Constraining galaxy formation, dark matter and time delay cosmography with simulated strong lenses

Sampath Mukherjee

University of Groningen (RUG) — — — — — — — > University of Liege (ULiege)

In collaboration with

SEAGLE

Prof. Léon Koopmans Prof. Joop Schaye Prof. R. Benton Metcalf Dr. Mathhieu Schaller Dr. Crescenzo Tortora Dr. Robert Crain Dr. Georgios Vernardos

COSMICLENS

Prof. Dominique Sluse Prof. Frederic Courbin Prof. Sherry Suyu Dr. Stefan Hilbert Lyne VandeVyvere + HOLiCOW collaboration

How many strong lenses do we need & why?

A. 1% error on mass slopes —needs—> 50+ lenses
 per parameter-space (e.g. *Barnabe et al. 2011*).

 B. 0.1% error in the mass fraction in substructure —needs—> 50+ lenses with extended images (e.g. Vegetti & Koopmans 2009).

Probing a wide range of masses, environments and galaxy types requires **10**⁽⁴⁻⁵⁾ **lenses**

Lens Galaxies: SLACS

0	0	0	-1		17		-	-	
5055 J1420+6019	5055 12321-0939	5055 J1106+5228	5055 41029+0420	5055 JIT43-0144	5055 -0955+0101	5055 30841+3824	5055 30044+0113	5055 11432+6317	5055 J1451-0238
5055 J0958+0410	5055 11032+5322	-5055 J1443+0304	0080+8151% 2202	5055 42238-0754	5055 J1538+5617	5055 11134+6027	5055 -22303+1422	5055 21103+5322	5055 J1531-0105
5055 J0912+0029	5055 /1204+0358	5055-11153++612	5055 42341+0000	5055 J1403+0006	5055 20936+0913	5055 /1023+4230	5055 40037-0942	5055 /1402+6321	5055 +0728+5855
5055 J1627-0053	5055 21205+4910	5055 11142+1001	5055 20946+1006	5055 11251-0258	5055 20029-0055	5055 11636+4707	5055 .42300+0022	5055 11250+0523	5055 30909+4416
5055 20454+5100	5055 (0822+2652	5055 J1621+3031	5055 /1630+4520	5055 J1112+0826	5055 -0352+00.00	5055 (1000+1122	1055 /1430+4105	1055 (1436-0000	5055 40109+1500
50558/1416+5136	5055 J1100+5329	5055 40737+3216	5055_6216-0813	5055 80030-0003	5055 40330-0020	5055 41525+3327	5055 -0903+4116		5055 J0157-0056

credit: Adam Bolton/SLACS

Euclid: online in 2020-2025; will yield >100,000 lenses

Credits: Koopmans/Euclid

A pipeline for Simulating EAGLE LEnses

based on

SEAGLE—I: A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations

Mukherjee et al. 2018 MNRAS 2018, 479, 4108

Evolution and **A**ssembly of **G**a**L**axies and their **E**nvironments (**EAGLE**)

z = 12.9

z = 10.4

z = 5.0

© Richard Bower, John Helly, Sarah Nixon, Till Sawala, James Trayford, Durham University

100x100x20 cMpc slice of Ref-L100N1504 at z = 0.0

z = 3.8

z = 2.6

z = 0.0

A suite of hydrodynamical simulations ACDM universe 13 galaxy formation scenarios Simulation box sizes : 100, 50 25, 12, cMpc

Matter content : Gas, Star, Dark Matter, Bhs

Major improvement:

Feedback from Stars & AGN

Image courtesy: Durham University & Schaye et al. 2015

Gravitational Lensing (Courtesy: NASA/ESA)

The Pipeline: Simulations & Modeling of Mock Strong Lenses

Modelled Parameters of Lens

2 http://glenco.github.io/lensed/

The SEAGLE pipeline

Observable	Gala						
$egin{array}{c} M_{\star} & \ \sigma & \ R_{50} \end{array}$	$\ge 1.76 \times 10^{10} M_{\odot}$ > 120 km/sec >1 kpc	Stellar mass lower the Stellar Velocity dispe- Half mass projected r	shold. Takey from Auger et al. (2010a) sions are kept lower than SLACS dius				
Object-properties	Value	Longing galaxies from EACLE					
Sim. used Orientation Redshift No. of galaxies No. of proj. galaxies	REFERENCE (L050N0752) x, y and z axis $z_{lens} = 0.271$ 252 756	50 cMpc box is best f Projected surface den Consistent with SLA(-	ity maps are made for each axis S' mean lens-redshift of 0.3				
Parameters	Value	ce Properties Comments					
Source Type Brightness Size (R_{eff}) Axis ratio (q_s) Sérsic Index z_{source}	Sérsic 23 apparent mag. 0.2 arcsec 0.6 1 0.6	Consistent with analy " " " " " " " " " " " " " " " " " " "	ed SLACS lenses (Newton et al. 2011) SOURCE-Analytic				
Position	Random within caustics	Producing more rings	and arcs lens systems, consistent with SLACS				
Parameters	Value	Comments					
PSF Noise	Gaussian, FWHM=0.1 arc-sec HST ACS-F814W, 2400 sec	-					
Map used Properties Value							
Surface density κ , Inv. mag. map and Lens	 (a) Size (b) Units (a) Size (b) Units 	512×512 pixels kpc 161×161 pixels degrees (converted fro	om arcsec)				

Some Strong Lenses from Sloan Lens ACS (SLACS) Survey

Some Strong lenses from EAGLE (REFERENCE) 50 cMpc, z =0.271

Image: A. Bolton (UH/IfA) for SLACS and NASA/ESA.

