analyse des données climatiques récentes montre une nette détérioration des totaux pluviaux annuels depuis 1967 et une augmentation de la vitesse des vents et donc, de leur efficacité.

1.1. LES DONNÉES PLUVIOMÉTRIQUES

Les régions sahéliennes sont caractérisées par une grande variabilité inter-annuelle des précipitations. La station de Zinder reflète bien cette caractéristique comme le montre le tableau 2.1.

La conséquence de la diminution quasi régulière des précipitations annuelles depuis une quarantaine d'années est la baisse du niveau des nappes et l'assèchement ou la diminution de l'étendue des lacs, la disparition correlative de certains arbres, voire de certaines espèces végétales.

Tableau 2.1 Précipitations annuelles à Zinder (1905-1987)

<table>
<thead>
<tr>
<th>Année</th>
<th>Pmm</th>
<th>Année</th>
<th>Pmm</th>
<th>Année</th>
<th>Pmm</th>
<th>Année</th>
<th>Pmm</th>
<th>Année</th>
<th>Pmm</th>
<th>Année</th>
<th>Pmm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>456,4</td>
<td>1920</td>
<td>512,8</td>
<td>1935</td>
<td>524,5</td>
<td>1950</td>
<td>609,9</td>
<td>1965</td>
<td>434,3</td>
<td>1980</td>
<td>524,1</td>
</tr>
<tr>
<td>1906</td>
<td>835,1</td>
<td>1921</td>
<td>389,7</td>
<td>1936</td>
<td>—</td>
<td>1951</td>
<td>500,2</td>
<td>1966</td>
<td>487,0</td>
<td>1981</td>
<td>288,1</td>
</tr>
<tr>
<td>1907</td>
<td>—</td>
<td>1922</td>
<td>490,1</td>
<td>1937</td>
<td>435,2</td>
<td>1952</td>
<td>661,9</td>
<td>1967</td>
<td>404,5</td>
<td>1982</td>
<td>446,3</td>
</tr>
<tr>
<td>1908</td>
<td>397,4</td>
<td>1923</td>
<td>425,0</td>
<td>1938</td>
<td>462,5</td>
<td>1953</td>
<td>584,4</td>
<td>1968</td>
<td>375,7</td>
<td>1983</td>
<td>304,4</td>
</tr>
<tr>
<td>1909</td>
<td>479,0</td>
<td>1924</td>
<td>460,6</td>
<td>1939</td>
<td>690,5</td>
<td>1954</td>
<td>699,7</td>
<td>1969</td>
<td>436,0</td>
<td>1984</td>
<td>282,9</td>
</tr>
<tr>
<td>1910</td>
<td>72,5 *</td>
<td>1925</td>
<td>580,0</td>
<td>1940</td>
<td>439,3</td>
<td>1955</td>
<td>500,4</td>
<td>1970</td>
<td>354,7</td>
<td>1985</td>
<td>424,5</td>
</tr>
<tr>
<td>1911</td>
<td>290,5</td>
<td>1926</td>
<td>421,9</td>
<td>1941</td>
<td>426,0</td>
<td>1956</td>
<td>610,2</td>
<td>1971</td>
<td>353,1</td>
<td>1986</td>
<td>440,5</td>
</tr>
<tr>
<td>1912</td>
<td>215,2</td>
<td>1927</td>
<td>559,0</td>
<td>1942</td>
<td>339,5</td>
<td>1957</td>
<td>599,7</td>
<td>1972</td>
<td>327,9</td>
<td>1987</td>
<td>219,8</td>
</tr>
<tr>
<td>1913</td>
<td>229,0</td>
<td>1928</td>
<td>658,9</td>
<td>1943</td>
<td>750,5</td>
<td>1958</td>
<td>526,0</td>
<td>1973</td>
<td>297,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>390,6</td>
<td>1929</td>
<td>548,8</td>
<td>1944</td>
<td>547,2</td>
<td>1959</td>
<td>481,0</td>
<td>1974</td>
<td>480,3</td>
<td>moy.</td>
<td>472,1</td>
</tr>
<tr>
<td>1915</td>
<td>402,2</td>
<td>1930</td>
<td>517,5</td>
<td>1945</td>
<td>542,8</td>
<td>1960</td>
<td>583,3</td>
<td>1975</td>
<td>470,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916</td>
<td>619,3</td>
<td>1931</td>
<td>566,2</td>
<td>1946</td>
<td>800,3</td>
<td>1961</td>
<td>577,2</td>
<td>1976</td>
<td>474,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>354,4</td>
<td>1932</td>
<td>576,1</td>
<td>1947</td>
<td>469,5</td>
<td>1962</td>
<td>467,8</td>
<td>1977</td>
<td>256,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td>627,3</td>
<td>1933</td>
<td>563,4</td>
<td>1948</td>
<td>371,4</td>
<td>1963</td>
<td>382,5</td>
<td>1978</td>
<td>607,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td>348,2</td>
<td>1934</td>
<td>442,4</td>
<td>1949</td>
<td>256,0</td>
<td>1964</td>
<td>658,5</td>
<td>1979</td>
<td>442,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Données incomplètes — *Données manquantes*

