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Abstract A three layer groundwater model was constructed in order to assess 
the discharge that is flowing through the alluvial aquifer of the Meuse River 
(Belgium) around the dam of Lixhe downwards from Liège. In a first 
approach, calibration was reached by trial-and-error. Then an inverse 
modelling technique, using PEST computer code, was used. Calibration was 
performed for two actual situations : (1) natural flow conditions and 
(2) pumping conditions. Results from the trial-and-error calibration and from 
the automatic calibration are compared. When many parameters are optimized 
by a calibration, such as in this case, different sets of data may produce 
identical results. A sensitivity analysis was performed to study the effect on 
the computed flow rate of a change in the parameter values such as hydraulic 
conductivity, recharge and conductance of the riverbed. The main objectives 
of such an analysis consist in determining (1) the influence of the various 
parameters within the aquifer on groundwater flow and heads; (2) the most 
sensitive parameter and (3) the reliability of the calibrated model. 
 
 

INTRODUCTION 
 
The dam of Lixhe on the Meuse River, downwards from Liege (Belgium), currently 
exploited as a hydroelectric power station, splits the river in two reaches for which the 
water level difference is about 5 meters. This situation causes the groundwater flow to 
pass through the alluvial aquifer around the dam. This paper describes (1) the 
calibration of the groundwater model using a nonlinear-regression parameter 
estimation method to evaluate the flow rate that goes round the Lixhe’s dam and (2) 
the sensitivity analysis performed to quantify the reliability of the calibrated model. 
 
 
CONCEPTUAL AND NUMERICAL GROUNDWATER FLOW MODEL 
 
The alluvial plain of the Meuse River is characterized by a fluvial sedimentation 
composed of coarse gravels at the base overlaid by gravels mixed in a sandy or silty 
matrix. A shale bedrock of Primary age can be considered as the impervious bottom of 
the alluvial aquifer except for its widely altered upper part. In order to assess the 
discharge that is flowing through the alluvial aquifer around Lixhe’s dam, a local three 
layer model was used with an upper continuous low permeability gravel unit (gravels 
mixed in a sandy-silty matrix), a permeable coarse gravel layer, and a bottom layer 
representing the altered shale unit.  

The 3D groundwater model was build using the GMS environment and the finite-
difference MODFLOW code. The grid was 51 rows by 55 columns with cell lengths 



ranging from 5 to 50 m and refined near the pumping well PRD. Where the Meuse 
River is fully canalized (upstream the dam) a no-flux boundary condition is chosen and 
constant head boundaries are chosen elsewhere (Fig. 1). On the North, East and South 
limits, constant head boundaries were set with values coming from extrapolation of the 
available head measurements. No argument can be found to justify an important 
piezometric variation between the three different geologic horizons, so it was decided 
to define the same boundary conditions for each of these layers. The Berwinne River 
confluence with the Meuse River is located downstream Lixhe’s dam, was simulated 
as a head-dependent-flow boundary. 

 
Fig. 1 Model grid and conceptual representation of the problem. 

 
Theoretically, many parameters (referring here to any quantity being estimated) 

can be adjusted in order to calibrate the flow model : hydraulic conductivity, recharge, 
conductance coefficient of the river,... More than ever, the uniqueness of the model 
calibration cannot be addressed. So it was decided to set some parameters to specified 
values and to calibrate the model only by fitting hydraulic conductivity values of the 
second layer which constitutes the most permeable unit. Values of the fixed parameters 
were chosen based on isolated field measurements or expert opinion. Hydraulic 
conductivity of the first layer, which represents sandy and silty gravels, was fixed to 
5.10-4 m s-1. As thickness and hydraulic conductivity of the weathered bedrock were 
not perfectly known, it was rather decided to work with transmissivity values. The 
transmissivity of this third layer was set to 10-6 m2 s-1. A uniform aquifer recharge of 
200 mm year-1 was applied on top of the model. Conductance of a riverbed (CRIV) 
between the river and the aquifer corresponds to the hydraulic conductivity of the 
riverbed material (KRIV) multiplied by the length (L) and the width (W) of the river in 
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each cell and divided by the riverbed’s thickness (M) : CRIV = KRIV.L.W / M. The 
riverbed’s hydraulic conductivity was fixed to 10-7 m s-1. 

