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1 INTRODUCTION

Structural optimization consists in formulating the design problem of structural compo-
nents as an optimization problem in order to take advantage of mathematical programming
tools.

From a mathematical point of view, a quite general statement of the optimization
problem is given as following

(P )















min
x

g0(x)

s.t.: gj(x) ≤ ḡj j = 1 . . . m
xi ≤ xi ≤ xi i = 1 . . . n

(1)

The function g0 is the objective function of the problem, i.e. a cost function or a
performance index that has to be minimized in order to have a better design. In topology
optimization, this is for instance the compliance of the structure under the considered load
case.

The set of constraint functions gj (in number m) expresses the restrictions the design
is subject to in order to be feasible. For example these functions are some bounds upon a
stress measure to have resistance, restricted displacements, a volume resource or perimeter
bound. . .

The n variables xi are the design variables of the problem, that is, the parameters,
which can be modified, to improve the design. In the topology optimization context, the xi

variables are the element densities and the orientation parameters of the local microstruc-
ture. In optimization of composite structures, the xi variables may be the ply thicknesses
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Figure 1: Approximation concept

and orientations. The design variables are also subject to some very simple restrictions,
because of some physical or mathematical reasons (the density lies between 0 and 1, and
the orientation can be searched between 0 and π because of periodicity reasons). Other
constraints on design variables can come from technological or manufacturing arguments
like prescribed density regions in topology optimization. These special constraints on de-
sign variables are called side constraints. They generally call for a special treatment in the
algorithm because of their very simple structure.

The direct solution of optimization problem (P ) is totally prohibitive in structural
optimization, and furthermore in topology optimization, because of the computational cost
of the structural and sensitivity analysis of the problem. Indeed the problem of structural
optimization is highly non-linear, and implicit in terms of the design variables so that each
function evaluation would require a Finite Element (F.E.) analysis.

As soon as the seventies, Schmidt and his co-workers (e.g. Schmidt and Farshi [40],
Schmidt and Fleury [41]) proposed an interesting way to circumvent the problem while
using mathematical programming tools. The approximation concepts approach replaces the
primary optimization problem (P ) with a sequence of explicit approximate sub-problems
having a simple algebraic structure, and built from the available information (function
values, first and second order derivatives) at the current design point or at the former
iteration points.

(P̃ )















min
x

g̃0(x)

s.t.: g̃j(x) ≤ ḡj j = 1 . . . m
xi ≤ xi ≤ xi j = 1 . . . n

(2)

where g̃0 and g̃j denote respectively the approximations of objective function g0 and of
the constraint functions gj . These approximations can be regarded as some kind of Tay-
lor expansions of the response functions around the current design point x(k). Different
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Figure 2: Iterative scheme with SCP approach

techniques have been proposed, but the most famous ones remain CONLIN by Fleury and
Braibant [27] and MMA (Method of Moving Asymptotes) by Svanberg [44]

However the success of the approximation strategy comes from the fact that the sub-
problems (P̃ ) can be solved efficiently with relevant mathematical programming algorithms.
Up to now the most efficient strategy is the dual method proposed initially by Fleury [21]
but used by many other authors like Svanberg [44]. Dual methods are well adapted to
structural problems, because the dimensionality of the dual solution space is generally
much lower than the primal design space. With efficient algorithms, dual solvers are
able to solve sub-problems within a reasonable computational time. For sizing and shape
optimization, solution time is less than 1 percent of the F.E. computation time. When
dealing with compliance topology problems, the same character is preserved.

To summarize, the solution strategy of optimization problems is based on the following
steps:

1. For the current design characterized by the design variables x(k), perform a Finite
Element analysis and its sensitivity analysis.

2. From the results of the current structural analysis, generate an approximate (P̃ (k)).

3. Solve the sub-problem (P̃ (k)) with an efficient solver, like a dual solver.

4. Adopt the solution of the approximate sub-problem x⋆ as a the new design x(k+1)

and go back to 1 until convergence (convergence critrion).

The strategy combines both concepts of approximation and dual solution and it is now
generally known as the sequential convex programming approach (SCP) as suggested by
Fleury in Ref. [25, 26].
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The SCP approach have demonstrated its efficiency in academic and industrial appli-
cations. One can come to a nearly stationary solution generally within 20 iteration steps,
independently of the number of design variables. For topology optimization convergence
speed can be a bit slower, because of the higher complexity of the problem; it is not rare
to have to wait for 50 or 100 iterations for having a stable solution.

Before studying the numerical solution techniques into details, it is important to remind
the main characteristics of optimal material distribution problems in order to be able to
select the most suited algorithms to solve these problems. Topology optimization problems
are large scale optimization problems. It results that extension of traditional SCP methods
must be considered carefully.

• The number of design variables is large or very large, i. e. in usual topology prob-
lems, one has to consider from 1.000 up to 1.000.000 density variables nowadays in
industrial applications. In large composite structures, the number of design variables
is proportional to the number of plies times the number of pannels and generally rises
several hundreds of variables.

• The number of constraints is generally quite small when the problem formulation
of topology relies on global constraints. For example, in compliance type problems,
one has to take into account as many compliance responses as the number of load
cases plus volume and perimeter constraints. This means in turn that one has to
consider around 10 restrictions. The number of restrictions being much smaller than
the number of design variables, we are in a favorable situation for applying dual
algorithms.

• This situation is totally different when considering local constraints like stress con-
straints in the design problem. Indeed one has to cope with one constraint per finite
element, which means a number of constraint that is of the same order of magnitude
as the number of design variables. This could also be the case if slope constraints are
included in the design as in Sigmund and Petersson [35]. For composite structures,
the number of restrictions is generally rather large, because one failure criterion has
to be considered in each ply. Further more local buckling restrictions are also usually
considered in each panel so that the number of restrictions is generally over several
thousand. Thus in these cases the problem is a large scale problem both in the de-
sign variable space and in the dual space. Under these conditions, advantages of
dual algorithms are lower, but work done in Ref. [16] showed that dual solvers are
still able to produce solutions within a computation time that is of the same order of
magnitude as the F.E. analysis even when there are around a thousand of constraints.

There is also another characteristic related to stress constraints in topology optimiza-
tion, which complicates the task of the optimizer: the singularity phenomenon of stress
constraints. This difficulty is alleviated by using a perturbation technique (ǫ-relaxation
technique as proposed by Cheng and Guo [11]). So to consider stress constraints, one has
to tailor a additional strategy to manage the extra perturbation parameter.
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This lecture is devoted to explain the basic elements of SCP method and in particular
its application to topology and composite structure optimization problems, which are very
large scale problems. Despite the high level of integration of the different concepts in
available implementations of SCP, this study will still distinguish in this presentation the
two main concepts as pointed out by [25, 26]:

• The solution aspect based on dual methods, which will be explored in section 2.

• The approximation concept and different approximation schemes that will be reviewed
in section 3.

Finally as our goal is to apply Sequential Convex programming to large scale problems such
as topology optimization and composite structures, different issues particular to topology
problems will be reviewed in section 4 and 5. At first, we will see how an efficient approx-
imation can be built for the perimeter constraint (section 4). Then we will have a careful
study of the management of the ǫ-relaxation technique of stress constraints (section 5).

2 DUAL SOLUTION ALGORITHMS

2.1 Lagrange function

Suppose that we have to solve the following non linear optimization problem:

min
x

f(x)

s.t. gj(x) ≤ 0 j = 1, . . . ,m (3)

where functions f(x) and gj(x) are assumed to be continuous and differentiable.

It is classic to define the Lagrange function associated to problem (3):

L(x, λ) = f(x) +

m
∑

j=1

λjgj(x) (4)

where the λj ≥ 0 are Lagrange multipliers associated to each constraint gj (and so in
number m as the constraints). The new variables λj are generally called dual variables
since there is a one-to-one association with the design constraints. Conversely the original
design variables x of the problem are said primal variables of the problem.

One can remark that the Lagrange transformation replaces the constraints gj(x) ≤ 0
by a linear term λj gj(x) in the objective function. This can be interpreted as adding to
objective function f(x) a linear cost, with marginal price λj, which has to be paid whenever
the constraint is violated.

Lagrange function transforms the optimization constrained problem into an uncon-
strained problem. The objective function of this new optimization problem is precisely the
Lagrangian function L(x, λ) and the design variables are both x and λ variables.

min
x

max
λ≥0

L(x, λ) (5)
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Maximization over λ affects an infinite cost (penalty) to Lagrange function when constraints
are violated gj(x) > 0. The price of this transformation is that the dimension of the
optimization growths from n variables to n + m ones.

2.2 Karush-Kuhn-Tucker conditions

Theorem 1 Necessary conditions of optimality of contrained problems.
If x⋆ is an optimum of problem (3), and if x⋆ is a regular point, Then one can find a vector
of Langrange multipliers λ⋆ = (λ⋆

1, . . . , λ
⋆
m) such that

∂f(x∗)

∂xi
+

m
∑

j=1

λ∗
j

∂gj(x
∗)

∂xi
= 0 ∀ i (6)

gj(x
∗) ≤ 0 (7)

λ∗
j ≥ 0 (8)

λ∗
j gj(x

∗) = 0 ∀ j (9)

The Karush-Kuhn-Tucker (KKT) conditions stated as below consist of four types of
conditions, namely

• Stationarity of the Lagrange function L(x, λ) with respect to x (6),

• Primal feasibility, which means that x⋆ is a feasible point (7),

• Dual feasibility, which means that the Lagrange multipliers λ⋆ are non negative (8),

• Complementary slackness, which means that the Lagrange multipliers corresponding
to inactive constraints are zero (9).

Remark 1 A point x⋆ is a regular point of the problem, if all the gradient vectors ∇gj of
active constraints (i.e. gj(x

⋆) = 0) are linearly independent.

2.3 Introduction to duality

As noticed above, the first KKT condition (6) implies the solution of the system:

∇x L(x, λ⋆) = 0 (10)

This condition is equivalent to say that x⋆ is the solution of the minimization problem:

min
x

L(x, λ⋆)

Imagine now that, for any Lagrange vector, i.e.

λ = (λ1, . . . , λm) such that λj ≥ 0 j = 1 . . . m
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one can find the solution of the minimization problem (called Lagrangian problem)

min
x

L(x, λ) (11)

This gives rise to a functional relationship of dependency of primal variables x in terms of
the new dual variables λ.

x = x(λ) = arg min
x

L(x, λ) (12)

Substituting primal variables in terms of function (12), it is possible to rewrite Lagrange
function L(x, λ) in terms of dual variables λ solely

ℓ(λ) = L(x(λ), λ)

= f(x(λ)) +
m
∑

j=1

λj gj(x(λ)) (13)

This function ℓ(λ) is called dual function of the problem.

The optimization problem that is related to dual function is a maximization problem,
called the dual problem (while the original problem is called primal problem):

max
λj

ℓ(λ)

s.t. λj ≥ 0 j = 1, . . . ,m (14)

The solution of the dual problem determines the optimal Lagrange multipliers λ⋆, which
satisfy KKT conditions. One can show that dual problem has the following properties:

• If the primal problem is a minimization problem, the dual problem is a maximization
problem;

• The dual problem possesses a solution if the primal problem does;

• A solution of the dual problem also provides a solution to the primal problem.

Remark 2 When defining the Lagrangian problem (11), we have implicitly assumed that
we were allowed to switch the maxλj

and minx operations in original problem (5) , which
is not trivial. In fact this can be mathematically correct under strict mathematical assump-
tions such as a convexity. This will be clarified later in the lesson.

2.4 Weak duality

With very little assumptions on f and gj , one can state the most general definition of the
dual function as follows:

ℓ(λ) = inf
x

L(x, λ) (15)
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So a dual function exists even for non convex problems or discrete valued design variable
problems, etc.

With very weak assumptions on f and gj , one can prove that ℓ(λ) is concave. However,
the dual function is non-smooth, so that derivatives must be replaced by sub-gradients.

The dual problem is defined as the maximization problem

max
λj

ℓ(λ)

s.t. λj ≥ 0 j = 1, . . . ,m (16)

Since the dual function ℓ(λ) is a concave function of λ, it is possible to state that
every local optimum of ℓ(λ) is a global optimum. Therefore the dual problem will in
general be easier to solve than the primal problem (for example when dealing with integer
programming). This is one of the reasons why the concept of duality has been found to
be very useful in mathematical programming. However because of the non-smoothness of
the dual function, one has to resort to non smooth maximization algorithms, which are
generally less efficient and more complex.

General properties of dual function

For any feasible x and for any Lagrange vector λ, there holds:

f(x) ≥ ℓ(λ) (17)

Going along, if λ⋆ is the solution of dual problem, and if x⋆ is the optimum of the primal
problem, one has

f(x⋆) ≥ ℓ(λ⋆) (18)

This means that the dual function is always a lower bound of primal objective function
value. The gap G = f(x⋆) − ℓ(λ⋆) is called duality gap. In addition, the primal point
that is associated to the optimal Lagrange multiplier through the Lagragian problem

arg inf
x

L(x, λ⋆) (19)

may not be realized or may not be a feasible point.

2.5 Strong duality

Now suppose that we want to solve the convex problem:

min
x ∈ X

f(x)

s.t. gj(x) ≤ 0 j = 1, . . . ,m (20)

where functions f(x) and gj(x) are assumed to be C1 (i.e. continuous and differentiable),
and convex. The set X of feasible design variables is also convex.
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The set X is usually made of side constraints on design variables, which is obviously a
convex set (box constraints):

X = {xi | xi ≤ xi ≤ xi i = 1 . . . n} (21)

In addition, it is assumed that the Slater condition (or qualification of the constraint)
is fulfilled:

∃ x̃ : gj(x̃) < 0 ∀ j (22)

Theorem 2 If the problem (20) is a convex problem and if the Slater condition is satisfied,
then, there is at least one Lagrange multiplier vector λ⋆ such that

f(x⋆) = min
x

L(x, λ⋆) (23)

and there is no duality gap
f(x⋆) = ℓ(λ⋆) (24)

Corollary 1 Necessary and sufficient conditions of optimality:
If the problem (20) is convex, if functions f(x) and gj(x) are differentiable and if the Slater
condition is satisfied, then x⋆ is the primal optimal point and λ⋆ is the optimal dual point
if and only if Karush-Kuhn-Tucker conditions are satisfied.

Corollary 2 If the problem (20) is convex and if the Slater condition is satisfied, solving
the primal problem (20) is completely equivalent to solve the dual problem:

min
λj

ℓ(λ)

s.t. λj ≥ 0 j = 1, . . . ,m (25)

with the dual function
ℓ(λ) = min

x ∈ X
L(x, λ) (26)

This is a consequence of the definition of the Lagrange function. If f(x) and gj(x) are
C1 and convex functions, the Lagrange function L(x, λ) has a saddle point in (x⋆, λ⋆),
which means that:

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆) (27)

Thence it is possible to show the equivalence between the following optimization problems:

min
x ∈ X

max
λ ≥ 0

L(x, λ) ⇔ max
λ ≥ 0

min
x ∈ X

L(x, λ) (28)

In other words it is possible to switch the minx ∈ X and the maxλ ≥ 0. As the left hand
side problem is an equivalent to the primal problem, while the right problem is the dual
maximization, one gets the equivalence between primal and dual problems.

9



2.6 Dual function properties in strong duality [25]

Concavity

Dual function ℓ(λ) is concave.

Lower bound and duality gap

Generally speaking, the dual function is a lower bound of the primal function, but for
convex problems, there is no duality gap:

ℓ(λ⋆) = f(x⋆)

This means that the dual solution is equivalent to the primal solution.

