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Abstract This paper presents an intermediate approach between @@i@shape opti-
mization and topology optimization. It is based on using rbeent Level Set
description of the geometry and the novel eXtended Finigeriéint Method (X-
FEM). The method takes benefit of the fixed mesh work using X4rEd of
the curves smoothness of the Level Set description. Desigables are shape
parameters of basic geometric features. The number ofmgaigables of this
formulation is small whereas various global and local c@ists can be consid-
ered. The Level Set description allows to modify the conmigtof the struc-
ture as geometric features can merge or separate from dash btowever no
new entity can be introduced. A central problem that is itigased here is the
sensitivity analysis and the way it can be carried out effitye Numerical appli-
cations revisit the classical elliptical hole benchmadnirshape optimization.

Keywords:  Shape optimization, Topology optimization, X-FEM, Levet s

1. Introduction

Topology optimization has experienced an incredible simaesthe seminal
work of Bendsoe and Kikuchi [2] and is now available withirveseal com-
mercial packages and finite element codes. It is used witht gneccess in
industrial applications. Practically, one major advaetag the optimal ma-
terial distribution formulation is to be able to work on a fixeegular mesh.
The drawback is that this formulation comes to very largdesoptimization
problems, so that one generally considers very simple dgsigblems as the
minimum compliance problem with a single volume constraimtroducing
local constraints can lead to very huge problems difficuthandle, whereas
controlling geometrical constraints, which are mainlatet to manufacturing
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considerations, requires some sophistications. Finakydptimal structure
picture needs to be interpreted to construct a parametrio @Adel.

Meanwhile, shape optimization, which had received atensince the be-
ginning of the eighties, has been quite unsuccessful insimid applications.
However, shape optimization of internal and external bawied is of great
interest to improve the detailed design of structures agairany criteria as
restricted displacements, various kinds of stress aitdrnuckling, etc. The
shape optimization introduces a few design variables sheedesign problem
is formulated on the parameterized CAD model level. The mdifficulty is
related to the mesh management problems coming from the &ugpe mod-
ifications. Mesh distorsions and Finite Element errors camdauced using
remeshing between two iterations and mesh adaptation tblasever a ma-
jor technical problem stems also from the sensitivity asiglyhat requires the
calculation of the so-called velocity field. It turns outttishape optimization
remains generally quite fragile and delicate to use in itréhisontext.

In order to circumvent the technical difficulties of the mmyimesh prob-
lems, a couple of researches have tried to formulate shajmination with
fixed mesh analyses using fictitious domains as in Ref. [Set@n fixed grid
finite elements in Ref. [7] or more recently using projectimethods as in Ref.
[9]. The present work relies on the noweXtended Finite Element Meth¢X-
FEM) that has been proposed as an alternative to remeshithgdse(see Ref.
[8] or [3] for instance). The X-FEM method is naturally asiswed with the
Level Sefl11] description of the geometry to provide a very efficigratment
of difficult problems involving discontinuities and proggpns. Up to now
the X-FEM method has been mostly developed for crack prdjmygarob-
lems [8], but the potential interest of the X-FEM and the leset description
for other problems like topology optimization was identifieery early in Be-
lytschko et al. [4], Wang et al. [14] or Allaire et al. [1].

The authors see the X-FEM and the Level Set description akegard way
to fill the gap between topology and shape optimization. Tle¢hod can be
qualified agyeneralized shape optimizatias it has smooth boundary descrip-
tions while allowing topology modifications as holes cangeesind disappear.
X-FEM enables working on a fixed mesh, as in topology optitidza circum-
venting the technical difficulties of shape optimizationheTstructural shape
description uses basic level set features (circles, rgldanetc.) that can be
freely combined to generate any shapes. The design vagiabdeparameters
of the Level Set features, while constraints can, in prilecipe either global
(compliance, volume) or local (stress) responses as inesbgfimization. A
key issue of the problem is the sensitivity analysis. A semalgical approach
has been developed. The work presents clearly validatedicwd and still
open questions and difficulties. For the numerical appboata complete so-
lution of shape optimization using Level Set descriptiod XAFEM has been
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implemented in the object oriented software, OOFELIE (O@dxect Finite
Element Lead by Interactive User) [10].

