
U
 N

 I V
 E

 R
 S

 I T
 Y

  
o
 f   L i è g

 e

GENERALIZED SHAPE OPTIMIZATION 
USING XFEM AND LEVEL SET 

METHODS

P. DuysinxP. Duysinx, , L. Van Miegroet, T. Jacobs L. Van Miegroet, T. Jacobs andand C. FleuryC. Fleury
AutomotiveAutomotive Engineering / Engineering / MultidisciplinaryMultidisciplinary OptimizationOptimization

AerospaceAerospace andand MechanicsMechanics DepartmentDepartment
UniversityUniversity ofof LiègeLiège



U
 N

 I V
 E

 R
 S

 I T
 Y

   o
 f   L i è g

 e 

G
en

eralized
S
h
ap

e O
p
tim

izatio
n

u
sin

g
X
FE

M
 an

d
Level

S
et M

eth
o
d
s

INTRODUCTION FORMULATION SENSITIVITY CONCLUSIONXFEM LEVEL SET APPLICATIONS

OUTLINE

Introduction

eXtended Finite Element Method (XFEM)
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INTRODUCTION

TOPOLOGY OPTIMIZATION (Bendsoe & Kikuchi, 1988)
Optimal material distribution

Optimal topology without any a priori

Fixed mesh

Design variables 
= Local density parameters

Many thousand design variables

Simple design problem: 
Minimum compliance s.t. volume constraint

Local constraints are difficult to handle

Geometrical constraints (often manufacturing constraints) 
are difficult to define and to control

Preliminary design: interpretation phase necessary to 
come to a CAD model

Great industrial applications



U
 N

 I V
 E

 R
 S

 I T
 Y

   o
 f   L i è g

 e 

G
en

eralized
S
h
ap

e O
p
tim

izatio
n

u
sin

g
X
FE

M
 an

d
Level

S
et M

eth
o
d
s

INTRODUCTION FORMULATION SENSITIVITY CONCLUSIONXFEM LEVEL SET APPLICATIONS

SHAPE OPTIMIZATION (Braibant & Fleury, 1984)
Modification of boundaries of CAD model

Fixed topology a priori

Design variables 

= CAD model parameters

Small number of design variables

Quite complicated design problems: 

Large number of global and local constraints

Geometrical constraints easily included

Detailed design 

Mesh management problems

Mesh modification / mesh distortion

Velocity field

Industrial applications are stepping

INTRODUCTION
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INTRODUCTION

EXTENDED FINITE ELEMENT METHOD  (XFEM)
alternative to remeshing methods 

LEVEL SET METHOD
alternative description to parametric description of curves

XFEM + LEVEL SET METHODS
Efficient treatment of problem involving discontinuities and 
propagations
Early applications to crack problems. Moes et al. (1999)
Applications to topology optimisation Belytschko et al. 
(2003), Wang et al. (2003), Allaire et al. (2004)
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INTRODUCTION

THIS WORK
XFEM + Level Set methods = alternative method to shape
optimisation
Intermediate approach between shape and topology 
optimisation
XFEM

work on fixed mesh
no mesh problems

Level Set
smooth curve description
modification of topology is possible

Problem formulation:
global and local constraints
small number of design variables
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EXTENDED FINITE ELEMENT METHOD

Early motivation : study of propagating crack in 
mechanical structures avoid the remeshing procedure

Principle : 
• Allow the model to handle discontinuities that are non 

conforming with the mesh
• Add internal degree of freedom ai

• Add special shape functions H(x)Ni(x) (discontinuous)

( ) ( ) ( )i i i i
i I i L

u u N x a H x N x
∈ ∈

= +∑ ∑

ext
uu ua u

ext
au aa a

K K u f
K q g

K K a f
    

⋅ = ⇔ =     
    
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EXTENDED FINITE ELEMENT METHOD

Representing holes or material – void interfaces
Remove empty elements
Keep partially filled elements

Use XFEM numerical integration

Numerical integration 
Division into sub-triangles
Integration over sub-triangles 

Gauss points





=
materialin not  node if0
material inside nodeif1

)(xV∑
∈

=
Ii

ii uxVxNu )()(
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THE LEVEL SET METHOD

Principle (Sethian, 1999)
Introduce a higher dimension
Represent the interface as the zero level a function

Possible practical implementation:
Approximated on a fixed mesh by the signed distance 
function to curve Γ:

ΓΓ∈
−±=

Γ

xxtx
tx )(

min),(ψ

Advantages:
2D / 3D
Combination of entities: 
e.g. min / max 

0),( =txψ
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THE LEVEL SET METHOD

Evolution of interface

F: speed function of Γ in the outward normal direction to 
interface

In XFEM framework, 
Each node has a Level Set dof
Interpolation using classical shape functions

Material assigned to a part of the Level Set (positive or 
negative)

given0),(

0

=

=∇+
∂
∂

tx

F
t
ψ

ψψ

∑=
i

ii xNtx )(),( ψψ
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THE LEVEL SET METHOD

Level Set of a square hole

Combination of two holes
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PROBLEM FORMULATION

Geometry description and material layout :
Using Level Sets
Basic Level Set features: circles, ellipses, rectangles, etc.

