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Timeline of (Strong) Gravitational Lensing
Soldner proposed GL in context of Newtonian theory.  
He found a deflection angler for the sun in 0.85”.  

With general relativity, Einstein derived the new result for the sun as 1.7”  

Using solar eclipse, Eddington measured a value close to GR, 1.6”  

Zwicky suggested that galaxies would produce well separated images that 
could be observed. 

The discovery of QSO 957+561 A,B found at z~1.4 (Walsh et al.1979).  

Lynds & Petrosian discovered cluster lensing.  

The Cosmic Lens All-Sky Survey (CLASS) initiated. 

The Sloan Lens ACS (SLACS) survey: discovery of  ~100 Strong lenses.  

SL2S, SWELLS and BELLS, observational surveys: ~20-50 SLs each.  

            DES, KiDS, EUCLID, LSST, SKA, etc >100,000 lenses. 
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Strong Gravitational Lensing
What can we learn from Strong Lensing? 

 1. Total mass (within Einstein radius) !!! 
 2. Stellar mass profile  
 3. DM mass profile  
 4. Ellipticity/orientation 
 5. Substructure 
 6. Hubble constant via Time-delay 

Advantage of using Gravitational Lensing 

  Gravitational Lensing measures the total matter 
distribution independent of the nature of the matter and 
of its state 
  
 

SDSS J073728.45+321618.5 

courtesy: HST, NASA/ESA 
Auger et. al 2009
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How many strong lenses do we need & why? 

A.  1% error on mass slopes —needs—> 50+ lenses  
per parameter-space (e.g. Barnabe et al. 2011). 

B.  0.1% error in the mass fraction in substructure  
—needs—> 50+ lenses with extended images  

(e.g. Vegetti & Koopmans 2009). 

Probing a wide range of masses, environments and galaxy types  
requires 10(4-5)  lenses  



Lens Galaxies: SLACS

credit: Adam Bolton/SLACS



Euclid: online in 2020-2025; will yield >100,000 lenses

Credits: Koopmans/Euclid



      A novel pipeline for  
Simulating EAGLE LEnses

SEAGLE—I: A pipeline for simulating and modelling strong 
lenses from cosmological hydrodynamic simulations 

Mukherjee et al. 2018 
MNRAS 2018, 479, 4108

based on



Evolution and Assembly of GaLaxies and                     
their Environments (EAGLE)

z = 12.9                    z = 10.4                      z = 5.0                      z = 3.8                        z = 2.6                     z = 0.0

Image courtesy: Durham University & Schaye et al. 2015

 A suite of hydrodynamical simulations  

ΛCDM universe  

13 galaxy formation scenarios 

Simulation box sizes : 100, 50, 25, 12, cMpc 

Matter content : Gas, Star, Dark Matter, Bhs 

Major improvement:  

              Feedback from Stars & AGN

100x100x20 cMpc slice of Ref-L100N1504 at z = 0.0



            Gravitational Lensing (Courtesy: NASA/ESA)

  Source 
(Analytic)

Lensing galaxy 
From EAGLE 



Science goal  I

Science goal  II

…………..

Science goal  N



LENSED (Tessore+ 16) 

The modelling code

GLAMER  (Metcalf+ 14, Petkova+ 14) 

The ray-tracer

The SEAGLE pipeline 

SEAGLE-I: Mukherjee+ 2018 MNRAS



SEAGLE-I: Mukherjee+ 2018 MNRAS

SOURCE- Analytic

Lensing galaxies from EAGLE



Results 

Are we getting what we wanted ?



Image: A. Bolton (UH/IfA) for SLACS and NASA/ESA.

Some Strong Lenses from Sloan Lens 
ACS (SLACS) Survey 

 Some Strong lenses from EAGLE 
(REFERENCE) 50 cMpc, z =0.271 

Comparison of observables like Stellar 
Mass, Einstein radius, etc with SLACS 

Lenses, will put constraints on the galaxy 
formation scenarios of EAGLE



SEAGLE-I: Mukherjee+  2018 MNRAS

The distribution of weighted mass density slope of EAGLE at z=0.271  
and also compared with SLACS & SL2S.

Mean density slope 
SLACS – 2.08 
SL2S   – 2.18

Consistent with 
Remus+ 2017 
Xu+ 2017 
Tortora+ 2014

SLACS vs EAGLE SL2S vs EAGLE



Impact of sub grid physics 
on total mass density slope 

SEAGLE—II: Constraints on feedback models in galaxy 
formation from massive early-type strong lens galaxies 

Mukherjee et al.  
submitted to MNRAS 

arXiV:1901.01095 

based on



SEAGLE- II: Constraining 10 galaxy evolution scenarios

SEAGLE-II: Mukherjee+  sub. in MNRAS

(Crain et al. 2015) 

Feedback

Reference 
VariationsRemus+ 2017 —- 3 sims 

Xu+ 2017 —- 2 sims 
Peirani+ 2018 —- 2 sims



SEAGLE-II. Mukherjee et al. sub. MNRAS, arXiV:1901.01095 





Total Mass density slopes of EAGLE’s 9 model variations
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SEAGLE-II: Mukherjee+ sub. in MNRAS



Inner dark matter fractions of 
early type galaxies in EAGLE 
          model variations 

