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Anticoagulant rodenticides (ARs) are indiscriminate toxicants that threatetarmy@t predatory
and scavenger species through secondary poisoning. Accumulating evidence suggests that AR
exposure may have disruptive sublethal consequences oidirals/that can affect fithess. We
evaluated ARrelated effects on genome wide expression patterns in a population of bobcats in
southern California. We idemyif differential expression of genes involved in xenobiotic
metabolism, endoplasmic reticulum seresponse, epithelial integrity, and both adaptive and
innate immune-“function. Further, we find that differential expression of immuatdejenes

may be attributable to ARelated effects on leukocyte differentiation. Collectively, our results
provide an unprecedented understanding of the sublethal effects of AR exposure on a wild
carnivore. These findings highlight potential detrimental effects of ARs orde variety of
species worldwide that may consume poisoned rodents and indicate the needtigatesgene
expression effects of other toxicants added to natural environments by humans.

Keywords: Anticoagulant rodenticides (ARS); bobcats; gene expressemondary poisoning

Introduction

Poisons aimed at controlling specific pest speciestima@aten populations of ndarget
species. For toxicants that bioaccumulate in the food chain, these threats are greatstary pr
and scavenging species. Although some mortality intagyet animals occurs via the same
molecular-pathways that thexioantsare designed to disrupt, sublethal exposure can also have
cryptic physiological effects that nonetheless impact individual fitheskliBa et al., 2009;
Santadino“et al., 2014; Gill & Raine, 2014), and hence, may decrease popuiakibity
(Thompson et al., 2014; Rattner et al., 2014; Serieys et al., 2015a).

Anticoagulant rodenticides (ARs) are toxicants used globallglitoinate rodent pests
and have“been implicated as an important source of mortality in mantangyet species that
consume ‘poisoned rodents (Eason et al., 2001; Fowhembrillon et al., 2004; Sanchez
Barbudo et al., '2012; Rattner et al.,2014; Dennis et al., 2015; Gabriel et al., 2015; Huang et al.,
2016). For exampleB1% of tested stone marteridgftes foina) and 77% of plecat Mustela
putorius)“were exposed in Belgium, and between 84% and 100% of birds and other animals
tested were exposed in Denmark (Baert et al., 2015; Elmeros et al., 2011er@knset al.,
2012). In California, exposure to ARs is a statewide proligim over 70% (368/492) of birds

and mammals testing positive for ARs between 1995 and 20alifdrnia Department of
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Pesticide Regulation 2013AR toxicity was a leading cause of mortality in predatory and

scavenging birds (Kelly et al., 2014) and in coyot@an(s latrans) (Riley et al., 2003), and it is
increasingly recognized as a major threat to the to the Pacific fiR8en(a pennanti) (Gabriel

et al., 2012; Thompson et al., 20&hd to theendangered San Joaquin kit fo#ulpes macrotis

mutica) (Nogeire et al., 2015). In Southern California over 90% of bobcats and mountain lions
(Puma coneolor) tested positive for ARs (Riley et al., 2007). Further, AR exposwearsdn a

wide variety“of environments, from pristine areas such as the Sierra Nevada Mountains, to
agricultural“areas with low human densities such as cattle and horse ranches and grain storage
facilities, to urban areas with both high and {idensity hosing, as well as highly modified
areas suchs asagolf courses and natural areas which abut human habitation (Galbri20£2;
Gabriel etal., 2015; Nogeire et al., 2015; Serieys et al., 2015).

Several formulations of ARs amurrently being use@énd ae grouped into firstand
second gneration ARs (FGARs and SGAR®spectively. The latterare more acutely toxic
requiring 'only™a single feeding in rodenind are more persistent in tissue as they were
developed as a countermeasure to heritable aesisin rodent populations to FGAR&oth
categories of AR’s have the same molecular target, VKIB& enzyme that converts vitamin K
to the biologieally active form), but SGARSs typically have a higher affinity for ttayraee, are
more resistant-to biotraformation, and have a greater bioaccumulation potential (Rattner et al.,
2014). The most commonly deployed FGARs are warfarin, chlorophacinone, and diphacinone
and the meost“commonly used SGARs are brodifacoum, bromadiolone, difenacoum, and
difethialone (L& EPA https://www.epa.gov/rodenticides/restrictions-rodenticide-projludts

the Santa_Monica Mountainsear Los Angeles, CA (USAjromadiolone and brodifacoum
(SGARs) lad the highest prevalence of detection in bobcats, whereas diphacinone (FGAR) wa
detected-atthe‘highest concentrations in animal tissues (Serieys et al. 2015a).

ARs are vitamin K antagonists that reduce vitamin K availability for a variety of critical
processes ineluding hemostasis, bone metabolism, angiogenesis, apoptosis, oxidaime prot
folding, and.immune function (Opal & Esmon, 2002; Li et al., 2003; Shearer & Newman, 2008;
Esmon, 2005; Suttie, 2009; Ferland, 2012; Rutkevich & Williams, 2BlL1Asmar et al., 2014;
Danziger, 2008)While secondary exposure to ARs frequently leads directly to death from

hemorrhaging (California Department of Pesticide Regulation )20a8sistent sublethal
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exposure appears to be common in-tamget species (Fourni&hambrillon et al., 2004; Riley

et al., 2007; Gabriel et al., 2015; Nogeire et al., 2015). Known side effects of sublpthaure

to vitamin K antagonists in humans and raislude pathologies such as arterial calcification
(Danziger_et al., 2008), severe skin irritation (Ozcan et al., 20d2rdeyhimiet al., 2014) and

both immune,activation and suppression (Kater et al., 2002; Popov et al., 2013). Given these
potential effects, it is likely that sublethal AR exposure in natural popngadisrupts important

biological pathways necessary for survival from injury and pathogens.

Here, we analyze global gene expression patterns to evaluate the systemic effects of
sublethal AR.exposure in wild bobcats living near Los Angeles, California, USA. Bolneaa
highly mobile, widely distributed North Americanlid and are obligate carnivores that utilize a
variety of habitats across their range and have been found even in some urban landscgpes (Rile
et al., 2010). They are highly territorial and solitary, with average home rangensmesstudy
area of apf@ximately 2.5 krifor females and 5.0 km for males (Riley et al., 2010). In the study
area, theirdiets consist primarily of lagomorph and rodent species including aib&iodtbrush
rabits, pocket gophers, ground squirrels, and voles; all of whichramarg targets of ARs
(Fedriani_et_al., 2000; Riley et al. 2010; Bartos et al., 2011). Additioanlly, soméaryat

rodents are exposed to ARs, such as woodrats, that are also bobcat prey (Motia@9¥2)a

