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INTRODUCTION

m Types of variables
m (a) Sizing optimization
m (b) shape optimization

m (c) topology
optimization

m (d) material selection

m Types of problems
m Structural
m Multidisciplinary
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INTRODUCTION

m TOPOLOGY OPTIMIZATION (Bendsge & Kikuchi, 1988)

Optimal material distribution
Optimal topology without any a priori
Fixed mesh
Design variables
» = Local density parameters
= Many thousands of design variables
Simple design problem: ‘
= Minimum compliance s.t. volume constraint
» Local constraints are difficult to handle

= Geometrical constraints (often manufacturing constraints)
are difficult to define and to control

Preliminary design: interpretation phase necessary to
come to a CAD model

Great industrial applications
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INTRODUCTION

Perimeter constraint
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INTRODUCTION
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W=2.5m

L=1m

F3=20N

Min max compliance design

F1=40 N

Min max stress design
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INTRODUCTION

m SHAPE OPTIMIZATION

Modification of boundaries of CAD model = .,
Fixed topology a priori TR |

Design variables
= = CAD model parameters
= Small number of design variables

Y

Quite complex design problems:

s« Large number of global and local constraints
» Geometrical constraints easily included
Detailed design
Mesh management problems
= Mesh modification / mesh distortion
= Velocity field
Small number of industrial applications
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INTRODUCTION

JINIVERSITE de Ligge

m Position of a point after a perturbation of the design variable d,

X(d, +5d)=X(d)+V. 5d
with V. =X /éd,

m Derivative of a response
in a given point:

DR R Z OR 0X,
0X, ad,

Dd.  éd,

=8—R+V VR

od.

l

LN P(d + 5d)
(XY ." v ad (X+8X,Y+38Y
> X

Conclusion: determine the velocity field at first
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m Practical calculation of

k
velocity field
NO@LY, ° _
‘.'A' m Transfinite mapping
m Natural / mechanical
approach (Belegundu &
Rajan, Zhang & Beckers)

m Laplacian smoothing
m Relocation schemes
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INTRODUCTION

m EXTENDED FINITE ELEMENT METHOD (XFEM)
m alternative to remeshing methods

m LEVEL SET METHOD
m alternative description to parametric description of curves

m XFEM + LEVEL SET METHODS

m Efficient treatment of problem involving discontinuities and
propagations
m Early applications to crack problems. Moés et al. (1999)

m Applications to topology optimisation Belytschko et al.
(2003), Wang et al. (2003), Allaire et al. (2004)



INTRODUCTION

m THIS WORK

m XFEM + Level Set methods = alternative method to shape
optimisation
Intermediate approach between shape and topology
optimisation
m XFEM

= work on fixed mesh

= NO mesh problems
m Level Set

= smooth curve description

= modification of topology is possible
m Problem formulation:
= global and local constraints
= small number of design variables

ALISYIAINN
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EXTENDED FINITE ELEMENT METHOD

m Early motivation : study of propagating crack in
mechanical structures - avoid the remeshing procedure

m Principle :

 Allow the model to handle discontinuities that are non
conforming with the mesh

« Add internal degree of freedom a,
« Add special shape functions H(x)N,(x) (discontinuous)

U= Zui Nl.(x)+2ul. N, (x) H(x)

iel iel

o K, K.|[«]_[
78Tk, Kl L2,

Inierface



ALISYIAINDN

EXTENDED FINITE ELEMENT METHOD

m Representing holes or material — void interfaces
m Remove empty elements
m Keep partially filled elements

m Use XFEM numerical integration

1 1if node esolid
Vi(x)=

U= ZNi(x) V(x)u,

iel

0 1if node e void

OOfelie Graph




EXTENDED FINITE ELEMENT METHOD

m Quadrangles and triangles XFEM elements

m Numerical integration
m Division into sub-triangles
m Integration over sub-triangles
m Gauss points

ALISYIAINN

Material
Material 1 aterial 2

Boundary solid Bounda
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THE LEVEL SET METHOD

m Principle (Sethian, 1999)
m Introduce a higher dimension
m Implicit representation
m Interface = the zero level of a function w(x,7)=0

m Possible practical implementation:

m Approximated on a fixed mesh by the signed distance
function to curve I':

o w(x,t)== xfrlel}%)ux - er

‘%‘“ 7 m Advantages:

m 2D/ 3D

m Combination of entities:
e.g. min / max




THE LEVEL SET METHOD U
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m Level Set of a square hole
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m Combination of two holes

