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INTRODUCTION

m TOPOLOGY OPTIMIZATION (Bendsoe & Kikuchi, 1988)

Optimal material distribution
Optimal topology without any a priori
Fixed mesh
Design variables
» = Local density parameters
= Many thousand design variables
Simple design problem: ‘
= Minimum compliance s.t. volume constraint
» Local constraints are difficult to handle

= Geometrical constraints (often manufacturing constraints)
are difficult to define and to control

Preliminary design: interpretation phase necessary to
come to a CAD model

Great industrial applications
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INTRODUCTION

m SHAPE OPTIMIZATION (Braibant & Fleury, 1984)

Modification of boundaries of CAD model
Fixed topology a priori [

Design variables 1 ““““““

= = CAD model parameters
= Small number of design variables

Y

Quite complicated design problems:

s« Large number of global and local constraints
» Geometrical constraints easily included
Detailed design
Mesh management problems
» Mesh modification / mesh distortion
= Velocity field
Industrial applications are stepping
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INTRODUCTION

m EXTENDED FINITE ELEMENT METHOD (XFEM)
m alternative to remeshing methods

m LEVEL SET METHOD
m alternative description to parametric description of curves

m XFEM + LEVEL SET METHODS

m Efficient treatment of problem involving discontinuities and
propagations
m Early applications to crack problems. Moes et al. (1999)

m Applications to topology optimisation Belytschko et al.
(2003), Wang et al. (2003), Allaire et al. (2004)



INTRODUCTION

m THIS WORK

m XFEM + Level Set methods = alternative method to shape
optimisation
Intermediate approach between shape and topology
optimisation
m XFEM

= work on fixed mesh

= NO mesh problems
m Level Set

= smooth curve description

= modification of topology is possible
m Problem formulation:
= global and local constraints
= small number of design variables

ALISYIAINN
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EXTENDED FINITE ELEMENT METHOD

m Early motivation : study of propagating crack in
mechanical structures - avoid the remeshing procedure

Principle :

 Allow the model to handle discontinuities that are non
conforming with the mesh

« Add internal degree of freedom a,
« Add special shape functions H(x)N,(x) (discontinuous)

U= ZuiNl. (x) -I—Z a H(x)N,(x)

iel iel
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Interface



ALISYIAINDN

EXTENDED FINITE ELEMENT METHOD

m Representing holes or material — void interfaces
m Remove empty elements
m Keep partially filled elements

m Use XFEM numerical integration

1 1if node inside material
u=Y NV, yu={ o mater!
icl if node not in material

m Numerical integration
m Division into sub-triangles
m Integration over sub-triangles
Gauss points
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THE LEVEL SET METHOD

m Principle (Sethian, 1999)
m Introduce a higher dimension
m Represent the interface as the zero level a function w(x,t) =0

m Possible practical implementation:

m Approximated on a fixed mesh by the signed distance
function to curve I':

w(x,t) =% min Hx —er

xpel'(t)
A / m Advantages:
"1 m 2D/ 3D
e 8 _ m Combination of entities:

B e.g. min / max
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THE LEVEL SET METHOD

m Evolution of interface

ay
Vs Fivy]=0
w(x,t)=0 given

m F: speed function of I in the outward normal direction to
interface

m In XFEM framework,
m Each node has a Level Set dof
m Interpolation using classical shape functions

w6, =2 w N,()

m Material assigned to a part of the Level Set (positive or
negative)




THE LEVEL SET METHOD U
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m Level Set of a square hole
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m Combination of two holes

OOfelie with Xfem OOfelie Graph

Level Set
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PROBLEM FORMULATION

Geometry description and material layout :
m Using Level Sets
m Basic Level Set features: circles, ellipses, rectangles, etc.

Design Problem

m Find the best shape to minimize a given objective
functions while satisfying design constraints

Design variables:

m Parameters of Level Sets

Objective and constraints

m Mechanical responses: global (compliance) or local
(displacement, stress)

m Geometrical characteristics: volume, distance

Problem formulation similar to shape optimization but
simplified thanks to XFEM and Level Set!
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PROBLEM FORMULATION

BECAUSE OF XFEM AND LEVEL SET

m The mesh has not to coincide with the geometry
m Working on a fixed mesh

m Sensitivity analysis: no velocity field and no mesh
perturbation required

m Topology can be altered as entities can be merged or
separated 2 generalized shape

m Introduction of new holes requires a topological
derivatives

m Topology optimization can be simulated using a design
universe of holes and an optimal selection problem
(Missoum et al. 2000)
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SENSITIVITY ANALYSIS

INIVERSITE de Liége

Classical approach for sensitivity analysis in industrial
codes: semi analytical approach

Discretized equilibrium
Ku=f1

Derivatives of displacement
o _ (af K u)
ox \oOx Ox
Semi analytical approach
oK K(x+adx)-K(x) of f(x+ox)—f(x)
ox ox ox X
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SENSITIVITY ANALYSIS

m Fixed mesh 2 no mesh perturbation

m However finite differences of stiffness matrix have to be
made with a frozen number of dof (internal dof)

m Critical situations happen when new empty elements
become partly filled with solid after perturbating of the

level set : Reference Level Set Level Set after perturbation

O Node with dof New nodes with dof



SENSITIVITY ANALYSIS

OOfelie Graph OOfelie Graph

ALISYIAINDN
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Reference configuration After level set perturbation
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SENSITIVITY ANALYSIS

m Strategies to freeze the number of dof
m analytical derivatives of stiffness matrix:
= not general!