Il est cependant étonnant de croire que la pénurie climatique de ces dernières années est seule responsable de la réduction de la couverture végétale. Comme de nombreux auteurs l’ont souligné (Le Houerou, 1979; Bernus, 1979) et les auteurs cités par Le Houerou, la crise climatique s’est ajoutée à de nombreux facteurs anthropiques traumatisants. La croissance rapide des populations humaines (le taux de croissance naturelle de 1977 à 1988 au Niger est estimé à 3,37 %) entraîne des défrichements de plus en plus importants et des besoins accrus en bois de chauffage et d’œuvre.
Les champs se sont développés en direction du nord, dans des secteurs jadis considérés comme pastoraux. De même, l'augmentation considérable du cheptel a eu pour conséquence l'extension des terrains de parcours et de pâturage.

FIGURE 2.2 Évolution des précipitations moyennes quinquennales dans les principales stations du secteur d'étude de 1950 à 1987

Bref, la combinaison de tous ces facteurs a porté un coup préjudiciable à la couverture végétale. La sécheresse de ces dernières années a brutalement amplifié la dégradation et révélé la fragilité de l'équilibre de l'écosystème sahélien. Le déboisement a rendu le sol plus vulnérable en le privant de sa protection contre les processus éoliens. Ceux-ci sont devenus ainsi plus efficaces, occasionnant déflation et remobilisation des sables.
1.2. LES VENTS

Il ressort de l’analyse des données anémométriques que les vitesses moyennes mensuelles des vents à Zinder, de 1950 à 1987, restent en général inférieures à 5 m/s. Cependant, l’efficacité d’un vent ne dépend pas seulement de la vitesse. Elle dépend aussi de la turbulence qui est fonction de la rugosité du sol, de la topographie et du comportement thermique de la surface (Courer et Chamard, 1988). Il n’est donc pas étonnant que les massifs de quartzite qui constituent des obstacles et perturbent les courants éoliens transporteurs de sables jouent un rôle important dans l’efficacité des vents, même relativement faibles. Les sables dépourvus de couverture végétale induisent aussi, par leur faculté à s’échauffer rapidement, une instabilité dans les basses couches de l’air qui renforce la turbulence des courants éoliens.

Figure 2.3 Roses des vents à Zinder en 1975 et en 1987

Les vents peuvent être considérés comme efficaces lorsqu’ils ont une vitesse égale ou supérieure à 3 m/s (Bagnold, 1954). Or, on constate une nette progression de la proportion des vents de cette catégorie depuis
1967 (figure 2.3) accompagnée par une diversification des directions de vent. La comparaison des données de 1958, 1975 et 1987 donne les résultats suivants: en 1958, on retrouvait ce type de vents dans 21% des relevés, en 1975, dans 23% de ceux-ci et en 1987 dans 37%. Pour rendre les données comparables, nous n'avons considéré que les vents de vitesse ≥ 5m/s.