Despite high exposure prevalence in owdgtarea, few bobcat mortalities have been
attributedudirectly to AR toxicity (Riley et al., 2007). However, previousameserepeatedly
found mortality from notoedric mange (caused by the Mdmedris cati) to be associated with
the level of ARS (Rileyet al., 2007; Serieys et al., 2015a), suggesting the potential for sublethal
effects of ARS"0N the ability of bobcats to resist mange mite infection. Mange was the primary
source "‘of ‘mortality in the bobcat population from 2Q0D8 (Riley et al. 2010, Ry et al.
2015),which resultedn a genetic bottleneck (Serieys et al., 2015 b). Notoedric mange had never
previously been known to have such severe demographic impacts on any wild felid population,
and typically.enly affected few individuals that werkkely already unhealthy (e.g., Penner and
Parke 1954, Pence et al. 1982; Pence et al. 1995). The emergence of this epizootedprompt
NPS biologists to submit bobcat carcasses to the California Animal Health and Fetd Sa
Laboratory (CAFHS) dr necropsyand full evaluationto assess cause of death and any

associated factors. Carcass examination and testing for a pangghif environmental
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contaminantglead, manganese, iron, mercury, arsenic, zinc, copper and cadimiadaition to
ARs suggested ARssathe only consistent underlying complication in bobcats that succumbed to
death from mange infection (Riley et gbersonal communication). However,the mechanism

underlying this potential link between mange and AR exposure remains unknown.

By €omparingAR-positive cases to those without detectable AR levels, we demonstrate
the use of RNAseq on whole blood to investigate genes and cellular processes that are affected
by sublethal AR exposure in bobcats. Based on genes known to interact with vitamin K

antagonistsiittp.//ctdbase.or@(Davis et al., 2017), we expected differential expression of genes

involved inshemostasis, xenobiotic metabolism, and the immune system. We foxgét t
identify potential links betwen altered gene expression and disease susceptibility in bobcats and
potentially, other wildlife. To our knowledge, this is the first genomde assessment of

transcriptional responses to secondary AR exposure in a wild vertebratatjgopul
MATERIAL AND METHODS
SAMPLING

Weseonducted our analyses on 52 RNA preserved whole blood samples from bobcats
captured as_part of an ongoing research project directed by the National Park. S&evice
selected our*samples to include 26 bobcats for which ARs were ettt 26 samples for
which ARs were not detected in whole blood at the time of cag&edeys et al., 2015a)
Additionally, we balanced our samples across sex and age. These bobcats were captured across
the Santa Monica Mountains, Simi Hills and Hollywood Hills between 22 (Figure 1).

The study.area was comprised of large natural areas within the Santa Monica Mountains,
relatively.large.fragments of natural habitat surrounded by roads and development inithe Sim
Hills, and intensely urbanized aremsthe Hollywood Hills. The dominant natural vegetation

types were coastal sage scrub and chaparral. Each animal was captured, processed and sampled
in accordance with the Office of Animal Research Oversight of the University of California Los
Angeles (Potocol ARC#2007167-12) and under authorization through California Department

of Fish and Wildlife (S€791), assessed for AR exposure as described in (Serieys et al., 2015)
and released at the capture site. Briefly, AR exposure was assessed using fbighapee

liquid chromatography for the presence, and liquid chromatographgs spectrometry for the
quantity of warfarin, coumachlor, bromadiolone, brodifacoum, diphacinone, chlorophacinone,
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and difethialone from tissue, serum or whole blobdtectionof AR exposurein blood can

greatly underestimate true exposure prevalence as paired liver samples from necropsied animals
frequently tested positive for ARs even in the absence of detection in blood (Seredys et
2015a). Several factors may determine tletectability of ARs in blood: time since exposure;

the magnitude of exposure; and the metabolic-lifalfof the AR which is both species and
compound,specific. Thus, although detection in blood most likely indicates a relatigeiyt re
exposure ‘eventye cannot distinguistamongall these effector variableBurther, many samples

fell below the"limit of quantitation but above the level of detection. Hence, wedeoedi AR
exposure statugs a binary variablésee Serieys et al., 2015and conservately considered
individualssshoewing detectable levels of at least one and up to five of the seven screened

compounds’(i.e., > 1 ppbkpositive for AR exposure (ARResitive).

All_animals in this study were apparently healthy at the time of capture (i.e. no sign of
disease). Disease screening was performed at the Center for Companion Animals Studies or in
the Feline"Retrovirus Research Laboratory in the Microbiology, Immunology, and dggthol
Department \at ‘Colorado State University. Serum samples were analyzed separately for Feline
Immunodeficiency Virus (FIV) and Puma Lentivirus (PLV) using western blot. Serum from
blood samples, was also assayed for Feline Calicivirus (FCMineFeélerpesvirus (FHV),
Bartonella-sp==andToxoplasmosis gondii specific IgG by enzyme linked immunosorbant assay
(ELISA). To test for Mycoplasma haemofelis, M. haemominutum, B. hensedlae and B.
clarridgeaie™infection, PCR assays were performed on wholeodlolindividual animal

information is provided in Table S1.
METHOD DETAILS
RNA processing

Total RNA was extracted from 0.5 mL whole blood using the Ambion Mouse RiboPure
Blood extraction kit, followed by globin removal using the Ambion GlobinClear Mougeifet
Technologies, Inc). RNA was quantified on the Agilent bioanalyzer (Agilent Techeslogi
USA). RIN scores from globidepleted RNA samples ranged from 5.5 to 9.3. A minimum of
100 ng was used as input for cDNA library preparation using the KapgsBioss stranded
MRNA kit (Kapa Biosystems, LTD). Each sample was uniquely tagged with custom inde

sequences developed at UCLA (Faircloth et al., 2014) comparable to Illlumina TrgSeq ta

This article is protected by copyright. All rights reserved



177
178
179
180
181

182

183
184
185
186
187
188
189
190

191

192
193
194
195
196
197
198
199
200
201
202

203

204

Individual sample libraries were then pooled in equimolar ratidh, 18 or 14 samples per pool
and each pool sequenced on two lanes of an Illumina HiSeq 2500 or HiSeq 4000 sequencer
(Table S1). Sequencing was performed for 150 bp single end reads. Library quimijfica
pooling and sequencing were performed at thec&fih Coates Sequencing Facility at UC

Berkeley.
Quality control, mapping and trimming and read quantification

Raw,.sequences were processed using Trim Galore! 0.3.1 (Krueger, 2015) to remove
lllumina adapters and filter out sequences that did not meet#igycghresholds (q > 20, length
> 25 bp). Alignment of reads was performed on TOPHAT2 2.1.0 (Kim et al., 2013) using the
domestic catKelis catus) as a reference genome (Ensembl release 85.62) (Yates et al., 2015). To
maximize 'the number of unique reatdspped to the reference genome, we used the following
parameters: read mismatches 10, fimsertiorlength 12, reaedit-dist 22. On average, 70% of
reads mapped uniquely, leaving an average of 13,232,179 mapped reads per individual
(3,405,189-22,898,827Summay statistics are available iralble S1.