Gradient of dual function

The first derivatives of dual function with respect to a Lagrange multiplier is simply the
constraint value associated to that multiplier λk in point x(λ):

∂ℓ(λ)

∂λk
= gk(x(λ)) (29)

The proof of this formula can be obtained easily when deriving the dual function:

∂ℓ(λ)

∂λk
=

∂

∂λk
{f(x(λ)) +

m
∑

j=1

λj gj(x(λ))}

=
n
∑

i=1





∂f(x(λ))

∂xi
+

m
∑

j=1

λj
∂gj(x(λ))

∂xi





∂xi

∂λk
+ gk(x(λ))

The first contribution vanishes because it is the optimality conditions of the Lagrangian
problem leading to definition of x(λ).

From result (29), its comes that the evaluation of the gradient of the dual function is
very easy to calculate.

Optimality conditions of dual problem

It comes from the previous property (29) that the optimality conditions of the quasi-
unconstrained dual problem can be written as follows:

∂ℓ(λ)

∂λk
= 0 if λk > 0 (30)

∂ℓ(λ)

∂λk
< 0 if λk = 0 (31)

A first algorithm for dual maximization

These conditions (30-31) indicate that the maximum of the dual function is attained when
the constraints are satisfied exactly (as equalities) for λj > 0 and as inequalities if λj = 0.
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Going a bit further, we can propose a first algorithm based on the steepest ascent method
to maximize the dual function:

λ+ = λ + α ∇ℓ (32)

or
λ+

j = λj + α gj(x(λ)) (33)

where α is a step size. Thus a dual variables λj increases if the corresponding constraint
gj is violated, whereas it decreases (possibly reaching zero) if gj is negative (and satisfied).
From these considerations, it results in an intuitive interpretation of the dual method
approach: the approach attempts to satisfy the inequality constraints by adjusting the
values of the dual variables.

Since non negativity constraints are very easy to take into account, classical algorithms
for unconstrained maximization can be readily adapted to solve quasi-unconstrained dual
problems. In particular, the conjugate gradient method is well suited since the computation
of the gradient is straight forward: it needs solely computing the constraint values gj(x(λ)).

Separable case

A central issue of the dual approach is to compute the relationships between primal and
dual methods x(λ):

x(λ) = arg min
x ∈ X

L(x, λ) (34)

Solving the minimization problem has to be repeated a lot of times, and this might lead
to a prohibitive computational cost. However if the problem has some special structures,
as separable problems, this is not cumbersome. In addition to convexity, separability is an
essential property for dual formulation to be efficient.

A function f(x) is said to be separable if the function be written as a sum of functions
fi(xi), which depends only on the single variable xi.

f(x) =

n
∑

i=1

fi(xi) (35)

Separable functions benefit from some computationally important properties. In particular,
the Hessian matrix of such functions is diagonal.

The constrained problem (20) is a separable programming problem if every functions
f(x), gj(x) are themselves separable. This implies that the Lagrangian function L(x, λ) is
separable too.

L(x, λ) =

n
∑

i=1

Li(xi, λ)

As a result, the n-dimensional Lagrangian problem can be broken up into ’n’ one-dimensional
Lagrangian problems

min
x ∈ X

L(x, λ) =
n
∑

i=1

min
xi ∈ Xi

Li(xi, λ) (36)
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where each one-dimensional problem can be solved separately. Thus the dual function can
be written as follows:

ℓ(λ) =

n
∑

i=1

ℓi(λ) =

n
∑

i=1

{ min
xi ∈ Xi

Li(xi, λ)} (37)

In may cases the single-variable minimization problem has a simple algebraic structure
and it can be solved in closed-form, thus yielding an explicit dual function.

Second order derivatives of dual function

To get second order derivatives of dual function, one derives a second time the expression
of first order derivatives given in (29), which gives:

∂2ℓ(λ)

∂λk∂λl
=

∂

∂λl
gk(x(λ)) =

n
∑

i=1

∂gk

∂xi

∂xi(λ)

∂λl
(38)

One remarks immediately that the second order derivatives can be discontinuous because
of the presence of term ∂xi(λ)

∂λl
. Indeed, when side constraints are taken into account in

Lagrangian problem (11) in order to be treated explicitly, the function relationship x(λ)
can be first order discontinuous. This is explained in more details in the following.

Evaluation of this term ∂xi(λ)
∂λl

can be made from KKT conditions. Deriving the KKT
conditions (6) with respect to λl gives:

n
∑

k=1





∂2f

∂xi∂xk
+

m
∑

j=1

λj
∂2gj

∂xi∂xk





∂xk(λ)

∂λl
+

∂gl(λ)

∂xi
= 0

Going to matrix notations, one recognizes the Hessian matrix of the Lagrange function and
gradient vector of constraint gl with respect to primal variables:

∇2
xx L(x, λ)

∂x(λ)

∂λl
+ ∇x gl = 0

If side-constraints are treated explicitly, one has to restrict this relation to free variables
(variables, which are not fixed at their lower or upper bounds). So one has to consider the
matrix G instead of ∇2

xx L. The matrix G is obtained from ∇2
xx L by deleting rows and

columns corresponding to fixed variables. One gets now:

G
∂x(λ)

∂λl
+ ∇xgl = 0 (39)

If one also notes by N the matrix whose columns are made with the gradient vectors of all
constraints

N = [∇g1 . . .∇gm]

and if one introduces the result (39) into (38), one gets the final expression of Hessian of
dual function:

[

∂2ℓ(λ)

∂λk∂λl

]

= − NT G−1 N (40)
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We must repeat that this Hessian is only continuous by pieces. Discontinuity of dual
Hessian occurs along hyper-planes of equations

xi(λ) = xi and xi(λ) = xi (41)

This has a major impact on dual maximization, since the greatest care has to given to
that property to built second order algorithms for dual maximization. Classical Newton
or quasi-Newton methods can only be applied in subregions where the set of free and fixed
design variables is frozen. Building an efficient strategy to find the optimal set of free and
fixed design variables is one of the major issues of dual optimizer construction.

2.7 Application to quadratic problems with linear constraints

We illustrate the dual approach on the quadratic problem with linear inequality constraints.
The problem statement is the following:

min
x

1

2
xT x

s.t. CT x ≥ d

where C is a n × m matrix of the constraint gradients (which are assumed to be linearly
dependent). The Lagrangian function of the problem is:

L(x, λ) =
1

2
xT x − λT (CTx − d)

Optimality condition (KKT conditions) are:

∇xL = x − C λ = 0

− CT x + d ≤ 0

λ ≥ 0

λT (CT x − d) = 0

The first condition is the solution of the Lagrangian problem, which leads to the relationship
between primal and dual variables:

x(λ) = C λ

This relation is fully explicit.

Replacing primal variables into the Lagrangian function, one gets the dual function:

ℓ(λ) =
1

2
x(λ)T x(λ) − λT (CTx(λ) − d)

=
1

2
λTCTCλ − λT (CTCλ − d)

= −1

2
λTCTCλ + λT d

13



The gradient of the dual function is given by:

∇ℓ(λ) = −CTCλ + d

= d − CTx(λ)

which is the value of primal constraints, in agreement with the general theory.

From this expression, one gets also easily the Hessian matrix of the dual function:

∇2ℓ(λ) = −CTC

This Hessian matrix is constant. Thus dual function of a quadratic problem is a quadratic
function. It has the fully explicit form:

ℓ(λ) = −1

2
λT Aλ + λT d

where A = CTC denotes the negative of the dual Hessian matrix.

In the case of equality constraints, dual variables are unrestricted in sign. Therefore
the maximum of dual function can simply be obtained by stating that its gradient must
vanish:

∇ℓ(λ) = −Aλ + d = 0

This leads to the solution:
λ⋆ = A−1 d

From the dual solution, one recovers the optimal primal solution with the help of the
primal-dual relationships:

x⋆ = C λ⋆

In the case of inequality constraints, the dual variables are subject to non negativity
side constraints, and one has to solve dual maximization problem:

max
λ

−1

2
λTAλ + λT d

s.t. λj ≥ 0

After solving this quasi-unconstrained maximization problem in the dual space, one recov-
ers the primal solution from the same primal-dual relationships as before:

x⋆ = C λ⋆

Dual maximization is the most natural and rigorous way to select automatically the
optimum set of Lagrange multipliers. In addition, as the number of dual variables is
often smaller than the number of primal variables, the dimensionality of the optimization
problem we actually solve is smaller.

Numerical example of a quadratic separable problem
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Figure 3: Numerical application of a quadratic separable problem [25]
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min
x1 , x2

1

2
x2

1 +
1

2
x2

2

s.t. x1 + x2 ≥ 4

x1 − x2 ≥ −4

From the previous definitions, one can identify the following matrix and vector:

C =

[

1 1
1 −1

]

d =

[

4
−4

]

The Lagrange function writes:

L(x, λ) =
1

2
x2

1 +
1

2
x2

2 − λ1(x1 + x2 − 4) − λ2(x1 − x2 + 4)

The optimality conditions of the Lagrange function with respect to the primal variables
give rise to the primal-dual relationships:

x1(λ1, λ2) = λ1 + λ2

x2(λ1, λ2) = λ1 − λ2

The dual function then takes an explicit expression:

ℓ(λ1, λ2) = −(λ1 − 2)2 − (λ2 + 2)2 + 8

and the dual problem is:

max
λ1,λ2

ℓ(λ1, λ2) = −(λ1 − 2)2 − (λ2 + 2)2 + 8

s.t. λ1 ≥ 0

λ2 ≥ 0

The first order partial derivatives of the dual function are given by:

∂ℓ

∂λ1
= −2λ1 + 4 = 4 − x1 − x2

∂ℓ

∂λ2
= −2λ2 − 4 = −4 − x1 + x2

Thus one can verify that the partial first order derivatives are given by minus the value of
the associated primal constraints.
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Figure 4: Illustration of Lagrangian problem with side constraints [25]

2.8 Treatment of side constraints

Let us consider the following separable, quadratic problem, with linear inequality and
side-constraints:

min
x

1

2

n
∑

i=1

x2
i

s.t.
n
∑

i=1

cij xi ≥ dj j = 1 . . . m (42)

xi ≤ xi ≤ xi i = 1 . . . n

The side constraints, which impose lower and upper bounds on the design variables can, of
course, be considered as linear inequality constraints. However this would increase dramat-
ically the number of dual variables, and thus this would reduce the potential advantage of
dual method by increasing the dimensionality of dual workspace. Therefore, the efficiency
calls for a particular and separate treatment of these very simple constraints, apart from
the general constraints.

The Lagragian problem is

min
xi ≤ xi ≤xi

1

2

n
∑

i=1

x2
i −

m
∑

j=1

λj (

n
∑

i=1

cij xi − dj) (43)

Because of the separability property, the n-dimensional problem can be split into n one-
dimensional problems relative to each variable ”i”:

min
xi ≤ xi ≤xi

Li(xi, λ) =
1

2
x2

i − (
m
∑

j=1

λj cij) xi (44)

The solutions of these problems are obtained by expressing the optimality conditions,
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Figure 5: Primal-dual relations when side-constraints are taken into account

i.e. vanishing the first order derivative with respect to xi:

∂Li

∂xi
= xi − (

m
∑

j=1

λj cij) = 0 (45)

This yields the primal-dual relationships in closed form:

x⋆
i = (

m
∑

j=1

λj cij) (46)

This expression holds if the side constraint are ignored. Now to enforce side-constraints,
one has to consider three situations (see figure 4):

xi(λ) = x⋆
i if xi ≤ x⋆

i ≤ xi, (47)

xi(λ) = xi if x⋆
i ≤ xi, (48)

xi(λ) = xi if x⋆
i ≥ xi. (49)

Even if the solution introduces different conditions, the primal-dual relations x = x(λ) are
still available under closed form. Nonetheless considering different cases leads to a non-
smooth expression. Indeed the derivation of this expression is discontinuous when changing
from one condition to another, that is when a fixed variable becomes free or conversely.

The dual function is formed by inserting these primal-dual relationships into the La-
grangian function, which leads to the following statement of the dual problem (one cannot
find anymore an explicit expression of dual function):

max
λ

1

2

n
∑

i=1

x2
i (λ) −

m
∑

j=1

λj (

n
∑

i=1

cij xi(λ) − dj)

s.t. λj ≥ 0
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First derivatives of the dual function are given by the value of primal variable constraint,
in which primal variables has been replaced by their expression in terms of the Lagrange
multipliers:

∂ℓ

∂λj
= dj − (

n
∑

i=1

cij xi(λ)) (50)

Second derivatives of dual function, giving Hessian matrix, are easily available too:

Ajk =
∂2ℓ

∂λj∂λk
=

∂

∂λk

[

dj −
n
∑

i=1

cij xi(λ)

]

= −
n
∑

i=1

cij
∂xi

∂λk
(51)

Now the situation is much more complicated, because of the separate treatment of side
constraints, which introduces non smooth primal-dual relations. On the one hand for free
variables, we have:

∂xi

∂λk
= cik if xi ≤ xi ≤ xi (52)

On the other hand, for fixed variables, it is obvious that

∂xi

∂λk
= 0 if xi = xi or xi = xi (53)

Therefore the Hessian matrix takes the form:

Ajk =
∂2ℓ

∂λj∂λk
= = −

∑

i∈F

cij cik (54)

where set F is the set of index of free variables.

It turns out that the second derivatives of the dual function becomes discontinuous
each time that a free primal variable becomes fixed or conversely, since one changes the set
F of free variables in formula (54). From the primal dual relationships it is clear that the
dual space is partitioned in several regions separated by second-order discontinuity planes.
These planes are defines here by their equation:

(

m
∑

j=1

λj cij) = xi (

m
∑

j=1

λj cij) = xi (55)

Numerical application example of quadratic problem with separable treatment of side con-
straints

min
x1 , x2

x2
1 + x2

2

s.t. x1 + x2 ≥ 4

x1 − x2 ≥ −4

1 ≤ xi ≤ 4 i = 1, 2
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The Langrange function writes:

L(x, λ) = x2
1 + x2

2 − λ1 (x1 + x2 − 4) − λ2 (x1 − x2 + 4)

The stationnarity of the dual function provides the primal dual relationships:

∂L

∂x1
= x1 − λ1 − λ2 =⇒ x1 = λ1 + λ2

∂L

∂x2
= x2 − λ1 + λ2 =⇒ x2 = λ1 − λ2

If one wants to treat the side-constraints, one has to invoque the fact that the func-
tions are separable and solve the two one-dimensional minimisation problems with side-
constraints:

min
1≤x1≤4

L1(x1) = 1/2 x2
1 − λ1 x1 − λ2 x2

min
1≤x2≤4

L2(x2) = 1/2 x2
2 − λ1 x2 + λ2 x2

They admit a closed-form solution and they result in fully explicit primal-dual rela-
tionships x = x(λ):

x1 = λ1 + λ2 if 1 ≤ λ1 + λ2 ≤ 4

x1 = 1 if λ1 + λ2 ≤ 1

x1 = 4 if λ1 + λ2 ≥ 4

x2 = λ1 − λ2 if 1 ≤ λ1 − λ2 ≤ 4

x2 = 1 if λ1 − λ2 ≤ 1

x2 = 4 if λ1 − λ2 ≥ 4

The discontinuity planes

λ1 + λ2 = 4

λ1 + λ2 = 1

λ1 − λ2 = 4

λ1 − λ2 = 1

divide the dual space into six regions as shown in figure 6.
The value of the dual function is changing from one region to another since the value

of the primal dual relationship is changing (see figure 7). One can find the dual function
expression by inserting the current primal-dual relationship into the Lagrange function.
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Figure 6: Structure of the dual space with its discontinuity regions

Region x1 x2 ℓ(λ1, λ2)

I 1 1 1 + 2λ1 + 2λ2

II λ1 + λ2 λ1 − λ2 −λ2
1 − λ2

2 + 4λ1 − 4λ2

III 4 1 16 − 4λ1 − 4λ2

IV λ1 + λ2 1 0.5λ2
1 − 0.5λ2

2 − λ1λ2 + 3λ1 − 3λ2 + 0.5

V 4 1 17/2 − λ1 − 7λ2

VI 4 λ1 − λ2 −0.5λ1 − 0.5λ2
2 + λ1λ2 − 8λ2 + 8

However the dual function and its first derivatives are discontinuous across the discon-
tinuity planes. Only the second order derivatives are discontinuous.