OOfelie with Xfem OOfelie Graph

Level Set

0.495

-0.00926

-0.177
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THE LEVEL SET METHOD

m Evolution of interface

ay
W rvy]=o
w(x,t)=0 given

m V: velcocity function of " in the outward normal direction
to interface

£
i

z=0 (xy,t=1 1\\ X
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THE LEVEL SET METHOD

m In XFEM framework,
m Each node has a Level Set dof
m Interpolation using classical shape functions

v(x,t)= ZW;‘ N, (x)

m Material assigned to a part of the Level Set (positive or
negative)

m Building a library of graphic primitives and features
Lines

Circles, ellipses, rectangles, triangles

NURBS
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THE LEVEL SET METHOD

OOfelie Graph

Level Set

.0.361

0.281

0.202 Level set defined by a set of points

0.123

0.0441

-0.0350

OOfelie Graph

Level Set

-0.114

. 0.820
0.627

0.435

0.243

Level set associated to a NURBS
0.0501

-0.142

-0.335
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PROBLEM FORMULATION

Geometry description and material layout :
m Using Level Sets
m Basic Level Set features: circles, ellipses, rectangles, etc.

Design Problem

m Find the best shape to minimize a given objective
functions while satisfying design constraints

Design variables:

m Parameters of Level Sets

Objective and constraints

m Mechanical responses: global (compliance) or local
(displacement, stress)

m Geometrical characteristics: volume, distance

Problem formulation similar to shape optimization but
simplified thanks to XFEM and Level Set!
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PROBLEM FORMULATION

BECAUSE OF XFEM AND LEVEL SET

m The mesh has not to coincide with the geometry
m Work on a fixed mesh

m Sensitivity analysis: no velocity field and no mesh
perturbation required

m Topology can be altered as entities can be merged or
separated 2 generalized shape

m Introduction of new holes requires a topological
derivatives

m Topology optimization can be simulated using a design
universe of holes and an optimal selection problem
(Missoum et al. 2000)
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SENSITIVITY ANALYSIS

INIVERSITE de Liége

Classical approach for sensitivity analysis in industrial
codes: semi analytical approach

Discretized equilibrium
Ku=f1

Derivatives of displacement
o _ (af K u)
ox \oOx Ox
Semi analytical approach
oK K(x+adx)-K(x) of f(x+ox)—f(x)
ox ox ox X
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SENSITIVITY ANALYSIS

m Fixed mesh 2 no mesh perturbation

m However finite differences of stiffness matrix have to be
made with a frozen number of dof

m Critical situations happen when some empty elements
become partly filled with solid after perturbating of the

level set : Reference Level Set Level Set after perturbation

O Node with dof New nodes with dof



SENSITIVITY ANALYSIS

OOfelie Graph OOfelie Graph
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Reference configuration After level set perturbation
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SENSITIVITY ANALYSIS

m Strategies to freeze the number of dof
m analytical derivatives of stiffness matrix:
= not general!

m boundary layer in which all elements are retained
= rigid modes, larger size of the problem

m boundary layer with softening material (SIMP law)
» lost of void / solid approximation

m ignore the new elements that become solid or partly solid
= small errors, but minor contributions
= practically, no problem observed
» efficiency and simplicity
« validated on benchmarks




SENSITIVITY ANALYSIS

m Summary of the semi-analytical approach strategy
0K K(x+oax)—-K(x)

ALISYIAINDN

Ox OxX
Element =1 5 solid | cut > Void
initially
Solid OK OK
Cut OK OK OK
Void Ignored Ignored
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IMPLEMENTATION

Preliminary investigations by coupling a standard XFEM code
by Moés with a general open optimisation code (Boss Quattro)

New implementation in a multiphysic finite element code in
C++ (OOFELIE from Open Engineering www.open-engineering.com)

XFEM library: 2D problems with a library of quadrangles and
triangles.