Cette augmentation de la proportion des vents efficaces alors même que la couverture végétale diminue se traduit par une remobilisation de plus en plus importante de sables et de poussières, causant l'accroissement du nombre de jours de chasse-sable et de brume sèche (figure 2.4). Il en résulte une érosion des sols par déflation et des remaniements des sables dunaires engendrant des modifications morphologiques repérables sur les photos aériennes et les images satellitaires.

FIGURE 2.4 Évolution du nombre de jours de brume sèche et de chasse-sable entre 1951 et 1988
2. MISE EN ÉVIDENCE DU MODELÉ ÉOLIEN ET DÉTECTION DES INDICATEURS DE DÉSERTIFICATION

2.1. MÉTHODOLOGIE

La mise en évidence du modelé dunaire a été réalisée par l’interprétation de photographies aériennes puis grâce à certains traitements d’une image satellitaire SPOT.

La détection et le suivi de l’évolution des indices de désertification impliquent la possibilité de disposer d’images prises au cours de périodes différentes d’un même secteur. Nous avons pu acquérir deux couvertures aériennes (IGN, France) de la région de Zinder. La première a été réalisée au cours des missions AOF (Afrique-Occidentale française), ND 32 x et ND 32 XVI de novembre-décembre 1957; les photos sont au 1:50 000. La deuxième couverture date du vol NIG 40/600 effectué en mars-avril 1975 et elle est constituée de photos au 1:60 000. À ces deux couvertures aériennes s’est ajoutée une image satellitaire SPOT prise le 22 novembre 1987.

La méthodologie a consisté en la confrontation des couvertures aériennes entre elles puis avec l’image satellitaire, d’une part, et en l’utilisation de certains traitements de l’image SPOT, d’autre part. Les traitements appliqués à l’imagerie satellitaire sont la composition colorée, des filtrages directionnels avec rehaussement de contraste et le seuillage interactif. Ils ont été réalisés sur logiciel Gipsy au Laboratoire Surfaces de l’Université de Liège.

2.1.1. La composition colorée

La composition colorée est une synthèse chromatique des trois couleurs additives (rouge, vert et bleu), chacune associée à un canal de l’image. Lorsque les données satellitaires ont été enregistrées dans plus de trois canaux, l’opérateur choisit en fonction de ses préoccupations les canaux auxquels les couleurs seront attribuées (Richards, 1986). Cette synthèse permet d’obtenir une image couleur appelée composition colorée en « fausses couleurs ». Lorsque l’un des trois canaux de la combinaison est dans l’infrarouge, l’image obtenue est dite composition colorée en « fausses couleurs infrarouge » ou simulation d’une émulsion infrarouge couleur.

Dans le cas de l’image SPOT traitée, le bleu a été attribué au canal X51, le vert au canal X52 et le rouge au canal X53 (planché III).

2.1.2. Les filtrages directionnels

Le but du filtrage directionnel est de mettre en valeur les éléments linéaires d’une image dans des directions choisies. Comme les dunes
transversales et longitudinales présentent des alignements dans des directions préférentielles, elles constituent des éléments morphologiques susceptibles d’être mis en évidence par des filtres gradients directionnels. Ceux-ci consistent à déplacer dans l’image à traiter une fenêtre de convolution de $n \times n$ pixels (ici 3 x 3). La valeur de la somme algébrique des produits des valeurs des pixels par les poids correspondants introduits dans la matrice de convolution est attribuée au pixel central. Lorsque la fenêtre de convolution a balayé l’ensemble de l’image (scène ou sous-scène), il en résulte une image mettant en relief les structures linéaires d’une direction donnée en fonction du type de gradient utilisé (gradient horizontal, vertical ou oblique, Joly, 1986).

Figure 2.5 Application d’un filtre gradient à 135° à la scène entière
Pour la mise en évidence des dunes transversales et longitudinales orientées respectivement NO-SE et NE-SO, deux gradients obliques ont été utilisés et appliqués à la bande XS₃ qui présente les meilleurs contrastes : un gradient à 45° et un autre à 135°. Les poids attribués aux pixels de l'assiette 3 × 3 sont les suivants :

<table>
<thead>
<tr>
<th></th>
<th>Filtre à 45°</th>
<th></th>
<th>Filtre à 135°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 0</td>
<td>0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 -1</td>
<td>-1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 -1 -1</td>
<td>-1 -1 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Un rehaussement des contrastes a permis d'améliorer la visualisation des résultats des filtrages (figures 2.5 et 2.6).