 
 

PARAMETER ESTIMATION METHOD 
 
The PEST computer code, used in this study, is documented by Doherty (1994). It uses 
nonlinear regression to estimate parameters of groundwater flow systems. Nonlinear 
regression makes calibration more efficient and objective by adjusting parameters 
automatically, using the response of the model to changes in parameter values as a 
guide, until finding the values that minimize the maximum likelihood objective 
function φ( )b . In many circumstances, smaller values of the objective function 
indicate improved models. The maximum likelihood objective function is calculated 
as : 
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where φ( )b is a np x 1 vector containing parameter values; np is the number of 
parameters estimated by regression; n is the number of observations (hydraulic heads 
for this model); wi  is the weight assigned to the error in the observed value of 
measurement i  and ri  is the residual between observed and simulated values of 
measurement i . 

Weights are calculated according to procedures described by Doherty (1994) to 
account for measurement error in the observed values : they are inversely proportional 
to the standard deviation of the field or laboratory measurements to which they 
pertain :  

 
wi i= σ σ/  (2) 
 

where σ  is the common error standard deviation and σ i  is the standard deviation of 
the measurement error of the i th observation (accuracy of the measurement). 

Parameter correlation coefficients measure the correlation between any pair of 
estimated parameter, that is coordinated linear changes in parameter values produce 
the same heads at observation locations (Poeter & Hill, 1997). These coefficients are 
calculated by : 
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where σ ij  are elements of the variance-covariance matrix C b( ) for the final estimated 
parameters b . Correlation coefficient can range between [-1,+1]. Absolute values near 
1 indicate that correlation exists between parameters. Smaller absolute values 
indicate less or no such correlation. When extreme correlation exists between 
parameters, the final estimates will depend strongly on the starting parameter values. 

Parameter estimates obtained through nonlinear regression are likely to be reliable 
if the estimates are precise and uncorrelated, and if the residuals are random and 
normally distributed. 

 



 
MODEL CALIBRATION 

 
The model was calibrated on 12 piezometric head measurements for two actual 
situations : (1) natural flow conditions and (2) pumping conditions. In a first approach, 
calibration was reached by trial-and-error (Brouyère & Monjoie, 1998), adjustments 
were made manually until a reasonable match between calculated and observed heads 
was produced. In a second approach, an inverse modelling technique, using PEST, was 
used to find automatically the best match of calculated to observed heads by estimating 
the values of the non-fixed parameters. Both model calibrations are compared in figure 
2. Some statistics as the residual mean (RM), the absolute residual mean (ARM), the 
residual standard deviation (RSD) and the objective function are calculated in table 1 
for both natural flow and pumping conditions. 

 
Table 1 Statistics on model results for both trial-and-error and automatic calibration. 
 
 RM (m) ARM (m) RSD (m) φ (m2) 
Trial-and-error calibration     
Natural conditions -0.003  0.046 0.071 254 
Pumping conditions  0.031  0.040 0.162 701 
Automatic calibration     
Natural conditions -0.001 -0.003 0.018  17 
Pumping conditions  0.039 -0.045 0.151 352 

 
The data to be matched are all of same type (heads) and were collected identically, 

so each of them was considered to have the same experimental error and therefore they 
were all assigned equal weights. Measurement errors were evaluated at 1 cm for every 
well except for the pumping well in the pumping condition where it was estimated at 5 
cm. 

According to table 1 and figure 2, the results obtained by nonlinear regression 
obviously improve the calibration. All the K-values obtained by calibration for the 
second layer were reasonable and agreed with the measured values ; unreasonable 
optimized values would have indicated model error (Poeter & Hill, 1996), so their 
absence makes it more likely that the model accurately represents the groundwater 
system. 

