

GENERALIZED SHAPE OPTIMIZATION USING XFEM AND LEVEL SET METHODS

P. Duysinx, L. Van Miegroet, T. Jacobs and C. Fleury
Automotive Engineering / Multidisciplinary Optimization
Aerospace and Mechanics Department
University of Liège

OUTLINE

- Introduction
- eXtended Finite Element Method (XFEM)
- Level Set Method
- Problem Formulation
- Sensitivity Analysis
- Applications
 - Implementation
 - Plate with a hole
- Conclusion

- Types of variables
 - (a) Sizing optimization
 - (b) shape optimization
 - (c) topology optimization
 - (d) material selection
- Types of problems
 - Structural
 - Multidisciplinary

- TOPOLOGY OPTIMIZATION (Bendsøe & Kikuchi, 1988)
 - Optimal material distribution
 - Optimal topology without any a priori
 - Fixed mesh
 - Design variables
 - = Local density parameters
 - Many thousands of design variables
 - Simple design problem:
 - Minimum compliance s.t. volume constraint
 - Local constraints are difficult to handle
 - Geometrical constraints (often manufacturing constraints)
 are difficult to define and to control
 - Preliminary design: interpretation phase necessary to come to a CAD model
 - Great industrial applications

Perimeter constraint

Min max compliance design

Min max stress design

SHAPE OPTIMIZATION

Modification of boundaries of CAD model

- Fixed topology a priori
- Design variables
 - = CAD model parameters
 - Small number of design variables
- Quite complex design problems:
 - Large number of global and local constraints
 - Geometrical constraints easily included
- Detailed design
- Mesh management problems
 - Mesh modification / mesh distortion
 - Velocity field
- Small number of industrial applications

Position of a point after a perturbation of the design variable d_i

$$X(d_i + \delta d_i) = X(d_i) + V_i \delta d_i$$
with $V_i = \partial X / \partial d_i$

Derivative of a response in a given point:

$$\begin{split} \frac{DR}{Dd_i} &= \frac{\partial R}{\partial d_i} + \sum_{k} \frac{\partial R}{\partial X_k} \frac{\partial X_k}{\partial d_i} \\ &= \frac{\partial R}{\partial d_i} + V_i \nabla R \end{split}$$

Conclusion: determine the velocity field at first

- Practical calculation of velocity field
 - Transfinite mapping
 - Natural / mechanical approach (Belegundu & Rajan, Zhang & Beckers)
 - Laplacian smoothing
 - Relocation schemes

Without error control

With error control

- EXTENDED FINITE ELEMENT METHOD (XFEM)
 - alternative to remeshing methods
- LEVEL SET METHOD
 - alternative description to parametric description of curves
- XFEM + LEVEL SET METHODS
 - Efficient treatment of problem involving discontinuities and propagations
 - Early applications to crack problems. Moës et al. (1999)
 - Applications to topology optimisation Belytschko et al. (2003), Wang et al. (2003), Allaire et al. (2004)

THIS WORK

- XFEM + Level Set methods = alternative method to shape optimisation
- Intermediate approach between shape and topology optimisation
- XFEM
 - work on fixed mesh
 - no mesh problems
- Level Set
 - smooth curve description
 - modification of topology is possible
- Problem formulation:
 - global and local constraints
 - small number of design variables

EXTENDED FINITE ELEMENT METHOD

- Early motivation: study of propagating crack in mechanical structures → avoid the remeshing procedure
- Principle:
 - Allow the model to handle discontinuities that are non conforming with the mesh
 - Add internal degree of freedom a_i
 - Add special shape functions $H(x)N_i(x)$ (discontinuous)

$$u = \sum_{i \in I} u_i \ N_i(x) + \sum_{i \in L} u_i \ N_i(x) \ H(x)$$

$$u = \sum_{i \in I} u_i \ N_i(x) + \sum_{i \in L} u_i \ N_i(x) \ H(x)$$

$$Kq = g \Leftrightarrow \begin{bmatrix} K_{uu} & K_{ua} \\ K_{au} & K_{aa} \end{bmatrix} \begin{bmatrix} u \\ a \end{bmatrix} = \begin{bmatrix} f_u \\ f_a \end{bmatrix}$$

EXTENDED FINITE ELEMENT METHOD

- Representing holes or material void interfaces
 - Remove empty elements
 - Keep partially filled elements
 - Use XFEM numerical integration

$$u = \sum_{i \in I} N_i(x) V(x) u_i$$

$$u = \sum_{i \in I} N_i(x) V(x) u_i \qquad V(x) = \begin{cases} 1 & \text{if node } \in \text{ solid} \\ 0 & \text{if node } \in \text{ void} \end{cases}$$

