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Abstract

Background: Endogenous retroelements (EREs) constitute about 42% of the human
genome and have been implicated in common human diseases such as autoimmunity and
cancer. The dominant paradigm holds that EREs are expressed in embryonic stem cells
(ESCs) and germline cells but are repressed in differentiated somatic cells. Despite
evidence that some EREs can be expressed at the RNA and protein levels in specific

contexts, a systems-level evaluation of their expression in human tissues is lacking.

Methods: Using RNA-sequencing data, we analyzed ERE expression in 32 human tissues,
including medullary thymic epithelial cells (mTECs). A tissue-specificity index was
computed to identify tissue-restricted ERE families. We also analyzed the transcriptome of
mMTECs in wild-type and AIRE-deficient mice. Finally, we developed a proteogenomic
workflow combining RNA-sequencing and mass spectrometry (MS) in order to evaluate
whether EREs might be translated and generate MHC l-associated peptides (MAP) in B-

lymphoblastoid cell lines (B-LCL) from 16 individuals.

Results: We report that all human tissues express EREs but the breadth and magnitude of
ERE expression are very heterogeneous from one tissue to another. ERE expression was
particularly high in two MHC-I-deficient tissues (ESCs and testis) and one MHC-I-
expressing tissue, mTECs. In mutant mice, we report that the exceptional expression of
EREs in mTECs was AIRE-independent. MS sequencing identified 104 non-redundant

MAPs in B-LCLs. These MAPs preferentially derived from sense translation of intronic
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EREs. Notably, detailed analyses of their amino acid composition revealed that ERE-

derived MAPs presented homology to viral MAPs.

Conclusions: This study shows that ERE expression in somatic tissues is more pervasive
and heterogeneous than anticipated. The high and diversified expression of ERESs in
mMTECs and their ability to generate MAPSs suggest that EREs may play an important role
in the establishment of self-tolerance. The viral-like properties of ERE-derived MAPS

suggest that those not expressed in mTECSs can be highly immunogenic.

Keywords: Endogenous retroelements, immunopeptidome, major histocompatibility
complex, medullary thymic epithelial cells, somatic tissues, systems biology,

transcriptome.

Background

Endogenous retroelements (ERES) are remnants of transposable elements that successfully
integrated our germline DNA millions of years ago (1, 2). After initial integration in the
genome, EREs further increased their copy number via several successive waves of
retrotransposition (3, 4). Now, most ERE sequences contain mutated or truncated open
reading frames and have lost their capacity to transpose in the genome (2). Phylogenic
analyses have allowed the classification of EREs in families based on sequence homology
(5, 6). Most EREs are categorized in three groups, which altogether comprise ~40-50% of
the human genome: the long-terminal repeats (LTR) as well as the long and short

interspersed nuclear elements (LINE and SINE) (7-9).
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Hosts repress ERE expression in order to protect their genomic integrity from deleterious
insertions of EREs in open reading frames (10, 11). Indeed, a strict epigenetic regulation
of ERE sequences is applied at both the DNA and histone levels (12). Growing evidence
suggests that KRAB zinc finger proteins (KZFPs) are involved in an evolutionary arms
race to repress the expression of novel ERE integrations (13). KZFPs recruit numerous
restriction factors to silence ERE sequences: the histone methyltransferase SETDB1, DNA
methyltransferase proteins, the nucleosome remodeling and deacetylase complex NuRD
and the heterochromatin protein HP1 (14). KZFP-independent mechanisms, such as the
HUSH complex (15) and the histone demethylase LSD1 (16), also apply non-redundant
epigenetic silencing on ERE sequences. Nevertheless, some “domesticated” ERES
contribute at many levels to human development and survival. Indeed, ERE sequences
provide promoters and enhancers to several human genes and thereby regulate the
expression of genes implicated in interferon responses, DNA damage response in the male
germline and maintenance of stem cell pluripotency (17-19). Additionally, a LINE-derived
transcript is essential to embryonic stem cells (ESCs) self-renewal via activation of rRNA
synthesis (20). Finally, syncytins are ERE-derived proteins that mediate cell-cell fusion to

allow formation of the placental syncytium (21, 22).

The dominant paradigm holds that EREs are expressed in ESCs as well as in germline cells,
but are repressed in other differentiated cells outside specific contexts in which they have
relevant functions (12). However, studies on ERE expression have been limited to subsets

of ERE families in one or few tissues. Additionally, to our knowledge, no study has
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addressed ERE expression in the thymus where central T-cell immune tolerance is
established. Hence, we have no clue as to the ability of ERESs to induce T-cell tolerance. In
the present study, we established an atlas of ERE expression in a panel of 30 healthy human
tissues and 2 cell types, including medullary thymic epithelial cells (mnTECs). We first
demonstrate that ERE expression is widespread in human tissues, but with tissue-specific
profiles. Notably, three cell types showed particularly high and diversified expression of
EREs: ESCs, testis and mTECs. By analyzing the transcriptome of wild-type and AIRE-
deficient mice, we found that the impressive expression of EREs in mTECs was AIRE-
independent. In addition, our mass spectrometry (MS) analyses revealed that the three main
groups of EREs generate MHC I-associated peptides (MAPS) in healthy cells. Finally, we

demonstrate that ERE-derived MAPs (ereMAPS) retained strong homology to viruses.

