

GENERALIZED SHAPE OPTIMIZATION USING XFEM AND LEVEL SET METHODS

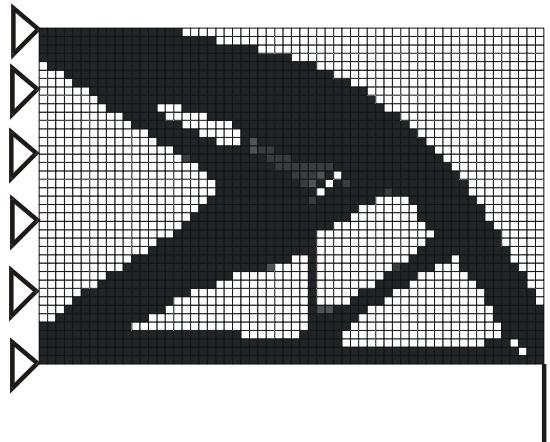
P. Duysinx, L. Van Miegroet, T. Jacobs and C. Fleury
Automotive Engineering / Multidisciplinary Optimization
Aerospace and Mechanics Department
University of Liège

OUTLINE

- Introduction
- eXtended Finite Element Method (XFEM)
- Level Set Method
- Problem Formulation
- Sensitivity Analysis
- Applications
 - Implementation
 - Plate with a hole
- Conclusion

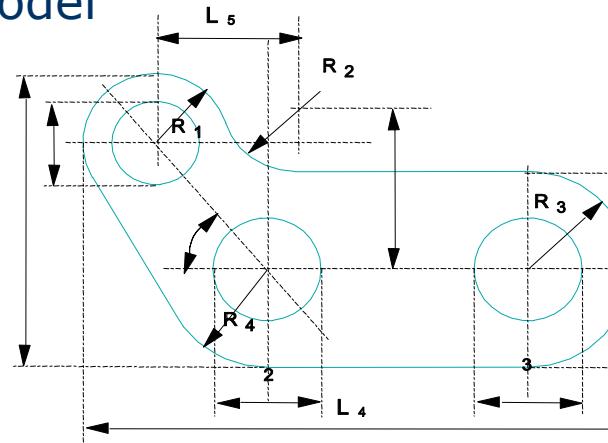
INTRODUCTION

- TOPOLOGY OPTIMIZATION (Bendsoe & Kikuchi, 1988)
 - Optimal material distribution
 - Optimal topology without any a priori
 - Fixed mesh
 - Design variables
 - = Local density parameters
 - Many thousand design variables
 - Simple design problem:
 - Minimum compliance s.t. volume constraint
 - Local constraints are difficult to handle
 - Geometrical constraints (often manufacturing constraints) are difficult to define and to control
 - Preliminary design: interpretation phase necessary to come to a CAD model
 - Great industrial applications



INTRODUCTION

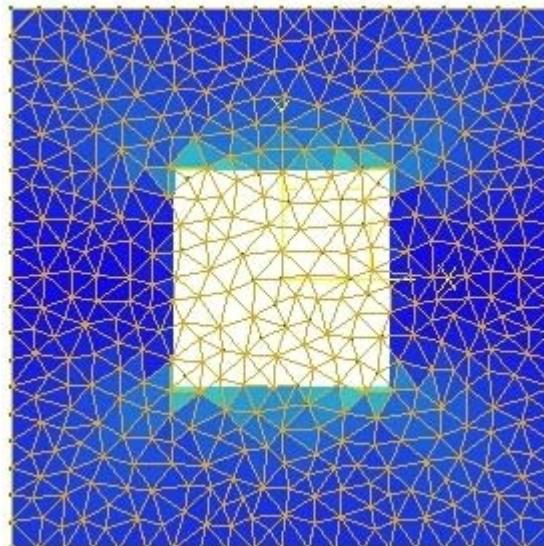
- SHAPE OPTIMIZATION (Braibant & Fleury, 1984)
 - Modification of boundaries of CAD model
 - Fixed topology a priori
 - Design variables
 - = CAD model parameters
 - Small number of design variables
 - Quite complicated design problems:
 - Large number of global and local constraints
 - Geometrical constraints easily included
 - Detailed design
 - Mesh management problems
 - Mesh modification / mesh distortion
 - Velocity field
 - Industrial applications are stepping



- EXTENDED FINITE ELEMENT METHOD (XFEM)
 - alternative to remeshing methods
- LEVEL SET METHOD
 - alternative description to parametric description of curves
- XFEM + LEVEL SET METHODS
 - Efficient treatment of problem involving discontinuities and propagations
 - Early applications to crack problems. Moes et al. (1999)
 - Applications to topology optimisation Belytschko et al. (2003), Wang et al. (2003), Allaire et al. (2004)

■ THIS WORK

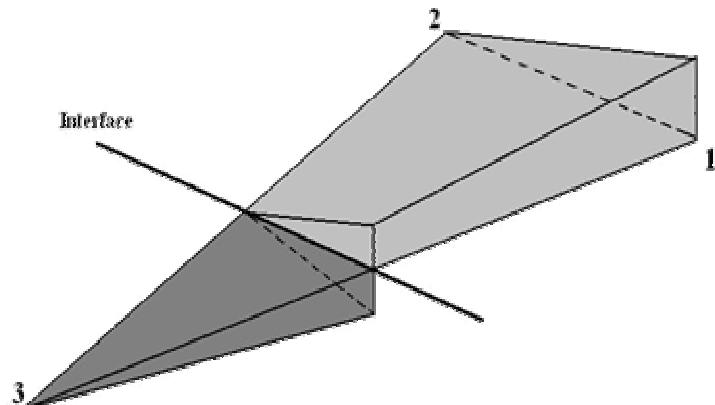
- XFEM + Level Set methods = **alternative method to shape optimisation**
- **Intermediate** approach between shape and topology optimisation
- XFEM
 - work on fixed mesh
 - no mesh problems
- Level Set
 - smooth curve description
 - modification of topology is possible
- Problem formulation:
 - global and local constraints
 - small number of design variables



- Early motivation : study of propagating crack in mechanical structures → avoid the remeshing procedure
- Principle :
 - Allow the model to handle discontinuities that are non conforming with the mesh
 - Add internal degree of freedom a_i
 - Add special shape functions $H(x)N_i(x)$ (discontinuous)

$$u = \sum_{i \in I} u_i N_i(x) + \sum_{i \in L} a_i H(x) N_i(x)$$

$$K \cdot q = g \Leftrightarrow \begin{bmatrix} K_{uu} & K_{ua} \\ K_{au} & K_{aa} \end{bmatrix} \begin{bmatrix} u \\ a \end{bmatrix} = \begin{bmatrix} f_u^{ext} \\ f_a^{ext} \end{bmatrix}$$

