GENERALIZED SHAPE OPTIMIZATION USING XFEM AND LEVEL SET METHODS

P. Duysinx, L. Van Miegroet, T. Jacobs and C. Fleury
Automotive Engineering / Multidisciplinary Optimization
Aerospace and Mechanics Department
University of Liège
OUTLINE

- Introduction
- eXtended Finite Element Method (XFEM)
- Level Set Method
- Problem Formulation
- Sensitivity Analysis
- Applications
 - Implementation
 - Plate with a hole
- Conclusion
INTRODUCTION

- Types of variables
 - (a) Sizing optimization
 - (b) shape optimization
 - (c) topology optimization
 - (d) material selection

- Types of problems
 - Structural
 - Multidisciplinary
INTRODUCTION

- TOPOLOGY OPTIMIZATION (Bendsøe & Kikuchi, 1988)
 - Optimal material distribution
 - Optimal topology without any a priori
 - Fixed mesh
 - Design variables
 - = Local density parameters
 - Many thousands of design variables
 - Simple design problem:
 - Minimum compliance s.t. volume constraint
 - Local constraints are difficult to handle
 - Geometrical constraints (often manufacturing constraints) are difficult to define and to control
 - Preliminary design: interpretation phase necessary to come to a CAD model
 - Great industrial applications
INTRODUCTION

Perimeter constraint
INTRODUCTION

Min max compliance design

Min max stress design
INTRODUCTION

- SHAPE OPTIMIZATION
 - Modification of boundaries of CAD model
 - Fixed topology a priori
 - Design variables
 - = CAD model parameters
 - Small number of design variables
 - Quite complex design problems:
 - Large number of global and local constraints
 - Geometrical constraints easily included
 - Detailed design
 - Mesh management problems
 - Mesh modification / mesh distortion
 - Velocity field
 - Small number of industrial applications
INTRODUCTION

- Position of a point after a perturbation of the design variable d_i

 \[X(d_i + \delta d_i) = X(d_i) + V_i \delta d_i \]

 with \(V_i = \frac{\partial X}{\partial d_i} \)

- Derivative of a response in a given point:

 \[
 \frac{DR}{Dd_i} = \frac{\partial R}{\partial d_i} \sum_k \frac{\partial R}{\partial X_k} \frac{\partial X_k}{\partial d_i} = \frac{\partial R}{\partial d_i} + V_i \nabla R
 \]

Conclusion: determine the velocity field at first
INTRODUCTION

- Practical calculation of velocity field
 - Transfinite mapping
 - Natural / mechanical approach (Belegundu & Rajan, Zhang & Beckers)
 - Laplacian smoothing
 - Relocation schemes
INTRODUCTION

Without error control

With error control
INTRODUCTION

- EXTENDED FINITE ELEMENT METHOD (XFEM)
 - alternative to remeshing methods

- LEVEL SET METHOD
 - alternative description to parametric description of curves

- XFEM + LEVEL SET METHODS
 - Efficient treatment of problem involving discontinuities and propagations
 - Early applications to crack problems. Moës et al. (1999)
 - Applications to topology optimisation Belytschko et al. (2003), Wang et al. (2003), Allaire et al. (2004)
INTRODUCTION

- THIS WORK
 - XFEM + Level Set methods = alternative method to shape optimisation
 - Intermediate approach between shape and topology optimisation
 - XFEM
 - work on fixed mesh
 - no mesh problems
 - Level Set
 - smooth curve description
 - modification of topology is possible
 - Problem formulation:
 - global and local constraints
 - small number of design variables
EXTENDED FINITE ELEMENT METHOD

- Early motivation: study of propagating crack in mechanical structures → avoid the remeshing procedure

- Principle:
 - Allow the model to handle discontinuities that are non-conforming with the mesh
 - Add internal degree of freedom a_i
 - Add special shape functions $H(x)N_i(x)$ (discontinuous)

\[
u = \sum_{i \in I} u_i N_i(x) + \sum_{i \in L} u_i N_i(x) H(x)
\]

\[
Kq = g \iff \begin{bmatrix} K_{uu} & K_{ua} \\ K_{au} & K_{aa} \end{bmatrix} \begin{bmatrix} u \\ a \end{bmatrix} = \begin{bmatrix} f_u \\ f_a \end{bmatrix}
\]
EXTENDED FINITE ELEMENT METHOD

- Representing holes or material – void interfaces
 - Remove empty elements
 - Keep partially filled elements
 - Use XFEM numerical integration

\[u = \sum_{i \in I} N_i(x) V(x) u_i \]

\[V(x) = \begin{cases} 1 & \text{if node } \in \text{solid} \\ 0 & \text{if node } \in \text{void} \end{cases} \]
EXTENDED FINITE ELEMENT METHOD

- Quadrangles and triangles XFEM elements
- Numerical integration
 - Division into sub-triangles
 - Integration over sub-triangles
 - Gauss points

Material 1

Material 2

Boundary

void

solid

Boundary
THE LEVEL SET METHOD

- Principle (Sethian, 1999)
 - Introduce a higher dimension
 - Implicit representation
 - Interface = the zero level of a function \(\psi(x, t) = 0 \)