m boundary layer in which all elements are retained
= rigid modes, larger size of the problem

m boundary layer with softening material (SIMP law)
» lost of void / solid approximation

m ignore the new elements that become solid or partly solid
= small errors, but minor contributions
= practically, no problem observed
» efficiency and simplicity
« validated on benchmarks




SENSITIVITY ANALYSIS

m Summary of the semi-analytical approach strategy
0K K(x+oax)—-K(x)

ALISYIAINDN

Ox OxX
Element =1 5 solid | cut > Void
initially
Solid OK OK
Cut OK OK OK
Void Ignored Ignored
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APPLICATIONS

m Implementation

m Preliminary investigations by coupling a standard XFEM
code by Moés with a general open optimisation code (Boss
Quattro)

m New implementation in @ multiphysic finite element code in
C++ (OOFELIE from Open Engineering)

m Available: 2D problems with a library of quadrangles and
triangles.

m Solution of optimisation problem:
m Sequential convex linearization

m CONLIN optimiser :

min  g,(x)

st g, (x)< g
X; <X, SXi
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APPLICATIONS

CLASSICAL PROBLEM OF
PLATE WITH A HOLE
REVISITED

Square plate with a hole
Bidirectional stress field
c,= 2 o, c,=0
E=1N/m2, v=0.3

Minimize compliance
m st volume constraint

Design variables: major
axis a and orientation 6

Mesh 30 x 30 nodes

OOfelie Graph
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APPLICATIONS

OOfelie Graph

B

OOfelie Graph
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APPLICATIONS

NIVERSITE de Liége

OOfelie Graph

OOfelie Graph
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APPLICATIONS

UNIVERSITE de Liége
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CONCLUSION

ALISYIAINDN

m XFEM and Level Set gives ride to a generalized shape
optimisation technique

m Intermediate to shape and topology optimisation
m Work on a fixed mesh
m Topology can be modified:
= Holes can merge and disappear

= New holes cannot be introduced without topological
derivatives

m Smooth curves description

m Void-solid description

m Small number of design variables

m Global or local response constraints

m No velocity field and mesh perturbation problems



CONCLUSION

m Contribution of this work

ALISYIAINDN

m New perspectives of XFEM and Level Set
m Investigation of semi-analytical approach for sensitivity

analysis
Implementation in a general C++ multiphysics FE code

m Concept just validated

m Perspectives:

Sensitivity analysis (to be continued)

3D problems

Stress constrained problems

Dynamic problems

Multiphysic simulation problems with free interfaces
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APPLICATIONS

' UNIVERSITY
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APPLICATIONS

m Discretization error of geometry

Level Bet
houndaty
-

= Over-estimating geometric values :
= Xfem Fem
o Iteration 1 | Iteration 11 || Iteration 1 | Iteration 9
2 Objective function Minimise 7 27.9 20.2 26 18.3
= Constraint Surface < 3.45 | C 3.59) 3.45 C 350) 3.45
< Variable le-4<- & < 90 45 le-4 45 0
Variable le-d<ca< 1 0.5 C 106D 0.5 C 0.88)
m Representating interfaces inside an element :
s

B3 kG

&

Boudary
Approximation
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APPLICATIONS

UNIVERSITE de Ligge

m Linear interpolation of the Level Set may introduce
discontinuity :

m Parametric study of the surface of the plate
m Variation of 1%
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APPLICATIONS

UNIVERSITE de Liége

m Toplogy optimization
- Two variables : center x,, centerx,
o Min. potential energy under a surface constraint
« Uniform Biaxial loading : o,= 0, 0,= 0,

m Mesh refinement for the Level Set representation of
sharp parts

Meaning of this is may
be questionnable!



APPLICATIONS

UNIVERSITE de Ligge

m Evolution of the objective function

lterations

m Evolution of the Level Set

-

- 2 Iteration 1 | Iteration
'} 5] Objective function Minirnise U 26,6 1490
2 & Constraint Surface= 7.8 6.9 5
N ] Variahble -0.5<x, position<0.5 0.5 ~0.066207
— o Variable -0.5<z, position=0.5 0.5 0.045791
_<
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APPLICATIONS

JNIVERSITE de Libge

m Design universe of holes (Missou

m et al., 2000)

m Selection and sizing of basic Level Set entities with a GA

in classical topology
m Find a result as close as possible

to MBB topology

solution

XX XX XX XX XX

m 14 triangles are « well » placed-
m Variables : presence of a triangle

m The optimum is reached after 36

VAV VAN
VAV AVAN

we funct

t

jul
i}

8]

7
=
o

8

4

3

2

1

ltertions

L ! L I I L L L !
u] 5 10 15 20 25 30 35 40 45 50