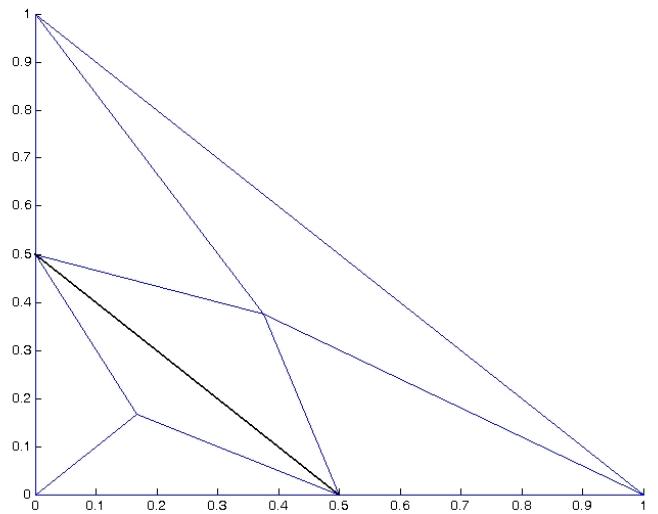


- Representing holes or material – void interfaces
 - Remove empty elements
 - Keep partially filled elements
 - Use XFEM numerical integration

$$u = \sum_{i \in I} N_i(x) V(x) u_i \quad V(x) = \begin{cases} 1 & \text{if node inside material} \\ 0 & \text{if node not in material} \end{cases}$$

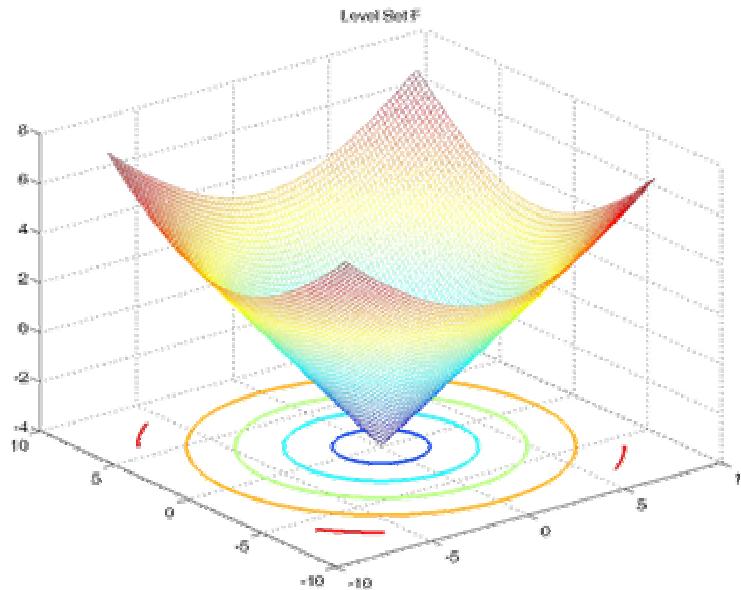
- Numerical integration
 - Division into sub-triangles
 - Integration over sub-triangles

Gauss points



THE LEVEL SET METHOD

- Principle (Sethian, 1999)
 - Introduce a higher dimension
 - Represent the interface as the zero level a function $\psi(x, t) = 0$
- Possible practical implementation:
 - Approximated on a fixed mesh by the signed distance function to curve Γ :



$$\psi(x, t) = \pm \min_{x_\Gamma \in \Gamma(t)} \|x - x_\Gamma\|$$

- Advantages:
 - 2D / 3D
 - Combination of entities:
e.g. min / max

■ Evolution of interface

$$\frac{\partial \psi}{\partial t} + F \|\nabla \psi\| = 0$$
$$\psi(x, t) = 0 \quad \text{given}$$

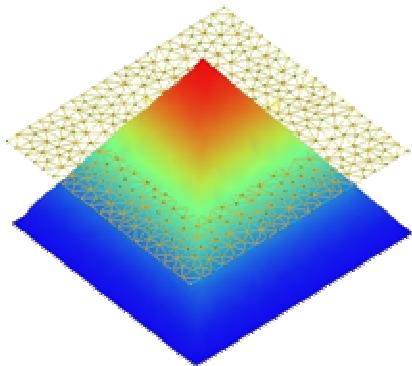
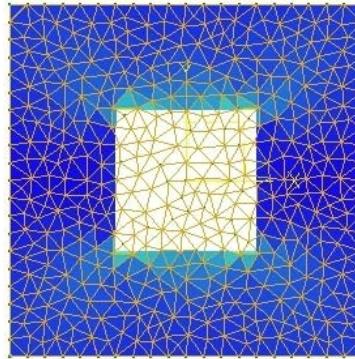
- F : speed function of Γ in the outward normal direction to interface
- In XFEM framework,
 - Each node has a Level Set dof
 - Interpolation using classical shape functions

$$\psi(x, t) = \sum_i \psi_i N_i(x)$$

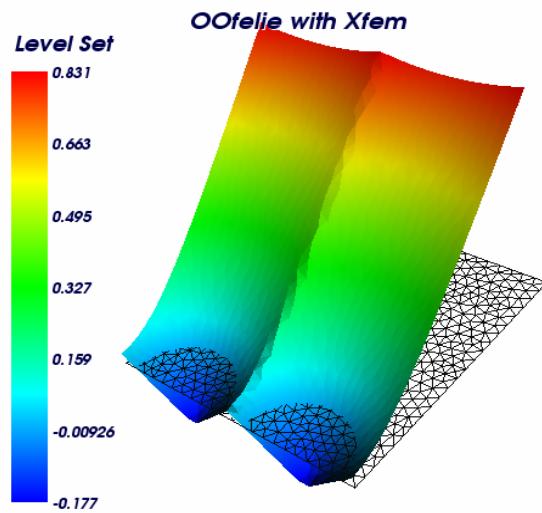
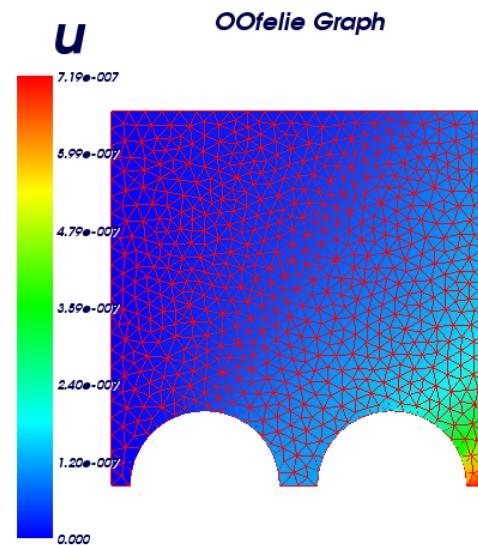
- Material assigned to a part of the Level Set (positive or negative)

THE LEVEL SET METHOD

■ Level Set of a square hole



■ Combination of two holes



- Geometry description and material layout :
 - Using Level Sets
 - Basic Level Set features: circles, ellipses, rectangles, etc.
- Design Problem
 - Find the best shape to minimize a given objective functions while satisfying design constraints
- Design variables:
 - Parameters of Level Sets
- Objective and constraints
 - Mechanical responses: global (compliance) or local (displacement, stress)
 - Geometrical characteristics: volume, distance
- Problem formulation similar to shape optimization but simplified thanks to XFEM and Level Set!