The layout of the paper is thus the following. The Extendeuit€iEle-
ment Method and the Level Set representation are remindsekcitions 2 and
3. Section 4 states the generalized shape optimizatiorlgerowith X-FEM
and the Level Set description. Sensitivity analysis is agsied in section 5.
Finally in section 6 an academic applications of shape dpéition is reinves-
tigated to illustrate the proposed extended finite elemamdstheir application
to generalized shape optimization.

2. The extended finite element method

The eXtended Finite Element Method [3, 8] is a recent methathas been
firstly developed for the simulation and the analysis oftites presenting
moving boundaries. The main strength of this method is itsyako include
discontinuities inside the finite elements. Hence, thishoétenables to in-
clude geometric boundaries, material or phase changeanhait coincident
with the mesh.

The basis of the method

In order to allow any types of discontinuities inside theadats and there-
fore to be able to represent discontinuities in the physealddij it is necessary
to add special shape functions to the finite element appietiom. For exam-
ple, in the case of cracked structures, the displacemedtifieliscontinuous
and to model the discontinuity, one has to add discontinsbape functions.
The classical finite element approximation used is themebeé to embed the
discontinuous shape function as in the following equation:

u(x) = wNi(x) + Y a;N;j(x)H (x) @
i j

where N;(x) are the classical shape functions associated to degreesesf f
domu;. The N;(x)H (x) are the discontinuous shape functions constructed by
multiplying a classicalV;(x) shape function with a Heaviside functidf(x)
(presenting a switch value where the discontinuity lies)eSe extended shape
functions are supported only by the enriched (extendededsgf freedom;.
Note that, usually, only the elements near the discontinslippport extended
shape functions whereas the other elements remain unahafde modifi-
cation of the displacement field approximation does nobduce a new form
of the discretised finite element equilibrium equation leaids to an enlarged
problem to solve (see Ref. [3] for details):
ext
Koa—ge | o | 0] =[] @

a
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As the elements can now present discontinuous shape foactiee numer-
ical integration scheme has to be modified in order to take oarthe dis-
continuity. In our implementation, the elements embeddirgingularity are
divided into sub-triangular elements aligned with thicdistinuity over which
an integration is processed.

Representing holes

The modeling of material-void interfaces with X-FEM [12]skghtly dif-
ferent from the cracked structure case. For void inclusam holes, the dis-
placement field is approximated by:

u(x) = Z uiN; (x)V (x) ©)

whereV (x) takes value "1’ if the node lies inside the material and '@ier-
wise. The elements lying outside the material are removad the system of
equations, whereas the partially filled elements are iategrusing the X-FEM
integration procedure over solid sub-domain. Modelinghatith the X-FEM
is a very appealing method for the shape optimization but fasthe topol-
ogy optimization as no remeshing is needed and no approximitdone on
the nature of the voids in opposition to the power penaliratf intermediate
densities (SIMP) method used in topology optimization.

3. The Level Set description

The explicit representation of the structural shape ofipateac CAD repre-
sentation forbids deep boundary or topological changds asicreation or fu-
sion of holes. This limitation is one of the main reasons efltw performance
generally associated to the shape optimization. Conwertied Level Set
method developed by Sethian [11] which consists of repteggthe boundary
of the structure with an implicit method allows this kind afep changes.

The Level Set method is a numerical technique first develop&dck mov-
ing interfaces. Itis based upon the idea of representindjditip the interfaces
as a Level Set curve of a higher dimension functigs, ¢). The boundaries of
the structure is then conventionally represented by the legel i.e.(x, t)=0
of this function, whereas the filled region is attached to the positive part of
the function. In practice, this function is approximated on @&fixmesh by a
discrete function which is usually the signed distance tionco the curve™:

Y(x,t) =+ min ||x —xr]| 4
XFEF(t)

The sign is positive (negative) # is inside (outside) the boundary defined
by I'(¢). Applied to the X-FEM framework, the Level Set is defined oa th
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structural mesh and a geometrical degree of freedom rayinegéts Level Set
function value is associated at each finite element node L&hel Set is then
interpolated on the whole design domain with the classitape function of
the finite element approximation:

P(x,t) = Z ;N (%) (5)

The combination of different level sets is also one of thesafipg character-
istic of this method. This property allows easy treatmennefging interfaces
and connectivity modifications.