Methods

Transcriptomic data manifest

RNA-seq data of 30 non-redundant human tissues were downloaded from the Genotype-
Tissue Expression (GTEX) on the dbGaP portal (accession number phs000424.v8.p2.c1)
(23). When possible, 50 samples were randomly selected per tissue, otherwise all available
samples were analyzed. Transcriptomic data of ESCs were downloaded from the sequence
read archive from Lister et al (24). RNA-seq data of purified hematopoietic cells were
obtained from the Gene Expression Omnibus (GEO) (projects PRINA384650 and
PRINA225999). Six human mTEC samples were analyzed: four from (25) and two
additional samples processed with the same protocol with minor modifications: i) after

transfer to our laboratory, thymic samples were frozen in cryovials containing a
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cryoprotective medium composed of 5% DMSO and 95% Dextran-40 solution (5%
concentration), ii) CD45 cells were magnetically enriched with the CD45 Microbeads
human kit from Miltenyi Biotec (no. 130-045-801) prior to mTEC sorting, iii) cDNA
libraries were prepared with the KAPA mRNAseq stranded kit (KAPA, Cat no. KK8421),
and iv) sequencing generated around 400x10° reads per sample. For the complete list of
human samples analyzed, see Table S1 of Additional File 2. Mature murine mTECs

(MTEC") data were obtained from St-Pierre et al (26) on GEO (accession GSE65617).

Expression of transcripts derived from EREs and canonical genes

RNA-seq reads of human samples were trimmed with Trimmomatic 0.35 (27) to remove
adapters and low quality sequences. Expression levels of transcripts and endogenous
retroelements were quantified in transcripts per million (TPM) with kallisto 0.43.1 (28)
with an index composed of i) GRCh38.88 transcripts and human ERE sequences from
RepeatMasker (downloaded on the UCSC Table Browser on July 19, 2018) or ii) GRCm38
transcripts and murine ERE sequences from RepeatMasker (downloaded on the UCSC
Table Browser on March 11, 2019) for human and murine samples, respectively. TPM
values of transcripts and ERE sequences were grouped in genes and ERE families based

on Ensembl and RepeatMasker annotations, respectively.

ERE expression profiling in human tissues
Expression levels of ERE families were computed for each tissue by calculating the median
expression across all samples for a given tissue. The numbers of standard deviations from

the mean (row Z-score) of ERE families for each tissue were determined using the scale
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function in R. The Euclidean distance was then calculated between all tissues based on the
row Z-scores of ERE families, followed by an unsupervised hierarchical clustering. Finally,
the tree was manually separated in three clusters of tissues. Standard deviations of

expression of each ERE family between samples of a given tissue were also computed.

Quintile ranking of ERE expression in somatic tissues

Median expression of ERE families were calculated among all samples of a given tissue.
Tissues were then ranked based on their expression level of each ERE family individually
and assigned to quintiles of 6, 6, 8, 6 and 6 tissues, respectively. Finally, tissues were sorted

based on the number of times they were assigned to the fifth quintile.

Identification and characterization of tissue-restricted ERES (TRES)
The t-index of tissue specificity was calculated as per Yanai et al (29). Briefly, the -index
is defined as:

3 -x)
N-1

where X; is the level of expression of a gene or ERE family in tissue i normalized to its
maximal expression level among tissues and N is the number of tissues. Genes and ERE
families with >0.8 were considered as tissue-restricted. To determine in which tissue(s) a
tissue-restricted gene or ERE family was overexpressed, a binary pattern was computed as
reported by Yanai et al (29). Briefly, tissues were sorted based on their expression level for
each tissue-restricted gene (TRG) or ERE family (TRE). The distance between neighboring
tissues was calculated, and the maximal distance or ‘gap’ was used as threshold for the

binary pattern. Tissues with an expression level above the gap were considered as
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overexpressing the TRG or TRE while other tissues were considered as underexpressing
them, and were given a value of 1 or 0, respectively. ERE groups were determined for all
identified TREs, and the proportions of LINE, LTR and SINE elements in TREs were
compared to their representation among ERE families. A chi-squared test was performed
to assess enrichment of discrete ERE groups among TREs. Using the above described

binary pattern, the number of overexpressing tissues was determined for each TRG or TRE.

Impact of AIRE on ERE expression in mTECs

Lists of AIRE-dependent, AIRE-independent and constitutively expressed genes were
generated as per St-Pierre et al (26). Expression levels of these three sets of genes as well
as ERE families were compared between wild-type (n=3) and AIRE knock-out (n=3)
murine mTEC™ using Wilcoxon tests. Expression levels of each individual ERE family

were also compared between wild-type and AIRE knock-out mice using Wilcoxon tests.