Gene expression quantification

Aligned-reads were converted to raw counts using HTSEQ (Anders et al., 2014) with the
“union”"mode; “resulting in alignment to 21,890 genes. After removal of three gielbind
genes (ENSFCAG00000030531, ENSFCAG00000031043,ENSFCAG00000022139) with high
expression levels prior to normalization, values for the remaining 21,887 genes \weadizeor
using the trimmed mean of Malues (TMM) method in the edgeR package (Robinson &
Oshlack, 2010).in R and adjusted for gene length and GC content using custom Python scripts
and the.package CON in R (Hansen et al., 2012). The number of genes remaining after filter
for proteircoding genes and sufficient coverage (> 10 reads in 758DNA libraries) was
12,332. We used hierarchical clustering of the gene expression adjacency matrix tg identif
outlier samples (defined as having @core greater than 3) with the R package WGCNA
(Langfelder & Horvath, 2008).

STATISTICAL ANALYSIS

A sumnary of the analyses used in the present paper is available in Figure S1.
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LIMMA

We performed principal components analysis to identify and remove technical factors
from the expression data (Figure S2). Gene by gene linear mixed models were dsedifto i
differentially.expressed genes in Aisitive bobcats using the limma package in R (Ritchie et
al., 2015)¢We adjusted our significance values to account for multiple hypothésig tessng
the false discovery rate (FDR) method as implemented in the qvalue packag8torey et al.,
2015) and:selected genes falling below Q < 0.05. We selected the genes falling unddua Q
threshold of 0:05 and then performed Gene Ontology (GO) analysis on the up and downregulated
genes thatwpassed this thresholthgisy:Profiler (Reimand et al., 2016). In g:Profiler (version
1682), we used the 12,332 genes as a statistical background and aligned our significant Ensembl
gene ID specifically to thé&elis catus genome. We required a minimum of 2 for the query
intersedon_and applied the Benjamitiochberg FDR correction for the significance threshold.

The remaining parameters were set using the defaults.
WGCNA (Weighted Gene Correlation Network Analysis)

We assigned all 12,332 genes to functional categories based on coordinated expression
patterns using the WGCNA package in R (Langfelder & Horvath, 2008). Briefly, WGCNA
searches for genes with similar expression profiles and transforms this correlation matrix into an
adjacency matrix via a power function  (Zhang & Horvath, 2005). The adjacency matrix is used
to define a.measure of node dissimilarity. In conjunction with a clusteringoohdaverage
hierarchical clustering) and the node dissimilarity measure, the user can identify modules
containing highly intercorected genes which can then be related to a trait of intéeeggfelder
& Horvath, 2008

We first'ran a kmeans clustering optimization to determine the most likely number of
clusters in ouryexpression dataset using the ICGE package in R (Irigoien 2014). In
WGCNA, we then followed the automatic, estep network construction and modudletection
implemented with the function “blockwiseModules” with an unsigned network algorithm, a
power PB= 6, corType= bicor, maximum block size = 13000, min module size = 40,
mergeCutHeight =0.5, mergingThresh = 0.5. The remaining parameters were kept atulie defa
setting. This cutoff value yielded the “correct” number of modules, includinggtfey™ module,
which contains genes that are not part of any modules. Subsequently, we performed a hub gene
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analyses (genes with the highest intramodular connectivity) on each ngsutdule, and
submitted the top hub genes (up to 100) for GO analysis using g:Profiler (Reimand et al., 2016)
We used these functional categories based on gene enrichment of biological processes to aid in

the interpretation of ourriear model results at a systemic level.

In orderito assess the stability of the modules and theréferbiological interpretation
of the hub gene“analyses, we performed a module stability analysis (Langieldiervath,
2012). We conducted 50 full module construction and module detection runs on resampled
expressionsdata, where each iteration randomly sampled 52 animals from thd dataset,
with replacement. Modulassignmenfor each gene was then compared to the original module
assignment and overall stability of the hub genes was calculated as the mean proportional
assignment_of _each hugene to the original modulén addition we repeated our module
detection analysis after changing the correlation type to the defautsgReand subsequently
calculated”™module preservation statistics to evaluate whether a givenenuefuded in one
dataset (reference network) can also be found in another dataset (test network) across 200
permutations. Each permutation will report the observed value and the permutatiore Zos

measure significance, which is then summarized in a composite measure called Z.summary.
Transcript Origin Analysis (TOA) & Transcriptome Representation Analysis (TRA)

Transcript Origin Analysis (TOA) was applied as in Cole et al. 12Qa identify the
specific celltypes giving rise to observed Ad#tated differences in whole blood gene
expression. Transcriptome Representation Analysis (TRA) was performed as in Powell et al.
(2013) to quantify differences in the prevalence of specditctypes based on coordinated shifts
in cell typespecific RNA profiles in ARpositive bobcats. Both analyses utilize publicly
available leukoeyte subsspecific expression profiles as reference distributions to generate cell
diagnosticity=secores foraeh gene analyzed. The cell diagnosticity scores forasddciated
genes (defined either by fold expression difference (> 1.5) or significance (g < 0.09)¢rare t
tested forssignificant ovearepresentation relative to the basal prevalence of diagnostaotes
across all genes present in the data set (TOA), or the most celliggpestic transcripts are
tested for differential expression as a function of AR exposure (TRA). CeHspgmsfic
reference profiles used in the present analyses includext lmakocyte subsets (i.e., monocytes,

dendritic cells, natural killer cells, B lymphocytes, CD4+ T lymphocytes, CD8#mphocytes,
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from GEO data set GSE1133), immature/classical (GPD¥6 mature/noitlassical (CD16+)
monocytes (GSE25913), M1 vs M2 macrophages (GSE51446), and two data sets comparing
naive B lymphocytes with progressively more differentiated B cell subpopulatiofs64033

and GSE13411).

RESULTS
Principal Compenents of Expression Data

To evaluate the influence of technical (i.e.batch ¢fjeand biological variables (Table
S1) on data structure, we performed linear regression on the principal componeny$ {C)
normalized' réad counts. We regressed out technical factors that were significantly correlated
with the first PC, including theequencing platform (HiSeq 2500 or HiSeq 4000), RNA integrity
number (RIN) and library preparation. After correcting for technicalcteffewe found that
exposure status was highly significant on PC 1, which explained 19.4 % of the tatakceari
(Figure S2)wlmportantly, none of the pathogens for which each bobcat was currently infected
(Mycoplasma haemominutum, M. haemofelisturricensis, Bartonella clarridgeie, B. henselae)
were significantly correlated with the first 12 PCs, and although evidence aflsweep
(seropositivity) to Puma Lentivirus (PLV) arRhrtonella spp. was significant on PC 9 (PLV)
and PC. 2 Hartonella), these principal components explained only 2.6% and 1.9% of the total
variation in expression (Figure S2, Table S2). Therefore, diffi@tesxpression profiles in AR
positive bobeats are not likely due to current infection status for the 10 coretimendathogens
(Bevins etral., 2012; Carver et al., 2016) examined. Additionally, age classificatv@mi(¢ or
adult) was significant on PC 6, which explained only 3.5 % of the variance in the data.