The distribution of weighted mass density slope of EAGLE at **z=0.271** and also compared with SLACS & SL2S.

Mean density slope
SLACS – 2.08
SL2S - 2.18

$\log M_{\star} (M_{\odot})$	Mean	RMS	Median		
11.0 - 11.5 11.5 - 12.0 11.0 - 12.0	2.26 2.28 2.26	$0.26 \\ 0.21 \\ 0.25$	$2.26 \\ 2.23 \\ 2.26$		
		SEA			

SEAGLE-I: Mukherjee+ 2018 MNRAS

Impact of sub grid physics on total mass density slope

based on

SEAGLE—II: Constraints on feedback models in galaxy formation from massive early-type strong lens galaxies

Mukherjee et al. submitted to MNRAS arXiV:1901.01095

SEAGLE- II: Constraining 10 galaxy evolution scenarios

Feedback											
Identifier	Side length [cMpc]	N	γeos	$n_{ m H}^{\star}$ [cm ⁻³]	f _{th} -scaling	<i>f</i> th, max	fth, min	$n_{\rm H,0}$ [cm ⁻³]	nn	$C_{\rm visc}/2\pi$	⊿T _{AGN} log ₁₀ [K]
Calibrated models											
FBconst	50	752	4/3	Eq. 1	-	1.0	1.0	-	-	10 ³	8.5
${ m FB}\sigma$	50	752	4/3	Eq. 1	$\sigma_{\rm DM}^2$	3.0	0.3	-	-	10^{2}	8.5
\mathbf{FBZ}	50	752	4/3	Eq. 1	Z	3.0	0.3	-	-	10 ²	8.5
Ref (FBZ ρ)	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	8.5
Ref-100 (FBZ ρ)	100	1504	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10^{0}	8.5
Reference-variations										for the second	A CONTRACTOR OF THE OWNER OF THE
ViscLo	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ²	8.5
ViscHi	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁻²	8.5
AGNdT8	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	8.0
AGNdT9	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	9.0
NOAGN	50	752	4/3	Eq. 1	Z, ρ	3.0	0.3	0.67	2/ln 10	10 ⁰	-
										Marcal Contractor	Star Barret

(Crain et al. 2015)

SEAGLE-II: Mukherjee+ sub. in MNRAS

Total Mass density slopes of EAGLE's 9 model variations

SEAGLE—III: The observed and simulated dark matter fractions in the central regions of early-type lens galaxies

Mukherjee et al. to be submitted in few week(s) to MNRAS

SEAGLE—IV: Impact of IMF variation on dark matter fraction and dark matter slope of EAGLE strong lenses

> **Mukherjee** et al. to be submitted to MNRAS

SEAGLE—V: A mass-powerspectrum analysis of EAGLE strong lenses in variable galaxy formation scenario.

Chatterjee, **Mukherjee** and Koopmans. to be submitted to MNRAS

Can we do some Microlensing too?

Astro2020 Science White Paper

arXiv:1904.12968

The Most Powerful Lenses in the Universe: Pooley et al. 2019 Quasar Microlensing as a Probe of the Lensing Galaxy

Microlensing with **SEAGLE**

Mukherjee+ in prep

Implementing clustering algorithm

Stacked lensed systems with their brightest pixel

Individual lensed systems with their brightest pixel

z_lens= 0.271 and z_source= 1.0

Vernardos 2018 MNRAS

Convergence

Free Form Modelling on SEAGLE lenses

MNRAS 000, 1-20 ()

Preprint 2 September 2019

Compiled using MNRAS LATEX style file v3.0

Testing free-form lens reconstruction techniques with simulated lenses

Philipp Denzel,^{1,2} * Sampath Mukherjee,³ Jonathan Coles,⁴ Prasenjit Saha^{1,2}

¹Physics Institute, University of Zurich, 8057 Zurich, Switzerland

²Institute for Computational Science, University of Zurich, 8057 Zurich, Switzerland

³Labo de physique atmosphérique et planétaire, University of Liège, 4000 Liège 1, Belgium

⁴Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, German

Free Form Modelling on SEAGLE lenses

Philipp Denzel (U. Zurich), Me (U. Liege), Prasenjit Saha (U. Zurich), Jonathan Coles (TUM)