MS analyses

Peptidomic data of a cohort of 16 B-lymphoblastoid cell lines (B-LCL) samples from
Pearson et al (30) were downloaded from the Pride Archive (Project PXD004023). For the
detailed protocol of mild acid elution and peptide processing, see Granados et al (31).
Peptides were identified using Peaks X (Bioinformatics Solution Inc.) and peptide
sequences were searched against the personalized proteome of each sample. For peptide
identification, tolerance was set at 5 ppm and 0.02 Da for precursor and fragment ions,
respectively. Occurrence of oxidation (M) and deamination (NQ) were considered as post-

translational modifications.
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Identification of ereMAPs

For individual B-LCL samples, RNA-seq reads were aligned to the reference genome
GRCh38.88 using STAR (32) with default parameters. Using the intersect mode of the
BEDTools suite (33), reads entirely mapping in RepeatMasker and Ensembl annotations
were separated in ERE and canonical datasets respectively, and any read seen in the
canonical dataset was discarded from the ERE dataset. Unmapped reads, secondary
alignments and low quality reads were then removed from the ERE dataset using Samtools
view (34) with the following parameters: -f “163”, “147”, “99” or “83” and -F “3852”. In
order to keep a manageable database size, ambiguous nucleotides were trimmed from reads
of the ERE dataset, followed by translation in all possible reading frames. Finally, the
resulting ERE amino acid sequences were spliced to remove sequences following stop
codons. Only sequences of at least 8 amino acids were kept and given a unique ID to
generate a theoretical ERE proteome. In parallel, a canonical personalized proteome
containing the polymorphisms of the donor was generated as per (25) for each sample.
Briefly, single-nucleotide variants were detected using freebayes version 1.0.2 (35), and
variants with a minimal alternate count of 5 were inserted in transcript sequences using
pyGeno (36). Expression levels of transcripts were quantified with kallisto using
GRCh38.88 transcripts (downloaded from Ensembl) as index, and only transcripts with a
TPM>0 were translated into a canonical proteome, which was concatenated with the ERE

proteome to generate a Personalized Proteome unique to each sample.

Peptide annotation and validation
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Following peptide identification, a list of unique peptides was extracted for each sample
and a false discovery rate (FDR) of 5% was applied on the peptide scores. Binding affinities
to the sample’s HLA alleles were predicted with NetMHC4.0 (37) or with NetMHCpan-
4.0 (38) when an HLA allele was not included in NetMHC4.0, and only 8 to 11-amino-
acid-long peptides with a percentile rank < 2% were included for further annotation. For
each peptide, a binary code was generated based on the presence or absence of its amino
acid sequence in the ERE and canonical proteomes and an ERE status of “Yes”, “Maybe”
or “No” was given to the peptide accordingly. Peptides that were seen only in the ERE
proteome or the canonical proteome were classified as “Yes” and “No” respectively. To
determine if candidates with a “Maybe” status were ereMAP candidates, we retrieved all
their possible nucleotide coding sequences from the sample’s reads and split them in a set
of 24-nucleotide-long subsequences (k-mers). These k-mers were then queried in 24-
nucleotide-long k-mer databases generated from our ERE and canonical reads datasets
using Jellyfish version 2.2.3 (39) (with the -C argument to consider the read’s sequence
and its reverse complement). Only peptides encoded by more than one read were kept for
further validation to reduce risks of sequencing errors. If at least one of the MAP-coding
sequences (MCS) was only seen in the canonical read dataset, the peptide was discarded.
“Maybe” peptides were considered as ereMAP candidates if the minimal occurrence of
their most abundant MCS was at least 10 times higher in the ERE k-mer database than in
the canonical k-mer database. Because leucine and isoleucine variants are not
distinguishable by standard MS approaches, all possible I/L variants for each ereMAPs
candidates were searched in the personalized proteome. If one of the I/L variants had a

higher expression in the personalized proteome, the ereMAP candidate was discarded. The
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genomic region generating each ereMAP candidate was determined by mapping the reads
coding for the peptide on the GRCh38.88 assembly of the reference genome with the BLAT
algorithm of the UCSC Genome Browser. If a clear genomic region could not be found,
the peptide was discarded. Genomic regions coding for ereMAPs candidates were then
inspected in IGV (40) to see if the MCS contained known germline polymorphisms (using
dbSNP v.149), and candidates were kept or discarded based on their orientation in ERE
and annotated sequences. Briefly, any ereMAP candidate whose MCS mapped in the sense
of a gene coding sequence was discarded, whereas candidates whose coding sequences
mapped in intergenic regions were considered as ereMAPSs no matter their orientation.
Candidates were also discarded if they fulfilled these two conditions: i) their MCS mapped
in the sense of an intron and in antisense of the ERE, and ii) if their MCS did not map in
other ERE sequences (for the complete decision tree, see Figure S3). Finally, MS/MS
spectra of the ereMAPs candidates were manually validated to ensure the quality of the
identification. Peptides that passed all these validation steps were then considered as

ereMAPs.