Available results for OOfelie Graph Shressas OOfelie Graph

L] - L] . 1.08e+005
optimization 7000
L]
8 8%
1.31e-i
8.978:
£ Mde:
J 126
1. 19
-7.372+003

m Compliance

m Displacements
m Strains, Stresses
m Energy per element

Visualization:
m Level Sets
m Results
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CONLIN OPTIMIZATION SOLVER

Direct solution of the original optimisation problem which is
generally non-linear, implicit in the design variables

2
Minimise f(x) A -
s. t.: g;(x) < g™ j=1,m . y
_ W Original Constre
is replaced by a sequence AN\ W 80)=0

of optimisation sub-problems

L - Convex
Minimise F(x) { - approximation
s.t.: G(x) < GMx  j=1,m ) G(x)=0

by using approximations of
x 1

the responses and using powerful T =

mathematical programming algorithms

(Lagrangian duality methods or Quadratic Programming)
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CONLIN OPTIMIZATION SOLVER

FORTRAN computer programme

can be used as a standalone software or an optimizer in open
optimization tools

General solver for structural and multidisciplinary problems:
Sizing, shape, and topology problems

Robust and Efficient

Large scale problems:

m 100.000 design variables (topology)

m 5.000 constraints (shape)
m 5.000 constraints and 5.000 design variables (topology)

Implemented in several industrial optimisation tools: BOSS-
Quattro, MBB-Lagrange, OptiStruct (Altair)
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APPLICATIONS

CLASSICAL PROBLEM OF
PLATE WITH A HOLE
REVISITED

Square plate with a hole
Bidirectional stress field
c,= 2 o, c,=0
E=1N/m2, v=0.3

Minimize compliance
m st volume constraint

Design variables: major
axis a and orientation 6

Mesh 30 x 30 nodes

OOfelie Graph
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Min Compliance

s.t. Volume constraint
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lterations

10




APPLICATIONS

OOfelie Graph OOfelie Graph
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m Discretization error of the geometry using approx of level set
(o . . .
= Over-estimating geometric values :
= Xfem Fem
A Iteration 1 | Iteration 11 Iteration 1 | Iteration 9
2 Objective function Minimise 7 27.9 20.2 26 18.3
= Constraint Surface < 3.45 | C 3.59) 3.45 C 350) 3.45
§< Variable le-4= 8 < 90 45 le-4 45 0
Variable le-d<a< 1 0.5 C1L.06 > 0.5 C 083D
m Representating interfaces inside an element :
: i

&

Boudary
Approximation

EE-E-N-R-B-

.
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APPLICATIONS
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m Linear interpolation of the Level Set may introduce
discontinuity :

m Parametric study of the surface of the plate
m Variation of 1%
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APPLICATIONS
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OOfelie Graph
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OOfelie Graph
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m Toplogy modification during optimization

Two variables : center x,, center x,
Min. potential energy under a surface constraint
Uniform Biaxial loading : o,= 0y, 0,= 0y
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APPLICATIONS

UNIVERSITE de Ligge

m Evolution of the objective function

lterations

m Evolution of the Level Set

-

- 2 Iteration 1 | Iteration
'} 5] Objective function Minirnise U 26,6 1490
2 & Constraint Surface= 7.8 6.9 5
N ] Variahble -0.5<x, position<0.5 0.5 ~0.066207
— o Variable -0.5<z, position=0.5 0.5 0.045791
_<




ALISYIAINDN

APPLICATIONS
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m Mesh refinement for the Level Set representation of sharp
parts

m Accuracy of stresses




ALISYIAINDN

APPLICATIONS
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m Design universe of holes (Missou

m et al., 2000)

m Selection and sizing of basic Level Set entities with a GA

in classical topology
m Find a result as close as possible

to MBB topology

solution

XX XX XX XX XX

m 14 triangles are « well » placed-
m Variables : presence of a triangle

m The optimum is reached after 36

VAV VAN
VAV AVAN
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CONCLUSION
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m XFEM and Level Set gives ride to a generalized shape
optimisation technique

m Intermediate to shape and topology optimisation
m Work on a fixed mesh
m Topology can be modified:
= Holes can merge and disappear

= New holes cannot be introduced without topological
derivatives

m Smooth curves description

m Void-solid description

m Small number of design variables

m Global or local response constraints

m No velocity field and mesh perturbation problems



CONCLUSION

m Contribution of this work

ALISYIAINDN

m New perspectives of XFEM and Level Set
m Investigation of semi-analytical approach for sensitivity

analysis
Implementation in a general C++ multiphysics FE code

m Concept just validated

m Perspectives:

Sensitivity analysis (to be continued)

3D problems

Stress constrained problems

Dynamic problems

Multiphysic simulation problems with free interfaces
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CONCLUSION

m Thank you for your invitation

m Thank you for your attention
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