Figure 2.6 Filtrage à 45° (scène entière)
2.1.3. Le seuillage interactif (figure 2.7)

Le seuillage est une opération dont le but est de segmenter les valeurs de réflectance d'une scène ou d'une sous-scène en un certain nombre de classes. Chaque classe est figurée sur l'image par une plage de couleur homogène. Le nombre de classes et les seuils sont fixés par l'opérateur selon les détails qu'il veut faire apparaître (Richards, 1986).

Dans le cas de la sous-scène SPOT analysée, les valeurs de réflectance enregistrées dans le canal XS₃ s'étirent entre 43 et 131. Ces valeurs ont été regroupées en trois classes :
- la classe 1, qui couvre les valeurs de 43 à 86, correspond aux éléments à faible réflectance (dépressions humides, roches, zones de déflation),

Figure 2.7 Seuillage interactif (même secteur que la planche III)
– la classe 2 (87 à 107) est celle des réflectances moyennes,
– la classe 3 (108 à 131) met en évidence les secteurs à forte
réflectance associés au sable remis en mouvement.

Le choix des classes a été guidé par la réflectance d’éléments pris
comme référence, les dépressions humides pour les faibles valeurs et les
sables deltaïques très blancs pour les hautes valeurs. Le résultat du
seuillage a, après amélioration des contrastes, été soumis à un lissage
majoritaire afin de rendre plus nets les contours des différentes classes.

2.2. LES RÉSULTATS

2.2.1. Résultats des interprétations des photographies aériennes

L’interprétation des photographies aériennes a abouti à la réalisation de
cartes morphologiques faisant ressortir l’agencement des systèmes
dunaires dans le secteur d’étude (figure 2.8). Trois types d’édifices ont été
identifiés : des édifices transversaux, des édifices longitudinaux et des
édifices paraboliques.

2.2.1.1. Les dunes transversales

Bien qu’elles soient répandues sur l’ensemble du secteur à l’étude, elles
sont quasi exclusives dans la partie orientale où elles constituent de
longues chaînes orientées NO-SE, ayant environ 0,5 km de large. Les
versants SO sont en pente plus forte que les versants NE. Ces dunes sont
séparées par des dépressions interdunaires qui, en saison des pluies,
recueillent l’eau de ruissellement donnant ainsi naissance à des mares
temporaires. La coalescence de ces mares transforme certains interdunes
en véritables chenaux (Karimoune et al., 1990). C’est dans ces dépressions
qu’est concentrée la majeure partie de la végétation (Palmiers doun,
Hyphaene thebaica, baobabs, Adansonia digitata, etc.), d’où leur couleur
sombre sur les photos aériennes.

Dans la partie occidentale du secteur d’étude, les dunes transversales
semblent moins bien développées et quelquefois leurs caractéristi-
ques morphologiques s’estompent, donnant des formes arrondies ou
simplement un nappage sans organisation spécifique.

Selon Mainguet (1983), les dunes transversales sont des dunes de
dépôts. La localisation de ces édifices dans la région de Zinder semble
indiquer qu’ils résulteraient, du moins en partie, de dépôts de sables
corrélats à l’ascendance imposée par la barrière de reliefs de quartzite
aux courants éoliens. La conjonction d’une exportation de sables réduite à
l’aval et d’une alimentation en sables soutenue à l’amont des courants
eoliens a pu provoquer des accumulations sableuses modelées en dunes
Figure 2.8 Carte morphologique schématique de la région de Zinder
transversales. Ces accumulations ont pu s’ajouter à une couverture sableuse préexistante. Mainguet et al. (1983) ont montré que les sables des dunes du nord de Zinder sont partiellement allochtones.