In natural conditions, some of the correlation coefficient values were near unity, 
indicating that the corresponding estimated K-values were strongly correlated. 
Therefore we had to set one of these estimated K-zone to a specified value to remove 
the correlation. In pumping conditions, less correlation existed between estimated K-
values, so estimation of the best fit parameters could be performed. In fact, flow 
observation (like pumping discharge) generally decreases the correlation between 
parameters that is present in cases where only head observations are available (Poeter 
& Hill, 1997) and so unique parameter estimates can be obtained. 

For the final calibration, the calculated discharge flowing through the alluvial 
aquifer around the dam of Lixhe in natural conditions was estimated at 624 m3 hour-1. 
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Fig. 2 Graphical comparison between trial-and-error calibration and automatic 
calibration for natural and pumping conditions : (a),(b),(c),(d) observed heads versus 
residual error and (e),(f) observed versus calculated heads. 

 
 

SENSITIVITY ANALYSIS 
 

The inverse modelling technique was used to estimate the discharge groundwater flow 
around the Lixhe’s dam. Accuracy of the results depends on the reliability of the 
specified parameters (inferred from isolated measurements or expert opinion). The 
effect on the computed flow rate of a change in these fixed parameter values is studied 
by a deterministic sensitivity analysis. The main objectives of such an analysis are to 
determine (1) the influence of the various parameters within the aquifer system on 
groundwater flow estimation; (2) the most sensitive parameter and (3) the reliability of 
the calibrated model. 

The reference simulation corresponds to the case using the most likely values for 
the fixed parameters. The sensitivity simulations are deterministic in that only one 
parameter value is changed for each simulation, all other parameters are kept at the 
baseline values. Hydraulic conductivity of the first layer (KL1), equal in the reference 
case to 5.10-4 m s-1, was varied from 5.10-7 to 5.10-2 m s-1. From a reference value of 
10-6 m2 s-1, the variation range of the third layer’s transmissivity (TL3) was 10-9 to 10-3 
m2 s-1. Hydraulic conductivity of the riverbed KRIV (10-7 m2 s-1) was varied from 10-10 
to 10-4 m2 s-1. Finally the recharge (Rech) of 200 mm year-1 ranged from 0 mm year-1 
(supposing no infiltration and total surface runoff) to 800 mm year-1 (supposing total 
recharging infiltration, no evapotranspiration and no surface runoff). The 
corresponding fluxes are shown graphically in Figure 3. 

It can be observed (Fig. 3) that for each parameter there is a threshold (P/P0 = 1 
for KL1 and Rech, P/P0 = 5 for KRIV and P/P0 = 100 for TL3) below which parameter 
value changes do not affect the order of magnitude of the discharge flux. In this case, 
the flux of discharge of the second layer (607 m3 hour-1) is quite smaller then the one 
calculated for the entire model (624 m3 hour-1). The constant head boundaries fixed on 
model limits impose a certain flux through the second layer that does not change much 
when the other parameters decrease. On the other hand, beyond the thresholds, the 
flow rate increases with the parameter values but differently depending on the 



parameter. Discharge estimation is much more sensitive to KL1 and Rech than to KRIV 
or TL3, indicated by a larger change in discharge flux for a same ratio of change in 
parameter values. Sensitive but relatively certain parameters like Rech and uncertain 
but insensitive parameters such as TL3 do not produce significative changes in flow 
rate, so efforts to reduce model uncertainty should first focus on reducing the 
parameter uncertainty on KL1 and KRIV (more field measurements). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Impact of errors in parameters over the estimated discharge. 
 
 
CONCLUSION 
 
In this study, a more reliable model calibration was reached by performing nonlinear 
regression instead of trial-and-error calibration. The sensitivity analysis showed that 
some uncertain parameters (KL1 and KRIV) have a significant impact on the results and 
should be carefully determined: further model refinements should be accomplished by 
integration of new data on these sensitive and uncertain parameter values, rather than 
trying to reduce uncertainty about less important parameters such as TL3 or Rech. 
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