SEAGLE—III: The observed and simulated dark matter 
fractions in the central regions of early-type lens galaxies 

Mukherjee et al.  
To be submitted in few week(s) to MNRAS 

based on



SEAGLE- III: Dark Matter Fraction (DMF) of EAGLE galaxies

Comparison of DMF in EAGLE-Ref 100 with SLACS & SPIDER

SEAGLE-III: Mukherjee+  to be sub. in MNRAS

See Tortora+ 2012 MNRAS for SPIDER



Lensing properties of early 
type galaxies in variable IMF 

scenarios

SEAGLE—IV: Impact of IMF variation on dark matter fraction 
and dark matter slope of EAGLE strong lenses 

Mukherjee et al. 2019 
to be submitted to MNRAS



SEAGLE- IV: Impact of IMF variation on DMF 

SEAGLE-IV: Mukherjee+ to be sub. in MNRAS

IMF-BottomHeavy (LoM) IMF-TopHeavy (HiM)

See Barber et al. 2018a MNRAS



IMF-BottomHeavy 
        at Reff/2 IMF-TopHeavy 

  at Reff/2δ

δ
IMF-TopHeavy 
    at Reff

δ

IMF-BottomHeavy 
        at Reffδ

SEAGLE-IV: Mukherjee+ to be sub. in MNRAS



Shear-Ellipticity degeneracy

SEAGLE VI: Impact of galaxy formation physics on `shear-
ellipticity' degeneracy in strong lens modeling 

Mukherjee et al. 2019 
to be submitted to MNRAS



Shear-Ellipticity correlation Normalized distribution of  
Angle between shear and ellipticity

SEAGLE-VI: Mukherjee+ to be sub. in MNRAS



Shear-Ellipticity correlation Normalized distribution of  
Angle between shear and ellipticity

SEAGLE-VI: Mukherjee+ to be sub. in MNRAS



Can we do some Microlensing too?



Pooley et al. 2019

arXiv:1904.12968



Microlensing with SEAGLE
Mukherjee+ in prep

Stacked lensed systems 
with their brightest pixel

Individual lensed systems 
with their brightest pixel

z_lens= 0.271 and z_source= 1.0

Implementing clustering algorithm



Upcoming SEAGLE Papers in 2019-2020

1. Mukherjee et al. —-                       Shear Ellipticity degeneracy                                   
2. Chatterjee, Mukherjee et al.—-      Mass power spectrum with EAGLE 
3. Bayer, Mukherjee et al. ——         HST lens P.S. with EAGLE. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Using SEAGLE pipeline 

4. Tortora, Mukherjee et al. —-          EAGLE lenses in KiDS.      
5. Tortora, Mukherjee et al. —-          EAGLE lenses in KiDS II.     
6. Spiniello, Mukherjee et al. —-       EAGLE quasar lenses in KiDS.         
7. Vernardos, Mukherjee, Sluse —     GERLUMPH and EAGLE.          
8. Mukherjee, Vernardos, Sluse —-  Shear-convergence correlation in EAGLE 
9. Denzel, Saha, Mukherjee —— New strong lens modelling code



Time delay and Hubble constant

For cosmography we need: 
1.Lens mass model 
2.Time-delay 
3.Mass along Line of sight

Independent measurements  
are needed!

Credit: S. Suyu



Time delay and Hubble constant

For cosmography we need: 
1.Lens mass model 
2.Time-delay 
3.Mass along Line of sight

Independent measurements  
are needed!

Credit: S. Suyu
Simulations: Hydro, DM only or semi analytic
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COSMICLENS: Cosmology with Strong Gravitational Lensing

ERC Advanced Grant

3- Providing a modular end-to-end simulation framework to mock lensed systems from hydro-
simulations and to evaluate in detail the impact model degeneracies on Hubble constant (H0).

H2020-EU.1.1. ERC-2017-ADG 
       Oct 2018 —— Sept 2023

Prof. Frédéric Courbin (EPFL) 
Prof. Dominique Sluse (U. Liege)

4 work plan project

https://actu.epfl.ch/news/professor-frederic-courbin-receives-an-erc-advance/


Quasar Strong Lensing 



Observed  
Quasar  
Lenses

Credit: F. Courbin
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Conclusions 
1. An automatic pipeline for creating & modelling mock lenses with a suite 

of hydrodynamic simulations, EAGLE, mimicking observational 
surveys and analysing them similar to real lenses.                   
(SEAGLE-I: Mukherjee et al. 2018 MNRAS) 

2. Applying the pipeline to a variety of EAGLE scenarios can constrain 
the galaxy-formation mechanisms via total mass density slope and mass-
size relationship. (SEAGLE-II: Mukherjee et al. sub. MNRAS, arXiv:1901.01095) 

3. SEAGLE-III to VI and others: with one pipeline it is possible to deal 
with multiple science questions and mock lensed images from 
simulations has a variety of applications. 

4. Time-delay measurement is independent probe to calculate Hubble 
constant. A systematic and flexible pipeline (COSMICLENS) will be 
very effective in giving crucial handle to constrain it <1% uncertainty. 

Take home message 
Simulation of realistic mock Strong Lenses is a very 

promising tool to probe galaxy formation and H0