BECAUSE OF XFEM AND LEVEL SET

- The mesh has not to coincide with the geometry
- Working on a **fixed mesh**
- Sensitivity analysis: **no velocity field** and **no mesh perturbation** required
- Topology can be altered as entities can be merged or separated → **generalized shape**
- Introduction of new holes requires a topological derivatives
- Topology optimization can be simulated using a **design universe of holes** and an optimal selection problem (Missoum et al. 2000)

- Classical approach for sensitivity analysis in industrial codes: **semi analytical** approach
- Discretized equilibrium

$$\mathbf{K} \mathbf{u} = \mathbf{f}$$

- Derivatives of displacement

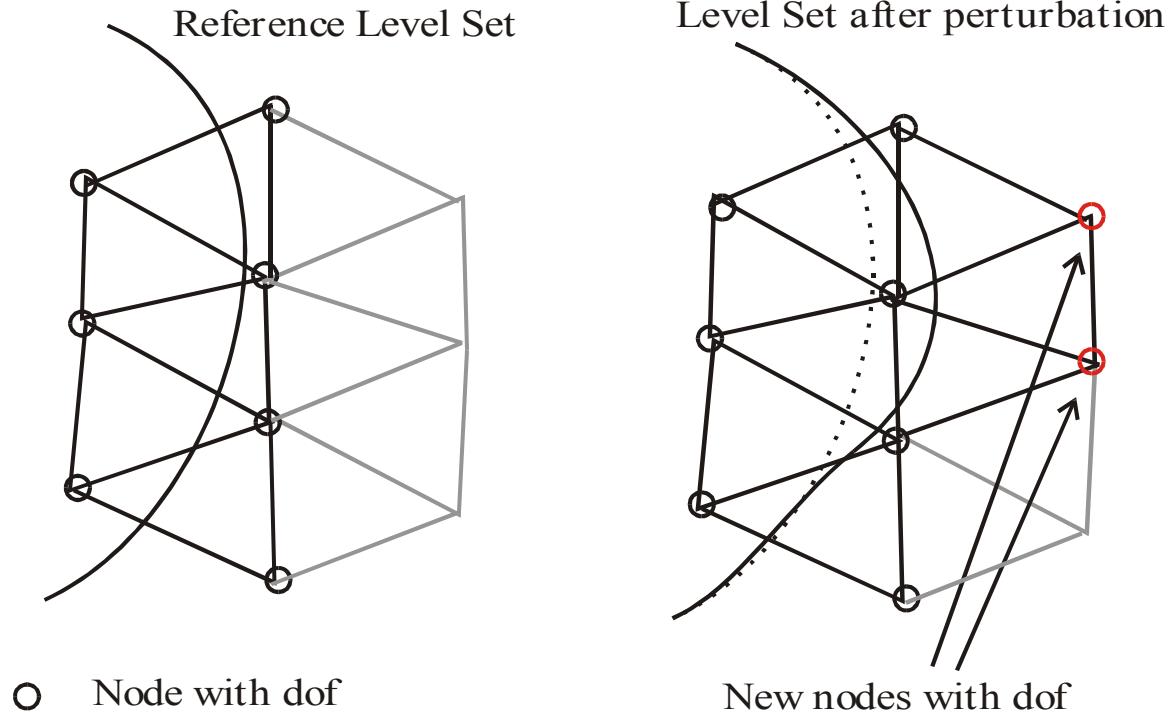
$$\mathbf{K} \frac{\partial \mathbf{u}}{\partial x} = \left(\frac{\partial \mathbf{f}}{\partial x} - \frac{\partial \mathbf{K}}{\partial x} \mathbf{u} \right)$$

- Semi analytical approach

$$\frac{\partial \mathbf{K}}{\partial x} \approx \frac{\mathbf{K}(x + \delta x) - \mathbf{K}(x)}{\delta x}$$

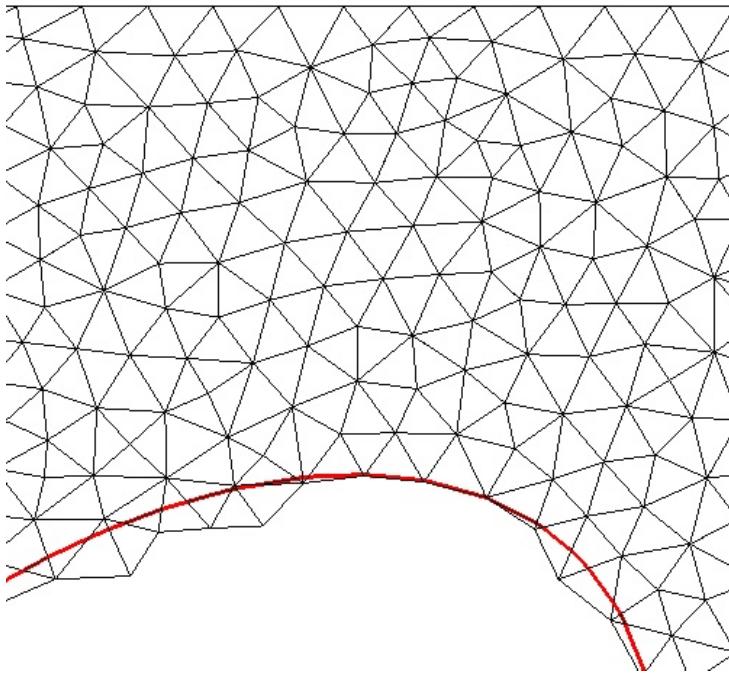
$$\frac{\partial \mathbf{f}}{\partial x} \approx \frac{\mathbf{f}(x + \delta x) - \mathbf{f}(x)}{\delta x}$$

- Fixed mesh → no mesh perturbation
- However finite differences of stiffness matrix have to be made with a **frozen number of dof (internal dof)**
- Critical situations happen when new empty elements become partly filled with solid after perturbing of the level set :