2.9 Dual solution scheme of MMA sub-problems

Anticipating a little bit on structural approximations, it is rather interesting to study the
principles of dual solutions applied to MMA approximated problems. After normalization,
the MMA sub-problem can be written in the following form:

min
x

n
∑

i=1

pi0

Uij − xi
+

n
∑

i=1

qi0

xi − Lij

s.t.
n
∑

i=1

pij

Uij − xi
+

n
∑

i=1

qij

xi − Lij
≤ dj j = 1 . . . m (56)

xi ≤ xi ≤ xi i = 1 . . . n

One must notice that in this expression the asymptotes may depend on both variable and
constraint indices: Uij and Lij. One can also notice that for the sake of simplicity the
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Figure 7: Dual space with discontinuity regions

objective function has been denoted by g0(x) instead of f(x). In order to simplify the

notations, we adopt the following notation: λ0 = 1, so that Lagrangian function is given
by:

L(x, λ) =

m
∑

j=0

λj (

n
∑

i=1

pij

Uij − xi
+

n
∑

i=1

qij

xi − Lij
− dj) (57)

The Lagragian problem is
min

xi ≤ xi ≤xi

L(x, λ) (58)

Because of the separability property, the n-dimensional problem can be split into n one-
dimensional problems relative to each variable ”i”:

min
xi ≤ xi ≤xi

Li(xi, λ) =

m
∑

j=0

λj pij

Uij − xi
+

m
∑

j=0

λj qij

xi − Lij
(59)

For a pure MMA [44] approximation, the asymptotes are the same for each constraint
and they do not depend on the approximation index j: Uij = Ui and Lij = Lj. The
solution of this problem can be solved explicitly for each variable and gives rise to the
primal-dual relations. Optimality conditions of the Lagrangian problem are:

∑m
j=0 λj pij

(Ui − xi)2
−
∑m

j=0 λj qij

(xi − Li)2
= 0 (60)
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From this expression, one extracts the candidate optimal value of variable xi in terms of
dual variables:

x⋆
i (λ) =

Ui + ηLi

η + 1
(61)

where

η =

√

∑m
j=0 λj pij

∑m
j=0 λj qij

(62)

For an approximation of the GMMA family [42], the primal-dual relationships are no
longer explicit since each asymptote depends now on both the primal variables (index
”i”) and on the constraint (index ”j”). As the Lagrangian problem no longer admits a
closed solution form, a Newton-Raphson scheme is adopted (as in Ref. [51]). However the
approximation is separable and n one-dimensional numerical minimizations are performed.
The iteration scheme for primal-dual relationships xi(λ) is given by:

xi(λ
+) = xi(λ) − ∂Li/∂xi

∂2Li/∂x2
i

(63)

where
∂Li

∂xi
=

m
∑

j=0

λj pij

(Uij − xi)2
−

m
∑

j=0

λj qij

(xi − Lij)2
(64)

∂2Li

∂x2
i

= 2

m
∑

j=0

λj pij

(Uij − xi)3
− 2

m
∑

j=0

λj qij

(xi − Lij)3
(65)

For both MMA and GMMA schemes, we have to take care of the side-constraints and
we consider three situations:

xi(λ) = x⋆
i if xi ≤ x⋆

i ≤ xi, (66)

xi(λ) = xi if x⋆
i ≤ xi, (67)

xi(λ) = xi if x⋆
i ≥ xi. (68)

Values of primal variables in terms of Lagrange multipliers are then inserted in the
Lagrange function to calculate dual function value. Gradient of dual function is also given
by the value of primal constraints.

When primal-dual relationships are not available in closed form, each evaluation re-
quires the solution of non linear problems, which needs an additional numerical effort. In
order to circumvent the problem, Fleury [25] suggested to break the solution of the con-
vex subproblem itself into a sequence of quadratic explicit separable sub-subproblems. As
explained in the former section, these problems can be solved efficiently by dual methods.
So the non-explicit character of primal-dual relationships is not a real obstacle in practice.
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3 STRUCTURAL APPROXIMATIONS

3.1 Characteristics of approximations

When building approximation schemes, one pursues several (and sometimes antagonist)
goals. It is good to explicitly give them before reviewing the different schemes.

The first constraint one has to keep in mind is that the solution of the generated sub-
problems can be carried out by efficient and and small computationally expensive methods.
In order to be able to resort to dual methods, one would like, at first, that the solution of
the dual problem is the same as the solution of primal sub-problem. Then the efficiency
of the dual method holds if the computational effort to move to the dual space is small
to save the benefit of the dual solution. To match these conditions, the sub-problems (P̃ )
and the related structural approximations must be:

• Convex. The convexity of the sub-problems insures that there is a unique solution
and that the solution of the dual problem is the solution of the original problem.
In addition the dual problem is concave and efficient algorithms can exploit this
property.

• Separable. The separability is essential to arrive at relations between the primal de-
sign variables and the Lagrange multipliers that are easy to compute. Primal variables
are given by an uncoupled system of equations in terms of the Lagrange multipliers,
which is possible to solve independently for each primal variable. Furthermore for
most of the approximation schemes, it is even possible to express the solution in
closed form. Separability is an essential property to reduces the computational effort
with dual methods.

Besides those two basic properties one would like that the procedure leads to a station-
ary solution within a minimum number of iterations without constraint violations. Obvi-
ously the number of structural analyses can be largely reduced when appropriate schemes
are used. To this end one would like that the structural approximations are:

• Precise in order to give the best fit to the real responses in the largest neighborhood
possible. Then for higher quality approximations one experiences faster convergence
rate to the solution.

• Sufficiently conservative in order to generate a sequence of steadily improved it-
erations which provide feasible solutions at any stage of the optimization process.
Conservative approximations are obtained by increasing the value of the convexity
terms in order to reduce the size of the trust region and to avoid constraint violations.
This argument is generally antagonist with the precision property.

Furthermore the overall computational time to come to an optimum depends also upon
the numerical work that is necessary to build the approximation. To this end one wants
to look for
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• A minimum computational effort to generate the approximation, but also to calcu-
late the necessary information that is required to built it. For example computing
the true second order sensitivity is generally expensive so that it is generally avoided
and replaced by an approximated second order information e.g. with Quasi-Newton
techniques. Another example is the cost of the solution of the primal-dual relation-
ships: Too complex approximation schemes are generally highly penalized because
they require elaborated and expensive numerical solutions of the primal-dual sys-
tem, which, in its turn, increases the numerical effort to formulate the dual problem.
Therefore, it comes that reducing the overall computational effort is also antagonist
to the accuracy and precision criteria, so that a trade-off has to be found between
the two criteria.

This list is non extensive, one must also keep in mind that the approximation scheme and
the approximated sub-problems must be

• Robust, in order to be able to construct the approximation in an automatic and
reliable manner and in a lot of situations.

• Flexible, to be able to be used for various kinds of structural and geometric responses.

• Overall convergence in order to be able to end up in an optimum solution (may be a
local optimum) from any starting point design.

• . . .

The approximation schemes are generated through first or second order Taylor expan-
sion of the design function gj(x) around current design point x(k). The different schemes are
expressed in terms of specific intermediate linearization variables, e.g. reciprocal variables
1/xi. Because of the Taylor expansion procedure, the approximations are local schemes,
which means that the precision of the approximation is restricted to a neighborhood about
the current design point.

We are now going to review the most important schemes and see the improvements (or
drawbacks) that each one brings.

3.2 Linear approximation and sequential linear programming

When thinking about local approximation, the most natural and simple approximation
scheme is the Taylor expansion around the current design point x0 restricted to linear
terms. The linear approximation writes:

g̃j(x) = gj(x
0) +

n
∑

i=1

∂g(x0)

∂xi
(xi − x0

i ) (69)

The choice of linear approximation is natural when it corresponds to the nature of the
restriction. For example it is exact for the volume restriction when using SIMP material.
It is also mandatory when dealing with equality constraints.
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Figure 8: Linear approximation scheme applied to the strain energy in a two plies sym-
metric laminate subject to shear and torsion loads [9]

When the linear approximation is applied to every restrictions of the problem, one
transforms the original problem into a sequence of linear programming problems:

min
xi

g0(x
0) + ∇g0(x

0)
T
(x − x0)

s.t. gj(x
0) + ∇gj(x

0)
T
(x − x0) ≤ 0 (70)

xi ≤ xi ≤ x̄i

With the general formulation of linear programming, it is possible to treat a wide
spectrum of problems independently of the nature of the restrictions. But, probably the
most interesting advantage of sequential linear programming, comes from the fact that this
kind of sub-problems can be readily solved efficiently with the help of linear programming
algorithms like a SIMPLEX algorithm or a primal-dual interior point method [33] which
is very well adapted to very large scale problems.

However the sequential linear approximation strategy has also some drawbacks. Due
to the lack of convexity of the sub-problem, one can have some problems to stabilize the
convergence process. One can experience some oscillations of the convergence or generate
a sequence of un-feasible designs during the iteration history. To overcome the difficulty,
one has to add some move-limits to play the role of a ’trust region’:

max(xi, x
0
i − αi) ≤ xi ≤ min(x̄i, x

0
i + αi) (71)

For topology problems, we suggest an adaptive move-limit strategy which reduces the de-
sign interval when the design variable oscillates and which enlarges it when the convergence
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process is stable.

• For iteration k = 1 and 2, take an initial 10 percent move-limits

αi = 0.1(x̄i − xi) (72)

• For iterations k > 2, update move-limits according to the following rule:

α
(k+1)
i = 0.7α

(k+1)
i if ∆x

(k+1)
i ∆x

(k)
i < 0 (73)

α
(k+1)
i = 1.2α

(k+1)
i if ∆x

(k+1)
i ∆x

(k)
i ≥ 0 (74)

When the original problem is very non-linear, it is sometimes necessary to adopt very close
move-limits, which reduces a lot the convergence speed. It is usual that 100 iterations may
be necessary to come to a stable solution in topology optimization.

3.3 Reciprocal variable expansion

As soon as the beginning of the seventies, Schmidt and his co-authors (see for example
Ref. [40]) showed that an approximation scheme in terms of reciprocal variables yi = 1/xi

is favorable to reduce the non-linearity of responses in sizing problems. Thus a good local
approximation is realized when expanding the responses gj(x) in terms of intermediate
variables yi = 1/xi to better capture the non-linear character of the function:

g̃j(x) = gj (x0) +

n
∑

i=1

−(x0
i )

2 ∂g(x0)

∂xi
(

1

xi
− 1

x0
i

) (75)

In a lot of structural applications, the reciprocal scheme (75) leads to successful results
with an impressive reduction of the number of stages to arrive at a stationary solution of the
design problem. In fact the scheme is efficient when all the first derivatives of the function
are negative (like in determinate structures), since in this case the approximation (75) has
only positive curvature terms and is conservative. However when the problem is highly
non-linear or when dealing with other kinds of problems like shape or composite problems,
Fleury and Braibant [27] observed that the derivatives can have mixed signs and that
convergence process is not stable anymore, because the approximation (75) is no longer
conservative for the variables which have positive derivatives.

3.4 Mixed linearization approximation: CONLIN

To overcome the difficulty of the reciprocal variable and linear expansions, Fleury and
Braibant [27] expressed the idea to combine reciprocal expansion (when the derivative is
negative) and linear approximation (when the derivative has a positive value) in a single
mixed approximation scheme:

g̃j(x) = gj(x
0) +

∑

+

∂gj

∂xi
(xi − x0

i ) −
∑

−

(x0
i )

2 ∂gj

∂xi
(

1

xi
− 1

x0
i

) (76)
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Figure 9: Reciprocal expansion scheme applied to the strain energy in a two plies symmetric
laminate subject to shear and torsion loads [9]

Figure 10: CONLIN approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [9]
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where
∑

+ is the sum over all the terms for which the derivative is positive and
∑

− is the
sum over all the terms for which the derivative is negative.

The scheme (76) is unconditionally convex since all its second derivatives are positive
or nul, that’s why it is named CONLIN as Convex Linearization. Moreover, it was demon-
strated by Starnes and Haftka [43] that this scheme is the most conservative approximation
that can be generated with linear and reciprocal variables. This convex character gives rise
to the conservative character of CONLIN, which means that the approximation (76) tends
to lie in the feasible domain of the constraint. It follows that the CONLIN method mostly
tends to generate feasible new solutions. In numerous applications - mostly related to
sizing, shape but also topology optimisation -, CONLIN technique leads to a stable conver-
gence and a feasible sequence of steadily improved designs. Convergence speed is generally
fast: 10 to 20 F.E. analyses are generally necessary to reach a stationary solution in sizing
optimization.

Another strength of CONLIN comes from the fact that it is very well suited to a use dual
optimizers, because of the convex and separable character of the approximated functions,
the sub-problem lends itself to an efficient solution procedure based on dual method and
second order maximization algorithm (see Fleury [23]).

The main drawback of CONLIN is related to the fact that the curvature of the approxi-
mation is fixed and there is no way for the user to modify it except by using tricky changes
of design variables. This also sometimes introduces a bad fitting of the approximation
to the real function. So despite numerous successes, the mixed linearization leads some-
times to too slow or unstable convergence histories as well. Famous example of divergence
processes were reported by Svanberg [44].

3.5 Method of Moving Asymptotes: MMA

To be able to adjust the curvature of the approximation and to have a better fitting to the
real function, one has to use the Method of Moving Asymptotes (MMA) from Svanberg [44]
which extends the convex linearization scheme.

g̃j(x) = r0
j +

n
∑

i=1

pij

Ui − xi
+

n
∑

i=1

qij

xi − Li
(77)

with

pij = max{0, (Ui − x0
i )

2 ∂gj

∂xi
}

qij = max{0,−(x0
i − Li)

2 ∂gj

∂xi
} (78)

and where r0
j collects all zero order terms that are adjusted to fit to the constraint value

in x0.

Once again the scheme can be regarded as a first order Taylor expansion in terms of
intermediate variables 1/(Ui−xi) or 1/(xi−Li) depending upon the sign of the derivatives.

Of course, the asymptotes values are such that L
(k)
i < x

(k)
i < U

(k)
i .
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Figure 11: MMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [9]

Figure 12: MMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [9]
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The two sets of vertical asymptotes Ui and Li generalize the vertical asymptotes intro-
duced in CONLIN with the change of variables yi = 1/xi. In fact the CONLIN approxima-
tion can be recovered from the general statement by assuming Li = 0 for the lower bound
and Ui → ∞ for the lower bound.

The two sets of asymptotes also play a role of move-limits. This analysis has been
even more reinforced with the recent work that has been done in primal-dual interior
point methods in which side-constraints (here lower bound) are taken into account through
barrier functions of the type [6, 31]:

ln(xi − xi) or
1

xi − xi

(79)

To adjust the MMA approximation, one has to play with the parameters of the approx-
imation i.e. the position of the vertical asymptotes. One could calculate that the second
order derivatives (and the convexity as well) increase when the asymptotes are pushed
closer to the design point. Conversely the convexity of the approximation is reduced when
they are moved away from the design point x(k).