2.2.1.2. Les dunes longitudinales

Elles se localisent surtout à l’ouest de l’alignement de reliefs de quartzite orientés NO-SE. Ce sont de longs cordons constitués de plusieurs éléments disposés les uns à la suite des autres et orientés NE-SO. Ces cordons de plusieurs dizaines de kilomètres de long ont entre 0,5 et 1,5 km de large. Leur profil transversal est en général dissymétrique avec un versant SE en pente forte et un versant NO en pente faible. Des dunes transversales viennent buter sur le flanc NO tandis que le flanc SE jouxté une zone à faible couverture sableuse ou, quelquefois, complètement dégagée. Cette zone est souvent occupée par une mare temporaire, et parfois traversée par un oued (Karimoune et al., 1990).

Les cordons longitudinaux prennent naissance dans le prolongement des couloirs qui séparent les massifs de quartzite ou en position sous le vent des lits de certains cours d’eau. Ceci laisse penser que les reliefs de quartzite et les cours d’eau jouent un rôle important dans la genèse de ces édifices. Les reliefs de quartzite induisent une turbulence dans la circulation des courants éoliens. En effet, le franchissement de ces obstacles par les flux éoliens donne naissance à des remous et à des tourbillons hélicoïdaux souvent évoqués pour expliquer la formation des dunes longitudinales (Bourcart, 1928; Hanna, 1969; Folk, 1971). En outre, les reliefs imposent aux vents transporteurs de sable une déviation latérale qui favorise les dépôts dans le prolongement des couloirs. Par contre, les secteurs situés sous le vent de ces reliefs sont soit dénudés, soit à faible couverture sableuse. Les vents qui y arrivent après avoir franchi les obstacles transportent peu ou pas de sables et sont animés de turbulence qui engendre la déflation. Ainsi, les dunes longitudinales apparaissent comme des édifices alimentés non seulement par des apports d’amont, mais aussi par les produits de l’érosion et de la déflation éoliennes qui sévissent dans les zones déprimées adjacentes. Les sables remis à vif s’échauffent rapidement, ce qui est susceptible de renforcer la turbulence éolienne et les mouvements hélicoïdaux qui déblaient les sédiments des zones dépressions et accentuent l’accumulation dans les cordons.

Quant aux cours d’eau, ils constituent, par leur plaine alluviale, une rugosité de la topographie qui perturbe aussi les courants éoliens. En outre, les sables alluviaux sont prélevés par les vents pour l’alimentation des dunes.

Les dunes longitudinales de la région de Zinder semblent relever de deux générations présentant des orientations et des degrés d’érosion sensi-
blemment différents. Les unes sont aplatis, étalées avec un profil transversal convexe, les autres conservent des pentes fortes, un relief vigoureux, et ont une répartition spatiale périodique au SE de Zinder.

2.2.1.3. Les dunes paraboliques

Elles sont situées au N et au NE de la localité de Zinder, dans un secteur où la couverture sableuse est discontinue. Ce sont des édifices dont les dimensions, perpendiculairement à la ligne du vent, sont de l'ordre de 0,2 km. Ce sont des formes en croissant dont le creux se situe au NE, c'est-à-dire au vent des édifices. Les dunes paraboliques se regroupent, formant des ensembles allongés NE-SO, parallèles à la ligne du vent. Elles passent par des formes intermédiaires à des édifices transversaux ou longitudinaux. Rappelons que ces formes témoignent des variations climatiques du Pléistocène supérieur. Selon Mainguet (1983), les dunes paraboliques sont des formes d'érosion et la plupart des auteurs s'accordent à penser qu'elles s'édifient dans des milieux relativement humides dotés d'une certaine couverture végétale. Aussi peut-on évoquer trois étapes dans la mise en place des dunes paraboliques de la région de Zinder:

1) Mise en place d'un modèle de dunes en tas (période aride).

2) Retour d'une phase humide à la faveur de laquelle la végétation s'installe. Le matériau sableux acquiert une certaine cohésion par compaction et pédogenèse.

3) Reprise éolienne et façonnage du creux au vent (transition vers une phase aride ou légère pulsation sèche?)