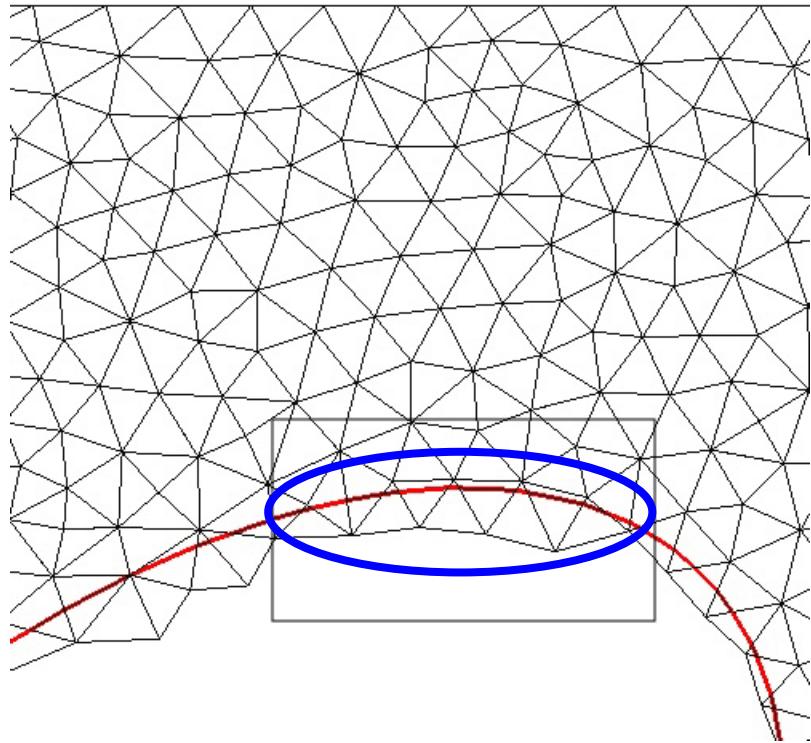
SENSITIVITY ANALYSIS

OOfelie Graph



Reference configuration

OOfelie Graph



After level set perturbation

- Strategies to **freeze the number of dof**
 - analytical derivatives of stiffness matrix:
 - not general!
 - boundary layer in which all elements are retained
 - rigid modes, larger size of the problem
 - boundary layer with softening material (SIMP law)
 - lost of void / solid approximation
 - **ignore the new elements** that become solid or partly solid
 - small errors, but minor contributions
 - practically, no problem observed
 - efficiency and simplicity
 - validated on benchmarks

- Summary of the semi-analytical approach strategy

$$\frac{\partial \mathbf{K}}{\partial x} \approx \frac{\mathbf{K}(x + \delta x) - \mathbf{K}(x)}{\delta x}$$

Element initially	→ Solid	→ Cut	→ Void
Solid		OK	OK
Cut	OK	OK	OK
Void	Ignored	Ignored	

■ Implementation

- Preliminary investigations by coupling a standard XFEM code by Moës with a general open optimisation code (Boss Quattro)
- New implementation in a multiphysic finite element code in C++ (OOFELIE from Open Engineering)
- Available: 2D problems with a library of quadrangles and triangles.

■ Solution of optimisation problem:

- Sequential convex linearization
- CONLIN optimiser

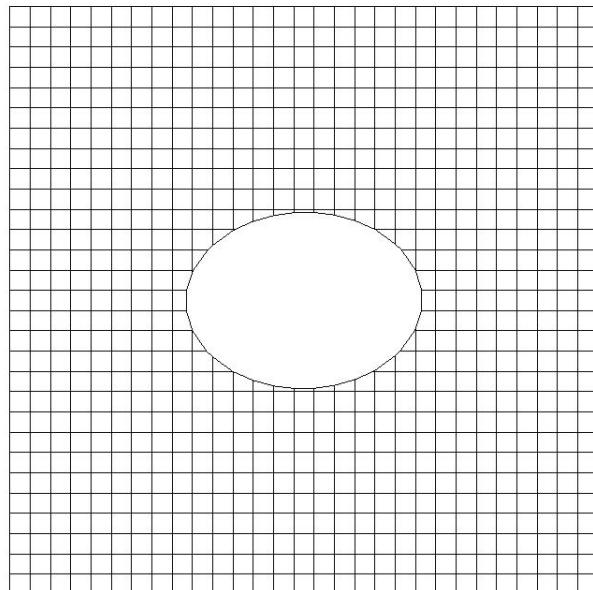
$$\begin{aligned} \min_{\mathbf{x}} \quad & g_0(\mathbf{x}) \\ \text{s.t.} \quad & g_j(\mathbf{x}) \leq \bar{g}_j \\ & \underline{x}_i \leq x_i \leq \bar{x}_i \end{aligned}$$

APPLICATIONS

CLASSICAL PROBLEM OF PLATE WITH A HOLE REVISITED

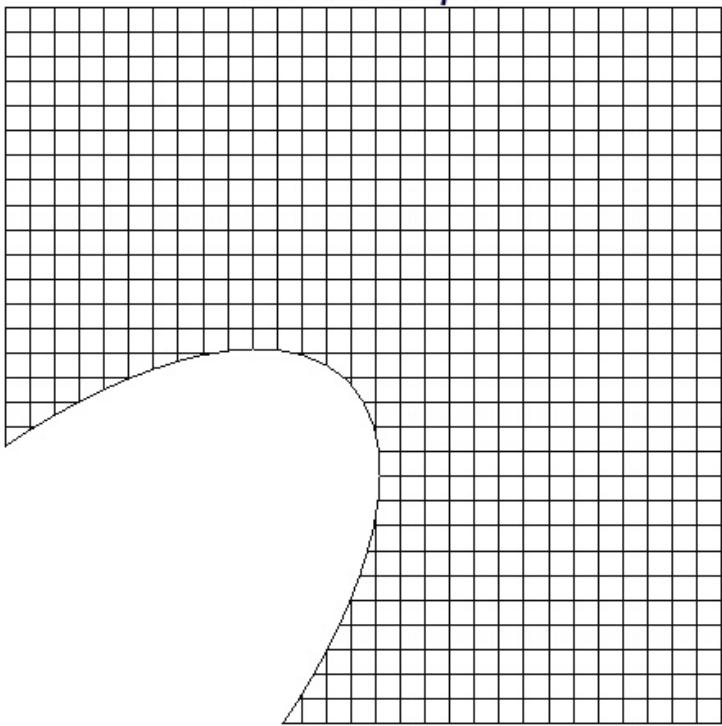
- Square plate with a hole
- Bidirectional stress field
- $\sigma_x = 2 \sigma_0$ $\sigma_y = \sigma_0$
- $E = 1 \text{ N/m}^2$, $\nu = 0.3$
- Minimize compliance
 - st volume constraint
- Design variables: major axis a and orientation θ
- Mesh 30 x 30 nodes