- Possible practical implementation:
 - Approximated on a fixed mesh by the signed distance function to curve \(\Gamma \):
 \[
 \psi(x, t) = \pm \min_{x_{\Gamma} \in \Gamma(t)} \|x - x_{\Gamma}\|
 \]

- Advantages:
 - 2D / 3D
 - Combination of entities: e.g. min / max
THE LEVEL SET METHOD

- Level Set of a square hole
- Combination of two holes
THE LEVEL SET METHOD

- **Evolution of interface**

\[
\frac{\partial \psi}{\partial t} + V \| \nabla \psi \| = 0
\]

\[
\psi(x,t) = 0 \quad \text{given}
\]

- \(V \): velocity function of \(\Gamma \) in the outward normal direction to interface
THE LEVEL SET METHOD

- In XFEM framework,
 - Each node has a Level Set dof
 - Interpolation using classical shape functions
 \[\psi(x,t) = \sum_i \psi_i N_i(x) \]
 - Material assigned to a part of the Level Set (positive or negative)

- Building a library of graphic primitives and features
 - Lines
 - Circles, ellipses, rectangles, triangles
 - NURBS
 - ...
THE LEVEL SET METHOD

Level set defined by a set of points

Level set associated to a NURBS
PROBLEM FORMULATION

- Geometry description and material layout:
 - Using Level Sets
 - Basic Level Set features: circles, ellipses, rectangles, etc.

- Design Problem
 - Find the best shape to minimize a given objective functions while satisfying design constraints

- Design variables:
 - Parameters of Level Sets

- Objective and constraints
 - Mechanical responses: global (compliance) or local (displacement, stress)
 - Geometrical characteristics: volume, distance

- Problem formulation similar to shape optimization but simplified thanks to XFEM and Level Set!
PROBLEM FORMULATION

BECAUSE OF XFEM AND LEVEL SET

- The mesh has not to coincide with the geometry
- Work on a fixed mesh

- Sensitivity analysis: no velocity field and no mesh perturbation required

- Topology can be altered as entities can be merged or separated → generalized shape
- Introduction of new holes requires a topological derivatives

- Topology optimization can be simulated using a design universe of holes and an optimal selection problem (Missoum et al. 2000)
SENSITIVITY ANALYSIS

- Classical approach for sensitivity analysis in industrial codes: *semi analytical* approach

- Discretized equilibrium

\[K \frac{\partial u}{\partial x} = \left(\frac{\partial f}{\partial x} - \frac{\partial K}{\partial x} u \right) \]

- Derivatives of displacement

- Semi analytical approach

\[
\frac{\partial K}{\partial x} \approx \frac{K(x + \delta x) - K(x)}{\delta x} \quad \frac{\partial f}{\partial x} \approx \frac{f(x + \delta x) - f(x)}{\delta x}
\]
SENSITIVITY ANALYSIS

- Fixed mesh \rightarrow no mesh perturbation
- However finite differences of stiffness matrix have to be made with a **frozen number of dof**
- Critical situations happen when some empty elements become partly filled with solid after perturbating of the level set:

![Reference Level Set](image1)

![Level Set after perturbation](image2)

- Node with dof
- New nodes with dof
SENSITIVITY ANALYSIS

Reference configuration

After level set perturbation
SENsitIVITY ANALYSIS

- Strategies to freeze the number of dof
 - analytical derivatives of stiffness matrix:
 - not general!
 - boundary layer in which all elements are retained
 - rigid modes, larger size of the problem
 - boundary layer with softening material (SIMP law)
 - lost of void / solid approximation
- ignore the new elements that become solid or partly solid
 - small errors, but minor contributions
 - practically, no problem observed
 - efficiency and simplicity
 - validated on benchmarks
SENSITIVITY ANALYSIS

- Summary of the semi-analytical approach strategy

\[
\frac{\partial K}{\partial x} \approx \frac{K(x + \delta x) - K(x)}{\delta x}
\]

<table>
<thead>
<tr>
<th>Element initially</th>
<th>→ Solid</th>
<th>→ Cut</th>
<th>→ Void</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Cut</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Void</td>
<td>Ignored</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPLEMENTATION

- Preliminary investigations by coupling a standard XFEM code by Moës with a general open optimisation code (Boss Quattro)

- New implementation in a multiphysic finite element code in C++ (OOFELIE from Open Engineering www.open-engineering.com)

- XFEM library: 2D problems with a library of quadrangles and triangles.