Il est à noter que l'on observe dans la région toutes les étapes de l'édification des dunes paraboliques, du petit creux qui constitue le stade initial aux formes élaborées en U ou en V.

2.2.1.4. Chronologie des dunes pléistocènes

Les dunes du Niger méridional ont été mises en place pendant les phases arides quaternaires. D'ailleurs, les grandes lignes de la succession des périodes climatiques sèches et humides du Quaternaire supérieur semblent bien établies au Sahel, même si des divergences existent quant à l'ampleur des phénomènes (Durand et Lang, 1986). Les auteurs ayant travaillé dans le bassin tchadien distinguent:

- Une période aride antérieure à 50 000 ou 60 000 ans BP qui aurait mis en place l'« Erg ancien » qui s'étend jusqu'à 10 ou 12° N au Nigeria.
— Une phase humide, le Ghazalien, entre 40 000 et 20 000 ans BP. Cette phase humide qui a atteint son maximum vers 22 000 ans BP aurait été interrompue par une récurrence sèche entre 35 000 et 29 000 ans BP (Durand et Mathieu, 1979-1980).

— Le Nigéro-Tchadien (12 000 à 7 000 ans BP) est la deuxième grande période humide qui, après le Ghazalien, a donné lieu à la formation de lacs et mares plus ou moins pérennes dans les dépressions et couloirs interdunaires.

— Après le Nigéro-Tchadien, d’autres variations climatiques de moindre ampleur se sont succédées, la tendance vers l’aridification l’emportant depuis 2 500 ou 3 000 ans BP (Völkel et Grunert, 1990).

2.2.1.5. Les indices de désertification

La comparaison des deux couvertures aériennes (1957-1958 et 1975) fait ressortir d’importants changements d’état de surface des sables et des modifications morphologiques qui peuvent être considérées comme des indices de désertification :

— Les crêtes dunaires sont devenues, la plupart du temps, plus blanches, signe de la diminution du couvert végétal et de la remise en mouvement des sables.

— Au départ de champs fonctionnels s’observent des stries éoliennes, en particulier dans la partie nord où la végétation est plus ténue.

— À la latitude de Zinder, les limites des champs matérialisées par de la végétation permanente favorisent les accumulations sableuses facilement repérables sur les photographies aériennes de 1975.

— Dans les zones situées sous le vent des massifs, la déflation a dénué des secteurs plus étendus.

Les différentes familles dunaires et certains indices de désertification ont pu être reconnus par les traitements de l’image satellitaire SPOT du 22 novembre 1987.
2.2.2. Les résultats des traitements de l'image SPOT

La mise en évidence des systèmes dunaires a été réalisée par l'application de gradients sur la scène entière. Les dunes longitudinales sont celles qui apparaissent le mieux; elles forment de longues traînées blanches de direction NE-SO (figure 2.6). Les dunes transversales sont représentées par de petites ondulations sinueuses. Elles apparaissent moins bien, car l'image satellitaire ne couvre que la partie occidentale du secteur d'étude, là où les édifices transversaux sont moins bien développés. Quant aux dunes paraboliques, elles n'existent pas sur le territoire couvert par l'image SPOT acquise.

La composition colorée appliquée à une sous-scène souligne la localisation des sables mobiles caractérisés par des plages blanches. Ils se situent sur les sommets des dunes et à l'aval-vent des zones de déflation. Les alluvions récentes ayant une faible cohésion sont aussi remaniées par le vent. Elles forment des auréoles blanches au pied des massifs, là où les oueds qui descendent des reliefs constituent des cônes coalescents. Les petits deltas constitués par les oueds qui se jettent dans les dépressions sont également caractérisés par la même blancheur que les sables des dunes et des cônes.

Les secteurs de déflation intense apparaissent plus sombres ou avec une teinte bleutée. La comparaison de ces plages dénudées avec la situation de 1975 permet d'apprécier l'évolution des processus et de mesurer l'ampleur de l'érosion des sols depuis l'installation de la sécheresse.