Characterization of ereMAPSs

During manual validation in IGV, characteristics regarding the family and group of the
ERE generating the peptides, the type of genomic region encoding the peptide (coding
sequence, intronic or intergenic) and the orientation of the peptide sequences (sense or
antisense) were retrieved for individual ereMAPs. When a peptide was identified in
multiple samples and had different characteristics depending upon the sample, all

possibilities were kept, otherwise they were aggregated to reduce redundancy. The
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expression levels of ERE families that were source or non-source of ereMAPS were
averaged among B-LCL samples, and their distributions were compared with a Mann-
Whitney test. We next compared the proportions of the three main groups of EREs (LINE,
LTR and SINE) in the genome, transcriptome and immunopeptidome. Representation of
EREs in the transcriptome was assessed in our B-LCL samples: the expression levels of
LINE, LTR and SINE elements were summed in each sample and divided by the expression
level of all EREs. We then averaged these transcriptomic proportions across all B-LCL
samples. We used immunopeptidomic proportions of LINE, LTR and SINE elements from
the ereMAPs identified in this work, whereas the genomics proportions were taken from
Treangen et al (8). A chi-squared test was performed to compare the proportions of ERE
groups at the genomic, transcriptomic and immunopeptidomic levels. The proportions of
ERE sequences located in intergenic and intronic regions as well as in coding sequences
were determined by intersecting the genomic localization of ERE sequences with the
localization of introns and exons from the UCSC Table Browser (files downloaded on
August 21, 2019). A chi-squared test was used to determine the enrichment of a certain
genomic region for ereMAPSs generation. Finally, Pearson correlation between the number
of ereMAPs generated by each ERE family and the number of copies of the family’s
sequence in the human genome (determined from RepeatMasker annotations) was

computed with a confidence level of 95%.

GTEX profiling of ereMAP expression
To evaluate the expression of the ereMAP-coding sequences in peripheral tissues, we

downloaded RNA-seq data of 30 tissues from the GTEXx consortium (phs000424.v7.p2).
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For the complete protocol of this analysis, see Laumont et al (25). Briefly, we generated
24-nucleotide-long k-mer databases for each sample, in which we queried each ereMAP-
coding sequence’s 24-nucleotide-long k-mer set. For each ereMAP, the minimal
occurrence in the k-mer set was used as the number of reads coding for the peptide in a
given sample (roveriap). The number of reads coding for a peptide was normalized between
RNA-seq experiments by dividing roveriap by the total number of reads of the sample and
multiplying this number by 108 to obtain the number of reads detected per hundred million
reads sequenced (rphm). We then averaged the log-transformed rphm values (logio(rphm
+ 1)) for each tissue, and an average expression superior to 10 rphm in a tissue was

considered as significant.

Amino acid composition of ereMAPs

In addition to the list of ereMAPs identified on our B-LCL samples, two linear and MHC
I-restricted epitopes’ sequences datasets were downloaded from the Immune Epitope
Database: a first dataset of 36 472 MAPs from any virus infecting human cells and a second
one of 282 069 human canonical MAPs (downloaded on August 7, 2019). Lists of 8 to 11-
amino-acid-long MAPs were extracted from these two datasets. Usage frequency of each
amino acid was calculated by dividing their occurrences by the total number of amino acids
in the ERE, viral and human canonical MAPs datasets. In parallel, datasets were separated
in subsets of 8, 9, 10 and 11-amino-acid-long MAPs, and frequencies of amino acids were
computed for each peptide position of each subset of MAPs. The 11-amino-acid-long MAP

subset was discarded because of an insufficient number of ereMAPs (n = 2).
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Viral homology

To assess the similarity between ereMAPs and viral peptides, we used the same datasets of
viral and human canonical MAPs from the Immune Epitope Database used for the amino
acid composition analysis (see section “Amino acid composition of ereMAPs” of the
Methods). We aligned ereMAP sequences to this database of viral peptides using version
2.2.28 of the Protein Basic Local Alignment Tool (BLASTp) (41) in the blastp-short mode
with the following arguments: -word_size 2, -gapopen 5, -gapextend 2, -matrix PAM30,
and -evalue 10 000 000. As a control, human canonical MAPs were aligned to the viral
peptides dataset with BLASTp. For the viral homology analysis, we compared the 104 ERE
MAPs to 10,000 groups of 104 randomly sampled canonical MAPs. We calculated the

percentage of identity (%I) of ereMAPs and canonical MAPs with viral peptides as:

Mppar X L
%,=%x100%
14

where Mmax IS the maximal percentage of identical matches with the viral MAPs database,
La is the length of the alignment and L is the length of the ereMAP or the canonical MAP.
The average percentage of identity of ereMAPs and each subgroup of the bootstrap
distribution was computed, and the p-value was determined as the number of times that the
percentage of identity of the bootstrap distribution was higher than the percentage of
identity of ereMAPs divided by the number of bootstrap iterations (10,000) as per Granados

et al (42).