OOFelie Graph

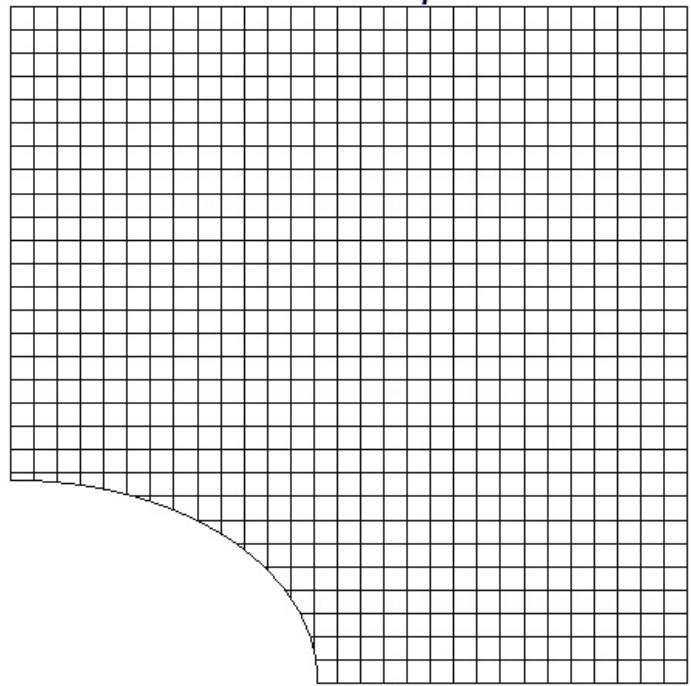


APPLICATIONS

OOfelie Graph

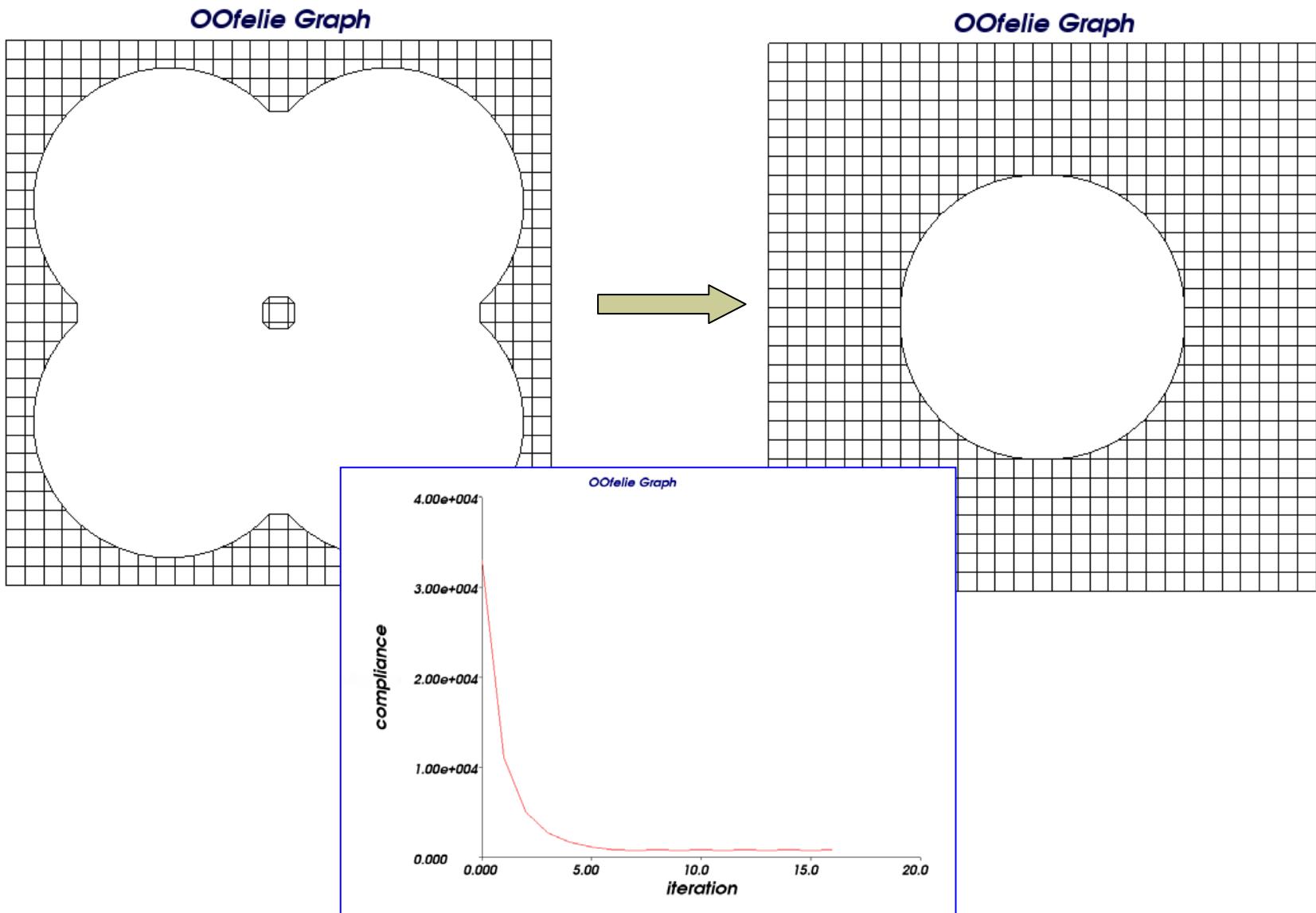


OOfelie Graph

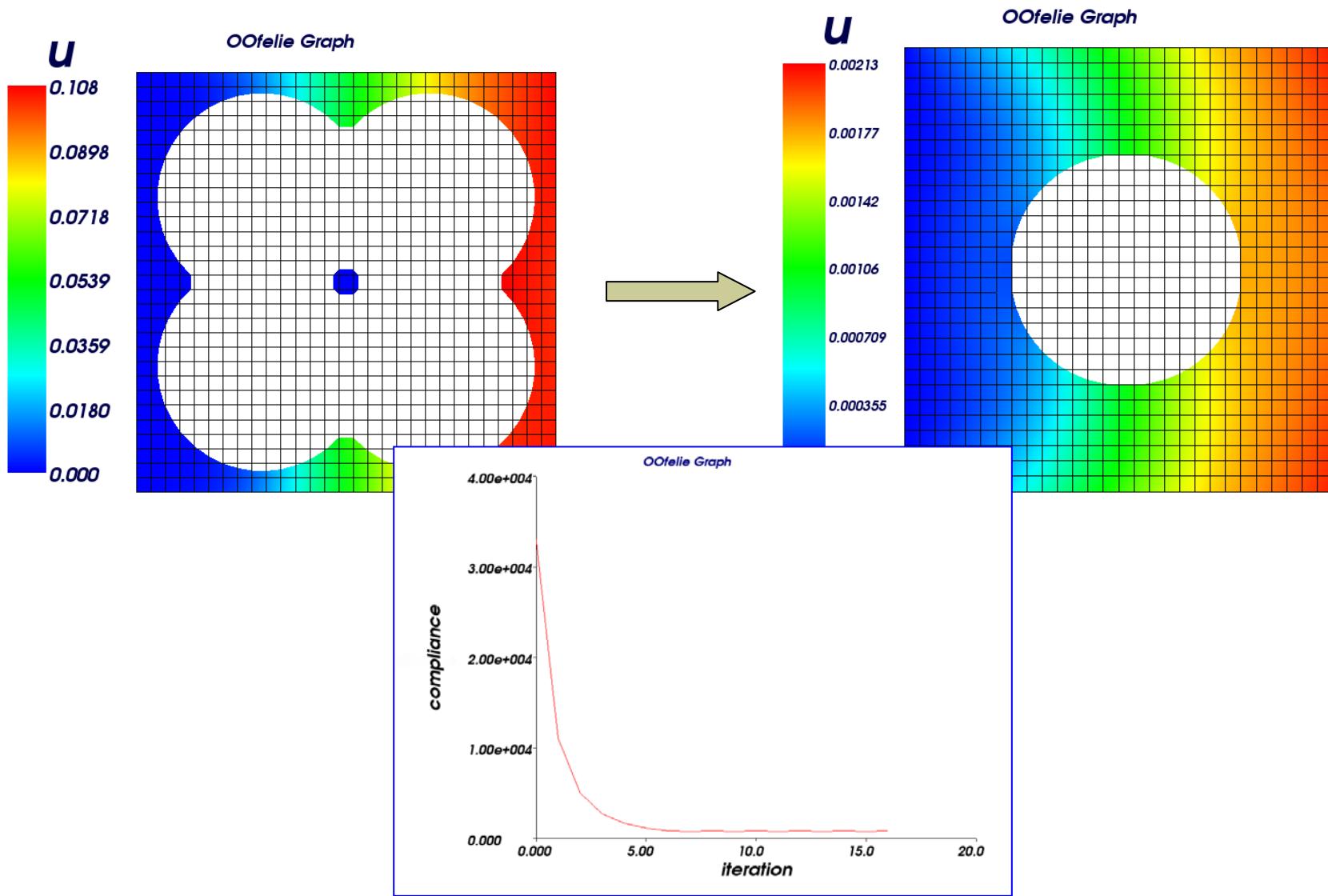


11 it.

APPLICATIONS



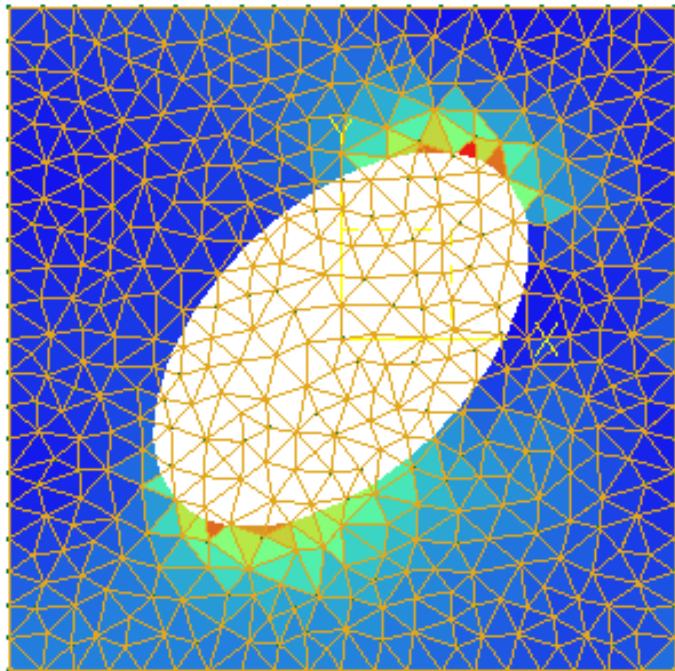
APPLICATIONS



- XFEM and Level Set gives rise to a generalized shape optimisation technique
- Intermediate to shape and topology optimisation
 - Work on a fixed mesh
 - Topology can be modified:
 - Holes can merge and disappear
 - New holes cannot be introduced without topological derivatives
 - Smooth curves description
 - Void-solid description
 - Small number of design variables
