Strong lens simulations: the 'un'-natural telescopes to probe galaxy formation and Hubble constant

Sampath Mukherjee

University of Groningen (RUG) — — — — — — — > University of Liege (ULiege)

In collaboration with

SEAGLE

Prof. Léon Koopmans Prof. Joop Schaye Prof. R. Benton Metcalf Dr. Mathhieu Schaller Dr. Crescenzo Tortora Dr. Robert Crain Dr. Georgios Vernardos

COSMICLENS

Prof. Dominique Sluse Prof. Frederic Courbin Prof. Sherry Suyu Dr. Stefan Hilbert Lyne VandeVyvere + HOLiCOW collaboration

Timeline of (Strong) Gravitational Lensing

- Soldner proposed GL in context of Newtonian theory. He found a deflection angler for the sun in **0.85**".
- With general relativity, Einstein derived the new result for the sun as **1.7**"
- 1919 Using solar eclipse, Eddington measured a value close to GR, 1.6"
- Zwicky suggested that galaxies would produce well separated images that could be observed.
- The discovery of QSO 957+561 A,B found at z~1.4 (Walsh et al.1979).
- Lynds & Petrosian discovered cluster lensing.
- The Cosmic Lens All-Sky Survey (**CLASS**) initiated.
- The Sloan Lens ACS (**SLACS**) survey: discovery of ~100 Strong lenses.
- 2010 SL2S, SWELLS and BELLS, observational surveys: ~20-50 SLs each.
- **2016–2025 DES**, **KiDS**, **EUCLID**, **LSST**, **SKA**, etc >100,000 lenses.

Strong Gravitational Lensing

What can we learn from Strong Lensing?

- 1. Total mass (within Einstein radius) !!!
- 2. Stellar mass profile
- 3. DM mass profile
- 4. Ellipticity/orientation
- 5. Substructure
- 6. Hubble constant via Time-delay

Advantage of using Gravitational Lensing

Gravitational Lensing measures the total matter distribution independent of the nature of the matter and of its state

SDSS J073728.45+321618.5

courtesy: HST, NASA/ESA Auger et. al 2009

Strong Gravitational Lensing

What can we learn from Strong Lensing?

- 1. Total mass (within Einstein radius) !!!
- 2. Stellar mass profile
- 3. DM mass profile
- 4. Ellipticity/orientation
- 5. Substructure
- 6. Hubble constant via Time-delay

Advantage of using Gravitational Lensing

Gravitational Lensing measures the total matter distribution independent of the nature of the matter and of its state

SDSS J073728.45+321618.5

courtesy: HST, NASA/ESA Auger et. al 2009

Strong Gravitational Lensing

What can we learn from Strong Lensing?

- 1. Total mass (within Einstein radius) !!!
- 2. Stellar mass profile
- 3. DM mass profile
- 4. Ellipticity/orientation
- 5. Substructure
- 6. Hubble constant via Time-delay

Advantage of using Gravitational Lensing

Gravitational Lensing measures the total matter distribution independent of the nature of the matter and of its state

SDSS J073728.45+321618.5

courtesy: HST, NASA/ESA Auger et. al 2009

How many strong lenses do we need & why?

A. 1% error on mass slopes —needs—> 50+ lenses
 per parameter-space (e.g. *Barnabe et al. 2011*).

 B. 0.1% error in the mass fraction in substructure —needs—> 50+ lenses with extended images (e.g. Vegetti & Koopmans 2009).

Probing a wide range of masses, environments and galaxy types requires **10**⁽⁴⁻⁵⁾ **lenses**