One difficulty of the method comes from the fact that the automatic choice of these
curvature parameters remains empirical and mostly problem dependent. Svanberg [44] pro-
posed a heuristic strategy for asymptotes update based on the design variable oscillations.
For the iterations k = 1 and 2, the default values of the asymptotes are adopted:

L
(k)
i = x

(k)
i − s0(x̄i − xi)

U
(k)
i = x

(k)
i + s0(x̄i − xi) (80)

with s0 = 0.5 is suggested by Svanberg. Then asymptotes are updated in the following
ways.

For k > 2, the update scheme is the following. When the convergence process is smooth

(x
(k−2)
i − x

(k−1)
i ).(x

(k−1)
i − x

(k)
i ) ≥ 0, the convexity can be reduced not to slow down the

convergence rate. So the asymptotes can be moved away from design point.

L
(k)
i = x

(k)
i − s1(x

(k−1)
i − L

(k−1)
i )

U
(k)
i = x

(k)
i + s1(U

(k−1)
i − x

(k−1)
i ) (81)

with s1 less than 1 and generally chosen as s1 = 1.2. When the problem is difficult, for
instance when a p-norm of the local stress constraints is considered like in [18], it is better
to reduce this factor up to s1 = 1.05 for example.

While when the convergence history oscillates (x
(k−2)
i −x

(k−1)
i ).(x

(k−1)
i −x

(k)
i ) < 0, one

has to move the asymptotes closer to the design point to increase the convexity. So one
gets the following update rules

L
(k)
i = x

(k)
i − s2(x

(k−1)
i − L

(k−1)
i )

U
(k)
i = x

(k)
i + s2(U

(k−1)
i − x

(k−1)
i ) (82)
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Figure 13: Asymptote update based on fitting the approximation to the previous point
value [50]

with s2 inferior to 1 and generally chosen as s2 = 1/
√

s1. Svanberg [44] suggests s2 = 0.7,
but when the convergence is difficult as in [18], s2 = 0.65 gives good results.

Alternatively as in [50], they can also be defined by the value of the considered struc-
tural response at the previous iteration, gj(x

(k−1)). In this case, the asymptotes for each
constraint are computed by

L
(k)
ij = x

(k)
i − sj (x

(k−1)
i − L

(k−1)
ij )

U
(k)
ij = x

(k)
i + sj (U

(k−1)
ij − x

(k−1)
i ) (83)

where the sj factor is adjusted to fit the approximation to the value of the function at the
previous iteration (see Figure 13). This needs solving a one-dimensional line search (84)
with a Newton-Raphson procedure:

g̃j(x
(k−1)) = gj(x

(k−1))

⇔ g̃j(sj) − gj(x
(k−1)) = 0 (84)

3.6 Globally Convergent Method of Moving Asymptotes: GCMMA

As one can remark in figures 11 and 12 that MMA (but also COLNLIN) is made of sum of
monotonous functions. When one is faced to non-monotonous problems (which is often the
case with composite structures for example), it is mandatory to restrict the design variable
motion in both directions. Therefore, as suggested by Svanberg [44], a move-limit strategy
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is generally adopted in combination with MMA.

max(xi, 0.9Lj + 0.1x0
i ) ≤ xi ≤ min(x̄i, 0.1x

0
i + 0.9Ui) (85)

More recently, Svanberg [46] proposed a new extension of MMA method which uses
simultaneously both asymptotes in order to create a non monotonous approximation func-
tion. The general statement of the approximation is similar to MMA formula:

g̃j(x) = r0
j +

n
∑

i=1

p
(k)
ij

Ui − xi
+

n
∑

i=1

q
(k)
ij

xi − Li
(86)

but coefficients p
(k)
ij and q

(k)
ij are both non zero in general. They are as chosen as follows:

p
(k)
ij = (U

(k)
i − x

(k)
i )2

(

max{0, ∂gj(x
(k))

∂xi
} +

ρ
(k)
j

2
(U

(k)
i − L

(k)
i )

)

(87)

q
(k)
ij = (x

(k)
i − L

(k)
i )2

(

max{0,−∂gj(x
(k))

∂xi
} +

ρ
(k)
j

2
(U

(k)
i − L

(k)
i )

)

(88)

where ρ
(k)
j are strictly positive parameters (to insure the convexity of the approximation)

and they are updated together with the asymptotes L
(k)
i and U

(k)
i . This is precisely the

presence of the complementary term in ρ
(k)
j that allows the approximation to be non-

monotonous by using in the same time the two asymptotes L
(k)
i and U

(k)
i .

Mobile asymptotes are updated with the same rule as in MMA (see formula (80-82)).

The additional parameters ρ
(k)
j are chosen as follows. For the two first iterations (k = 1),

one choose
ρ
(1)
j = ε ∀ j ∈ {0, 1 . . . ,m} 0 < ε ≪ 1 (89)

In the later iterations (k ≥ 2), the parameters ρ
(k)
i are updated according to

ρ
(k)
j = 2 ρ

(k−1)
j if g̃

(k−1)
j (x(k)) < gj(x

(k))

ρ
(k)
j = ρ

(k−1)
j if g̃

(k−1)
j (x(k)) ≥ gj(x

(k)) (90)

Further (in order to prove the convergence!), if

g̃
(k−1)
j (x(k)) ≥ gj(x

(k)) ∀ j ∈ {0, 1 . . . ,m}

the asymptotes should now instead be updated as

L
(k)
i = x

(k)
i − (x

(k−1)
i − L

(k−1)
i )

U
(k)
i = x

(k)
i + (U

(k−1)
i − x

(k−1)
i ) (91)
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Figure 14: GCMMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [9]

Even though that for this scheme, one can prove the globally convergent character of
the method (i.e. it converges to a stationary point from any starting point; which not
means that it converges to THE global optimum of the problem!), the practical experience
is that, in most cases, it converges more slowly than the original MMA (on problems where

MMA does converge). The reason for this is that since the parameters ρ
(k)
i are increased,

and never decreased, the approximations become increasingly conservative. This may
eventually lead to very small steps in the iteration process.

3.7 Example

To illustrate the difference between the various approximation schemes, we now plot the
contours g(x) = 0 of the real and approximated constraints for a simple analytic example.
The function under study is

g(x) = 5 x2 − x2
1

First order derivatives of function g are:

∂g

∂x1
= −2 x1

∂g

∂x2
= 5

The current approximation point is (x0
1, x

0
2) = (4, 4) where the function and derivative

values are:
g(x0) = 4 ∇g(x0) = [−8 , 5]T
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Figure 15: Comparison between the different approximation schemes for the function
g(x) = 5 x2 − x2

1 at point (x1, x2) = (4, 4)

The reciprocal scheme is not conservative and lies in the un-feasible region of the true
constraint. Linear, CONLIN, MMA and GCMMA are gradually more conservative and lie
in the feasible part of the design space.

Remark that as CONLIN, MMA, etc. are monotonous approximations, so that the
contours are open curves, while GCMMA which is a non monotonous approximation leads
to a closed contour curve.

3.8 The Sequential Quadratic Programming method SQP

An alternative strategy to remedy to CONLIN’s problems consists in improving the quality
of the approximation and in introducing second order derivative information. Of course
the most famous approach using second order derivatives is the Sequential Quadratic Pro-
gramming approach or SQP (see for instance [38]). This scheme is however not separable
and dual maximization approach is not efficient in this case.

3.8.1 Introduction: SQP for problems with equality constraints

In order to solve the optimization problem

min
x

f(x) (92)

s.t. hj(x) = 0 j = 1, . . . ,m
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the basic idea is to formulate and solve a quadratic programming subproblem in each
iteration which is obtained by linearizing the constraints and approximating quadratically
the Lagrange function

L(x, λ) = f(x) + λT h(x)

Assume that xk is the current primal variable and that λk are the actual Lagrange
multiplier vector. The optimality conditions of the problem (92) writes:

∇xL(x, λ) = ∇xf(x) + λT ∇xh(x) = 0 (93)

h(x) = 0 (94)

In order to solve this non linear system of equations in variables x0 and λ0 and finding
new primal and dual variables x+ = x0 + d and λ+ = λ0 + ∆λ, we use the usual Newton
method that consists in linearizing the equations and we get:

[∇xf(x0) + λ0 T∇xh(x0)] + [∇2
xxf(x0) + λT ∇2

xxh(x0)] d + ∆λT∇xh(x0) = 0

h(x0) + ∇xh(x0) d = 0

When reordering the terms in the first equation, one gets the final system of equations:

∇2
xxL(x0, λ0) d + λ+ T∇xh(x0) = −∇xf(x0) (95)

∇xh(x0) d = −h(x0) (96)

Or as we see quite often under the following matrix form:

[

∇2
xxL(x0, λ0) ∇xh(x0)T

∇xh(x0) 0

] [

d
λ+

]

=

[

−∇xf(x0)
−h(x0)

]

(97)

As the Hessian matrix ∇2
xxL(x0, λ0) is generally positive definite on the nullspace of

∇xh(x0) (which is usually the case in the neighborhood of a local minimum point) then
the equations (95-96) or (97) are the optimality conditions for the following quadratic
programming problem (see Svanberg [45]):

min
d

1

2
dT ∇2

xxL(k) d + ∇f (k).d (98)

s.t. h(k) + ∇h(k) d = 0

Thus the Lagrange-Newton method for solving optimization problems subject to equal-
ity constraints follows the iterative procedure:

• x(k+1) = x(k) +d(k) where d(k) is the solution of the quadratic programming problem
(98);

• λ(k+1) is the Langrage multiplier vector of the quadratic programming problem (98).
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It is further possible to stabilize the method and insure its global convergence character
by using a line-search so that:

x(k+1) = x(k) + αk d(k) (99)

with αk is such that 0 < αk ≤ 1. One can show that an inexact line-search procedure like
the Armijo-Goldstein is sufficient to guarantee the global convergence character.

When it is not possible to calculate the second order derivatives or when they are too
expensive to compute, it is possible to replace the Hessian of the Lagrange function ∇2

xxL
(k)

by an approximation B(k) which is updated according to some quasi-Newton schemes on
the basis of the accumulated gradient information.

min
d

1

2
dT B(k) d + ∇xf (k).d (100)

s.t. h(k) + ∇xh
(k) d = 0

3.8.2 Sequential Quadratic Programming of inequality constrained problems

Inasmuch the interpretation of the Lagrange-Newton method as a sequential quadratic
programming method, it is natural to generalize the method also to inequality constrained
problems:

min
x

f(x) (101)

s.t. gj(x) ≤ 0 j = 1, . . . ,m

This problem can be solved as an iterative process in which the following quadratic pro-
gramming problems are solved:

min
d

1

2
dT ∇2

xxL(k) d + ∇f (k).d (102)

s.t. g
(k)
j + ∇g

(k)
j d ≤ 0 j = 1, . . . ,m

or if the second order derivative matrix is approximated using quasi-Newton updates B(k)

by

min
d

1

2
dT B(k) d + ∇f (k).d (103)

s.t. g
(k)
j + ∇g

(k)
j d ≤ 0 j = 1, . . . ,m

As for the equality constrained problem, the SQP iterative process consists in solving
problem (102) or alternatively (103). Let d(k) and µ(k) be respectively the optimal solution
of the quadratic problem and the associated Lagrange mutliplier vector. Then

x(k+1) = x(k) + αk d(k) (104)

and
λ(k+1) = µ(k) (105)

37



In (104) the line search has to be carried out to insure the global convergence of the method.
The line search is based on a merit function that includes not only the objectif function
but also some penalty terms (for instance) for the violated constraints:

φ(x) = f(x) +
m
∑

j=1

rj |max(0, gj(x))| (106)

The active set of constraints is updated using different strategies, which are particular to
different implementations.

Sequential quadratic programming methods are standard general purpose algorithms for
solving smooth nonlinear optimization problems, at least under the following assumptions:

• The problem is not too big.

• The functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

One of the most famous implement (and one of the most efficient) remains the NLPQLP
Fortran routine by Schittkowski [39].

3.8.3 Estimation of second order derivatives: the Quasi Newton updates

The quasi Newton equation

In order to obtain an approximation to the Hessian matrix (matrix of the second order
derivatives) of a given function f(x), we consider the Taylor expansion of the gradient of
f(x): g = ∇f in the vicinity of x(k+1):

g(x(k)) = g(x(k+1)) + H(x(k+1))[x(k) − x(k+1)] + ∆ (107)

with ∆ → 0 if x(k) → x(k+1).
If we define

y(k) = g(x(k+1)) − g(x(k)) (108)

s(k) = x(k+1) − x(k) (109)

and if we neglect the second order term ∆, we obtain the quasi Newton equation:

y(k) = H(k+1) s(k) (110)

It is sometimes easier to work with the S(k+1) = [H(k+1)]−1 inverse of the Hessian
matrix. We construct the related quasi-Newton equation for the S matrix.

s(k) = S(k+1) y(k) k ≥ 0 (111)

The matrix S(k+1) is easily computable from S(k) if it is obtained by adding to S(k) a
correction term C(k), which depends only upon S(k), y(k) and s(k).

S(k+1) = S(k) + C(k) k ≥ 0 (112)

At the same time the correction C(k) should be constructed to preserve the symmetry and
the positive definiteness of S(k).
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Rank-one update

To obtain a symmetric correction C(k) we investigate a correction in the form of a rank-one
matrix:

S(k+1) = S(k) + β(k) z(k) z(k) T (113)

The vector z(k) and the coefficient β(k) are selected so that the condition (112) is
satisfied. After some algebraic manipulation in order to identify these coefficients, one gets
the Broyden rank-one quasi Newton updates:

S(k+1) = S(k) +
[s(k) − S(k)y(k)] [s(k) − S(k)y(k)]T

y(k) T [s(k) − S(k)y(k)]
(114)

One can demonstrate that in the case of a quadratic function, the quasi-Newton update
converge to the exact matrix of the second order derivatives in n iterations at most (n is
the number of design variables).

For non quadratic functions, the positive definiteness of the update is only preserved
along the iteration process at the price of using a line search. Therefore the rank-two
updates are generally preferred because they preserve the positive definiteness of S(k).

Davidon-Fletcher-Powell (DFP) rank-two updates

In the Davidon-Fletcher-Powell (DFP) method the updating formula is taken of the form:

S(k+1) = S(k) + β s(k) s(k) T + γ [S(k) y(k)] [S(k) y(k)]T (115)

Once again the coefficient identification starts with satisfying the quasi Newton equation
(112). The equality holds for a particular choice of the coefficients β and γ, which gives
the DFP updating formula:

S
(k+1)
DFP = S

(k)
DFP +

s(k) s(k) T

s(k) T y(k)
− [S

(k)
DFP y(k)] [S

(k)
DFP y(k)]T

y(k) TS
(k)
DFP y(k)

(116)

We can prove that if S
(k)
DFP is positive definite, then S

(k+1)
DFP is also positive definite if a

line-search is used.