4. Problem formulation

The formulation of the optimization problem is similar toteape optimiza-
tion problem, but its solution is greatly simplified thanksthe use of the
X-FEM and Level Set description.

The geometry and the material layout are specified usingllSets repre-
sentations. The user has a library of basic geometric fesitfin Level Sets)
that can be combined to create almost any structural gepnikte available
features are circles, ellipsis, squares, triangles, ete design variables are
chosen among the geometric parameters of these features.

The optimization problem aims at finding the best shape tamiize a given
objective function while satisfying mechanical and geainat design restric-
tions. The mechanical constraints can either be globabress (e.g. com-
pliance) or local ones as displacements or stress cortstraiowever, in this
preliminary study only static criteria are available.

The number of design variables is generally small as in sbppmization.
However the number of constraints may be large if a lot ofllst@ss restric-
tions e.g. stress constraints are considered. Nonethédegs scale problems
as in topology optimization are avoided.

The design problem is stated as a general constrained aption problem:

min  go(x)

x

st gi(x) < gt j=1...m
<x; <z 1=1...n

(6)

The solution to this problem is carried out using the soeckdequential convex
programming At each iteration, the X-FEM analysis problem is solved and
sensitivity analysis is performed. The solution of the wyitation problem is
then found by using a CONvex LINearization, CONLIN [6]. Thewdesign
point is evaluated and if necessary the procedure is reppaaté convergence.
Because of the X-FEM, the geometry has not to coincide wigmtiesh and
the generalized shape optimization problem is carried natfixed meshThis
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circumvents the mesh perturbation problems of classiapetoptimization.
Sensitivity analysis does not require anymore the veldiadlg. The present
formulation is then, up to a certain point, simpler. Howewame technical
difficulties can be encountered if a finite difference or aisanalytical scheme
is used for sensitivity analysis as explained in the nexiGec Basically, the
problem is that the perturbation must not change the numbdegrees of
freedom of the X-FEM approximation.

The Level Set approach is very convenient to modify the gegnieecause
the level sets (and so the holes) can penetrate each othésappdar. Cre-
ation of new holes is more problematic since it leads to a mooosh problem.
Topological derivatives have then to be used to treat rigglyothe problem.
This capability is not yet implemented in the present work.

5. The sensitivity analysis method

As in classical shape optimization, the sensitivity anialys mechanical
responses (such as compliance, displacement, strgss carried out using a
semi-analytic approach. In this approach the derivativesiftness matrix and
load vectors are calculated by finite differences afterybdtion of the level

set parameter by :
of f(z+dx) —f(2)

IK K(z+dz) — K(z)
or ox and or ox (7)

In the classical shape optimization, the computing comiexX the stiff-
ness matrix sensitivity is due to the modifications of the lmassociated to
the perturbatiodx and to the velocity field calculation. In the present X-FEM
based approach, one has not to bother with the mesh peirturbas one works
on a fixed grid. However, this method exhibits a differentwdvack with re-
spect to the general shape optimization as the number okaksrmay vary.
The critical situation happens (see Fig. 1) when a boundarely close to
a node. Thus, during the perturbatiém of the level set, new elements, pre-
viously empty, could become partly filled with material ahén appear into
the formulation. Thus the number of degrees of freedom wehlhge and
the dimension of the stiffness matrix would be modified betwthe level set
perturbation.

The strategy that is implemented presently to circumveatdifficulty is
the following. As one has only the displacement)(for the elements that
are present in the reference configuration, only these elenae taken into
account while the contributions coming from the new partlgdielements are
ignored. Hence, no new elements are introduced and the tthe stiffness
matrix remains unchanged.

This strategy obviously involves an error because it igadhe contribu-
tions related to new elements. However, practically therdmrtion of these
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(a) Reference level set and mesh (b) Perturbated level set

Figure 1. Sensitivity difficulty with semi-analytic approach

elements is so small that the neglected contribution doeslter the preci-
sion of the sensitivity. The quality of the approximationiligstrated in the
application section with the elliptical hole problem.

Of course the ultimate solution to the problem should reoat fully ana-
Iytical sensitivity of the stiffness matrix, but this woube rather restrictive for
industrial applications. On-going work is devoted to irtigegte two kinds of
other strategies to reduce the error of the semi-analyficcaeh:

1/ One can keep a narrow band (boundary layer) of elemenitswerly soft
mechanical properties around the levelget 0 in order to prevent the varia-
tion of the total number of degrees of freedom.