Le seuillage interactif rend encore mieux la discrimination entre sables remis en mouvement et sables peu ou pas remaniés par les vents actuels. Les premiers correspondent aux secteurs caractérisés par les plus fortes réflectances. Sur ce traitement, certaines parties des secteurs de déflation appartiennent à la même classe de réflectance que la roche nue, ce qui laisse supposer que la déflation dégage quelquefois le substratum.

3. APPORTS DE LA CAMPAGNE DE VÉRITÉ-TERRAIN

La campagne de vérité-terrain a eu lieu au cours des mois de janvier et février 1991 et a permis de confirmer la plupart des interprétations de laboratoire.

3.1. OBSERVATIONS MORPHOLOGIQUES

Du point de vue morphologique, trois systèmes dunaires ont été reconnus.

Les dunes transversales forment une immense toile ondulée qui donne l'impression à celui qui traverse le secteur d'ouest en est, d'une succession infinie de montées et de descentes. Dans le détail, les dunes
transversales ont une morphologie en fuseau dont les ailes sont légèrement recourbées vers l’ouest, rappelant les formes barkhaniques dont elles ont pu dériver. Le versant NE a des pentes variant autour de 3 % alors que le versant SO peut avoir des pentes de 7 %, 8 % et dépasser quelquefois 10 %. Cependant, des formes semblent s’imposer sur les autres et certaines dunes transversales « grimpent » les versants des dunes longitudinales. Tout semble indiquer qu’il y a eu au moins deux générations de dunes transversales.

Les dunes longitudinales, pour leur part, dominent généralement l’ensemble du modèle éolien. Elles peuvent avoir 20 à 25 m de hauteur relative. Là aussi les pentes varient en fonction du flanc considéré. Le versant SE peut avoir des pentes de 7 à 10 %, quelquefois plus, et le versant NO des pentes de 4 à 5 %. Toutefois, certaines dunes longitudinales cartographiées par photo-interprétation sont difficilement reconnaisssables sur le terrain tant elles sont aplanies, étalées; elles appartiennent probablement à une génération plus ancienne que celles qui constituent l’armature du modèle éolien. Le sommet des dunes longitudinales est fréquemment modelé en creux et en bosses témoignant de retouches ultérieures.

Les dunes paraboliques ont à peu près la même hauteur relative que les dunes transversales. Les pentes de la crête en direction du creux varient entre 2 et 4 %. Par contre, en direction du front, elles peuvent avoir des valeurs de 9 %.

La réactivation éolienne actuelle concerne tous les types dunaires.

3.2. LA REMISE EN MOUVEMENT DES SABLES (figures 2.9, 2.10 et 2.11)

L’amplification des processus éoliens actuels se traduit sur le terrain par une remobilisation superficielle des sables. En général, seuls les 5 ou 10 centimètres supérieurs sont concernés. Les sables sont exportés des sommets vers les fronts des dunes paraboliques et des dunes transversales, ce qui engendre une suralimentation de ces zones frontales en sable libre qui glisse par gravité vers le pied sous le vent des édifices. Au sommet de certaines dunes transversales, les tentatives de fixation par la plantation d’une haie ont abouti à la formation de véritables caoudeyres au vent de l’obstacle. Le sable arraché à ces zones d’érosion s’est accumulé contre la haie, a enseveli certains arbustes et constitué une petite dune d’obstacle de quelques mètres de hauteur. Ce type d’évolution a aussi été observé sur certaines dunes longitudinales.

Des caoudeyres se forment également sous les grands arbres où le piétinement des animaux a détruit la cohésion des sables. Les remanements des alluvions sableuses que nous avons pu constater dans certains
deltas et dans les lits des oueds peuvent aussi donner lieu, à la faveur d’un obstacle, à la formation de petites dunes.

Dans les champs qui ont été préparés de façon précoce, les signes du transport éolien sont très nets. Le sol a été nivelé et est recouvert d’un pavage de particules grossières. Dans les champs où les souches de mil n’ont pas été enlevées, ce transport devient sporadique et se traduit par la présence de nebkas sous le vent des tiges de mil.