Results

Expression of ERE transcripts in normal human tissues and cells
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To assess ERE expression in heathy human tissues, we quantified the expression levels of
the 809 ERE families contained in the RepeatMasker annotations in 1371 samples from 32
different healthy human tissues and cell types. We calculated the median expression of
each ERE family among samples of a given tissue or cell type (Table S2) and then
computed the row Z-score across tissues. Unsupervised hierarchical clustering of tissues
based on ERE expression allowed us to identify 3 clusters of high (cluster 1), intermediate
(cluster 2) and low (cluster 3) ERE expression (Fig. 1). High ERE expression (cluster 1) in
ESCs and testis was expected. The salient finding was the high ERE expression in mTECs
which, to the best of our knowledge, has never been reported before. Comparison with
hematopoietic cell types at several differentiation stages confirmed the high ERE
expression in mMTECs and ESCs (Figure S1A). For brevity, mTECs and ESCs will be
referred to as tissues in the following paragraphs. Computing the standard deviation of ERE
expression among individual samples for each tissue also revealed that most ERE families
displayed low interindividual variability (Figure S1B). Finally, while quintile ranking
analysis showed that ERE expression was generally concordant among ERE families in
each tissue analyzed, almost all tissues expressed some ERE families at high level (Figure

S2), suggesting that some tissue-specific factors regulate ERE expression in human tissues.

Most human tissues show a tissue-specific ERE expression.

To ascertain if expression of discrete ERE families was restricted to specific tissues, we
computed the t-index of tissue-specificity as defined by Yanai et al (29). Briefly, the -
index compares the expression of a gene in a set of tissues and has a value <0.4 for

housekeeping genes and >0.8 for tissue-restricted genes (43). We identified a total of 124
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ERE families with a tissue-restricted expression. As control, we computed the t-index for
annotated genes and known tissue-restricted genes (TRGs), such as INS, CRP and
CHRNAL. The majority (108/124) of the tissue-restricted ERE families (TRES) were
identified in ESCs, testis and mTECs, revealing that in addition to their high expression of
EREs, these tissues expressed a broader repertoire of EREs than other tissues (Fig. 1, Fig.
2A). Nonetheless, tissue-restricted expression of ERES is a widespread phenomenon across
human tissues because we identified TREs in 17 out of the 32 human tissues analyzed. For
a given tissue, the number of TRESs is positively associated with the number of TRGs (Fig.
2A) suggesting some commonality between expression of TRGs and TREs. We also
identified in TREs a significant enrichment of LTRs relative to LINE and SINE families
(Fig. 2B). Finally, TRES’ expression was typically restricted to fewer tissues than TRGs,
with 91.7% of TREs being tissue-specific (Fig. 2C, Table S3). Altogether, these results
show that ERE expression in healthy human tissues is widespread but not homogenous.
Indeed, 124 ERE families, most of which are LTR elements with low copy numbers,

showed tissue-specific expression.

Impact of the AIRE gene on ERE expression in mTECs

Out of the three tissues with high ERE expression (Fig. 1), two are known to express no or
barely detectable MHC-1 molecules (testis and ESCs, respectively), whereas mTECs
express standard levels of MHC | (44-46). Promiscuous expression of genomic sequences
Is a quintessential feature of mTECs that is driven in part by the AIRE gene and also by
other genes whose identity is still debated (47). Since the role of mTECs is to induce

tolerance to the MAPs that they display, EREs expressed in mTECs could be tolerogenic.
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However, T cell-mediated responses towards ERES were previously observed, suggesting
that the establishment of central tolerance towards EREs in the thymus is incomplete (48,
49). Therefore, we next investigated the contribution of the AIRE transcription factor to
ERE expression in mTECs. To do so, we quantified the expression of ERE families as well
as canonical genes in mTECs extracted from wild-type and AIRE knock-out mice.
Canonical genes were sorted in three categories based on St-Pierre et al (26) : i)
constitutively expressed genes, ii) AIRE-independent TRGs and iii) AIRE-dependent
TRGs. As expected, expression of AIRE-dependent TRGs significantly decreased in the
absence of AIRE, whereas constitutively expressed genes and AIRE-independent TRGs
were minimally affected by AIRE absence (Fig. 3A) Strikingly, global ERE expression
was independent of AIRE since it was unchanged in AIRE knock-out relative to wild-type
mice (Fig. 3A). Furthermore, computing Mann-Whitney tests for each ERE family revealed
that the absence of AIRE did not affect the expression of any ERE family (Fig. 3B). Hence,

expression of all ERE families was independent of AIRE in mTECSs.