When applied to a quadratic function, it is possible to prove (see Fleury [22]) that DFP
updates have the following properties

• It generates conjugate directions

s(i) TAs(j) = 0 i < j ≤ k (117)

• and
S(k+1) A s(i) = s(i) 0 ≤ i ≤ k (118)

Which implies that S(n) = A−1 so that convergence is obtained after n steps.
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It is also a simple matter to show that the updating formula (116) may be also inverted
to approximate the Hessian matrix itself rather than its inverse. The resulting matrix

B
(k)
DFP is given by the DFP update:

B
(k+1)
DFP =

(

I − y(k) s(k) T

y(k) T s(k)

)

B
(k)
DFP

(

I − s(k) y(k) T

y(k) T s(k)

)

+
y(k) y(k) T

y(k) T s(k)
(119)

Broyden-Fletcher-Goldfard-Shanno (BFGS) rank-two updates

The complementary formula to equation (116) giving S
(k)
DFP and to equation (119) giving

B
(k)
DFP are easily calculated by adopting for B

(k)
BFGS an updating formula analogous to

S
(k)
DFP and vice versa.

If we adopt for B
(k)
BFGS a rank-two updating formula of the form (115), the coefficient

are selected to satisfy the direct quasi-Newton equation:

B(k+1)s(k) = y(k)

It comes the famous Quasi-Newton update formula by Broyden-Fletcher-Goldfard-Shanno
(BFGS):

B
(k+1)
BFGS = B

(k)
BFGS +

y(k)y(k) T

s(k) Ty(k)
− [B

(k)
BFGSs(k)][B

(k)
BFGSs(k)]T

s(k) TB
(k)
BFGSs(k)

(120)

This scheme satisfies simultaneously the symmetry property, the positive definiteness
of the update, and the Quasi-Newton condition (161). But it doesn’t preserve sparse or
diagonal structure of the previous estimation. Such updates preserving diagonal pattern
can be derived from Thapa’s theorems [48].

In inverse form, it is similarly obtained from the DFP formula (119)

S
(k+1)
BFGS =

(

I − s(k) y(k) T

s(k) T y(k)

)

S
(k)
BFGS

(

I − y(k) s(k) T

s(k) T y(k)

)

+
s(k) s(k) T

s(k) T y(k)
(121)

One can notice that the role of y(k) and s(k) have been interchanged between the DFP and
the corresponding BFGS formula.

According to several authors, there is growing evidence that the BFGS is the best
current update formula for use in unconstrained optimization. This is due to the fact that
the eigenvalues of the BFGS update (121) are systematically larger than those of (116).

3.9 Second order separable approximation schemes

Second order derivatives can also be used with separable approximation schemes. These
ones are more generally derived from previously exiting first order schemes. Smaoui, Fleury
and Schmit [42] proposed a generalized MMA in which the asymptotes are automatically
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selected to match the second order derivatives. A bit later Fleury [24] generalized the
use of second order derivatives to several other convex approximations (like the quadratic
diagonal scheme and the expansion in terms of a power of the design variables) and showed
there is a big pay-off related to the use of the second order information in structural
approximations.

3.9.1 Quadratic Separable Approximations

The quadratic approximation is the second order Taylor’s expansion of the given structural
response. Nevertheless, the full second order expansion introduces a coupling terms and
the approximation is not separable anymore. Furthermore, the full second order sensitivity
analysis can be expensive for structural problems. So Fleury [24] proposed to neglect the
off-diagonal second order terms and to admit that structural constraints are sufficiently
well approximated by the following local expansion:

g̃(x) = g(x0) +

n
∑

i=1

∂g(x0)

∂xi
(xi − x0

i ) +
1

2

n
∑

i=1

(
∂2g(x0)

∂x2
i

+ δii)(xi − x0
i )

2
(122)

The additional terms δii are generally added in order to reinforce the convexity of the
separable approximation and to play the role of ’move limits’ in establishing a trust region
around the design point. For example, the penalty terms δii can be estimated so that the
unconstrained optimum is kept within a given distance of the expansion point.

|x∗
i − x0

i | = | ∂g

∂xi
/(

∂2g

∂x2
i

+ δii)| < α x0
i (123)

3.9.2 The Generalized Method of Moving Asymptotes (GMMA)

The approximation of the generalized method of moving asymptotes can be written in the
following form:

g̃(x0) = c0 +

n
∑

i=1

ai

xi − bi
(124)

As the original MMA [44], this approximation can easily match the function value and
its first derivatives at current design point x0. If the second order information is available,
Smaoui et al. [42] showed that the asymptotes could be selected automatically too. The
parameters of the expansion are given by:

ai = −(x0
i − bi)

2 ∂g(x0)

∂xi

bi = x0
i + 2

∂g(x0)

∂xi
/max(ǫ,

∂2g(x0)

∂x2
i

) 0 < ǫ ≪ 1 (125)

while the parameter c0 is defined to meet the constraint value at the design point. The small
positive number ǫ guarantees the convexity of the approximation. This approximation is
a generalization of the pure Method of Moving Asymptotes of Svanberg [44], since, here,
each constraint has got its own set of asymptotes.
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3.9.3 Second order GCMMA

As suggested in Svanberg [47], the curvature of the GCMMA approximation can be im-
proved by considering non mixed second order derivatives instead of the non-monotonic
parameter.

p
(k)
ij =

(U
(k)
i − x

(k)
i )3

2(U
(k)
i − L

(k)
i )

× (126)

(

2
∂gj(x

(k))

∂xi
+ (x

(k)
i − L

(k)
i )

∂2gj(x
(k))

∂x2
i

)

q
(k)
ij =

(x
(k)
i − L

(k)
i )3

2(U
(k)
i − L

(k)
i )

× (127)

(

−2
∂gj(x

(k))

∂xi
+ (U

(k)
i − x

(k)
i )

∂2gj(x
(k))

∂x2
i

)

In the later, this approximation is called GCMMA2.

3.10 Approximation procedure of the diagonal second derivatives

Several approaches have been developed to find efficient estimation procedures of the diag-
onal second order terms. For example in Duysinx et al. [19], a fast estimation procedure of
second order terms is derived from Thapa’s theory [48] of quasi-Newton update preserving
sparse patterns by particularizing it to diagonal structures. However the result is a bit
disappointing from a theoretical point of view since one comes to the conclusion that the
formula leads to making finite differences between the first derivatives at the current and
the previous design points.

In fact the basic problem stems from the fact that there was no real mathematical (and
rigorous) theory to deal with the estimation of a diagonal Hessian matrix. An important
break-through was recently realized with the work of Zhu, Nazareth and Wolkowicz [52]
and their theory of quasi-Cauchy diagonal updatings. Adaptation to structural and multi-
disciplinary problems has been drawn in [17].

3.10.1 Diagonal quasi-Newton updates

A study [19, 20] based on the theory of Quasi-Newton updates preserving the diagonal
structure has shown that the best approximation of second order diagonal terms is simply
given by:

Bii ≃

∂g(x(k))

∂xi
− ∂g(x(k−1))

∂xi

x
(k)
i − x

(k−1)
i

(128)

This rather intuitive result consists in ”making finite differences between the computed
first derivatives in two successive iteration points and in ignoring the cross derivatives”.
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This theoretical result was adapted to the characteristics of structural optimization
problems to yield quickly convergent estimates of the Hessian. This adaptation relies on
the key role of the reciprocal design variables to reduce the non-linearity of the structural
responses. The Hessian is updated in the space of reciprocal design variables and then
converted into curvatures in terms of the direct variables to be used in the approximation.
The initial guess of the Hessian is also very important. Starting in the reciprocal design
space from a diagonal matrix of small terms restores the curvatures of CONLIN which is
generally a good starting point.

As in Ref. [19, 20] this approximate second order information can be introduced in
two high quality approximations: the second order Method of Moving Asymptotes and
the quadratic separable approximation. The performances of this procedure are very close
from the results obtained while using the same approximations with analytic second order
derivatives [24]. In every cases these performances are at least as good as the best results
with MMA [44] or CONLIN [27].

3.10.2 Quasi-cauchy updates

Compared to quasi-Newton updates which are quite well known in the engineering com-
munity, the main characteristics of the quasi-Cauchy theory are the following:

• The update must satisfy the quasi-Cauchy equation which is a diagonal version of
the weak-quasi-Newton equation (developed in Dennis and Wolkowicz [12]) -which is
itself a weak version of the well-known quasi-Newton relation-:

sTD+s = sTy

where D+ is the updated approximation of the (true) Hessian matrix we look for,
s = x+ − x is the step between the two design points and y = g+ − g is the gradient
change between these two points.

• The update D+ is required to be a priori a diagonal matrix.

According to theoretical results presented in Zhu et al. [52], two quasi-Cauchy updating
schemes are implemented and compared: one is based on the update of the matrix D itself
and the other one is based on the updating of the matrix D1/2.

Updating D

Updating scheme of D is based on the variational problem:

min ||D+ − D||F
s.t. sTD+s = sTy (129)

where s 6= 0, sT y > 0, and D > 0. Let D+ = D + Λ, a = sTDs, b = sTy. According
to [52], the solution to this problem writes:

Λ =
(b − a)

tr(E2)
E with E = diag{s2

1, s
2
2 . . . s2

n} (130)
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When b < a, it is interesting to notice that the update matrix D+ = D+Λ is not necessarily
positive definite. This may be a difficulty if D is used within a metric-based algorithm,
but when used in a structural approximation, this is not really an obstacle because one
replaces the negative second order terms by a very small positive number to stay with a
convex approximation.

Updating D1/2

An alternative approach is similar to the principle used to derive the BFGS update in the
quasi-Newton setting. It consists in updating the square root or Cholesky factor D1/2 to

give the corresponding D
1/2
+ . The update is defined by D

1/2
+ = D1/2 + Ω. The Ω update

is calculated via the solution of the minimization problem:

min ||Ω||F
s.t. sT (D1/2 + Ω)s = sTy > 0 (131)

Let D > 0, and s 6= 0. There is a unique solution to the minimization problem (131) (see
theorem 2.2.1 of Zhu et al. [52]) and it is given by:

Ω =

{

0 if b = a

µ∗E (I + µ∗ E)−2 D1/2 if b 6= a
(132)

where µ∗ is the largest solution of the non linear equation F (µ) = b with

F (µ) = sT
(

D (I + µE)−2
)

s =
∑

{i | si 6=0}

disi

(1 + µs2
i )

2
(133)

One can demonstrate that the solution D+ is always definite positive. However this up-
dating scheme requires the solution of a one-dimensional non-linear equation.

The solution of the one-dimensional equation F (µ) = b is not too difficult to realize
numerically for example with a bisection iteration scheme. However, one may notice that
the solution of the one-dimensional equation goes into trouble when the function is non
convex during the step, i.e. b = sTy < 0. Indeed F (µ) is strictly positive on the search
interval. In this case the QC update can not be applied anymore and the update procedure
is not possible. In this case, our parade is to restart the update procedure.

Oren-Luenberger scaling

The simplest relation derived from QC relation is known from a long time [32]. It is the
unique matrix that is obtained from QC relation with further restriction that the diagonal
matrix is a scalar multiple of identity matrix I, that is D = d I. So it comes that
sTDs = d sT s. QC relation allows to identify d, which leads to the Oren-Luenberger
scaling matrix :

D+ =
sTy

sT s
I (134)
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Properties of quasi-Cauchy updatings

Up to now, the second scheme (based on updating of the matrix D1/2) has shown to be
better in our numerical testings, mainly because it preserves the positive definiteness of the
diagonal estimate, but it also requires the solution of a one-dimensional non-linear equation.
However, both quasi-Cauchy updating schemes present the following major advantages:

• They require very little storage (O(n)) so that they are very well adapted to the
solution of large scale problems such as topology problems in structural optimization.

• The update provides a rigorous way, to avoid off-diagonal second order terms and to
replace them by a weighted effect over the diagonal.

Nonetheless, the weakness of the theory up to now is that, to the authors’ knowledge,
there are no demonstrated convergence properties for quasi-Cauchy techniques like for
quasi-Newton techniques.

Moreover the first conclusions drawn by study in Ref. [17] in structural optimization
are quite surprising. If it was expected that exact second order sensitivities are better than
quasi-Cauchy estimations, it is more surprising to see that Quasi-Newton estimation based
on implementation given in Ref. [19, 20] is generally better than quasi-Cauchy updates.
The surprise is that making finite differences of the first derivatives is quite competitive
compared to quasi-Cauchy techniques, which have a rigorous and elaborated mathematical
background. Despite what seems to be suggested in [52], updating scheme based on D is
not less good than the updating scheme based on D1/2 in structural optimization.

3.11 Improvement of the MMA family schemes

3.11.1 GBMMA approximations

In the Globally Convergent version of MMA ([46]), each function gj(x) is approximated
according to the following expansion:

g̃j(x) = gj(x
(k)) +

n
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i=1
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) (135)

gj(x
(k)) is the function value at the current iteration k, whereas the parameters p

(k)
ij and

q
(k)
ij are computed based on the first order derivatives, on the asymptotes L

(k)
i and U

(k)
i ,

and on a non monotonic parameter ρ
(k)
j . At each iteration k, the asymptotes L

(k)
i and

U
(k)
i are updated according to a heuristic rule that is the same as for the classical MMA,

while the parameter ρ
(k)
j is updated on the basis of a rule proposed by Svanberg to ensure

the globally convergent character of the approximation. If the parameters p
(k)
ij and q

(k)
ij in
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Figure 16: Non monotonous approximations around x(k): GCMMA, GBMMA1 and GB-
MMA2

(135) are positive, the approximation is convex. Because of the presence of the parameter

ρ
(k)
j , the approximation is non monotonous as illustrated in Fig. 16.

As shown in Bruyneel et al. [8], the original Svanberg’s GCMMA scheme can be much
improved when exploiting the information at previous iteration points. In the Gradient
Based MMA approximation schemes (or GBMMA) proposed in Bruyneel et al. [8], the

gradient information from the previous iteration k−1 is used in place of ρ
(k)
j to build (135).

For GBMMA1, p
(k)
ij and q

(k)
ij in (135) are determined by matching the first partial

derivatives at the current and previous design points. They are analytically computed
from the following set of equations:
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(136)

In GBMMA2, the quality of the approximation (135) is improved by using an estimation
of the diagonal second order derivatives (137) introduced for the first time in Duysinx et

al. [19]. Determining parameters p
(k)
ij and q

(k)
ij of the scheme then relies on the first

partial derivatives at the current design points and on the estimated second order diagonal
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Figure 17: Selection of the non monotonous approximation based on GCMMA, GBMMA1
and GBMMA2

derivatives (137).

∂2gj(x
(k))

∂x2
i

≃

∂gj(x
(k))

∂xi
− ∂gj(x

(k−1))

∂xi

x
(k)
i − x

(k−1)
i

(137)

It was observed on numerical tests that it is interesting to use GBMMA2 when the
current design point is in the vicinity of the optimum, that is at the end of the optimization
process. Indeed, it make sense that in the final convergence stages, the use of second order
information, even if estimated, improves the convergence speed. Based on this observation,
the contribution of a given design variable xi in a given design function gj(x) can be
approximated by GBMMA2 when the criterion (138) is verified:

|x(k)
i − x

(k−1)
i |

xi − xi

≤ SWITCH (138)

Otherwise, GBMMA1 is used. This leads to consider the mixed non monotonous GBMMA1
- GBMMA2 approximation, for SWITCH ∈]0, 1[.

When p
(k)
ij and q

(k)
ij computed by GBMMA1 or GBMMA2 are not positive, the approx-

imation procedure switches automatically back to a classical GCMMA to keep a convex
approximation. The automatic selection of the non monotonous convex approximation
based on (138) is illustrated in Fig. 17.