 - Global or local response constraints
 - No velocity field and mesh perturbation problems

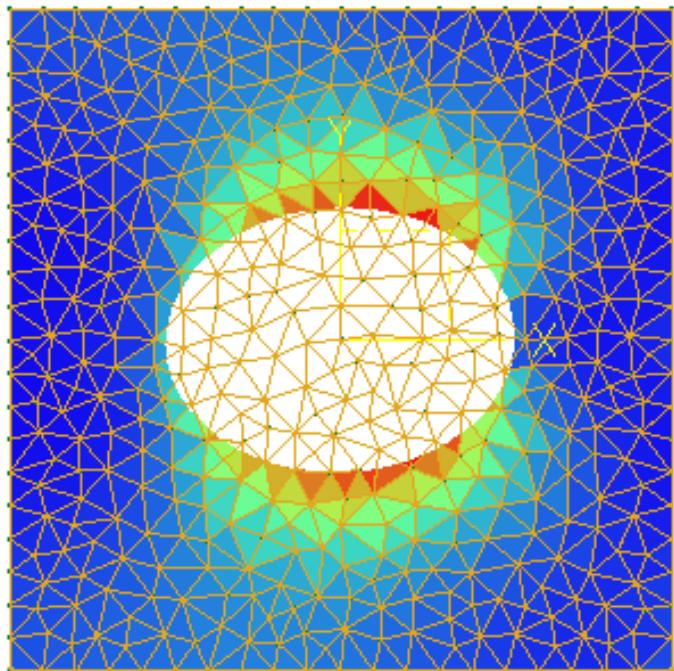
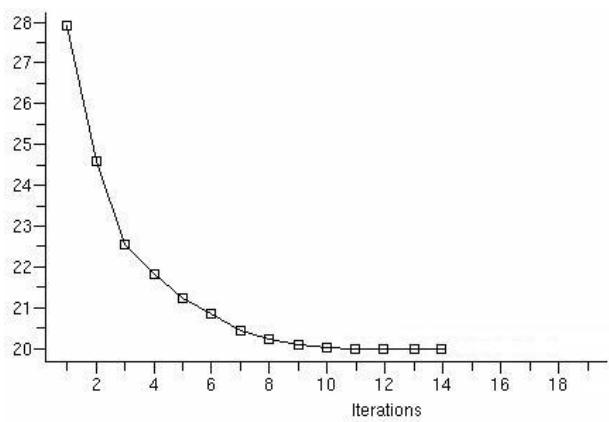
- Contribution of this work
 - New perspectives of XFEM and Level Set
 - Investigation of semi-analytical approach for sensitivity analysis
 - Implementation in a general C++ multiphysics FE code
- Concept just validated
- Perspectives:
 - Sensitivity analysis (to be continued)
 - 3D problems
 - Stress constrained problems
 - Dynamic problems
 - Multiphysics simulation problems with free interfaces

APPLICATIONS



→

11 it.