- Available results for optimization:
 - Compliance
 - Displacements
 - Strains, Stresses
 - Energy per element

- Visualization:
 - Level Sets
 - Results
Direct solution of the original optimisation problem which is generally non-linear, implicit in the design variables

Minimise $f(x)$

s. t.: $g_j(x) \leq g_j^{\text{max}}$ $j=1,m$

is replaced by a sequence of optimisation sub-problems

Minimise $F(x)$

s. t.: $G_j(x) \leq G_j^{\text{max}}$ $j=1,m$

by using approximations of the responses and using powerful mathematical programming algorithms (Lagrangian duality methods or Quadratic Programming)
CONLIN OPTIMIZATION SOLVER

- FORTRAN computer programme can be used as a standalone software or an optimizer in open optimization tools
- General solver for structural and multidisciplinary problems: Sizing, shape, and topology problems
- Robust and Efficient
- Large scale problems:
 - 100,000 design variables (topology)
 - 5,000 constraints (shape)
 - 5,000 constraints and 5,000 design variables (topology)
- Implemented in several industrial optimisation tools: BOSS-Quattro, MBB-Lagrange, OptiStruct (Altair)
APPLICATIONS

CLASSICAL PROBLEM OF PLATE WITH A HOLE REVISITED

- Square plate with a hole
- Bidirectional stress field
 \(\sigma_x = 2 \sigma_0 \quad \sigma_y = \sigma_0 \)
- \(E = 1 \text{ N/m}^2, \quad \nu = 0.3 \)

- Minimize compliance
 - st volume constraint
- Design variables: major axis a and orientation \(\theta \)

- Mesh 30 x 30 nodes
APPLICATIONS

Min Compliance
s.t. Volume constraint

14 it.
Min Compliance
s.t. Volume constraint

11 it.
APPLICATIONS

- Discretization error of the geometry using approx of level set
 Over-estimating geometric values:

<table>
<thead>
<tr>
<th>Objective function Constraint</th>
<th>Xfem Iteration 1</th>
<th>Xfem Iteration 11</th>
<th>Fem Iteration 1</th>
<th>Fem Iteration 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimise U, Surface < 3.45</td>
<td>27.9, 3.59</td>
<td>20.2, 3.45</td>
<td>26, 3.50</td>
<td>18.3, 3.45</td>
</tr>
<tr>
<td>Variable $1e^{-4} < \theta < 90$</td>
<td>45</td>
<td>1e-4</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Variable $1e^{-4} < a < 1$</td>
<td>0.5</td>
<td>1.06</td>
<td>0.5</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Representing interfaces inside an element:
APPLICATIONS

- Linear interpolation of the Level Set may introduce discontinuity:
 - Parametric study of the surface of the plate
 - Variation of 1%

- Take care of numerical noise
APPLICATIONS
APPLICATIONS

- Topology modification during optimization
 - Two variables: center x_1, center x_2
 - Min. potential energy under a surface constraint
 - Uniform Biaxial loading: $\sigma_x = \sigma_0$, $\sigma_y = \sigma_0$

12 it.
APPLICATIONS

- Evolution of the objective function

![Graph showing the evolution of the objective function over iterations.]

- Evolution of the Level Set

![Images showing the Level Set evolution with iteration numbers: Iteration 1 and Iteration 12.]

<table>
<thead>
<tr>
<th>Objective function</th>
<th>Minimise U</th>
<th>Iteration 1</th>
<th>Iteration 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface > 7.8</td>
<td>6.9</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-0.5 < x_1$</td>
<td>0.5</td>
<td>-0.0662076</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-0.5 < x_2$</td>
<td>-0.5</td>
<td>0.0457915</td>
<td></td>
</tr>
</tbody>
</table>
APPLICATIONS

- Mesh refinement for the Level Set representation of sharp parts
- Accuracy of stresses

Mesh refinement for the Level Set representation of sharp parts

12 it.
Applications

- Design universe of holes (Missoum et al., 2000)
 - Selection and sizing of basic Level Set entities with a GA in classical topology
- Find a result as close as possible to MBB topology solution
 - 14 triangles are « well » placed.
 - Variables : presence of a triangle
- The optimum is reached after 36
CONCLUSION

■ XFEM and Level Set gives ride to a generalized shape optimisation technique

■ Intermediate to shape and topology optimisation
 ■ Work on a fixed mesh
 ■ Topology can be modified:
 ■ Holes can merge and disappear
 ■ New holes cannot be introduced without topological derivatives
 ■ Smooth curves description
 ■ Void-solid description
 ■ Small number of design variables
 ■ Global or local response constraints
 ■ No velocity field and mesh perturbation problems
CONCLUSION

- Contribution of this work
 - New perspectives of XFEM and Level Set
 - Investigation of semi-analytical approach for sensitivity analysis
 - Implementation in a general C++ multiphysics FE code

- Concept just validated

- Perspectives:
 - Sensitivity analysis (to be continued)
 - 3D problems
 - Stress constrained problems
 - Dynamic problems
 - Multiphysic simulation problems with free interfaces
Thank you for your invitation

Thank you for your attention
ACKNOWLEDGEMENTS

- This work has been partly supported by projects:
 - ARC MEMS, Action de recherche concertée 03/08-298 'Modeling, Multi-physic Simulation, and Optimization of Coupled Problems - Application to Micro-Electro-Mechanical Systems' funded by the Communauté Française de Belgique
 - RW 02/1/5183, MOMIOP 'Modeling Electro-Thermo-Mechanical of Microsystems: Optimization including Manufacturing Laws' funded by the Walloon Region of Belgium.