Translation of ERE transcripts by healthy cells

We next sought to determine whether some ERE transcripts are translated in healthy cells.
When performed on whole cell extracts, MS is strongly biased for identification of
abundant and stable proteins at the proteome level. We therefore decided to investigate the
contribution of EREs to the immunopeptidome, which is mainly composed of peptides
derived from rapidly degraded proteins (50, 51). To do so, we reanalyzed previously
reported transcriptomic and peptidomic data from 16 B-lymphoblastoid cell lines (B-LCL)

(Table S4) (30). As conventional approaches do not include ERE sequences, precluding
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identification of ereMAPSs, we developed a proteogenomic workflow combining RNA-
sequencing and MS to enable ereMAP identification (Fig. 4A, Figure S3). Briefly, we
generated for each B-LCL a personalized proteome that contained only the sample’s
expressed sequences as well as its polymorphisms. Canonical and ERE RNA sequences
were translated in silico and concatenated to generate a personalized proteome that was
used to identify MAPs in MS analyses (Fig. 4A). For each MAP identified, we retrieved
the peptide’s coding sequence and proceeded to its annotation. Two categories of peptides
were kept as ereMAP candidates to be further manually validated: i) peptides that were
only seen in the ERE proteome, and ii) peptides seen in both the ERE and canonical
proteomes (“Maybe” candidates) and for which the occurrence of the coding sequences
was at least 10-fold higher in ERE reads compared to canonical reads. Our proteogenomic
approach enabled the identification of 130 ereMAPs in the 16 B-LCL samples analyzed,
revealing that ERE sequences are translated in non-neoplastic cells (Fig. 4B). Of those, 104
were non-redundant, confirming that ereMAPs can be shared by multiple individuals
(Table S5). Of course, the extent of interindividual sharing would be considerably greater
in cohorts of HLA-matched individuals since various HLA allotypes present different sets
of MAPs (50). Profiling of the ereMAPs” RNA expression in healthy human tissues showed
that 26% (27/104) of ereMAPs’ coding sequences were expressed at high levels by multiple
tissues (Figure S4). Hence, since highly expressed transcripts are preferential sources of
MAPs (30), ereMAPs derived from abundant transcripts could be presented on the surface
of a wide range of tissues (Figure S4). We also observed that ereMAPs were generated by
the three main groups of ERE sequences (SINE, LINE, LTR), confirming that they all have

the potential to be translated in healthy cells (Fig. 4C). Together, these proteogenomic
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analyses show that several EREs are translated and generate ereMAPs in B-LCLs, and

suggest that this is also the case for a wide range of human tissues.

We next investigated the mechanisms leading to presentation of ereMAPs on the cell
surface. First, we noted that ereMAPs preferentially derived from highly expressed ERE
transcripts (Fig. 5A). For the majority of ereMAPSs, this transcription was in the same sense
as the ERE sequence in the genome, but ~30% of ereMAPs (34/104) resulted from
antisense transcription (Fig. 5B), which is common for EREs (52-54). Even though
ereMAPs were generated by the three main groups of EREs (Fig. 4C), the relative
frequency of LTR translation was higher than that of LINEs and SINEs (Fig. 5C). Indeed,
the representation of LTRs in the immunopeptidome was superior to the space they occupy
in the genome or their abundance in the transcriptome (Fig. 5C). Additionally, intronic
EREs were a preferential source of ereMAPs: while 51% of EREs were intronic, 79% of
ereMAPs derived from intronic EREs (Fig. 5D). Finally, when we assigned a genomic
location to ereMAPSs, we noted that some ERE families generated several distinct ereMAPS
(Table S5). This can be explained in part by variations in the genomic space occupied by
the various ERE families. Indeed, for the various ERE families, we observed a moderate,
yet significant, correlation between the number of genomic copies and the number of
ereMAPs (Fig. 5E). Altogether, these results demonstrate that i) ereMAPS are generated by
both sense and antisense transcripts that are preferentially located in introns and expressed
at high levels, and ii) generation of ereMAPSs is enhanced when a family belongs to the

LTR group occupying a large genomic space.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

20

ereMAPs have a viral-like amino acid composition

We next asked to what extent ereMAPs and their coding transcripts might retain some
traces of their phylogeny (“viral features”). We found conspicuous differences between
amino acid frequencies in ereMAPs relative to both viral MAPs and canonical human
MAPs listed in the Immune Epitope Database (Fig. 6A). Indeed, ereMAPs showed lower
abundance of multiple amino acids (aspartic and glutamic acids, phenylalanine,
methionine, asparagine and tryptophan) and higher frequencies of leucine (L) and proline
(P) residues. Overall, ereMAPs had therefore a less balanced (i.e., more skewed) amino
acid composition. Furthermore, analysis of amino acid usage at individual MAP positions
revealed that, relative to human MAPs, some residues were specifically enriched in ERE
and viral MAPs, such as arginine (R) in P5 of 8 amino acid-long MAPs (Figure S5). We
therefore aligned ereMAPs sequences to the viral MAPs dataset using BLAST and
calculated the average percentage of identity between ereMAPs and viral MAPs. We then
compared this result with a bootstrap distribution (10,000 iterations) of randomly selected
canonical MAPs that were also aligned to the viral MAPs dataset (Fig. 6B). This analysis
revealed that ereMAPs had a significantly higher percentage of identity with viral MAPs
than all 10,000 randomly selected sets of canonical MAPs. Hence, ereMAPSs clearly retain

features that reflect their viral origin.