EXTENDED FINITE ELEMENT METHOD

- Quadrangles and triangles XFEM elements
- Numerical integration
 - Division into sub-triangles
 - Integration over sub-triangles
 - Gauss points

- Principle (Sethian, 1999)
 - Introduce a higher dimension
 - Implicit representation
 - Interface = the zero level of a function $\psi(x,t) = 0$
- Possible practical implementation:
 - Approximated on a fixed mesh by the signed distance function to curve Γ:

$$\psi(x,t) = \pm \min_{x_{\Gamma} \in \Gamma(t)} ||x - x_{\Gamma}||$$

- Advantages:
 - 2D / 3D
 - Combination of entities: e.g. min / max

Level Set of a square hole

Combination of two holes

Evolution of interface

$$\frac{\partial \psi}{\partial t} + V \|\nabla \psi\| = 0$$

$$\psi(x, t) = 0 \qquad \text{given}$$

lacktriangle V: velcocity function of Γ in the outward normal direction to interface

- In XFEM framework,
 - Each node has a Level Set dof
 - Interpolation using classical shape functions

$$\psi(x,t) = \sum_{i} \psi_{i} \ N_{i}(x)$$

- Material assigned to a part of the Level Set (positive or negative)
- Building a library of graphic primitives and features
 - Lines
 - Circles, ellipses, rectangles, triangles
 - NURBS
 - **...**

Level set defined by a set of points

Level set associated to a NURBS

PROBLEM FORMULATION

- Geometry description and material layout :
 - Using Level Sets
 - Basic Level Set features: circles, ellipses, rectangles, etc.
- Design Problem
 - Find the best shape to minimize a given objective functions while satisfying design constraints
- Design variables:
 - Parameters of Level Sets
- Objective and constraints
 - Mechanical responses: global (compliance) or local (displacement, stress)
 - Geometrical characteristics: volume, distance
- Problem formulation similar to shape optimization but simplified thanks to XFEM and Level Set!

PROBLEM FORMULATION

BECAUSE OF XFEM AND LEVEL SET

- The mesh has not to coincide with the geometry
- Work on a fixed mesh
- Sensitivity analysis: no velocity field and no mesh perturbation required
- Topology can be altered as entities can be merged or separated → generalized shape
- Introduction of new holes requires a topological derivatives
- Topology optimization can be simulated using a design universe of holes and an optimal selection problem (Missoum et al. 2000)

- Classical approach for sensitivity analysis in industrial codes: semi analytical approach
- Discretized equilibrium

$$K u = f$$

Derivatives of displacement

$$\mathbf{K} \frac{\partial \mathbf{u}}{\partial x} = \left(\frac{\partial \mathbf{f}}{\partial x} - \frac{\partial \mathbf{K}}{\partial x} \mathbf{u} \right)$$

Semi analytical approach

$$\frac{\partial \mathbf{K}}{\partial x} \approx \frac{\mathbf{K}(x + \delta x) - \mathbf{K}(x)}{\delta x} \qquad \qquad \frac{\partial \mathbf{f}}{\partial x} \approx \frac{\mathbf{f}(x + \delta x) - \mathbf{f}(x)}{\delta x}$$

■ Fixed mesh → no mesh perturbation

 However finite differences of stiffness matrix have to be made with a frozen number of dof

 Critical situations happen when some empty elements become partly filled with solid after perturbating of the

level set:

O Node with dof

Level Set after perturbation

New nodes with dof

OOfelie Graph

Reference configuration

OOfelie Graph

After level set perturbation

- Strategies to freeze the number of dof
 - analytical derivatives of stiffness matrix:
 - not general!
 - boundary layer in which all elements are retained
 - rigid modes, larger size of the problem
 - boundary layer with softening material (SIMP law)
 - lost of void / solid approximation
 - ignore the new elements that become solid or partly solid
 - small errors, but minor contributions
 - practically, no problem observed
 - efficiency and simplicity
 - validated on benchmarks

Summary of the semi-analytical approach strategy

$$\frac{\partial \mathbf{K}}{\partial x} \approx \frac{\mathbf{K}(x + \delta x) - \mathbf{K}(x)}{\delta x}$$

Element initially	→ Solid	→ Cut	→ Void
Solid		ОК	ОК
Cut	ОК	ОК	ОК
Void	Ignored	Ignored	

IMPLEMENTATION

- Preliminary investigations by coupling a standard XFEM code by Moës with a general open optimisation code (Boss Quattro)
- New implementation in a multiphysic finite element code in C++ (OOFELIE from Open Engineering www.open-engineering.com)
- XFEM library: 2D problems with a library of quadrangles and triangles.
- Available results for optimization:
 - Compliance
 - Displacements
 - Strains, Stresses
 - Energy per element
- Visualization:
 - Level Sets
 - Results