3.3. LES PROCESSUS DE DÉFLATION (figure 2.12)

Les secteurs les plus sensibles sont ceux situés sous le vent des reliefs résiduels. La déflation y déblia les colluvions fines déposées par le ruissellement en saison des pluies. En effet, les secteurs où la déflation est très active sont en dépression et collectent les eaux ruisselées des dunes et reliefs environnants. Lorsque le vent emporte les produits fins de couverture, viennent à l’affleurement des épandages de grenaille latéritiques qui ressemblent à de véritables regs. La déflation dégage aussi des plages de roche en place et des horizons glacés qui bloquent l’infiltration des eaux de pluies. Ce sont ces horizons qui apparaissent en bleu sur la composition colorée. Les épandages de grenaille latéritiques sont de couleur sombre. La puissance des processus éoliens est attestée, dans ces secteurs de déflation, par l’anémomorphisme de la végétation. Tous les arbustes sont inclinés vers le SO, sens des vents dominants en saison sèche (figure 2.12).

CONCLUSION

Les phases arides du Quaternaire récent ont façonné dans la région de Zinder trois familles dunaires dont la répartition spatiale a probablement été influencée par les obstacles que constituent les massifs de quartzite et de grès et les disponibilités en sables. La mise en place de ces dunes a pu se faire au cours de deux grandes périodes sèches. Les pulsations arides de moindre ampleur ont engendré des remaniements superficiels dont les marques n’ont pas toutes été conservées dans la morphologie.

La sécheresse de ces dernières années a aussi apporté des modifications morphologiques, certes mineures, mais qui s’amplifient avec le temps. Les indices de désertification que nous avons détectés par confrontation des couvertures aériennes de 1957-1958 et de 1975 ont gagné du terrain entre 1975 et 1987. Les secteurs les plus sensibles sont les crêtes dunaires et les zones sous le vent des massifs rocheux. L’homme joue un rôle important dans l’amplification de ce processus par la préparation précoce des champs localisés parfois sur les sommets des dunes, par le déboisement, notamment pour ses besoins en bois de chauffage, par l’élevage, etc.
FIGURE 2.9 Remise en mouvement des sables au sommet d’une dune près de Zinder

FIGURE 2.10 Érosion éolienne et formation de caoudeyres au sommet de dunes transversales au sud de Wacha
FIGURE 2.11 Caoudeyrisation sous un *Balanites aegyptiaca*, au nord de Birni-Kazoé
En outre, la constitution d’une haie peut accentuer l’érosion. On devrait donc construire des haies en treillis comme cela se pratique dans certaines régions du Niger (régions de Keita-Bouza et du Manga), surtout que les vents actuels ont une gamme très variée de directions. On devrait de plus mettre en défens les secteurs les plus sensibles, notamment, ceux où la déflation provoque une grave dégradation des sols. Nous avons pu constater les différences énormes qui peuvent exister entre les zones protégées et celles qui ne le sont pas. On pourrait favoriser, dans les secteurs de déflation, la plantation d’arbres afin de régénérer ces zones qui, selon les témoignages recueillis, étaient, il y a une vingtaine d’années, de véritables forêts. La régénération pourra s’appuyer sur des programmes visant à favoriser l’infiltration des eaux (exemple des demi-lunes). Pour les besoins en eau des plantes, on pourra aussi exploiter les mares temporaires. Enfin, le repérage de réseaux de linéaments pourra guider la recherche d’aquifères.
RÉFÉRENCES BIBLIOGRAPHIQUES

PLANCHE III Composition colorée et annotée d'une sous-scène SPOT-1 acquise le 27 novembre 1987 sur la région de Zinder au Niger
Planche IV Schéma général d'intégration des trois niveaux d'information pour la modélisation spatiale de l'érosion

Données d'entrée
- Données météorologiques
- Données de télédétection

Système d'information
- Érosivité des pluies
- Taux de couverture
- Angle de pente
- Longueur de pente
- Distance au talweg
- Dénivelé au talweg
- Érodabilité des sols
- Mesures de protection
- Ruissellement de surface

Cartes et modèles
- Pertes de sol actuelles
- Potentiel érosif
- Taux de sédimentation

Modèles hydrologiques
- Évaluation de la précision et modélisation
- Décisions d'aménagement et de protection