Monotonous approximations like MMA or CONLIN can also been recovered as special
cases of the more general non monotonous approximation GCMMA. For these approxima-
tions, only one asymptote is used at a time, which means that depending on the sign of
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the first derivatives, either p
(k)
ij or q

(k)
ij is set to zero. Furthermore, by forcing L

(k)
i = 0 and

U
(k)
i → ∞, MMA is reduced to Conlin ([27]):

3.11.2 Mixed approximations

When dealing with structural optimization problems including design variables of two
different natures, for example in problems mixing sizing and shape variables or ply thickness
and orientation variables in composite design, one is faced to a difficult task because of the
simultaneous presence of monotonous and non-monotonous behaviors with respect to the
design variables. In these conditions, most of usual approximation schemes have a poor
convergence properties or even fail to solve these kinds of problems. This fact was noticed
by Zhang et al. [49] for truss configuration optimization. Those authors put forward the
idea that a mixed approximation scheme was interesting in this case and they developed
such an approximation in which a priori sizing variables are approximated by a GMMA
scheme, whereas a diagonal quadratic approximation is used for shape variables.

In this work, we are continuing along this idea and we propose a mixed approximation
based on monotonous and non-monotonous schemes from the MMA family we presented
before. Using approximations of the same family is an advantage for the numerical imple-
mentation. We also provide a strategy to select the monotonous or the non-monotonous
approximation schemes for each variable in each function. This insures the efficiency and
the robustness of the procedure.

In order to generate the most general mixed approximation scheme of the MMA family,
GBMMA and GMMA are combining in (139)
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) (139)

In this new GBMMA-GMMA approximation, the design variables are partitioned into two
sets, namely A and B. For the design variables belonging to the set A the GBMMA scheme
(135) is used, which introduces a non-monotonous contribution, whereas for variables from
set B, a GMMA scheme (124) is considered, which gives rise to monotonous terms in the
approximation.

At any stage k ≥ 2 of the iterative optimization process, an automatic strategy selects
the partition of the design variables between the two sets A and B. The tests are based
on the gradient values at two successive iterations, or more exactly on the variation of the
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sign of the first derivatives between the two design points. For each structural response
gj(x) and each design variable xi, one performs the following tests:

∂gj(x
(k))

∂xi
× ∂gj(x

(k−1))

∂xi
> 0 ⇒ GMMA (140)

∂gj(x
(k))

∂xi
× ∂gj(x

(k−1))

∂xi
< 0 ⇒ GBMMA (141)

∂gj(x
(k))

∂xi
− ∂gj(x

(k−1))

∂xi
= 0 ⇒ LINEAR (142)

As suggested for the first time in Bruyneel and Fleury [9], tests (140) to (142) are
performed on a given number of iterations defined by the user parameter ICHECK to
be sure to capture the true structural behaviors. During this checking phase, the use of
monotonous approximations is forbidden for avoiding the risk of approximating a non-
monotonous function with a monotonous one. This is illustrated in Fig. 18: between the
iterations k − 2 and k − 1, the non-monotonous GBMMA3 scheme is selected based on
the test (141). If the detected non-monotonous behavior is not stored, a monotonous
approximation could be built at the next step according to the relation (140), because the
gradients in θ(k−1) and θ(k) are now of the same sign. This would reject the new design
point θ(k) ⋆ far from the current one and could slow down the overall optimization process.

If the test (140) is verified during the ICHECK iterations, the behavior of the function
gj(x) is considered to be monotonous with respect to xi. This variable is then associated
to the set B in (139) and its contribution in gj(x) is given by a monotonous approximation.

In practice, the choice of the value for the ICHECK parameter results from a compro-
mise between security and speed: if this value is low, a non-monotonous structural behavior
could be approximated using a monotonous approximation, and if its value is high, one
then works mainly with non-monotonous (and perhaps too conservative) approximations.
A typical value for ICHECK is 2.

A simpler scheme combining the GBMMA and the MMA approximations (called GB-
MMA -MMA) can be derived from (139). One needs just to define one set of lower asymp-

totes L
(k)
i and one set of upper asymptotes U

(k)
i for all the functions instead of L

(k)
ij and

U
(k)
ij . In this approximation scheme, the fitting procedure (83-84) is replaced by the simpler

update procedure (80-82), so the function value at the previous iteration is then not used
anymore. This ’less expensive’ scheme was used by [9] for the optimization of laminates
over plies thickness and fibres

4 COMPARISON OF FIRST AND SECOND ORDER SCHEMES

4.1 Comparison of first and second order approximations in topology
optimization [13]

First order convex approximations

In Refs. [13, 14], we tested first order approximations in solving material distribution
problems and we observed good results. These approximations give rise to quick descent
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Figure 18: Selection of monotonous or non-monotonous approximations in a mixed scheme

rate during the first 10 iterations, but the convergence is slower around the optimum, so
that 20 to 40 iterations more are generally necessary to arrive to a stationary solution.
Nevertheless, if these performances (in terms of the number of iterations) are compared to
results obtained with standard implementations of optimality criteria (like in Ref. [3, 5]),
CONLIN or MMA give equal or better performances. Among the approximations, the
expansion in terms of power p of the design variables is often too conservative and the
convergence rate is the slowest. Performance of CONLIN is generally very satisfactory.
Due to the weaker curvatures of CONLIN and MMA in the first iterations, it is worth
using move-limits to have a smooth convergence history.

From our experiences, the CONLIN (Fleury and Braibant [27]) approximations give
rise to good results in topology design. For the compliances that are self-adjoint, all the
derivatives are negative and CONLIN restores the reciprocal design variables expansion
that is well known to reduce the non-linearity of the structural responses. But convex-
ity and conservativity properties of the approximation in CONLIN are important when
treating eigenfrequencies or constraints whose first derivatives have mixed signs. The main
disadvantage of CONLIN is that the approximations introduce fixed curvatures, so that
the approximation may be too much or too little conservative. This can give rise to a slow
or unstable convergence towards the optimum. To remedy this, we select the MMA [44]
approximation scheme which generalizes and improves the CONLIN scheme by introducing
two sets of asymptotes. The choice of the moving asymptotes provides the way to modify
the curvature and to fit better to the characteristics of the problem.

Because of the flexibility introduced by the moving asymptotes, MMA fits better to
the convexity of the problem and MMA is often a bit quicker than CONLIN. It was also
observed that for very difficult problems, MMA was more stable than CONLIN. Therefore
it is generally chosen as default algorithm.
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Nevertheless, we can conclude that both CONLIN and MMA lead to satisfactory results
for topology design and improve often greatly the performance of the solution procedure.
In many problems we observed that a solution is often achieved in 30 to 50 iterations
depending on the difficulty of the problem and the precision of the stopping criterion. One
strong advantage of CONLIN and MMA arises from the very reliable dual solvers that are
used to solve the associated convex sub-problems. On another hand, one major drawback of
first order approximations is that we can observe a deceleration of the progression towards
the optimum once the algorithm arrives in the neighborhood of the optimum. To accelerate
the convergence rate in the final stage, one needs better approximations based on curvature
information (Fleury [24]).

We should also briefly discuss the selection of a termination criteria. We prefer not
using termination criteria based on limited improvement of the objective function since the
optimum is very flat and the value of the objective function decreases very slowly during
more than half of the iterations. So, such a method will lead termination of the optimization
process at a too early stage. When all is said and done, one looks for the optimal material
distribution, so we think that it is better to adopt a termination criteria based on the design
variable motion. This can be based on any norm of the difference of the design variable
vectors between two iterations. We often use arithmetic mean modification (order 1 norm)
or the maximum modification (infinite norm). As the problem under consideration is a
constrained optimization problem, one can also use Kuhn-Tucker conditions. Satisfaction
of any one of these last termination criteria avoids premature stopping.

Second order convex approximations [14]

Second order are high quality approximations that are indeed more precise and that
lead to faster convergence rates. Nevertheless, second order sensitivity is very onerous to
compute and to store so that the overall cost of the optimization run with second order
sensitivity can be similar to the cost of an optimization run that would be made with
first order approximations even if the number of iteration is greater [34]. When the size
of the problem increases, computing and storing second order derivatives becomes quickly
cumbersome and the problem becomes impossible to manage.

To be able to use second order approximation schemes with large scale optimization
problems, we developed a new procedure to generate an estimation of the curvature infor-
mation with a small computation cost [19, 20]. As separable approximations needs only
diagonal second derivatives, the idea is to built an estimation of the curvature information
with a quasi-Newton update able to preserve diagonal structure of the Hessian estimates.
This update scheme is derived form the general theory of quasi-Newton update with sparse
Hessian estimates made by Thapa [48]. The diagonal version of the BFGS update [19, 20]
that we implemented is very un-expensive even for large scale problems since it introduces
only vectors manipulations. In [13], it was observed that for a given topology problem,
the time spent in the diagonal BFGS update is only 3 % of the time spent in the opti-
mizer CONLIN [23, 25] and only 0.01 % of the time needed for sensitivity analysis with a
commercial finite element package.

The estimated second order information is introduced into two well known second order

51



approximations. The first one is a second order version of MMA proposed by Smaoui et
al. [42]. The second approximation is the separable quadratic approximation suggested by
Fleury [24]. Combining diagonal BFGS update with both these approximations gives very
interesting results that leads to important savings in terms of number of iterations and
of computation time. This conclusion can be explained as follow. Firstly, the estimation
of the curvature improves greatly the quality of the approximation with only the help of
the accumulated first order information. Secondly, instead of ignoring the second order
coupling terms, diagonal BFGS provides a way to take them into account by correction
terms on the diagonal coming from the diagonal update. Due to our initial guess of the
Hessian, one can observe, in the first iterations, a convergence history that is very similar
to first order approximations. But after some iterations, the update procedure improves
the estimation of the Hessian and one can see a real advantage in the convergence speed.
Around an accumulation point satisfying the optimality conditions, we could observe a
convergence speed superior to first order methods, sometimes closed from super-linear
behaviour.

As a conclusion, second order approximations can advantageously be used for large scale
optimization problems like topology design. Starting from an initial choice of curvatures
which is close to the reciprocal design variable expansion results in similar characteristics as
first order approximations, during the first iterations. This choice generally yields a good
descent rate of the objective function in the beginning. Then, since the Hessian estimate
is improved and the approximation is enriched by this curvature information, it leads to a
better convergence rate during final convergence and the number of iterations to reach a
stationary solution is reduced.

Attention must nevertheless be paid to the well-known fact that second order algo-
rithms are more sensitive to local optima. This fact was observed also with our procedure
and particularly with the quadratic separable approximation. This drawback can be at-
tenuated by adding move-limits or by adding additional convex terms in the quadratic
approximation.

4.2 Topological optimization of short cantilever beam

Finally we can illustrate the application of four approximations -CONLIN, MMA, MMA
second order with diagonal BFGS (DQNMMA), and quadratic separable approximation
with diagonal BFGS (DQNQUA)-, in the context of a topology optimization problem,
the short cantilever beam problem whose geometry of the problem is given at figure 19.
This design is a classical bench-mark of topology optimization. For the sake of simplicity,
the material law is simply given by a cubic relation between the rigidity and the relative
density [4]: E = µ3E0 and ρ = µρ0. The Poisson’s ratio and the Young’s modules of
the solid are: ν0 = 0.3 and E0 = 100 GPa. The compliance under the given load case
is minimized while the volume is bounded to 37.5% of the volume of the design domain.
The design domain is discretized by a regular mesh of 1040 finite elements of degree 2.
The finite element analysis and the sensitivity analysis are performed with the SAMCEF
package.
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Figure 19: Short cantilever beam problem

Figure 20: Distribution of density (CONLIN)

The problem is solved with the four different approximations for compliance (the volume
is linearized). Since all the first derivatives of compliance are negative, CONLIN and
the reciprocal variables expansion are the same. We also implemented a MMA scheme
similar to Svanberg’s one. Then, we use the high quality approximations DQNMMA and
DQNQUA.

Histories of compliance are given at figure 21. At first glance, the different convergence
curves are very similar and the different algorithms tend towards local optima with nearly
the same compliances. Nevertheless, when material distributions are visualized, the op-
timal distributions reveal a very similar topology, except in the quadratic approximation
(Figure 20 presents the material distribution obtained with CONLIN). Thus several op-
tima exist when intermediate densities are highly penalized and attention must be paid to
local configurations. Also, second order approximations are partly more sensitive to local
optima.

First order approximations give smooth and monotone history curves. At the beginning,
the descent rate is good but, after more or less 10 iterations, compliance reduction is
seriously slowed down when close to the optimum. Progression becomes much slower.
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Figure 21: Compliance history

One can note that the modulus of the KKT test (figure 22) and the mean modification
of the design variables between two iterations (figure 23) diminish slowly, even with small
oscillations.

Second order approximations also results in convergence curves with a very good descent
rate. The progression towards the optimum is not handicapped too much by the non
monotone behaviour of the first iterations (iterations 3 and 4). That fact may be due to an
uncertain value of the estimation of the curvatures by the diagonal BFGS. After this phase
which is necessary to stabilize the estimations of the curvatures, second order information
gives rise to a very good descent rate. When in the flat part of the compliance curve,
second order information preserves a good convergence speed and continues to accelerate
the progression towards a stationary solution. This can be clearly noted on the mean
modifications of the design variables or on the KKT modulus. Stationarity is reached much
faster with second order schemes and diagonal BFGS than with first order approximations.
As predicted by Thapa’s theory [48], we recover in fact the asymptotic superlinear descent
rate of quasi-Newton methods in the neighborhood of the optimum. This characteristic
saves a high number of iterations. The quadratic scheme and the MMA second order
method come to stationarity in 30 to 40 iterations while CONLIN and MMA needs more
than 40 iterations to satisfy a weaker termination criteria.

Finally one can also compare the two proposed termination criteria: the modulus of
the Lagrangian function (in figure 22) and the mean modification of the design variables
between two iterations (in figure 23). One can observe that both have a parallel evolution
and they are in perfect correlation. As predicted by the theory they give an equivalent
information and they be both used to predict convergence in topology optimization prob-
lems.

With the DQNMMA and DQNQUA approximations, the objective function is com-
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Figure 22: History of modulus of KKT vector

Figure 23: History of the mean motion of the design variables between two successive
iterations
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Figure 24: Design domain and supports.

pletely stationary after 26 iterations and 40 iterations. At this moment, no design modi-
fications can be observed, whereas the convergence of the other first order schemes is not
achieved yet. CONLIN and MMA’s final convergence rates are much slower.

4.3 Advantage of using advanced MMA schemes in topology optimiza-
tion [7]

The test case illustrated in Fig. 24 consists in designing a structure that relies on two
supports, while supporting its own weight. A non structural mass is placed on is placed at
the top to load the structure. Intuitively an arch type structure is expected (see figure 25
the solution obtained with GCMMA). The reference length L is L = 1m. Due to symmetry
conditions, only one half of the design domain is studied and is discretized with 20 × 20
4-node quadrangular finite elements of 8 degrees of freedom. The mechanical properties
of the base material to be distributed in the domain are: Eo = 1N/m2, ν = 0.3 and
ρo = 1kg/m3, while the gravitational acceleration ag is 9.81kgm/s2. The exponent p in
SIMP interpolation is equal to 2. The maximum available amount of material V at the
solution is 80%, while the minimum amount of material V is set to 1%.

The stopping criteria adopted is based on the maximum variation of the design variables
over two design steps where TOL = 0.0001:

max
i=1...n

|µ(k)
i − µ

(k−1)
i | ≤ TOL (143)

At first we can observe that when CONLIN is used, no optimal topology can be ob-
tained. The topology changes from one iteration to an other (Figs. 26 and 27) and there
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Figure 25: Optimal topology for the arch problem when using GCMMA and the modified
SIMP law

Figure 26: Topology obtained by CONLIN at iteration 199

are oscillations of the design variables during the optimization process. Such a monotonous
approximation is definitively not efficient for solving this non monotonous problem.