Lens Galaxies: SLACS

1		0	1		15		1	1.	
5055 J1420+6019	5055 -22321-0939	5055 J1106+5228	5055 J1029+0420	5055 J1143-0144	5055 20955+0101	5055 30841+3824	5055 30044+0113	5055 21432+6317	5055 J1451-0259
5055 J0959+0410	5055 11032+5322	5055 J1443+0304	5055 J1218+0830	5055 42238-0754	5055 J1538+5417	5055 21134+6027	5055 .42303+1422	5065 J1103+5322	5055 J1531-0105
5055 -0912+0029	5055 21204+0358	5055 J1153+#612	5055 42341+0000	5055 /1403+0006	5055 20836+0913	5065 21023+4230	5055 40037-0942	5055 21402+6321	5055 -0728+5855
5055 J1627-0053	5055 21205++910	5055 J1142+1001	5055 20946+1006	5055 J1251-0208	5055 20079-0055	5055 21636+4707	5055 .2300+0022	5055 21250+0523	5055 J0959+4+16
5055 40954+5100		5055 J1421+3931	5055 /1630+4520	5055 J1112+0826	5055 40252-0034	1000 10000 1177	5055 J1430+4105	5055 21436-0000	5055 -0109+1500
							0	05	
5055-11416+5136	5055 21100+5329	5055 30737+3216	5055,0016-0813	5055 00935-0003	5055 20330-0020	5055 11525+3327	5055 30903+4116	5055 ,0008-0004	5055 J0157-0056

credit: Adam Bolton/SLACS

Euclid: online in 2020-2025; will yield >100,000 lenses

Credits: Koopmans/Euclid

A novel pipeline for Simulating EAGLE LEnses

based on

SEAGLE—I: A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations

Mukherjee et al. 2018 MNRAS 2018, 479, 4108

Evolution and **A**ssembly of **G**aLaxies and their **E**nvironments (**EAGLE**)

z = 12.9

z = 10.4

z = 5.0

© Richard Bower, John Helly, Sarah Nixon, Till Sawala, James Traylord, Durham University

100x100x20 cMpc slice of Ref-L100N1504 at z = 0.0

z = 3.8

z = 2.6

z = 0.0

A suite of hydrodynamical simulations **ACDM** universe **13 galaxy formation scenarios** Simulation box sizes : 100, 50 25, 12, cMpc

Matter content : Gas, Star, Dark Matter, Bhs

Major improvement:

Feedback from Stars & AGN

Image courtesy: Durham University & Schaye et al. 2015

Gravitational Lensing (Courtesy: NASA/ESA)

The Pipeline: Simulations & Modeling of Mock Strong Lenses

Modelled Parameters of Lens

2 http://glenco.github.io/lensed/

The SEAGLE pipeline

	Gala		
Observable	Value	Comments	
M*	$\geq 1.76 \times 10^{10} M_{\odot}$	Stellar mass lower the	shold. Takey from Auger et al. (2010a)
σ	> 120 km/sec		sions are kept lower than SLACS
R ₅₀	>1 kpc	Half mass projected r	
	Lons	Candidates	
Object-properties	Value	Comments	
Sim. used	REFERENCE (L050N0752)	50 cMpc box is best f	Lensing galaxies from EAGLE
Orientation	x, y and z axis		ity maps are made for each axis
Redshift	$z_{lens} = 0.271$	-	S' mean lens-redshift of 0.3
No. of galaxies	252		
No. of proj. galaxies	756	-	
	Sour	ce Properties	
Parameters	Value	Comments	
Source Type	Sérsic	Consistent with analy	ed SLACS lenses (Newton et al. 2011)
Brightness	23 apparent mag.	"	
Size (R_{eff})	0.2 arcsec	"	
Axis ratio (q_s)	0.6	"	SOURCE Applytic
Sérsic Index	1	"	SOURCE- Analytic
Zsource	0.6	"	
Position	Random within caustics	Producing more rings	and arcs lens systems, consistent with SLACS
	Instru	nental Settings	
Parameters	Value	Comments	
PSF	Gaussian, FWHM=0.1 arc-sec	-	
Noise	HST ACS-F814W, 2400 \sec	-	
	Imag	e Properties	
Map used	Properties	Value	
Surface density	(a) Size	512×512 pixels	
Surface density	(b) Units	kpc	
κ , Inv. mag. map and Lens	(a) Size	161×161 pixels	
,	(b) Units	degrees (converted fro	m arcsec)

Results

Are we getting what we wanted?

Some Strong Lenses from Sloan Lens ACS (SLACS) Survey

Some Strong lenses from EAGLE (REFERENCE) 50 cMpc, z =0.271

Image: A. Bolton (UH/IfA) for SLACS and NASA/ESA.