AR exposureasa linear predictor of differentially expressed genes

To identify genes influenced by AR exposure, we used linear regression to measure fold
change (B).and statistical significance (Q). Our dataset included read counts for 12,332 genes that
were retained“after normalization and low coverage filtering. After applying a false discovery
rate (FDR)*eorrected for multiple testing (Figure S3), a total of 1,783 genes were significantly (Q
< 0.05) predicted by exposure status, of which 530 were downregulated and 1,253 were
upregulated (Figure 2; Table S3). Eighteen of these genes identified in our mode) owdrla

genes listed in the Comparative Toxicogenomics Database (Davis et al.,a®0tgracting
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294  with warfarin, although the direction of dysregulation was not consistent for all geties w

295 responses observed in rats or humans (Table 1).

296 Downregulated genes were enriched for several gene ontology (GO) terms related to
297 immunegfunetion, including response to-1P and IL-6; positive regulation of acute

298 inflammatory response; complemenediated cytotoxicity; myeloid differentiation; monocyte
299 activation; FCepsilon receptor signaling; and positive regulation of macrophage chemotaxis.
300 Downregulated genes were also enriched for terms related to epithelium including keratinocyte
301 proliferation, glomerulus development, and intestinal epithelial differentiation; and for terms
302 related to“wascular processes including-dignaling, negative regulation of vasoconstriction,
303 regulation of angiotensin levels in blood, negative regulation of blood circulation, anctplatel
304 aggregation. Additional terms related to cell cycle, biosynthetic processssbatism,

305 reproductive processes, and transport (Figure 3A; Table S4).

306 We observed downregulation of several genes related directly to wound healing and
307 epithelial integrity, including matrix metallopeptidase NIMP1: B =-0.99; Q =0.038) and

308 matrix metallopeptidase 10AMP10: g =-1.26; Q =0.01); as well d&0 important transcription

309 factor involved in white blood cell production and differentiation, GATA binding protein 2
310 (GATAZ2: B ==0.54; Q =0.047) and kruppbke factor 5 KLF5: § = -0.67; Q =0.016). Further

311 several genes involved in the allergic regmmwere downregulated. These included membrane
312 spanning @omains A2 MHAA2: B = -0.79; Q =0.03) and Fc Fragment of IgE Receptor la

313 (FCERILA: 3.=,-0.88; Q =0.025), encoding for the high affinity IgE beta and alpha receptors, and
314 carboxypeptidase APA3: B =-1.29; Q =0.019) which is involved in granulocytic mediated

315 inflammation:"Bobcats exposed to ARs thus may experience a depressed inflammatory response

316 coupledwith'diminished epithelial integrity and wound healing response.

317 Thereswere 2.36 times as mangregulated genes, which were enriched for GO terms
318 related predeminantly to immune function, specifically to T lymphocytes, asawdftrms for

319 gene expression and RNA processing. Immune related terms included positive aegofiati
320 immune response, T cell differentiation, thymocyte aggregation, arell Teceptor signaling

321 (Figure B; Table S5). Notably, we also observed upregulation of UbiA prenyltransferase
322 domain containing 1UBIAD1 (B = 0.38; Q = 0.032), a mammalian gene involved in the

323 biosynthesis of vitamin K2 (Nakagawa et al., 2010; Meehan & Beckwith, 2017), as well as
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several genes involved in xenobiotic metabolism including Cytochrome P450 Family 2
Subfamily U Member 1GYP2UL: § = 0.35; Q = 0.016), ATP Binding Cassette Subfamily B

Member 1 ABCB1: f = 0.52; Q =0.015), Carbohydrate Sulfotransferase 2 (CHST2: = 0.65; Q

= 0.013), and Heparan SulfaBducosamine Sulfotransferase HS3ST1: § = 0.64; Q = 0.039).

These results,suggest that ARs may activate the adaptive immune system as well as processes
associated.with xenobiotic metabolism and, potentially, responses to vitamiici€rasf. Other

GO terms-included gene expression, RNA metabolic process, translation, pegjtilaion of

RNA splicing, response to dsRNA, and ribonucleoprotein complex biogenesis (Figure 38; Tabl
S5). Several of the genes in these terms relate specifically to immune and cellular stress
responsesy likely reflecting increased transcriptional #@gtidue to immune activation and

toxicant metabolism.

Further,.we observed differential expression of several interleukin cytokinesnIAB)-
positive bobcats (Table y@Downregulated IL genes were generally regulators of inflammation
including IL23B = -0.9; Q = 0.016)mndIL36B (p = -0.8; Q = 0.013); whereas upregulated IL
genes were generally indicators of B and T cell activity, inclutliti® (B = 0.24; Q = 0.044),

ILF3 (B,=.0.25; Q = 0.033) and IL7R (p = 0.6; Q = 0.017). Overall, the up- and downreglation
of numerous‘eytokines demonstrate a pronounced dysregulation of critical mediatonsuoiei

function, implying both immunosuppressive and stimulating effects of AR exposure.
TranscriptOrigin Analysis & Transcriptome Representation Analysis

Toddentify and quantify cellular subsets that contribute to differentia¢ g&pression in
AR-positive™bobcats, we applied a Transcript Origin Analysis (TOA) and Transcriptome
Representation Analysis (TRA). The TOA analyses of major leukocyte subsets shaiveR-th
downregulated sgenes originated disproportionately from monocytes (CD14+ celldawher
upregulated=genes originated primarily from helper (CD4+ER8d cytotoxic (CD4CD8+) T
cells and €b19+ B cells (Table 2). Further, TRA analyses indicated asgaverd% reduction
in total menocyte prevalence within circulating blood of-pésitive bobcats (mean TRA log2
prevalence ratio for monocyt#agnostic genes 0.102 + SE 0.047, p = 0.039). These results
were consistent regardless of whether the differential expression analysis was assessed by effect
size (0.917 folechange) or as a function of the significance threshold (Q < 0.05;-ff2b2

change).
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Subsequent TOA analysis focusing on specific monocyte subsets showed that AR
downregulated genes derived predominantly from CGDI®mature “classical”’) monocytes
whereas ARupregulated genes derived predominantly from CD16+ (mature-Clagsical”)
monocytes. Again, these results were consistent regardless of whether differential expression
was defined.by é&&ct size or statistical significance. In terms of patterns for B cells, TOA
analyses of distinct B cell differentiation states linked AR exposure to a shift toward immature,
naive Beells;"'whereas downregulated genes derived predominantly from more /meamy
B cell phenotypes, including plasma cells whose primary role is the secretionitmfdas,
indicating' that these cells were less common or less active or both (Table 2). In general, these
results indicate that AR exposure may affect immune foncby impacting the relative

abundancerof €irculating immune effector cells andsdiisets.
Weighted Gene Co-Expression Network Analysis (WGCNA)