Discussion
Hundreds of scientific articles have alluded to the potential implication of EREs in various
human diseases, particularly cancer and autoimmunity (2, 55-60). We therefore felt

compelled to draw the global landscape of ERE expression in human somatic cells. We
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hope that this atlas will serve as a reference in further studies on ERES in various
physiological and pathological conditions. One salient point emerging from this atlas is
that ERE expression in somatic tissues is more pervasive and heterogeneous than
anticipated. All tissues express ERESs but the breadth and magnitude of ERE expression are
very heterogeneous from one tissue to another. Thus, we identified 124 ERE families
expressed in a tissue-restricted fashion, most of which were LTR elements. LTRs can act
as promoters and enhancers to stimulate gene expression (17, 19), and some LTR families
are tissue-specifically enriched in intronic enhancer regions containing transcription factor
binding sites (61). Our work therefore suggests that EREs, and more particularly LTRs,
may regulate gene expression in a wide range of somatic tissues. In future experiments,
single cell analyses might unveil a further level of heterogeneity that we could not capture
by global tissue expression profiling. It was previously reported that ERES were expressed
at high levels in two MHC I-deficient cell types: ESCs and testis (62, 63). That similar
levels of expression were found in mTECs for three major groups of EREs (LINE, SINE
and LTR) (Fig. 1) is remarkable and raises fundamental questions as to the mechanism and
role of ERE expression in mTECs. The key role of mTECs is to induce central immune
tolerance to a vast repertoire of self-peptides displayed by somatic tissues (47, 64). Given
the large-scale expression of EREs in peripheral tissues highlighted in the present report,
we speculate that it may be important for gnathostomes to be tolerant to a wide array of
ERE-derived antigens. As a corollary, when EREs are overexpressed, for instance in cancer
cells (65, 66), only those that are not expressed in mTECs may be immunogenic. Induction
of tolerance to the multitude of self-peptides depends on the unique ability of mTECs to

promiscuously express thousands of otherwise tissue-specific genes (67, 68). Promiscuous
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gene expression in mTECSs is driven in part by AIRE and in part by other genes whose
identity is unresolved and may include FEZF2 as well as genes involved in DNA
methylation, histone modification and RNA splicing (26, 47, 69-71). Our data clearly show
that the overexpression of numerous ERE families in mTECs is entirely AIRE-independent
(Fig. 3). This observation underscores the relevance of further studies on the mechanisms

of AIRE-independent promiscuous gene expression in mTECs.

A notable finding was that our MS analyses identified ereMAPs derived from LINEs (n =
48), SINEs (n = 29) and LTRs (n= 27). This means that these EREs are translated and
produce peptides that are adequately processed for presentation by MHC-I molecules. A
few ereMAPs have previously been identified in cancer cells (25, 59, 66). The presence of
ereMAPs on normal cells means that the mere identification of ereMAPS on cancer cells is
not sufficient to infer that these MAPs are cancer-specific nor immunogenic. Nevertheless,
we have previously shown in mice that some ereMAPs are truly cancer-specific,
immunogenic and can elicit protective anti-tumor responses (25). Furthermore, compelling
evidence has been reported that some LTRs can generate immunogenic ereMAPS in clear
cell renal cell carcinoma in humans (56). These studies coupled to our finding that
ereMAPs retain viral like features (Fig. 6) suggest that ereMAPS may represent particularly
attractive targets for the development of cancer vaccines. In line with this, we must also
emphasize that the number of translated EREs is certainly superior to the number of
ereMAPs identified in our study: i) collectively our 16 B-LCLs expressed 39 MHC-I
allotypes out of the thousands that can be found in human populations (Table S5), and ii)

like canonical proteins (30), some translated EREs may not generate MAPs.
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We anticipate that the biogenesis of ereMAPSs in normal and neoplastic cells will be a fertile
field of investigation. First, several observations suggest that the landscape of ereMAPS is
highly diversified: i) the MAP repertoire is shaped by several cell type-specific variations
in gene expression (72), and ii) ERE transcription is highly heterogeneous among various
cell types (Fig. 1) and can be drastically affected by neoplastic transformation (73). The
processing of ereMAPs is also intriguing. Indeed, following their integration in human
genomes, EREs have undergone several rounds of mutation and truncation and very few
have previously been shown to be translated (2, 74). Because ERE sequences are
degenerate, they are not expected to vyield stable polypeptides. However, MAPSs
preferentially derive from rapidly degraded unstable peptides, commonly referred to as
defective ribosomal products (51). We therefore hypothesize that for most EREs,
translation may yield ereMAPs but not stable long-lived proteins. In other words, the
products of ERE translation may be detectable only in the immunopeptidome and not in

the proteome.