Comparison of observables like Stellar Mass, Einstein radius, etc with SLACS Lenses, will put constraints on the galaxy formation scenarios of EAGLE

The distribution of weighted mass density slope of EAGLE at **z=0.271** and also compared with SLACS & SL2S.

Mean density slope
SLACS – 2.08
SL2S - 2.18

$\log M_{\star} (M_{\odot})$	Mean	RMS	Median			
11.0 - 11.5 11.5 - 12.0 11.0 - 12.0	2.26 2.28 2.26	0.26 0.21 0.25	$2.26 \\ 2.23 \\ 2.26$			
		SFAG				

SEAGLE-I: Mukherjee+ 2018 MNRAS

Impact of sub grid physics on total mass density slope

based on

SEAGLE—II: Constraints on feedback models in galaxy formation from massive early-type strong lens galaxies

Mukherjee et al. submitted to MNRAS arXiV:1901.01095

SEAGLE- II: Constraining 10 galaxy evolution scenarios

					Feedba	ick					
Identifier	Side length [cMpc]	N	γeos	$n_{\rm H}^{\star}$ [cm ⁻³]	f _{th} -scaling	fth, max	<i>f</i> th, min	$n_{\rm H,0}$ [cm ⁻³]	nn	$C_{\rm visc}/2\pi$	⊿T _{AGN} log ₁₀ [K]
Calibrated models											
FBconst	50	752	4/3	Eq. 1	-	1.0	1.0	-	-	10 ³	8.5
${ m FB}\sigma$	50	752	4/3	Eq. 1	$\sigma_{\rm DM}^2$	3.0	0.3	-	-	10^{2}	8.5
FBZ	50	752	4/3	Eq. 1	Z	3.0	0.3	-	-	10 ²	8.5
Ref (FBZ ρ)	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	8.5
Ref-100 (FBZ ρ)	100	1504	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	8.5
Reference-variations											
ViscLo	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ²	8.5
ViscHi	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁻²	8.5
AGNdT8	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	8.0
AGNdT9	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	9.0
NOAGN	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	-)

(Crain et al. 2015)

SEAGLE-II. Mukherjee et al. sub. MNRAS, arXiV:1901.01095

Total Mass density slopes of EAGLE's 9 model variations

SEAGLE-II: Mukherjee+ sub. in MNRAS

Total Mass Density Slope (t)

Total Mass density slopes of EAGLE's 9 model variations

SEAGLE-II: Mukherjee+ sub. in MNRAS

SEAGLE-II: Mukherjee+ sub. in MNRAS

Inner dark matter fractions of early type galaxies in EAGLE model variations

based on

SEAGLE—III: The observed and simulated dark matter fractions in the central regions of early-type lens galaxies

Mukherjee et al.

To be submitted in few week(s) to MNRAS

SEAGLE- III: Dark Matter Fraction (DMF) of EAGLE galaxies

Comparison of DMF in EAGLE-Ref 100 with SLACS & SPIDER

See Tortora+ 2012 MNRAS for SPIDER

SEAGLE-III: Mukherjee+ to be sub. in MNRAS

Lensing properties of early type galaxies in variable IMF scenarios

SEAGLE—IV: Impact of IMF variation on dark matter fraction and dark matter slope of EAGLE strong lenses

> **Mukherjee** et al. 2019 to be submitted to MNRAS

SEAGLE- IV: Impact of IMF variation on DMF

IMF-BottomHeavy (LoM)

IMF-TopHeavy (HiM)

See Barber et al. 2018a MNRAS

SEAGLE-IV: Mukherjee+ to be sub. in MNRAS

Shear-Ellipticity degeneracy

SEAGLE VI: Impact of galaxy formation physics on `shearellipticity' degeneracy in strong lens modeling

> **Mukherjee** et al. 2019 to be submitted to MNRAS

Shear-Ellipticity correlation

Normalized distribution of Angle between shear and ellipticity

Shear-Ellipticity correlation

Normalized distribution of Angle between shear and ellipticity

Can we do some Microlensing too?