We implemented a WGCNA to assign all 12,332 genes to modules based on patterns of
coordinated_expression, resulting in 11 modules, including aspecific module(Table S3)
which was,consistent with therkeans clustering results (Figure) SWe subsequently assigned
each moduleto functional categories based on GO enrichment analysis of modular hub genes
and assessed"how many significantly differentially expressed genes (based neathmddel)
were assigned to each module (Figure 4A). The dominant expression profile (eigeagéne) f
of the tengmodules were significantly correlated (p < 0.05) with exp@stee FDR correction
(Figure 4B, kigure 4C). Functionally, these modules related-¢ellTactivation and signaling
(Pearson’s,r = 0.46, afjusted = 0.006; light blue module), and the inflammatory response
(Pearson’s'r=0.39, pujustea= 0.025; blue module). In addition, 4 of the remaining 8 modules
had an*overlap' of 10 or more genes that were significant in the linear model. These modules
were enriched functionally for transferase activity (green module), wounahdyeahgulation
(red module), endoplasc reticulum stress response (purple module), and heme metabolic
process (yellow module). Module stability for these 6 modules ranged from 28%. The hub
genes were, rassignedo the original modulat 98% for the light blue module, at 88% for the
green module, at 96% for the red module, at 78% for the yellow module, at 57% for the blue
module, at 27% for the purple modul€able S7). Similarly, all our modules showed high

preservation, with Z.summary scores ranging from 19 t0'éble S).
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384 DISCUSSION

385 The analysis of genomwide transcriptional changes is a potent but largely underutilized
386 method to assess organismal response to sublethal toxicant exposure in the wild, especially when
387 controlled exposure experiments are logistically or ethically urfleass isoftenthe case with

388 wild carnivoresy Bobcats in the Santa Monica Mountains persistently ekpmsgeRs do not

389 exhibit canonical'signs of coagulation disruption, such as hemorrhaging, despit thatfthis

390 was the secontkading cause of mtality in a longterm coyote study (Gehrt and Riley 2010).

391 However, bobeats do appear more susceptible to notoedric mange (Riley et al. 2007;e$erieys
392 al., 2015a)nconsistent with sublethal effects of éposure.

393 Other environmental toxicants or gsers that potentially influence gene expression may
394 be common irareas wherdRs are deployedConsequently, ARs may not be the ultimate cause
395 of the pattern'we observe or may be one of several contributing factors. Howevegue/éhat

396 ARs are the modikely cause of gene expression dysregulation for the following reasons: 1)
397 ARs are known to accumulate in food chains and are targeted at prey species which bobcats
398 frequently.consume (Riley et al., 2010), so there is a specific andumadrstood pathay of

399 exposure for bobcats; 2) AR exposure is correlated generally with more isténsnan land

400 use, however”AR exposure has also been documented in pristine environments (Gabriel et
401 2012), and particularly near modified open space areas suchdssdpad parks, cemeteries,
402 equestrian facilities, and golf courses (Nogieres et al., 2015, Serieys28t1&la) which are less

403 degraded than more intensively urbanized settings; 3) the mostasbaciated bobcats in our

404 study area were nonetheless &ygusing natural areas, with commonly more than 75% or more
405 of their radio“telemetry (Riley et al., 2010); 4) necropsies performed on bobcaighout the

406 course 'of'the"20+ year study of carnivores in SMMNRA have not shown any other toxicants
407 consisterly linked to disease or mortality other than ARs in bobcats or in other carnivores such
408 as coyotes or mountain lions (Gehrt and Riley 2010, Beier et al. 2010); and 5) many of the
409 pathways we have found differentially expressed are known to be affectedsgsAdiscussed

410 below. Ferthese reasons, we suggest that subleth&xfBsure in bobcats is the best candidate

411 for gene dysregulation and physiologic perturbation.

412 In addition to impacts related to hemostasis and vitamin K availability, we velser

413 subsantial effects on multiple biological processes including xenobiotic mesain@ind ER
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stress response, inflammatory and allergic immune response, adaptive immunity, and skin
integrity (Figure 2; Table 3). For each process discussed below, these efiextsnpartant
implications for bobcat health, and taken together, also constitute strong pléingileetween

AR exposure and mange susceptibility in bobcats.
Blood Hemostasis and Vitamin K

Bobecats;, like domestic cats, appear less sensitive than other species to the common
effects of ARs.(Petterino & Paolo, 2001; Beusekom, 2015). Specifically, clottieg tim not
differ significantly between ARpositive and ARnegative bobcats (Serieys et ahpublished
data). Importantly, however, one bobcat and thme@untain lions (Riley et al., 2007) have died
from coagulopathy in the study area. Our gene expression results also suggest that there are some
direct effects of ARs on hemostasis, potentially related to the vitamin K cycle. We observed GO
enrichment forhemostasiselated terms in downregulated genes, and several downregulated
genes overlapped with the coagulation module from WGCNA, including genes involved in
platelet activation (i.e. thromboxane A synthas&BXASL) and fibrinclot formation (i.e. seip
family E member 2SERPINE2). Notably, upregulation dJBIAD1 in AR-positive animals may
reflect a possible compensatory mechanism in bobcats. Vitamin K2 has been show to offset
effects of vitamin K antagonists on arterial calcification (Kawashima .et1887) and is
supportive for hematopoietic and bone metabolism (Tabb et al., 2003; Miyazawa &aAiza
2004).

Xenaobiotic'Metabolism and Endoplasmic Reticulum stress

Xenebietic metabolism is a primary function of the liver that occurs over three phases
cellular ;uptake;. transformation and excretion (loannides, 2001; Filser, 2008; Leg 2€114l).
During the'second phase, reactive intermediates can be formed that directly target enzymes in the
ER, thereby triggering oxidative and ER stress responses (Foufelle & Fromenty, 2@16; Cri
2005). In bobcats, evidence that AR exposure activates the ER stress respansaadsnaby
the differential expression of genes such as Lysosomal Associated Membrane Protein 3
(LAMP3), Heat Shock Protein$i8P90B1), HypoxiaUp-Regulated 1HYOU1), X Box Binding
Protein 1 XBP1) and Protein Disulfide IsomerasB{I6), all of which were clustered in the
WGCNA module related to ER stressdure 4A; Figure 4R

This article is protected by copyright. All rights reserved



443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461

462
463
464
465
466
467
468

469
470
471
472

In model organisms, ARs are processed through canonical xengiathiways and are
recognized inducers of oxidative stress (Ware et al., 2015; Miller, 2009). Howeelids)
mechanisms of xenobiotic metabolism are poorly understood (Beusekom, 2015). For instance,
cats are deficient in several enzymes identified agssary for drug elimination in rats and
humans (Beusekom, 2015; Court, 2013). Similarly, the mammalian gene encoding for UGT1AS6,
specifically.invelved in warfarin metabolism, is a pseudogene in the felid family and is therefore
not expressed as a functamprotein (Shresta et al., 2012). High tolerance for ARs suggest that
felids have™“possibly developed alternate and perhaps more efficient mechawisms f
metabolizing these toxicants. We observed upregulatid®YBRU1, a member of the CYP450
gene family whose products are the primary mediators of xenobiotic metabolism r(Zange
Schwab, 20135 Lynch & Price, 2007; Karlgren et al., 2005). In humans, variants in certain CYP
enzymes are associated with differential warfarin sensitivity (Freeman et al., 2084). te
high variabllity of CYP function across species (Zanger & Schwab, 2013), it is platisible
CYP2U1 plays an active role in the metabolism of ARs in felids. Additionally, we observed
upregulationreiCHST2 andHS3ST1, two genes involved in the xebiotic metabolism pathway
(Zhu et al.;»2016), as well #4BCBL1, essential for elimination of AR metabolites (Miller, 2009;
Beusekom,, 2015) and also associated with differential warfarin sensitWiggldlius et al.,
2004).