2/ One could define a tolerance zone around the Level Sete iiigctonti-
nuity in an element lies inside this zone, add the connededents to the set
of cut ones.

These two alternative methods have the advantage of ket@ngumber of
degrees of freedom constant and then they do not create ovecelements
during the perturbation step. Hence, the computation ofémssitivity would
lead to a more accurate result as all elements are takendotwat in the per-
turbated stiffness matrix. However, the presence of thiegeents will prob-
ably introduce a dependency upon the mechanical propesgsciated to the
narrow softening elements band like in topology optim@atwith the power
p coefficient in theSIM P law. Moreover, the use of this two methods does
not take fully advantage of the X-FEM as we re-introduce gr@xmation of
the void as a weak material.
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6. Applications

Implementation

The X-FEM method and its Level Set description have beenemphted
in an object oriented (C++) multiphysics finite element c@d®FELIE that is
commercialized bydpen Engineeringl0].

In OOFELIE, any mechanical result can be chosen as objeftiivetions
and constraints that is: compliance and potential eneliggtrass components,
displacements and geometric results. However in this sgalgly compliance
minimization is used. Implementation of the X-FEM methodasilable in
2-D problems with a library of both quadrangle and triandkreents. The
CONLIN optimizer by C. Fleury [6] has also been coupled in @@FELIE
environment and an optimization framework has been created

Plate with an elliptical hole

OOfelie Graph OOfelie Graph

A
|
I

(@) Initial geometry (b) Final geometry

Figure 2. Plate with a hole

The plate with a hole is a classical benchmark from shapenigation. To
remind the reader, a large plate with a hole in the middle jested to a
biaxial stress field. The goal of the optimization problertoi§ind the optimal
shape to minimize the compliance of the structure with attamg on the total
volume of the hole. From the analytical solution, we knowt tha solution is
an elliptical hole aligned with the principal stresses. urg?2 left shows the
quarter of the initial design domain, an elliptic hole with® orientation.

Here the particular values are considered. The dimensibtiee@late are
2 x 2 x 1 m. The domain is covered with a transfinite mesh with 30 nodes
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on each side. The applied biaxial stress fieldjs20, ando,=0y and the
material properties associated are: Young moduifus- 1 N/m?, Poisson’s
ration»=0.3. The plane stress state is assumed. The variableseaaaglesd

and the long axis.

Three iterations with CONLIN optimizer are necessary to edamthe solu-
tion, an ellipsis aligned with the principle stresses (sige Eb)).

Let's remark the discretization of the geometry using theslleset. The
boundaries are represented using the linear finite elenhapiesfunctions, so
that the boundary is approximated using piecewise linegmseats. This can
lead to discretization errors of the geometry as noted in R8l.

Table 1. Validation of semi-analytical sensitivity analysis apgroation.

Design variables Finite differences Semi-analytical ayzmh Relative error (%)
a=0.6 3698, 0000 3691, 3344 0, 1802
0=m/4 478, 0000 477,0641 0,1957
a=0.6 783, 8000 781, 3920 0,3072
0=0 11,6239 11,6235 0,0029

The elliptical hole serves also to validate the approximhatemi-analytical
sensitivity analysis that has been proposed in section e Tlagives the sen-
sitivities of compliance calculated by finite differenceslaemi-analytical ap-
proach for different combination of the design variableandd. The results
were obtained with a relative perturbation of the desigmatdes ofs = 10~4.
The results show the quality of the proposed semi-analydigproximation.

7. Conclusion

An intermediate approach between shape and topology @atiion has
been developed using extended finite elements and LevekSetiption. The
method combines the advantage of the fixed mesh approaclpabtyy op-
timization and the smooth curve description of shape opttion. Obtained
results show that this new approach is promising and des$erther efforts.

The investigation of a semi-analytic sensitivity analysish X-FEM and
Level Set is an original contribution of the paper. The peoblof elements
becoming partially filled has been identified and a first sgggtto circumvent
the problem has been validated. On-going work explores atlhernative ap-
proaches.

The solution of 2-D problems is presently available. Futwark is de-
voted to attack 3-D problems, dynamic problems, and mujh(electro-
mechanical) problems.
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