Astro2020 Science White Paper

arXiv:1904.12968

The Most Powerful Lenses in the Universe: ^{Pooley et al. 2019} Quasar Microlensing as a Probe of the Lensing Galaxy

Microlensing with **SEAGLE**

Mukherjee+ in prep

Implementing clustering algorithm

Stacked lensed systems with their brightest pixel

Individual lensed systems with their brightest pixel

z_lens= 0.271 and z_source= 1.0

Upcoming SEAGLE Papers in 2019-2020

1. Mukherjee et al. —-

2. Chatterjee, **Mukherjee** et al.—-

3. Bayer, **Mukherjee** et al. ——

Shear Ellipticity degeneracy Mass power spectrum with EAGLE HST lens P.S. with FAGI F.

Using **SEAGLE** pipeline

- 4. Tortora, **Mukherjee** et al. —- EAGLE lenses in KiDS.
- 5. Tortora, **Mukherjee** et al. —- EAGLE lenses in KiDS II.
- 7. Vernardos, **Mukherjee, Sluse** GERLUMPH and EAGLE.

- 6. Spiniello, **Mukherjee** et al. —- EAGLE quasar lenses in KiDS.
- 8. Mukherjee, Vernardos, Sluse —- Shear-convergence correlation in EAGLE
- 9. Denzel, Saha, Mukherjee New strong lens modelling code

Time delay and Hubble constant

Independent measurements are needed!

For cosmography we need: 1.Lens mass model 2.Time-delay 3.Mass along Line of sight

Time delay and Hubble constant

Independent measurements are needed!

Simulations: Hydro, DM only or semi analytic

Credit: S. Suyu

COSMICLENS: Cosmology with Strong Gravitational Lensing

Prof. Frédéric Courbin (EPFL) Prof. Dominique Sluse (U. Liege) **ERC Advanced Grant**

H2020-EU.1.1. ERC-2017-ADG Oct 2018 — Sept 2023

COSMICLENS: Cosmology with Strong Gravitational Lensing

Prof. Frédéric Courbin (EPFL) Prof. Dominique Sluse (U. Liege)

ERC Advanced Grant

H2020-EU.1.1. ERC-2017-ADG Oct 2018 — Sept 2023

COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses

time delays of lensed quasars from optical monitoring
expect to have delays with a few percent error for ~20 lenses

The H0LiCOW Collaboration: Cosmology with Quasar Time Delays

COSMICLENS: Cosmology with Strong Gravitational Lensing

ERC Advanced Grant

Prof. Frédéric Courbin (EPFL) Prof. Dominique Sluse (U. Liege)

COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses

time delays of lensed quasars from optical monitoring
expect to have delays with a few percent error for ~20 lenses

H2020-EU.1.1. ERC-2017-ADG Oct 2018 — Sept 2023

The H0LiCOW Collaboration: Cosmology with Quasar Time Delays

3- Providing a modular **end-to-end simulation framework** to mock lensed systems from hydrosimulations and to evaluate in detail the impact model degeneracies on Hubble constant (H0).

Quasar Strong Lensing

Observed Quasar Lenses

Credit: F. Courbin

GLAMER

Conclusions

- An automatic pipeline for creating & modelling mock lenses with a suite of hydrodynamic simulations, EAGLE, mimicking observational surveys and analysing them similar to real lenses.
 (SEAGLE-I: Mukherjee et al. 2018 MNRAS)
- 2. Applying the pipeline to a variety of EAGLE scenarios can constrain the galaxy-formation mechanisms via total mass density slope and mass-size relationship. (**SEAGLE-II:** Mukherjee et al. sub. MNRAS, arXiv:1901.01095)
- 3. **SEAGLE-III to VI** and **others:** with one pipeline it is possible to deal with multiple science questions and mock lensed images from simulations has a variety of applications.
- 4. Time-delay measurement is independent probe to calculate Hubble constant. A systematic and flexible pipeline (**COSMICLENS**) will be very effective in giving crucial handle to constrain it **<1% uncertainty.**

Take home message

Simulation of realistic mock Strong Lenses is a very promising tool to probe galaxy formation and HO