I mmunomodulation by ARs

Contrelled experiments on herbicides and pesticides document expelstieel changes
in circulating leukocyte composition in a variety of species (Malik & Chughtai, 2003n&
Reale et @l’;"2008). For ARs specifically, rats exhibited reduced monoaytesnereased
lymphoeyte numbers (Mikhail & Abddéiamid, 2007). We found evidence of similar patterns of
AR-induced changes in circulating leukocytes in bobcats, likely resulting in both immune
suppression (of myeloid lineage immune cell function) and stimulation (of lymhfineiage cell

functions).

With ‘respect to immune suppression, we observed downregulation of several genes
involved in the allergic immune response includP@QER1A, HDC, MSAA2, and CPA3, each
primarily associated with the function of mast cells and monocytes. Evidence oédeizl

monocytes in ARexposed bobcats, with a higher relative abundance of activated or mature to
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naive monocytes suggests a decrease in the production of immature myeloid lineage cells. In
mammals, white blood cell production (hematopoiesis) occurs in bone marrow, where
transcriptional regulation, cytokine signaling and properties of the stromal niche operate in
tandem to determine lineage commitment of hematopoietic stem cells kiDoki®90;
Schoeters et.al. 995; Orkin & Zon, 2008). We observed downregulation of several transcription
factors invelved in hematopoiesis in bone marr@ATA-2 is critical for the production and
maintenance of early hematopoietic progenitors (Tsai et al., 1997). Mutatidms gene are
associated with' myeloid cell abnormalities in humans (Hsu et al., 2011; Pasqigt2013).
Transcription factor&KLF4 andKLF5 share ceregulatory roles during hematopoiesis (Ishikawa

et al., 2013) including monocyte production and development (Park et al., 2016; Shahrin et al.,
2016). Further; vitamin K has been shown to improve the supportive function of bone marrow
stromal cells for hematopoiesis (Miyazawa & Aiwazawa, 2004) and directly promotes survival
and differentiation of myeloid progenitor cells (Sada et al., 2010). Thereforexpgdduwge may
impact the,.number of circulating monocytes through effects of vitamin K avdylatoh bone
marrow integrity as well as through deregulation of transcription factaesgsary for monocyte

differertiation:

With respect to immune stimulation, we observed an increase in gene expression by B
and Tlympheeytes in ARpositive bobcats. In Bells, upregulation stemmed specifically from
increased activity of naive relative to mature or differentiatesHB. There was also a strong
signal for=a“reduction in the proportion of plasma cells. As above, this may indicagsl alter
output of fearly lymphocyte progenitor cells, hence inflating the number of nacelBin
peripheral leukocytes. Conversely, it maglicate an increased elimination of standing activated
and memory Bcells, with a responding increase in lymphopoiesis. In this redflgle§ emerges
as an impeortant candidate gene. In heterozygote deficient mice (KLFEhis/ gene has been
linked expementally to the manifestation of systemic sclerosis (SSc) symptoms, a disease
characterized by Hell dysregulation, skin lesions and vasculopathy (Noda et al., 2014). Total
and relative naive Bells were elevated in SSc patients, whereas proportiomemiory B and
plasma cells were decreased, which was attributable to increased spontaneous death of these cells
(Sato et al., 2004). Our results imply that although total B cells are elevated ieeXuhxats,
the animal’'s ability to maintain sufficient emory Bcells capable of recognizing specific

pathogens upon secondary challenge may be compromised. This could limit the immunologic
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capacity of exposed bobcats to mount a rapid response to a previously encountereah pathoge

such as notoedric mange.

Our results also indicate that Adkposure is associated with upregulation etell
activity. lndeed, all three of the maturecéll coreceptor molecule€D3G, CD3D, andCD3E)
are highly upregulated in exposed bobcats. Previous work demonstrated-dbiid &n be
activated “directly" by anticoagulants through MHC presentation (Naisbittl.et2@05).
Phenindione, for instance, is a vitamin K antagonist anticoagulant that is known to cause
hypersensitivity. in some human patients. It is also one of the most commonly died¢tte
compounds.(in the form of diphacinone) in our study population (Serieys et al., 2015a).
Manifestation of hypersensitivity occurs primarily in the skin and is correlated with rapid
proliferation of drugspecific CD4+ T cell clones (Naisb#t al., 2005). In the latter study, it was
shown that warfarin (a coumarin compound) can also adopt a pheniit®rstructure and
similarly elicit™T cell proliferation. Hence, AR exposure may directly induce T cell proliferation
through the™antigen prestation, potentially leading to immune exhaustion or expansion of

dichotomous (i.e. Thl and Th2) T cell subpopulations.
Keratinocyte Regulation

Genes_downregulated in Apbsitive bobcats indicated that ARs may interact with
epithelial maintenance and foation. Considerable evidence suggests that the skin may be a
target tissue,of,warfarin. Some warfarin treated patients experienced skin necrosis (Chan et al.,
2000; Pourdeyhimet al., 2014), while endothelial cell injury has been observed in experimental
warfarin treated rats (Ozcan et al., 2012). In bobcats, three differentially expressed genes are
consistent with these observationsafgglutaminase ITGM1) is a key enzyme in keratinocyte
differentiation Elias et al., 2002 Thacher & Rice, 1985 Russel et al.,1995) and was
downregulated=in ARRXposed bobcats. Mutations in this gene result in deficient epidermal
cornifications(Herman etl., 2009)and inhibited skin cell maturation (Jiang et al., 2010).
Second, stratifin NF) is also downregulated in APositive bobcats. This gene been
demonstrateduto affect the expression levels of matrix metallopeptidases (MMPs) which are
integral to the wound healing process (Dong, 2008; Medina et al., 2007; Nuutila et al., 2012).
Interestindy, two metallopeptidase®IMP1 andMMP10 were some of the most downregulated

genes in ARpositive bobcats. Finally, previously discussed transcriptions fasttgl and
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KLF5 are involved in epidermal differentiation when expressed in keratinocyteSaiiviél et
al., 2007; Segre et al., 1999; Tetreault et al., 2016).