Design Problem
Find the best shape to minimize a given objective 
functions while satisfying design constraints

Design variables:
Parameters of Level Sets

Objective and constraints
Mechanical responses: global (compliance) or local 
(displacement, stress)
Geometrical characteristics: volume, distance

Problem formulation similar to shape optimization but 
simplified thanks to XFEM and Level Set!
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PROBLEM FORMULATION

BECAUSE OF XFEM AND LEVEL SET

The mesh has not to coincide with the geometry
Working on a fixed mesh

Sensitivity analysis: no velocity field and no mesh
perturbation required

Topology can be altered as entities can be merged or 
separated generalized shape
Introduction of new holes requires a topological
derivatives

Topology optimization can be simulated using a design 
universe of holes and an optimal selection problem
(Missoum et al. 2000)
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SENSITIVITY ANALYSIS

Classical approach for sensitivity analysis in industrial 
codes: semi analytical approach

Discretized equilibrium

Derivatives of displacement

Semi analytical approach

fuK =









∂
∂

−
∂
∂

=
∂
∂ uKfuK

xxx

x
xxx

x δ
δ )()( KKK −+

≈
∂
∂

x
xxx

x δ
δ )()( fff −+

≈
∂
∂
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SENSITIVITY ANALYSIS

Fixed mesh no mesh perturbation 
However finite differences of stiffness matrix have to be  
made with a frozen number of dof (internal dof)
Critical situations happen when new empty elements 
become partly filled with solid after perturbating of the 
level set :

Node with dof New nodes with dof

Reference Level Set Level Set after perturbation
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SENSITIVITY ANALYSIS

Reference configuration After level set perturbation
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SENSITIVITY ANALYSIS

Strategies to freeze the number of dof
analytical derivatives of stiffness matrix: 

not general!

boundary layer in which all elements are retained
rigid modes, larger size of the problem

boundary layer with softening material (SIMP law)
lost of void / solid approximation

ignore the new elements that become solid or partly solid
small errors, but minor contributions
practically, no problem observed
efficiency and simplicity
validated on benchmarks
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SENSITIVITY ANALYSIS

Summary of the semi-analytical approach strategy

IgnoredIgnoredVoid

OKOKOKCut

OKOKSolid

VoidCutSolid
Element
initially

x
xxx

x δ
δ )()( KKK −+

≈
∂
∂
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APPLICATIONS

Implementation
Preliminary investigations by coupling a standard XFEM 
code by Moës with a general open optimisation code (Boss 
Quattro)
New implementation in a multiphysic finite element code in 
C++ (OOFELIE from Open Engineering)
Available: 2D problems with a library of quadrangles and 
triangles.

Solution of optimisation problem: 
Sequential convex linearization
CONLIN optimiser

iii

jj

xxx
ggts

g

≤≤
≤)(..

)(min 0

x

x
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APPLICATIONS

CLASSICAL PROBLEM OF 
PLATE WITH A HOLE 
REVISITED
Square plate with a hole
Bidirectional stress field
σx= 2 σ0 σy=σ0

E= 1 N/m², ν=0.3

Minimize compliance
st volume constraint

Design variables: major 
axis a and orientation θ

Mesh 30 x 30 nodes
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APPLICATIONS

11 it.
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APPLICATIONS
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APPLICATIONS
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CONCLUSION

XFEM and Level Set gives ride to a generalized shape 
optimisation technique

Intermediate to shape and topology optimisation
Work on a fixed mesh
Topology can be modified: 

Holes can merge and disappear
New holes cannot be introduced without topological 
derivatives

Smooth curves description
Void-solid description
Small number of design variables
Global or local response constraints
No velocity field and mesh perturbation problems
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CONCLUSION

Contribution of this work
New perspectives of XFEM and Level Set
Investigation of semi-analytical approach for sensitivity 
analysis
Implementation in a general C++ multiphysics FE code

Concept just validated

Perspectives:
Sensitivity analysis (to be continued)
3D problems
Stress constrained problems
Dynamic problems
Multiphysic simulation problems with free interfaces
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APPLICATIONS

11 it.
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Discretization error of geometry
Over-estimating geometric values :

Representating interfaces inside an element : 

APPLICATIONS

Xfem Fem
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APPLICATIONS

Linear interpolation of the Level Set may introduce 
discontinuity :

Parametric study of the surface of the plate
Variation of 1%

Take care of numerical noise
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APPLICATIONS

Toplogy optimization
• Two variables : center x1, centerx2

• Min. potential energy under a surface constraint
• Uniform Biaxial loading : σx= σ0, σy= σ0

Mesh refinement for the Level Set representation of
sharp parts

12 it.

Meaning of this is may
be questionnable!
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Evolution of the objective function

Evolution of the Level Set 

APPLICATIONS
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Design universe of holes (Missoum et al., 2000)
Selection and sizing of basic Level Set entities with a GA 
in classical topology

Find a result as close as possible to MBB topology
solution

14 triangles are « well » placed.
Variables  : presence of a triangle

The optimum is reached after 36

APPLICATIONS