For the other approximations: MMA, GCMMA, GBMMA1, GBMMA2 and GBMMA1-
GBMMA2, a solution can always be reached (similar to Fig. 25). Although MMA gives
rise to monotonous approximations of the design functions, it is able to come to an op-
timal topology, thanks to a robust move-limits strategy suggested by [44]. However, as
reported in Table 1 for different values of the precision TOL in (143), MMA requires a lot
of iterations: twice more than GCMMA and nearly four times more than the best GB-
MMA. For self-weight problems, the non monotonous approximations are obviously much
more efficient, especially when gradients from the previous iteration are used as in GB-

Figure 27: Topology obtained by CONLIN at iteration 200
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Table 1: Number of iterations needed for solving the arch problem under selfweight for
different values of TOL in (143). GBMMA1-GBMMA2 with automatic selection strategy
of Fig. 17(SWITCH = 0.2)

Approximations 0.01 0.001 0.0001

MMA 130 402 438
GCMMA 80 200 253
GBMMA1 51 98 130
GBMMA2 73 109 139

GBMMA1-GBMMA2 54 91 112

Figure 28: Composite cylinder problem

MMA approximations. According to the results of Table 1, GBMMA is always faster than
GCMMA. The best results are obtained with the automatic strategy combining GBMMA1
and GBMMA2. In this case, the mixed GBMMA1-GBMMA2 scheme is nearly twice faster
than GCMMA.

4.4 Advantage of using advanced MMA schemes in composite structure
optimization [8]

This numerical application will demonstrate the efficiency of the novel GCMMA family
approximation with respect to the original MMA one. The design problem is a composite
optimization including both thickness and orientation variables.

The design of a closed composite cylindrical container (see Fig. 28) subject to an internal

58



Table 2: Starting point for the composite cylinder optimization problem

Initial Orientations Initial thicknesses
(θ1, θ2, θ3, θ4) (t1, t2, t3, t4)
(θ5, θ6, θ7, θ8) (t5, t6, t7, t8)

in degrees in mm

(0◦, 135◦, 45◦, 90◦) (0.1; 0.2; 0.1; 0.2)
(90◦, 45◦, 135◦, 0◦) (0.1; 0.2; 0.1; 0.2)

pressure of P = 10 bars is considered (144).

min
θ, t

1
2εT Aε

s.t.: TW(θi, ti) ≤ 1 i = 1 . . . 8
∑8

i=1 2 ti ≤ 10mm
0◦ ≤ θi ≤ 180◦ i = 1 . . . 8
0 < ti ≤ 10 mm i = 1 . . . 8

(144)

The radius of this thin-walled cylinder is 1 meter. The initial design is given in Table 2.
The number of structural analyses performed to reach a feasible local optimum are

given in Table 3 when different types of approximations are used. Two differents values of
the stopping precision parameter TOL are used in criterion
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∣

∣

∣

∣

g0(x
(k)) − g0(x

(k−1))

g0(x(k−1))

∣

∣

∣

∣

∣
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In Figs. 29 and 30, convergence curves are provided for MMA and GBMMA-GMMA. In
these figures, the value of the constraints is normalized so that they are violated when they
take a value larger than unity. The maximum violation at each iteration is plotted.

When MMA is used, large oscillations are observed for the successive fibres orientations
values (Fig. 29). This is due to the bad approximation of the structural responses in terms
of those design variables. GCMMA2 is quite slow (Table 3) because it is degenerated to
the first order approximation when second derivatives are negative.

From Table 3, it is clear that resorting to Gradient Based MMA approximations and
using information from previous design point can bring a major reduction of the number of
iterations in this kind of composite design. Moreover, the mixed schemes can even further
improve the convergence speed. From Fig. 30, one can see that the mixed GBMMA-GMMA
scheme leads to monotonous convergence curves (in terms of the objective function as well
as in terms of the design variables evolutions).

5 PERIMETER APPROXIMATION [14]

Perimeter constraint has a major place in topology design, because it is a very interesting
alternative to optimal relaxation using optimal microstructures as in the homogenization
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Table 3: Iterations versus approximation type for the optimization of the composite cylin-
der

Approximation Number of iterations
TOL = 0.05 TOL = 0.01

MMA 29 51
GCMMA 16 18
GCMMA2 19 24
GBMMA1 9 9
GBMMA2 9 9
GBMMA3 8 9
GBMMA4 8 9

GBMMA-MMA 6 7
GBMMA-GMMA 6 7

Figure 29: Iteration history for MMA

60



Figure 30: Iteration history for GBMMA-GMMA (ICHECK =2, SWITCH = 0.01)

method [1, 5]. In engineering applications, perimeter control also seems further attractive
than the rigorous homogenization method because it allows to use penalization of inter-
mediate densities and to generate clear density distributions with well separated voids and
solids zones, so that an unambiguous macroscopic topology often appear. Ambrosio and
Buttazzo [2] demonstrated that the design problem with perimeter penalization is well-
posed. Application of perimeter control to topology design of structures was presented by
Haber et al. [28]. The work presented here aims at remedying some difficulties that occur in
the numerical implementations of the perimeter control. We focus on providing an efficient
numerical strategy to take perimeter constraint into account in order to use perimeter con-
trol as a real practical design tool. The perimeter is a rather difficult constraint to satisfy
and to approximate, as it will be seen.

We based our numerical experiences on power law models (also called SIMP materials)
to provide in the same time a continuous approximation of the design distribution problem
as well as a penalization of the intermediate densities. SIMP material is also easy to
implement in any industrial code. Finally, SIMP material introduces only one variable per
element, so that the size of the problem is kept at a minimum.

Although in the original work of Haber et al. [28] the perimeter control was treated with
a interior penalty function, we propose to generalize the solution by solving the problem
as a constrained problem in which perimeter is one of the inequality constraints. If one
wants to control the perimeter by prescribing a target value with a penalization, one can
use a relaxation technique and introduce an additional variable δ, which is quadratically
penalized in the objective function (the pds factor is a tuning parameter to control the
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Figure 31: Example of a perimeter measure and its quadratic approximation

relative weight of the penalization compared to the magnitude of the objective function).

min
µ ≤ µ ≤ 1

1 ≤ δ ≤ 2

fT u + pds δ2

s.t. V ≤ V̄ (145)

P ≤ P̄ + (δ − 1) ∆P

∆P is an allowable maximum violation of the target bound P̄ give by the user. Standard
versions of solvers like CONLIN [26] or MMA [44] are able to handle the solution of this
kind of optimization problems with relaxation.

When the density varies continuously, Haber, et al. [28] propose to replace the geomet-
rical measure of the perimeter by the total variation of the density ρ. For a density field
which is element by element constant, we can write:

P =
∑

k

lk

(

√

<ρ>2
k + ǫ2 − ǫ

)

(146)

where <ρ>k is the jump of material density trough the element interface k of length
lk. The parameter ǫ is a small positive number to guarantee the differentiability of the
measure. Values of ǫ are generally taken between 10−2 to 10−4.

Figure 31 sketches the perimeter measure of a square element of density µ surrounded by
four elements of density µ1, µ2, µ3, and µ4. Perimeter is nearly a piecewise linear function
even if it is globally non monotonous. It turns out that perimeter constraint is not easy to
approximate with classical schemes. Monotonous approximations like CONLIN or MMA
give rise to oscillatory behaviours. Furthermore, the perimeter is globally non linear and
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there are important couplings between neighboring finite element (F.E.) densities. Thus,
the trust region of separable approximations is narrow.

Nevertheless, in order to treat problems with a large number of variables and to use dual
solvers, we need a convex and separable approximation. From our numerical experience,
good results are expected with a quadratic separable approximation of the general form:

P̃ (µ) = P (µ0) +
n
∑

i=1

∂P

∂µi
(µi − µ0

i ) +
1

2

n
∑

i=1

ai (µi − µ0
i )

2
(147)

The main problem is now to choose the second order terms ai carefully. Their values must
be a compromise between precision and conservativity. Too small values of ai would imply
important constraint violations while too large values of these second order terms would
lead to a freeze the motion of the variables. On one hand, by selecting ai, one will try
to fit the true shape of the constraint while on the other hand, these coefficients will play
the role of move-limits that restrict the validity of the approximation. Also, the analytic
second order derivatives are not useful since they are zero, except in angular points where
they are very large (or do not exist). So the choice of the artificial curvatures is based on
a heuristic rule, which is explained in the next section.

5.1 A heuristic estimation of curvatures for perimeter approximation

In the following, we develop a heuristic estimation of curvatures for approximating the
perimeter when there is one density variable µi per element as it is for SIMP materials.
These estimates of the curvatures are based on a bound over individual contributions of
each element. According to the quadratic approximation, the contribution of element ”i”
to global perimeter is:

P̃i(µ) = Pi(µ
0
i ) +

∂P

∂µi
(µi − µ0

i ) +
1

2
ai (µi − µ0

i )
2

(148)

Pi(µ
0
i ) is the contribution of element ”i” to the perimeter with the current distribution of

density. This contribution of element ”i” is maximum when the density jump across the
element interfaces becomes equal to unity. Suppose now that this situation happens at
point µ⋆

i . Then one can write the second order coefficients in term of the new parameter :

ai = 2

∑

k ∈ Ki
lk (

√
1 + ǫ2 −

√

|µ0
i − µ0

k|2 + ǫ2) − ∂P
∂µi

(µ⋆
i − µ0

i )

(µ⋆
i − µ0

i )
2

(149)

where the sum is realized over the set Ki of the interfaces of element ”i”.

The question is now to find the point µ⋆
i where this situation could probably happen.

If the separability hypothesis were true, the point µ⋆
i could be chosen at the boundary of

the admissible set of µi, that is when µi touch its side-constraints. But, because of the
neglected coupling effects, which lead to ignore the modification of neighboring element
densities, this situation happens sooner, so that this choice leads to approximations that
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are not conservative enough. Instead, we propose to play with the point µ⋆
i as a move limit.

From our numerical experience, we propose to take:

µ⋆
i = µ0

i ± α (µi − µ
i
) with α ∈ [0.33, 0.44] (150)

This choice prevents an oscillation of the neighboring design variables. The proposed
approximation as applied is illustrated in figure 31.

5.2 An internal loop procedure for perimeter approximation

Even if the approximation procedure of the perimeter is efficient, the perimeter constraint
remains difficult to approximate and we generally note that the number of iterations in-
creases drastically when a perimeter constraint is considered. It often takes more than
100 iterations. This effect can be imparted to the fact that we need to take a convex
approximation with a high curvature to have a sufficiently conservative approximation.
Unfortunately, this has the drawback of slowing down the optimization process. On the
other hand, perimeter constraint is a geometrical constraint, and, thus, contrary to struc-
tural responses, perimeter is easy and inexpensive to evaluate.

The idea is thus to create an internal loop over the optimization algorithm with several
updates of geometrical constraints as the perimeter. The strategy is given at figure 32.
The outer loop is usual: it includes the finite element analysis, the sensitivity analysis
and the optimization procedure. The optimization procedure encloses an inner loop that is
repeated with updated approximations of the perimeter until the perimeter approximations
coincide with its real calculated value within a sufficiently high precision at the proposed
new optimum. Since structural constraints are expensive to evaluate (it requires one finite
element run and a sensitivity analysis) and since they are sufficiently well approximated by
high quality schemes, the structural approximations are kept unchanged during this inner
loop. As the inner loop is repeated until the perimeter has a given precision, the perimeter
constraint does not slow the optimization process and we noted a spectacular acceleration
to reach optimal solutions. The number of iterations is often divided by a factor 3 or 4.

Let denote by l the sub-iteration index. To implement the update procedure of the ap-
proximations for geometrical constraints, we need writing, around the reference design point
x0 where the structural approximations are expressed, an approximation of the perimeter
that matches the true perimeter value and its derivatives in an other sub-iteration point
xl. This is possible by defining fictitious parameters (that are denoted with a ’check’).

For a quadratic approximation given in (122), one can define the dummy parameters:

ǎi = aii(x
l) b̌i =

∂g(xl)

∂xi
+ aii (x0

i − xl
i)

ǧ(x0) = g(xl) +

n
∑

i=1

∂g(xl)

∂xi
(x0

i − xl
i) +

1

2

n
∑

i=1

ai (xi − xl
i)

2

so that the approximation is exact in xl, but it is written around x0.

64



Figure 32: Optimization process with 2 loops
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The quality of the approximation curvatures is also improved with the information
collected during the inner loop. If the variable ”i” tends to oscillate, the second order
terms ai can be multiplied by a given factor to increase the conservativity. If the process
is monotone in this variable, the convexity is decreased. We adopt a similar procedure to
the update strategy of the moving asymptotes of Svanberg [44].

For the two first iterations l = 1 and 2, the default heuristic quadratic coefficients
ai (149) are adopted. After two iterations, if the process oscillates, one has to increase the
curvature of the approximation :

if (xl−1
i − xl−2

i )(xl
i − xl−1

i ) ≤ 0 al
i = al−1

i · s1 s1 > 1 (151)

If the process is stable and monotone, the approximation curvature is decreased:

if (xl−1
i − xl−2

i )(xl
i − xl−1

i ) > 0 al
i = al−1

i /s2 s2 > 1 (152)

Parameter s2 is generally chosen equal to s1 or better to
√

s1 to stabilize the process.

The use of an accurate approximation of perimeter constraints combined with the
inner loop strategy proved its great efficiency. This procedure generally leads to optimal
distributions in less than 50 iterations and the optimization process is stable and reliable.

6 MANAGING STRESS CONSTRAINTS

6.1 Relaxation of stress constraint

6.1.1 Singularity of stress constraint

When including stress constraints in topology optimization, a major difficulty comes from
the so-called ’singularity phenomenon’ (see for example Kirch [30]). It results in the im-
possibility for the optimization algorithms to create or to remove holes in the material
distribution during the optimization process. The physics of the phenomenon is now un-
derstood [10]: Low density regions sometimes remain highly strained. When the density
decreases to zero in these regions, the limit of the stress state in the microstructure tends to
a non-zero value and remains even higher than the stress limit. Therefore, the optimization
procedure cannot remove the material in this region. The paradox is, that if the material
is totally removed, the stress constraint would obviously not be active. This discontinuity
in the stress constraint at zero density is the origin of the problem.

As remarked by Rozvany and Birker [37], these discontinuities create complex design
domains: They can have several non connected parts and they often include regions of zero
measure i.e. parts whose dimensionality is smaller than the dimensionality of the design
space.

From a mathematical point of view, the ’singularity’ phenomenon for topology design
with stress constraints should rather be called a ’degeneracy’ or a ’irregularity’ of the
design space since the key effect is that the design space contains degenerated appendices
where the qualification of constraints (the Slater condition) is not verified. This means that

66



Figure 33: 3-bar truss problem

classical optimization algorithms based on Kuhn-Tucker conditions are unable to reach the
optima that are located in these regions. It follows that the optimization algorithm is
not able to remove totally some low density regions and then to reach the true optimal
topologies.

Singularity phenomenon is illustrated by a very simple truss example reported by
Hoback [29] (see figure 33). The problem is a 3-bar-truss. Cross sections of bars num-
ber 2 and 3 are the same. The weight is minimized while the stress in the three bars are
kept below a prescribed stress limit of 20 N/m2. Design problem is given as:

min
A1, A2≥0

WT = α A1 + A2

s.t. g1 = A1 + A2/3 − 0.5 ≤ 0

g2 = A1 + A2/3 − 0.236 ≤ 0

g3 = A1 + A2/3 − 0.167 ≤ 0

where α is a cost parameter. The design space is presented in figure 34. Topology opti-
mization of the truss is a performed by allowing zero cross sections. However for zero cross
section the stress constraint has not to be considered anymore and there is a discontinuity
of the restriction. The stress constraint contours are stopped along the coordinate axes
and the piece of line from ’B’ to ’C’ is still part of the feasible domain. This linear part is
a degenerated part of the design space. Obviously optimum is located in point ’C’, which
corresponds to remove bar A1. However mathematical programming algorithms cannot
reach point ’C’ and get stocked in ’B’ because of the degenerated nature of the appendix
part running form ’B’ to ’C’.