Potential links between AR exposure and susceptibility to mange

The immune response to manggusing parasites is highly variable among species
(Walton, 2010); With limited understanding of the immunological responses to mangesn feli
it is difficult-to, link mangesusceptibility mechanistically to ABxposure in bobcats. One
hypothesissbased on our results is that simultaneous immune dysregulation and disruption of
epithelial integrity specifally predisposes bobcats to opportunistic infection by an ectoparasite

pathogen.

Studies ofSarcoptes scabeii, a close relative dflotoedris cati, indicates that both innate
and adaptive immune pathways are activated in response to infestation. In some mammals, an
initial localized«inflammatory response of the skin, characterized by infiltrates of mast cells,
neutrophilssand mononuclear cells, is typically followed by a pronounced humoral response
which subsides over time in resistant hosts upon secomtt@alienge (Rahman et al., 2010;
Arlian et al., 1996). We found that Apositive bobcats exhibit a substantial reduction in the
expressionwef.genes involved in allergic immune response, as well as from both monatytes an
late stage”B lymphocytes includipdgasma cells. Reduction of these cell types inpgdRitive
bobcats suggests that the basic immune machinery, specifically proinflammaioocytes,
mast cells;,and antibody producingcBlis/plasma cells, necessary to protect against severe
mange infestan is compromised by ARs. Further, downregulation of proinflammatory
cytokines knewn to operate directly on keratinocytes (H.86) (Foster et al., 2014), in addition
to downregulation of several genes involved in epithelial formation and maintesaigcest

that ARs directly affect skin integrity and immunity.

We hypothesize that the cumulative effects of these cellular responses to AR exposure
increases the_susceptibility of individuals to opportunistic parasitism o$kimeand inhibits
wound healing, allowing for the mange lesions to expand and leading to death. Futuré researc
should focus on assessing transcriptional changes in skin following AR exposure, as well as
determining the impacts on bone marrow integrity and leukocyte production. Furthieodgnti
production against a range of pathogens potentially threatening to bobcats (e.g., Feline
Leukaemia virus, Canine Distemper virus, plague, gastrointestinal parasites) should be tested in
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AR exposed animals, perhaps in captivity, to assess stitendary effects of AR exposure. In
general, experimental models to understand responses to simultaneous toxicpathagdn

exposure need to be developed and tested.
CONCLUSION

We investigated the effects of anticoagulant rodenticides using-$&gAad provide
convinging.evidence that sublethal exposure to ARs has substantial and dramateggkaiery
consequenees.in a wild carnivore population. We demonstrate that surveying gerdeme wi
expression from whole blood is an effective method to analyze the effects of toxicaatsral
populations. Our analyses provided a system wide perspective on the physiological adffect
these toxicants and enabled us to detect subtle-spegific changes in circulating leukocyte
populations, Which has critical implications for the biological function of thelb¢ypes. With
the increasing accessibility and reduced cost of genome sequencing, this method could be
translated to other systems and identify sensitive diagnostic biomarkers fopAsuee in felids
and other _species. Overall, our results show that the focus on the lethal effects aitsoxica
developed, far_pest control which cause a failure of blood to clot in target species, may be
misplaced. Individual fithess and population persistence may be critically irdpeith®ut signs
of the target-effects of ARs. This result may apply to other toxicants in the natvirainenent.

Given the worldwide application of anticoagulants in a wide variety of settings from residential
to rural environments and even pristine environments, research on the sublethaefjeloesa

new, previously unacknowledged priority for future research.
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metabolism of warfarin
adenosylhomocysteinase  AHCY ! 1 0.182681548
) | (Vitamin K2 inhibit the
BCL2, apoptosis ] ] ]
BCL2 interaction and increase 1 0.497313399
regulator _
expression)
chaperonin gontaining
_ CCT5 1 1 0.30416539
TCP1 subunit:5
Eukaryotic Translation
Initiation Faetor 3 EIF3I l 1 0.240188572
Subunit |
Ectonucleotide
_ ENPP1 i 1 0.835102761
Phosphodiesterase 1
G3BP Stress Granule
G3BP1 1 1 0.224464977
Assembly Factor, 1
Heat Shock Protein 90
Alpha Family.Class B HSPO0AB1 l 1 0.344576673
Member<a
Heat Shock-Protein
Family A (Hsp70) HSPA8 1 1 0.340538007
Member@8
Keratin 18 KRT18 l 1 0.380455519
NmrA like redox sensot
L NMRAL1 1 1 0.384219801
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Auxiliary Faector2

Nucleobindin 1 NUCB1 i 0.251636364
ProliferationAssociated
PA2G4 1 0.321882064
2G4
Protein Disulfide 1
Isomerase Family A PDIA3 0.227102201
Member 3 !
Ribosomal Protein. L27 RPL27 i 0.314549077
Selenophosphate
SEPHSL i 0.319143095
Synthetase 1
Affect the expression
Tumor Protein P53 TP53 Increasedegradation of TP53 0.336253754
protein
U2 Small Nuclear RNA
U2AF2 T 0.187906376

! symbol:1 =upregulated, |=downregulated

1056

1057 Table 2:Franseript Origin Analysis for leukocytes and leukocyte sdbsets

P value
CELL TYPE
FD>15 | FD<0.67

PBMC N = 108 N = 149
CD14 Monocyteg 0.998 0.004*

BDCA4 Dendritic Cells 0.999 0.999
CD56 NK Cells| < 0.0001* 0.018*

CD4 T cells 0.002 0.556

CD8 T cells| < 0.0001* 0.038*

CD19 B cells| < 0.0001* 0.038*

Monocytes N= 76 N = 105
CD14+16 0.992 0.0008*

CD14+16+| 0.0072* 0.999

B cells naive vs memory N=194 N = 252
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Human_IgM+IgD+CD27+  0.0254* 0.070
Human_class switched 0.999 0.655
Human_IgM+IgDCD27+ 0.058 < 0.0001*
Human_IlgM+IgD+CD27 0.006 0.998
B cells class switched N =117 N =151
naive 0.427 0.738
IgM 0.339 0.819
switched mem. B cell 0.964 1
plasma cellsg 0.889 0.0006*

1 FD = Fold Change; PBMC = peripheral blood

mononuclear cell, N = Number of genes, * = significant

1058
1059
1060
1061
1062 Table 3 Summary of physiological pathways and procedtased, analytical support, relevant
1063 genes of interest and the implications for fithess in AR exposed bobcats.
Pathway/ Methods _ o
Candidate| Implication for
process | Pattern Linear ]
Affected TOAITRA | WGCNA Genes fitness
Model
FCER1A,
Decreased defense
KLF5, KLF
| total and against
Innate l l 4, GATA2,
_ ! _ naive _ extracellular
Immunity Inflammation Inflammation CPA3,
monocytes pathogens and
HDC,
allergens
MS4A2
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1064