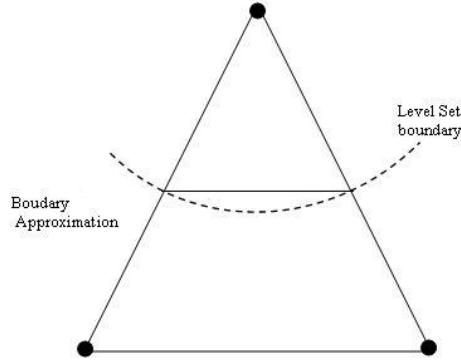
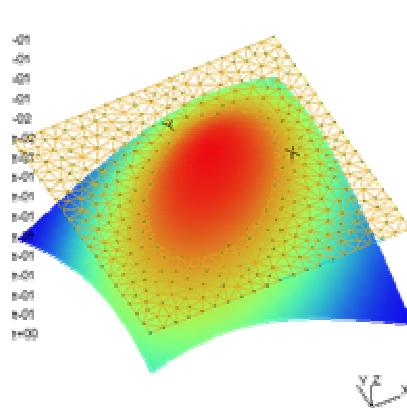
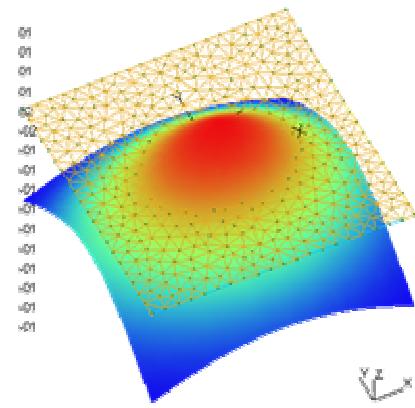


- Discretization error of geometry

Over-estimating geometric values :

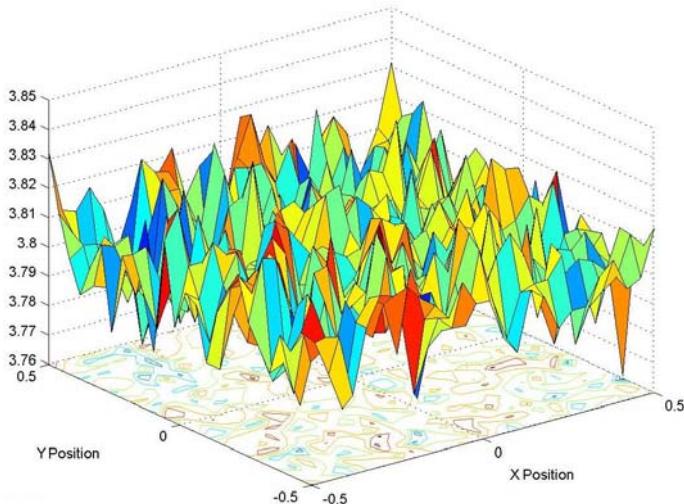
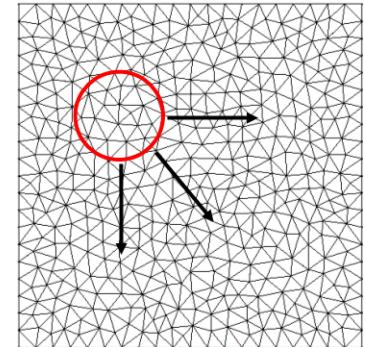
		Xfem	Fem		
		Iteration 1	Iteration 11	Iteration 1	Iteration 9
Objective function	Minimise U	27.9	20.2	26	18.3
Constraint	Surface < 3.45	3.59	3.45	3.50	3.45
Variable	$1e-4 < \theta < 90$	45	1e-4	45	0
Variable	$1e-4 < a < 1$	0.5	1.06	0.5	0.88

- Representing interfaces inside an element :

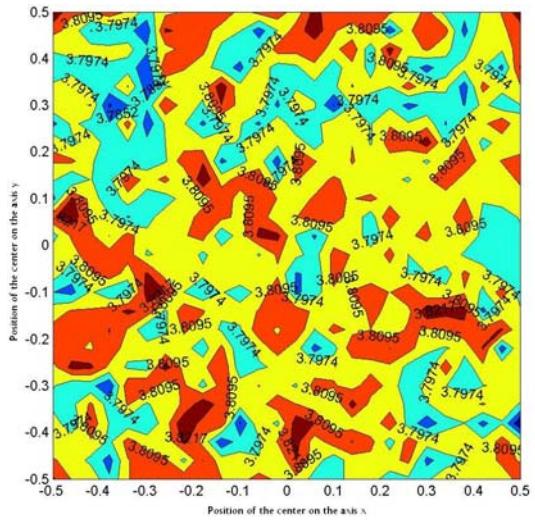


APPLICATIONS

- Linear interpolation of the Level Set may introduce discontinuity :
 - Parametric study of the surface of the plate
 - Variation of 1%