Conclusions

In summary, transcriptomic analysis demonstrated that ERE expression is heterogeneous
in healthy human tissues, with a higher expression in mTECs, ESCs and testis than in other
tissues. mTECs are the sole normal human cells that express high levels of both EREs and
MHC-I molecules. In mutant mice, we report that the exceptional expression of ERESs in
MTECs is AIRE-independent. We also identified ERE families expressed in a tissue-

restricted manner, revealing that most healthy human tissues have a unique ERE signature.
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MS analyses of 16 B-LCL samples enabled the identification of 104 non-redundant
ereMAPs, showing that EREs contribute to the immunopeptidome of healthy cells.
Interestingly, sharing of ereMAPs by multiple B-LCL samples was observed, and
ereMAPs’ coding sequences are expressed at similar levels in other somatic tissues,
suggesting that ereMAPs could also be presented by other cell types. Finally, we found that
ereMAPs bear strong homology to viral MAPs and therefore have the potential to be

particularly immunogenic.
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Fig. 1. Expression profiling of endogenous retroelements in 30 healthy human tissues and
2 cell types. Hierarchical clustering of tissues based on the expression levels of the 809
ERE families sorted in LINE, LTR and SINE elements. For each tissue, mean expression
of ERE families was computed among available samples. Row Z-scores were then

determined for each ERE family across tissues.

Fig. 2. Tissue specificity of ERE expression in healthy human tissues. Tissue-specificity
indexes were computed for ERE families as well as annotated genes. (A) Barplots showing
the number of TRGs and TREs for each of the 32 healthy human tissues analyzed. (B) Pie
charts depicting the proportions of the 809 ERE families (left panel) or TREs (right panel)
belonging to the LINE, LTR and SINE groups (Chi-squared test, *P<0.05). (C) Histogram

showing the number of tissues in which each identified TRGs and TRES are overexpressed.

Fig. 3. ERE expression is independent of AIRE in mouse mTECs. (A) Boxplot showing
the expression levels of constitutively expressed genes, AIRE-dependent TRGs, AIRE-
independent TRGs (lists of genes based on St-Pierre et al (26)) as well as ERE families in
wild-type (n=3) and AIRE knock-out (n=3) mice. (B) Heatmap depicting the expression
levels of ERE families in each replicate of wild-type and AIRE knock-out murine mTECs.
A Mann-Whitney test was used for statistical analysis in both panels, n.s. not significant

(P>0.05), ***P<0.001.

Fig. 4. ERE sequences are translated and contribute to the immunopeptidome of B-LCLs.

(A) Schematic depicting how the personalized proteome of each B-LCL sample was
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generated. The personalized proteome was generated by combining the ERE and the
canonical proteomes and then used to identify MAPs by MS. MAPs were annotated to keep
only ereMAPs. (B, C) Barplots showing the number of ereMAPs identified in B-LCL
samples separated by (B) individual samples analyzed and (C) according to the three main

groups of EREs.

Fig. 5. Sense transcription of intronic EREs is the main source of ereMAPs. (A) Boxplot
showing the mean expression levels (logio(TPM + 1)) of ERE families that are source or
non-source of ereMAPs in B-LCLs (Mann-Whitney test, ***P<0.001). (B) Barplot
showing the number of ereMAPs generated by sense or antisense transcription of ERE
sequences. (C) Stacked barplot depicting the proportions of LINE, LTR and SINE groups
in the genome, transcriptome and immunopeptidome. Statistical significance was
computed with a chi-squared test (**P<0.01). (D) Pie charts depicting the percentages of
all ERE sequences (left) and of ereMAPs-coding sequences (right) that are localized in
intergenic regions, introns or coding sequences (Chi-squared test, ***P<0.001). (E)
Scatterplot showing the Spearman correlation between the number of ereMAPS generated
by each ERE family and the number of copies of the ERE family’s sequence in the human

genome based on RepeatMasker annotations.

Fig. 6. Endogenous retroelements retained sequence homology with viruses. (A) Barplot
showing the frequencies of each amino acid in ereMAPs, viral MAPs and human canonical
MAPs. Abbreviations for amino acids: Y, Tyrosine; W, Tryptophan; V, Valine; T,

Threonine; S, Serine; R, Arginine; Q, Glutamine; P, Proline; N, Asparagine; M,
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Methionine; L, Leucine; K, Lysine; I, Isoleucine; H, Histidine; G, Glycine; F,
Phenylalanine; E, Glutamic Acid; D, Aspartic Acid; C, Cysteine; A, Alanine. (B) Human
canonical MAPs and ereMAPs were aligned to a database of viral peptides using BLAST,
and the percentage of identity of their sequences with viral peptides was computed. The
red line represents the average percentage of identity of ereMAPs with viral MAPs. A
bootstrap procedure was used to calculate the percentage of identity of 10,000 sets of 104
randomly selected human canonical MAPs with viral MAPs. P-value was calculated as the
number of times the bootstrap distribution had a higher percentage of identity with viral

MAPs than ereMAPs (P<0.0001).