1T&B
Immune
cell o _
_ o CD3D, activation leading
Adaptive 1T cell activation; 1T cell _
_ T o _ _ CD3G, to exhaustion;
Immunity activation | mature/ signaling -~
CD3E reduced specific
plasma B _
antibody
cells
HYOU1,
Xenobiotic 1 drug LAMP3,
_ _ Increased cell
Metabolism 1 metabolism 1 ER stress | HSP90B1, death
ea
and ER stress genes - XBP1,
PDIAG6
o SFN, Reduced epithelia
Epithelial . _
] ) l IL36B, integrity;
integrity and _ | wound
! keratinocyte _ TGM1, Increased
wound _ _ healing .
_ proliferation - MMP1, vulnerability to
healing _
MMP10 ectoparasites
Hemostasis
o | platelet _ SERPINE2, Coagulopathy;
and vitamin ! ) | coagulation _
K aggregation - TBXAS1 hemorrhaging
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Figure 1 Map of the study area depicting sample locations for all 52 bobcats, whetbethw

20 Kilometers

animal tehositive (+) or not positiv®) for ARs, and the general land use categories

(urban, aI@pen, and natural).
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1071

1072 Figure 2 (A) Voleano plot depicting théogl0 of the Q value against the B fold change for all 12,332
1073 genes. Significant gene (Q <0.05) are highlighted in tan. Lab&rdsgare color coded by associated
1074 physiological | procesqdepicted in BC). Mean normalized counts of upregulated genes (B) and

1075 downregulatedgenes (C) shown for ARgative (light color) and AfRositive (dark color) bobcats.
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Figure 3 Treemap of the GO Biological Processes for the down (A) and up (Bitesljdnes

(Q <0.05). Box size correlates to tHeg10 pvalue of the G&erm enrichment. Boxes with the
same color represent higher level categories of processes. Main Abbreviations: (+) : positive
regulation, {) : negative regulation, macroph: macrophage. See Table S4, S5 for GO term
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1082

1083 Figure 4°(A) Number of significant genes (from linear model) assigned to one of siofahc
1084 categories (from WGCNA) as a proportion of total module size. (B) Correlation between AR
1085 exposure and WGCNA module eigengenes. (C) Heat maps displaying the expressiea profil
1086 and dendrograms of ARegative (light color) and AfRositive (dark color) bobcats for the “T
1087 cell signaling” and “inflammatory response” modules. Columns are individual bobcatsvesid r

1088 are individualgenes.
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Table 1 Differential expressed genes listed as related to warfarin in the Comparative Toxicogenomic

Databask
_ _ _ Present Beta fold
Known interactions with
Gene name Gene symbol ) study change (B)
warfarin
(bobcats)
ABCB1 polymorphism
o affects the susceptibility to
ATP binding'cassette _
_ ABCB1 Warfarin 0 0.522664633
subfamily B member 1 :
ABCBL1 protein affects the
metabolism of warfarin
adenosylhomocysteinas AHCY ! 0 0.182681548
] | (Vitamin K2 inhibit the
BCL2, apoptosis . . .
BCL2 interaction and increase 1 0.497313399
regulator _
expression)
chaperonin gontaining
_ CCT5 1 1 0.30416539
TCP1 subunit’s
Eukaryotic Translation
Initiation Factor 3 EIF3I ! 1 0.240188572
Subunit'l
Ectonueleotide
_ ENPP1 1 0 0.835102761
Phosphodiesterase 1
G3BP Stress Granule
G3BP1 1 0 0.224464977
Assembly Factor,1
Heat Shock Pretein 90
Alpha Family Class B| HSP90AB1 ! 1 0.344576673
Member 1
Heat Shock Protein
Family A (Hsp70) HSPA3 1 0 0.340538007
Member 8
Keratin:d8 KRT18 ! 0 0.380455519
NmrA like redox senso
L NMRAL1 1 0 0.384219801
Nucleobindin 1 NUCBL1 1 0 0.251636364
Proliferation-Associatec PA2G4 1 1 0.321882064
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2G4

Auxiliary Factor 2

Protein Disulfide 1
Isomerase Family A PDIA3 0.227102201
Member 3 !
Ribosomal Protein L27 RPL27 1 0.314549077
Selenophosphate
SEPHS1 1 0.319143095
Synthetase 1
Affect the expression
Tumor Protein P53 TP53 Increase degradation of TP 0.336253754
protein
U2 Small Nuclear RNA
U2AF2 1 0.187906376

! symbol: 1 = upregulated, |=downregulated
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Table 2 Transcript Origin Analysis for leukocytes and leukocyte subsets

P value
CELL TYPE
FD>15 | FD<0.67

PBME N = 108 N = 149
CD14 Monocytes  0.998 0.004*
BDCA4"Dendritic Cells 0.999 0.999
CD56 NK Cells| < 0.0001* 0.018*

CDA4 T cells 0.002 0.556

CD8 T cells| <0.0001* 0.038*
CD19 B cells| <0.0001* 0.038*

Monocytes N=76 N= 105
CD14+16- 0.992 0.0008*
CD14+16+| 0.0072* 0.999

B cells: naive vs memory| N= 194 N = 252

HumanglgM+IgD+CD27+ 0.0254* 0.070
Humanelass switchel  0.999 0.655

Human=igM+IgD-CD27+  0.058 < 0.0001*

Human_IgM+IgD+CD274 0.006 0.998

B cells-«class, switched N= 117 N = 151

naive 0.427 0.738
IgM 0.339 0.819
switched_mem. B cell 0.964 1

plasmacells  0.889 0.0006*
1 FD = Fold Change; PBMC = peripheral blood

mononuclearscell, N = Number of genes, * = significant
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Table 3 Summary of physiological pathways and processes affected, analytical support, relevant genes of

interest and the implications for fitness in AR exposed bobcats.

Pathway/ Methods , o
Candidate Implication for
process | Pattern Linear G o
enes itness
TOA/TRA | WGCNA
affected Model
FCERI1A,
KLF5, KLF | Decreased defens
| total and )
Innate " ! ) i) 4, GATA2, | against extracellula
naive
Immunity Inflammation Inflammation| CPAS, pathogens and
monocytes
HDC, allergens
MS4A2
1 T&B
cell Immune activation
: - CD3D, :
Adaptive 1T cell activation; 1T cell leading to
: Tl o o CD3G, :
Immunity activation | | mature/ signaling CD3E exhaustion; reduce
plasma B specific antibody
cells
HYOUL1,
Xenobiotic 1 drug LAMP3,
Metabolism 1 metabolism 1T ER stress | HSP90BL1, | Increased cell deat
and ER stres: genes - XBP1,
PDIAG6
L SFEN, L
Epithelial Reduced epithelial
. . ! IL36B, . :
integrity and _ | wound integrity; Increased
! keratinocyte _ TGM1, N
wound _ _ healing vulnerability to
] proliferation - MMP1, i
healing ectoparasites
MMP10
Hemostasis
o | platelet _ SERPINEZ2, Coagulopathy;
and vitamin ! _ | coagulation )
K aggregation - TBXAS1 hemorrhaging
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