- Take care of numerical noise

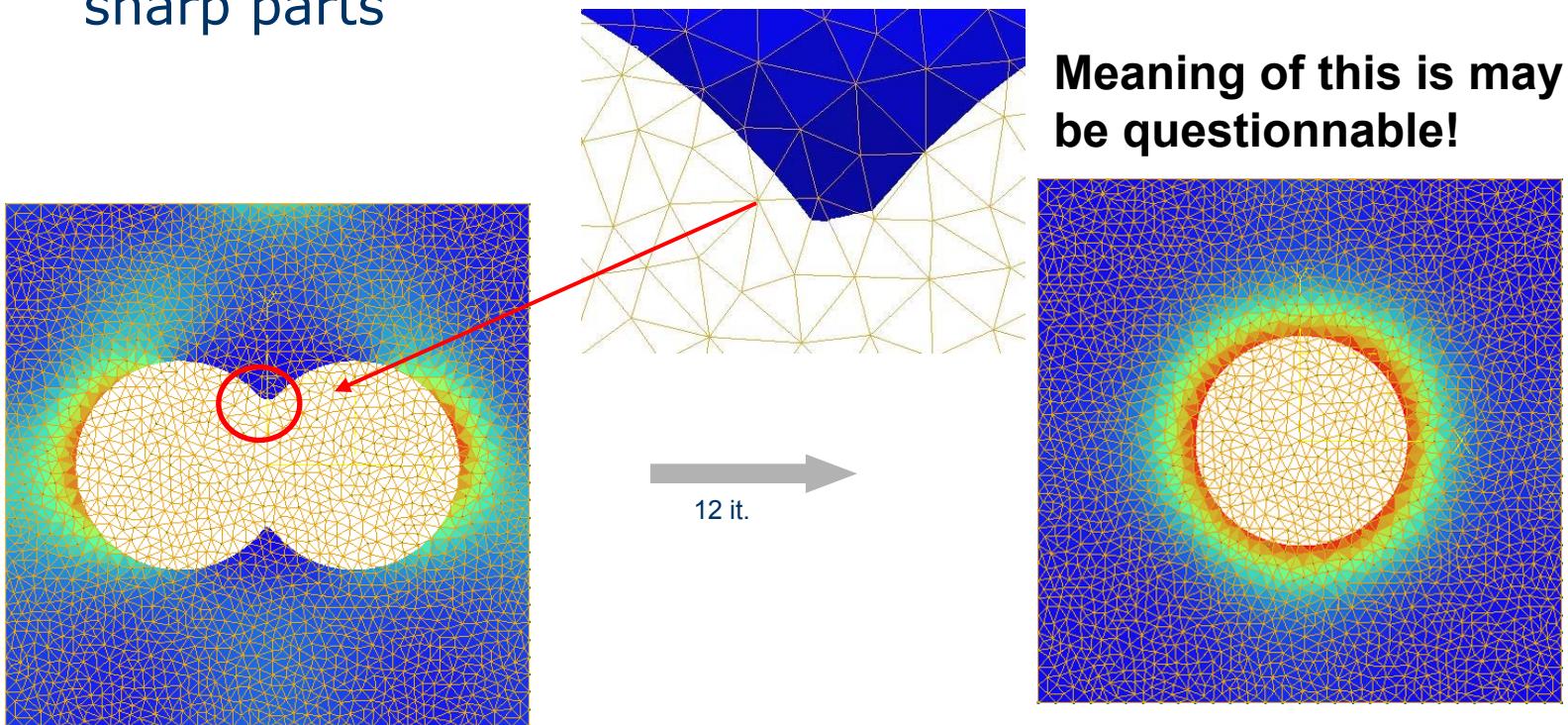


APPLICATIONS

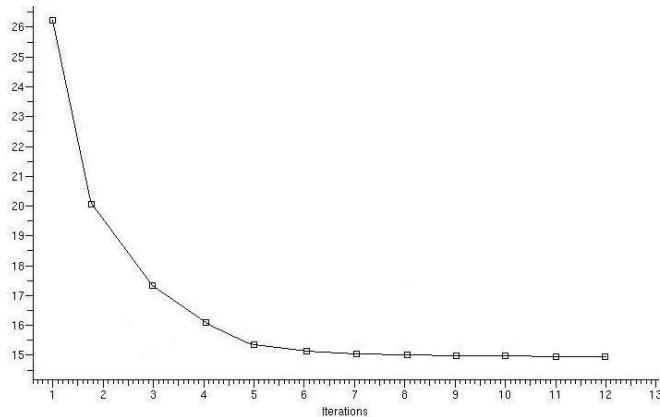
■ Toplogy optimization

- Two variables : $center x_1, center x_2$
- Min. potential energy under a surface constraint
- Uniform Biaxial loading : $\sigma_x = \sigma_0, \sigma_y = \sigma_0$

■ Mesh refinement for the Level Set representation of sharp parts

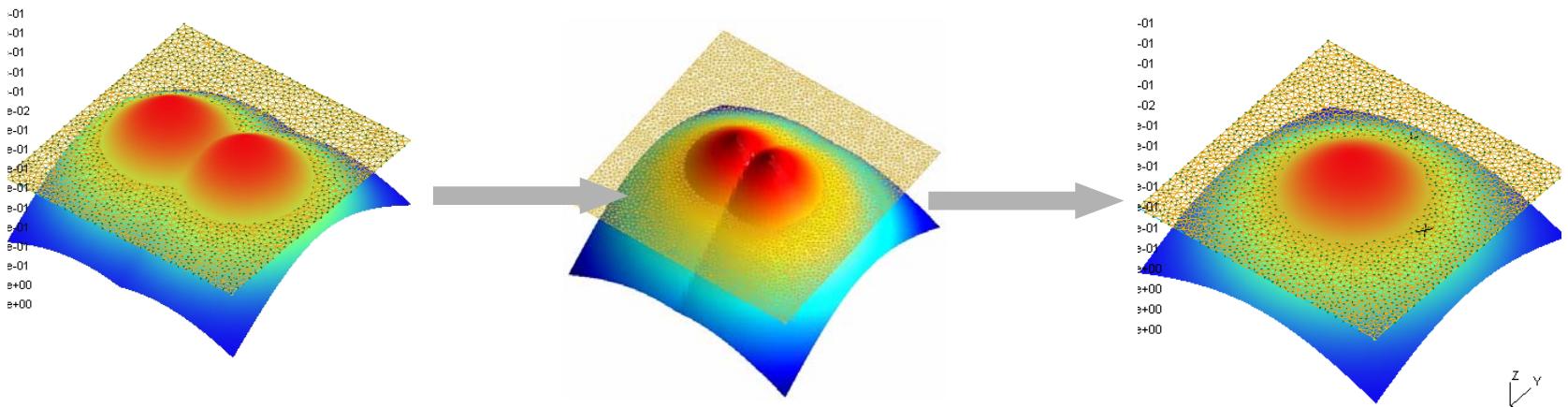


■ Evolution of the objective function



	Iteration 1	Iteration 13
Objective function	Minimise U	26,6
Constraint	Surface > 7.8	6.9
Variable	-0.5 < x_1 position < 0.5	0.5
Variable	-0.5 < x_2 position < 0.5	0.045791

■ Evolution of the Level Set



APPLICATIONS

- Design universe of holes (Missoum et al., 2000)
 - Selection and sizing of basic Level Set entities with a GA in classical topology
- Find a result as close as possible to MBB topology solution
 - 14 triangles are « well » placed.
 - Variables : presence of a triangle
- The optimum is reached after 36