CONLIN OPTIMIZATION SOLVER

Direct solution of the original optimisation problem which is generally non-linear, implicit in the design variables

Minimise f(x)

s. t.:
$$g_i(x) \le g_i^{max}$$
 j=1,m

is replaced by a sequence

of optimisation sub-problems

Minimise F(x)

s. t.:
$$G_i(x) \le G_i^{max}$$
 j=1,m

by using approximations of

the responses and using powerful

mathematical programming algorithms

(Lagrangian duality methods or Quadratic Programming)

CONLIN OPTIMIZATION SOLVER

- FORTRAN computer programme
 can be used as a standalone software or an optimizer in open optimization tools
- General solver for structural and multidisciplinary problems:
 Sizing, shape, and topology problems
- Robust and Efficient
- Large scale problems:
 - 100.000 design variables (topology)
 - 5.000 constraints (shape)
 - 5.000 constraints and 5.000 design variables (topology)
- Implemented in several industrial optimisation tools: BOSS-Quattro, MBB-Lagrange, OptiStruct (Altair)

CLASSICAL PROBLEM OF PLATE WITH A HOLE REVISITED

- Square plate with a hole
- Bidirectional stress field

- \blacksquare E= 1 N/m², v=0.3
- Minimize compliance
 - st volume constraint
- Design variables: major axis a and orientation θ
- Mesh 30 x 30 nodes

OOfelie Graph

Min Compliance

APPLICATIONS

OOfelie Graph OOfelie Graph

11 it.

Discretization error of the geometry using approx of level set
 Over-estimating geometric values :

		7(10111		1 0111	
		Iteration 1	Iteration 11	Iteration 1	Iteration 9
Objective function	Minimise U	27.9	20.2	26	18.3
Constraint	Surface < 3.45	3.59	3.45	3.50	3.45
Variable	1e-4< θ < 90	45	1e-4	45	0
Variable	1e-4 < a < 1	0.5	1.06	0.5	0.88

Xfem

Representating interfaces inside an element :

Fem

Linear interpolation of the Level Set may introduce discontinuity:

- Parametric study of the surface of the plate
- Variation of 1%

Take care of numerical noise

- Toplogy modification during optimization
 - Two variables : center x_1 , center x_2
 - Min. potential energy under a surface constraint
 - Uniform Biaxial loading : $\sigma_x = \sigma_0$, $\sigma_y = \sigma_0$

Evolution of the objective function

		Iteration 1	Iteration
Objective function	Minimise U	26,6	14,9
Constraint	Surface> 7.8	6.9	7.95
Variable	$-0.5 < x_1 \text{ position} < 0.5$	0.5	-0.066207
Variable	-0.5 $<$ x_2 position $<$ 0.5	-0.5	0.045791

Evolution of the Level Set

- Mesh refinement for the Level Set representation of sharp parts
- Accuracy of stresses

- Design universe of holes (Missoum et al., 2000)
 - Selection and sizing of basic Level Set entities with a GA in classical topology
- Find a result as close as possible to MBB topology solution
 - 14 triangles are « well » placed.
 - Variables : presence of a triangle
- The optimum is reached after 36

CONCLUSION

- XFEM and Level Set gives ride to a generalized shape optimisation technique
- Intermediate to shape and topology optimisation
 - Work on a fixed mesh
 - Topology can be modified:
 - Holes can merge and disappear
 - New holes cannot be introduced without topological derivatives
 - Smooth curves description
 - Void-solid description
 - Small number of design variables
 - Global or local response constraints
 - No velocity field and mesh perturbation problems

CONCLUSION

- Contribution of this work
 - New perspectives of XFEM and Level Set
 - Investigation of semi-analytical approach for sensitivity analysis
 - Implementation in a general C++ multiphysics FE code
- Concept just validated
- Perspectives:
 - Sensitivity analysis (to be continued)
 - 3D problems
 - Stress constrained problems
 - Dynamic problems
 - Multiphysic simulation problems with free interfaces

■ Thank you for your invitation

Thank you for your attention

ACKNOWLEDGEMENTS

- This work has been partly suported by projects:
 - ARC MEMS, Action de recherche concertée 03/08-298
 'Modeling, Multi-physic Simulation, and Optimization of Coupled Problems Application to Micro-Electro-Mechanical Systems' funded by the Communauté Française de Belgique
 - RW 02/1/5183, MOMIOP 'Modeling Electro-Thermo-Mechanical of Microsystems: Optimization including Manufacturing Laws' funded by the Walloon Region of Belgium.