6.1.2 ǫ-relaxation technique

To circumvent the difficulty, Cheng and Guo [11] applied a perturbation method, called
the ǫ-relaxation technique. The strategy replaces the solution of the ’singular’ problem
with a sequence of perturbated non-singular problems which can be solved with classical
optimization algorithms.
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Figure 34: Design space of the 3-bar truss problem

At first, one has to reformulate the stress constraint. If ‖σ‖ is a relevant stress criterion
and if ρ is the density parameter, then the stress constraints in their original form are

‖σeq‖ ≤ σl if ρ > 0 (153)

One has to eliminate the condition ρ > 0 and to normalize the constraint, which gives the
equivalent formulation:

ρ ( ‖σeq‖/σl − 1 ) ≤ 0 (154)

For bars in a truss, this is equivalent to considering forces instead of stresses, as proposed
in Ref. [30] or to the adopting a quality function to replace the stress constraints like in
Ref. [10]. However, this reformulation does not change the qualification of the constraints
and it does not remove the algorithmic problems.

To circumvent the singularity of the design space, one has to use a perturbation of the
stress constraints by using the ǫ-relaxation (in the sense of mathematical programming)
approach proposed initially by Cheng and Guo [11] for truss topology. Given an additional
parameter ǫ, the original stress constraints are replaced by the following relaxed stress
constraints and side constraints:

ρ ( ‖σeq‖/σl − 1 ) ≤ ǫ

ǫ2 ≤ ρ (155)

Of course for ǫ = 0, this formulation renders the original problem with stress constraints.
But for any ǫ > 0, the ǫ-relaxed problem with the constraints (155) is characterized by
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a design space Wǫ that is not any longer degenerate, i.e. the optima are now placed
in regions of the design space with non zero measure. It is thus possible to reach the
optimum, denoted by ρ∗ǫ , with classic optimization algorithms based on Karush-Kuhn-
Tucker conditions. The mathematical rigor of the method stems from the possibility to
prove (see Cheng and Guo [11]) that this perturbation this relaxation creates continuous
point-to-set maps between the parameter ǫ and the relaxed design domains as well as to
their optimal solutions. This means that when ǫ → 0, the sequence of domains {Wǫ} and
their optimal solutions {ρ∗ǫ} converge continuously towards the original degenerate problem
and its associated optimal solution. Nevertheless, the solution of every relaxed problem is
regular and can be found with classical mathematical programming algorithms. Then the
idea is to solve numerically a sequence of perturbated problems with decreasing values of
ǫ to come to the singular solution.

A recent study [18] showed the classical implementation (155) of the ǫ-relaxation tech-
nique, which initially was developed for truss topology optimization problems, is not totally
satisfactory for continuum-type topology optimization problems. Indeed with continuum
topology, the problem is the following. The influence of the perturbation disappears only
for ρ = ∞, whereas the perturbation has still a non negligible effect on the stress limit
for solid material (ρ = 1). (The situation is illustrated in Fig. 35). Therefore, a feasible
design for a given ǫ is no longer feasible for a smaller value of ǫ′ < ǫ. This slows down the
convergence of the optimization procedure, because the optimal and feasible solution for a
problem with parameter ǫ violates some stress constraints when ǫ is reduced. To overcome
the problem, one can adopt the following modified set of perturbated constraints:

‖σeq‖
σl

− ǫ

ρ
+ ǫ ≤ 1

ǫ2 ≤ ρ (156)

This new relaxation function is similar to the original one (155) in the sense that the
mapping between ǫ and the perturbated problems and their optimal solutions are still
continuous. However, one can easily see that the perturbation vanishes for ρ = 1 such that
the solution remains feasible when ǫ is reduced.

On the basis of Fig. 35, one can interpret the physical mechanism of the relaxation by
rewriting this constraint. If ǫ > 0 the perturbated stress constraint can be rewritten as

‖σeq‖ ≤ σl (1 − ǫ + ǫ/ρ) (157)

The left hand side of this constraint gives a clear physical understanding of the relaxation
technique. The permissible stress is increased for low densities as illustrated in Fig. 35.
This opens the degenerated parts of the design space and this gives the possibility to create
or remove holes without violating the stress constraint. It should be mentioned that the
figure suggests there is an equivalence between the ǫ-relaxation technique, which is a rig-
orous mathematical programming technique, and an intuitive idea that was independently
suggested by Rozvany [36].
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6.1.3 Algorithm for ǫ parameter reduction

Thus the solution procedure consists in solving a sequence of optimization problems relative
to decreasing ǫ parameters. One uses a continuation approach similar to what is done with
barrier and penalty functions. In our implementation the process is driven by the minimum
density ρmin = ǫ2. We typically decrease progressively the minimum density from 10−1 to
10−4 or 10−6. The choice of a quite large initial minimum density is necessary to open the
degenerated parts of the design domain and to be able to find the ’singular’ optima from
most of the initial starting points of the design space.

The reduction of the perturbation parameter ǫ is ruled by an automatic and systematic
strategy. Based on numerical experience, the highly perturbated problems need not to
be solved with a high precision. The perturbation parameter can be reduced as soon
as the solution of the optimization problem satisfies a mild convergence criterion. The
convergence criterion is based on the Euclidean norm of the gradient of the Lagrangian
function (where only components that correspond to free variables are considered). If the
objective function g0(x) and the constraint gj(x) are normalized with a target value of
the objective function g0 and the constraint bounds gj , the following criterion gives good
results

‖∇L‖2 = ‖∇g0/g0 −
∑

j

λj∇gj/gj‖2. (158)

The reduction algorithms is

If ‖∇L‖2 ≤ α Then ǫ := ǫ/β. (159)

In the examples, we use α = 0.005 and β = 1.05. A precise convergence optimization is
performed when ρmin = ǫ2 is sufficiently small (e.g. ρmin = 10−3). With this algorithm
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the parameter ǫ is reduced automatically without any interaction from the user.

6.2 Solving optimization problems with a large number of constraints

Solving the continuum topology design problem with local stress constraints by numerical
techniques results in a very large scale optimization problem. For the displacement based
analysis and for the approximation of the density, the structure is discretized by finite
elements, using the standard approach of continuum topology design (see e.g. Ref. [3]). In
order to achieve a reasonable resolution of the optimal structure, i.e., a reasonable definition
of topology and shape through the density, we need to use a fairly fine discretization. Thus
in the optimization problem we have a large number of design variables coming from the
discretization of the material distribution. Moreover, we have here also to treat a large
number of stress constraints. If the optimal distribution of material is made up of only
voids and solid, we can by analogy to fully stressed design estimate the percentage of
active constraints at the optimum to be approximately proportional to the ratio between
the volume of the structure and the volume of the design domain. This conclusion remains
roughly the same with the ǫ-relaxed formulation because relaxation leads to a removal of a
stress from the active constraint set as soon as the density of an element is close to its lower
bound. This is a conservative estimate on the number of active constraints, particularly
during the first steps of the optimization process where large zones of intermediate density
leads to huge number of active stress constraints.

Once again, the solution procedure based on sequential mathematical programming,
which was elaborated in Refs. [15, 16, 18], gives full satisfaction.

Different choices of convex approximations for compliance and eigenvalues in topol-
ogy design have been discussed above. However, for stress constraints, we simply use a
CONLIN approximation scheme [27] of the constraints. For an efficient use of the classical
structural approximations, the stress constraints have to be written in a more convenient
way (observing that the density variables are strictly positive for ǫ > 0):

‖σ‖
σl

− ǫ

ρ
+ ǫ ≤ 1 (160)

Numerical experiments showed that the mixed approximations of CONLIN were sufficiently
conservative and precise when applied to this statement, the explanation being that the
relaxation term −ǫ/ρ is a concave term which makes a convex approximation more conser-
vative. An advantage of using the standard CONLIN approximations is that the solution
of the convex and separable subproblems can be performed with a robust second order dual
algorithm designed by Fleury [23, 25, 26]. This algorithm is able to deal with the huge
dimensions of the problem and provides a solution within a reasonable computation time.

In addition, any strategy that aims at reducing the number of constraints to be handled
by the optimizer is favorable to diminish the computational effort. If a priori, constraints
are likely to be satisfied, one can save some effort by removing them from the set restrictions
submitted to the optimization algorithms. So, we also implemented an active constraint
selection (deletion) strategy in order to do a preselection of the potentially dangerous stress
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constraints. At the beginning of the optimization process, the selection is large, because
large modifications of the design variables occur and a lot of constraints can become active
or not activate. But at the end of the optimization the set of active constraints is stable
and it can be restricted to a little fraction of the dangerous elements, whose stress level lies
within a small margin from stress limit. Moreover, the non active stress constraints can
be kept as side constraints in the sub-problems of the iterative procedure by a zero order
approximation.

Figure 36, which is related to a typical stress constrained problem, illustrates the iter-
ation history for the number of active stress constraints (active after dual maximisation)
and for the number of preselected potentially dangerous constraints retained for sensitivity
analysis. During the first design steps the number of active stress constraints is quite large:
1112 potentially dangerous stresses are retained for sensitivity analysis and 648 of them
are active in the CONLIN dual optimizer. Then progressively these number are reduced
and become stable with the convergence of the design variables. In the final iterations,
the number of active constraints is reduced to 446 potentially dangerous stresses and 180
really active constraints.

7 CONCLUSIONS

As a conclusion, we can remind the advantages of Sequential Convex Programming ap-
proach:

• Dual solvers allows to solve efficiently and with a minimum computation time opti-
mization sub-problems even with a large number of design variables.
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• The solution procedure showed itself to be robust even for problems with a large
number of constraints like in stress constraints.

• One can greatly improve convergence rates and reduce the number of re-analyses to
come to a stationary solution when using appropriate approximation schemes. For
first order schemes, MMA is generally more efficient than CONLIN because of the
capability to adapt conservativeness of the approximation to problem characteristics.
Good results can also be expected with high quality approximation schemes based
on second order expansions and estimated curvature information. However, this kind
of procedure is sometimes more fragile.

• One major advantage of SCP approach compared to Optimality Criteria stems from
the inherent flexibility and generality of the approach to solve various kinds of prob-
lems in topology: compliance, eigenfrequency, stress constraints, design of materials,
design of compliant mechanism . . .

• Finally a very important characteristic of SCP approach is that one has in hands
mathematical foundations to attack special problems: relaxing unfeasible constraints,
perturbation of non-regular problem (’singularity’ phenomenon of local constraints),
etc. This gives a rigorous framework for future developments and research.
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A DIAGONAL HESSIAN ESTIMATES

To avoid the second order sensitivity analysis, the idea is to use the available first order
information and to build an approximation of the Hessian matrix of the response with a
Quasi-Newton update procedure. The problem is that the ”full” Quasi-Newton becomes
also expensive as the number of design variables increases. Furthermore, only diagonal
terms are useful since only separable approximations are considered in structural opti-
mization. That’s why we present here a modified BFGS updating scheme able to generate
a sequence of diagonal Hessian estimates. The algorithm is the adaptation to diagonal
matrices of more general results established by Thapa [48] for Quasi-Newton updates pre-
serving the sparsity pattern of the Hessian estimates.

A.1 Adaptation of sparse Quasi-Newton updates to diagonal structure

Let B be a diagonal approximation of the Hessian matrix of a given structural response
g(x) at the current design point x. If the new design x+ doesn’t satisfy convergence criteria,
one seeks to enrich the estimation of the Hessian with a Quasi-Newton update procedure.

Update formulae are based on the Quasi-Newton equation:

B+s = y where s = x+ − x and y = ∇g(x+) −∇g(x) (161)

The most famous Quasi-Newton update formula is the Broyden-Fletcher-Goldfard-Shanno
(BFGS) one:

B̂+ = B + UBFGS with UBFGS =
yyT

sTy
− BssT B

sTBs
(162)
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This scheme satisfies simultaneously the symmetry property, the positive definiteness
of the update, and the Quasi-Newton condition (161). But it doesn’t preserve sparse or
diagonal structure of the previous estimation. Such updates preserving diagonal pattern
can be derived from Thapa’s theorems [48]. The results of adaptation of this general theory
to diagonal structure are summarized here.

B̂+
D

and B̂+
ND

stand for the matrices which are formed respectively with the diagonal

and the off-diagonal terms of the ”full” update B̂+, while the diagonal Quasi-Newton
update we look for is B+.

According to Thapa, the diagonal update can be found by adding a diagonal correction
matrix E to the diagonal part of the classic updated matrix B̂+

D
:

B+ = B̂+
D

+ E (163)

This diagonal correction matrix E is such one that the diagonal updated matrix B+ is the
closest to the classic updated matrix B̂+

D
in the Frobenius norm and still satisfies the Quasi-

Newton condition B+s = y. If ||E||F is the Frobenius norm of matrix E, the correction
matrix E is the solution of the minimum problem:

min ||E||F
s.t. Es = B̂+

ND
s (164)

Eij = 0 (i 6= j)

The solution of this problem writes

E = diag{2λisi} (165)

where the vector λ = (λ1, . . . , λn), itself, is the solution of the linear diagonal system :

Qλ = B̂+
ND

s with Q = diag{2s2
i } (166)

The computation of the diagonal BFGS update requires solving this last diagonal sys-
tem, which is very simple. It is interesting to note that computing the off-diagonal terms
of the classical update correction is not necessary. Only the diagonal terms are useful,
since it can be easily shown with the Quasi-Newton equation and the constraint of the
problem (164) that:

B̂+
ND

s = y − Bs− UD s (167)

where UD is the diagonal part of the update matrix U given in (162).

A.2 Computation of second order diagonal terms

Pursuing the developments will lead to the practical formula that is used to compute the
second order terms. Equation (163) writes:

B+ = BD + UD + E
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When writing this last equation component by component and taking into account that
[E]ii = 2λi si, one has:

[

B+
]

ii
= [BD]ii + [UD]ii + 2λi si (168)

On another hand, from the solution of system (166) and from equation (167), one has:

2λi s2
i = yi − [BD]ii si − [UD]ii si

From which one extracts the value of 2λi si:

2λi si = yi/si − [BD]ii − [UD]ii if si 6= 0 (169)

Combining equations (168) and (169), one comes to the very simple equation:

[

B+
]

ii
= yi/si if si 6= 0 (170)

which is the result announced in the introduction:

[

B+
]

ii
=

∂g(x+)

∂xi
− ∂g(x)

∂xi

x+
i − xi

(171)

When si = 0, which means that x+
i = xi, one can obviously keep the former estimation of

the second order term:
[

B+
]

ii
= [B]ii (172)

One thus comes to the conclusion that in the framework of diagonal Quasi-Newton up-
dates, the best diagonal approximation of Hessian matrix is given by the ”finite difference”
between the partial derivatives evaluated in the two last iteration points.

The finite difference formula (171) is here justified by the mathematical theory of sparse
(diagonal) Quasi-Newton updates and this rather intuitive technique finds here a mathe-
matical foundation.

Unfortunately, as we will see later a ”brutal” implementation of this estimation formula
generally leads to unsatisfactory results in structural optimization. Our explanation of this
comes from the very non-linear character of structural optimization problems. But we now
present how the theoretical result can be turned into an efficient strategy.
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