- Uses GLASS code (Coles et al. 2014, also see Kung, Saha+ 2015, 2017)
- It finds the models of convergence that fits the maxima, minima, and saddle points
- Additional priors :
 - Centrally concentrated Mass distribution
 - a convergence gradient that differs no more than 85 degrees

Advantage: consists of only the terms which stay unaffected by the mass-sheet degeneracy

4.878

4.265

- 3.653

- 3.041

- 2.429

1.816

1.204

0.592

-0.020

-0.633

4.878

- 4.265

- 3.653

- 3.041

- 2.429

- 1.816

1.204

0.592

-0.020

-0.633

"Roche potential"

Time Arrival map

Upcoming SEAGLE Papers in 2019-2020

1. Mukherjee et al. —-

2. Chatterjee, **Mukherjee** et al.—-

3. Bayer, **Mukherjee** et al. — HST lens P.S. with EAGLE.

Shear Ellipticity degeneracy

Mass power spectrum with EAGLE

Using **SEAGLE** pipeline

4. Tortora, **Mukherjee** et al. —- EAGLE lenses in KiDS.

- 5. Tortora, **Mukherjee** et al. —- EAGLE lenses in KiDS II.
- 6. Vernardos, **Mukherjee**, Sluse GERLUMPH and EAGLE.
- 7. Mukherjee, Vernardos, Sluse —- Shear-convergence correlation in EAGLE

8. Denzel, Mukherjee, Cole, Saha — New strong lens modelling code

Time delay and Hubble constant

Why Time delay from SL are crucial?

- Cosmological distances — > the discovery of the expansion of the Universe.
- More precise distance measurements — > expansion is accelerating.

Questions ?

- Is the acceleration due to some repulsive form of dark energy?
- To Einstein's cosmological constant?
- Do we need to consider new physics?

Answer requires a precise measurement of the Hubble parameter, H₀.

Advantage:

- Can yield H₀ to <2%
- No calibration
- Independent of any other cosmological probe

Time delay and Hubble constant

Independent measurements are needed!

For cosmography we need: 1.Lens mass model 2.Time-delay 3.Mass along Line of sight

Time delay and Hubble constant

Independent measurements are needed!

Simulations: Hydro, DM only or semi analytic

Credit: S. Suyu

COSMICLENS: Cosmology with Strong Gravitational Lensing

ERC Advanced Grant

Prof. Frédéric Courbin (EPFL) Prof. Dominique Sluse (U. Liege)

COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses

time delays of lensed quasars from optical monitoring
expect to have delays with a few percent error for ~20 lenses

H2020-EU.1.1. ERC-2017-ADG Oct 2018 — Sept 2023

The H0LiCOW Collaboration: Cosmology with Quasar Time Delays

3- Providing a modular **end-to-end simulation framework** to mock lensed systems from hydrosimulations and to evaluate in detail the impact model degeneracies on Hubble constant (H0).

GLAMER

Effect of baryonic prescriptions on lensing LOS and Ho

Background

HOLiCOW obtained external convergences (*k*) using Millennium simulation (DM only) + SAM

See H0LiCOW III: Rusu, Fassnacht+ 2017

<u>Goals</u>

What happens when when we change the Baryonic physics On Millenium Simulation ?

Have a database of k and shear for a range of redshifts and baryonic models

COSMICLENS: *Mukherjee*, *Hilbert+ et al in prep*

Effect of baryonic prescriptions on lensing LOS and Ho

Effect of baryonic prescriptions on lensing LOS and Ho

COSMICLENS: *Mukherjee*, *Hilbert+ et al in prep*

Effect of baryonic prescriptions on lensing LOS and Ho

gamma= 0.07

COSMICLENS: *Mukherjee*, *Hilbert+ et al in prep*

Effect of baryonic prescriptions on lensing LOS and Ho

Effect of baryonic prescriptions on lensing LOS and H₀

LIÈGE université STAR Institute Lyne Van de Vyvere Sampath Mukherjee Dominique Sluse

erc Cosmiclens

Dominique Sluse

+ Finished

- Selection of ETGs for lens
- Source parameters selection
- Caustic and Critical-curve
- Lens creation
- Sensitivity and S/N check

★ONGOING

- Lens Modelling
- Comparing with observation

Conclusions

- 1. An automatic pipeline for creating & modelling mock lenses with EAGLE, mimicking observational surveys and analysing them similar to real lenses. (**SEAGLE-I:** Mukherjee et al. 2018 MNRAS)
- 2. Applying the pipeline to a variety of EAGLE scenarios can constrain the galaxy-formation mechanisms and matter content via total mass density slope. (**SEAGLE-II:** Mukherjee et al. sub., arXiv:1901.01095)
- 3. With **ONE** pipeline it is possible to deal with **multiple** science questions and mock lensed images from simulations has a variety of applications.
- 4. A systematic and flexible pipeline (**COSMICLENS**) will be very effective in giving crucial handle on systematics of TD to constrain H₀.

Take home message

Simulation of realistic mock Strong Lenses is a very promising tool to probe galaxy formation and H₀