

1 **Widespread and tissue-specific expression of endogenous retroelements in human**
2 **somatic tissues**

3

4

5 Jean-David Larouche^{1,2}, Assya Trofimov^{1,3}, Leslie Hesnard^{1,2}, Gregory Ehx^{1,2}, Krystel
6 Vincent^{1,2}, Chantal Durette¹, Patrick Gendron¹, Jean-Philippe Laverdure¹, Éric Bonneil¹,
7 Caroline Côté¹, Sébastien Lemieux^{1,3}, Pierre Thibault^{1,4} and Claude Perreault^{1,2,5*}.

8

9

10 1. Institute of Research in Immunology and Cancer, Université de Montréal, Montréal,
11 QC, Canada.

12 2. Department of Medicine, Université de Montréal, Montréal, QC, Canada.

13 3. Department of Informatics and Operational Research, Université de Montréal,
14 Montréal, QC, Canada.

15 4. Department of Chemistry, Université de Montréal, Montréal, QC, Canada.

16 5. Division of Hematology-Oncology, Hôpital Maisonneuve-Rosemont, Montréal, QC,
17 Canada.

18

19 *Correspondence:
20 Claude Perreault
21 IRIC - Université de Montréal,
22 P.O. Box 6128, Downtown Station
23 QC, Canada, H3C 3J7
24 claude.perreault@umontreal.ca

25

26

27

28

29

30 **Abstract**

31 **Background:** Endogenous retroelements (EREs) constitute about 42% of the human
32 genome and have been implicated in common human diseases such as autoimmunity and
33 cancer. The dominant paradigm holds that EREs are expressed in embryonic stem cells
34 (ESCs) and germline cells but are repressed in differentiated somatic cells. Despite
35 evidence that some EREs can be expressed at the RNA and protein levels in specific
36 contexts, a systems-level evaluation of their expression in human tissues is lacking.

37

38 **Methods:** Using RNA-sequencing data, we analyzed ERE expression in 32 human tissues,
39 including medullary thymic epithelial cells (mTECs). A tissue-specificity index was
40 computed to identify tissue-restricted ERE families. We also analyzed the transcriptome of
41 mTECs in wild-type and AIRE-deficient mice. Finally, we developed a proteogenomic
42 workflow combining RNA-sequencing and mass spectrometry (MS) in order to evaluate
43 whether EREs might be translated and generate MHC I-associated peptides (MAP) in B-
44 lymphoblastoid cell lines (B-LCL) from 16 individuals.

45

46 **Results:** We report that all human tissues express EREs but the breadth and magnitude of
47 ERE expression are very heterogeneous from one tissue to another. ERE expression was
48 particularly high in two MHC-I-deficient tissues (ESCs and testis) and one MHC-I-
49 expressing tissue, mTECs. In mutant mice, we report that the exceptional expression of
50 EREs in mTECs was AIRE-independent. MS sequencing identified 104 non-redundant
51 MAPs in B-LCLs. These MAPs preferentially derived from sense translation of intronic

52 EREs. Notably, detailed analyses of their amino acid composition revealed that ERE-
53 derived MAPs presented homology to viral MAPs.

54

55 **Conclusions:** This study shows that ERE expression in somatic tissues is more pervasive
56 and heterogeneous than anticipated. The high and diversified expression of EREs in
57 mTECs and their ability to generate MAPs suggest that EREs may play an important role
58 in the establishment of self-tolerance. The viral-like properties of ERE-derived MAPs
59 suggest that those not expressed in mTECs can be highly immunogenic.

60

61 **Keywords:** Endogenous retroelements, immunopeptidome, major histocompatibility
62 complex, medullary thymic epithelial cells, somatic tissues, systems biology,
63 transcriptome.

64

65 **Background**

66 Endogenous retroelements (EREs) are remnants of transposable elements that successfully
67 integrated our germline DNA millions of years ago (1, 2). After initial integration in the
68 genome, EREs further increased their copy number via several successive waves of
69 retrotransposition (3, 4). Now, most ERE sequences contain mutated or truncated open
70 reading frames and have lost their capacity to transpose in the genome (2). Phylogenetic
71 analyses have allowed the classification of EREs in families based on sequence homology
72 (5, 6). Most EREs are categorized in three groups, which altogether comprise ~40-50% of
73 the human genome: the long-terminal repeats (LTR) as well as the long and short
74 interspersed nuclear elements (LINE and SINE) (7-9).

75

76 Hosts repress ERE expression in order to protect their genomic integrity from deleterious
77 insertions of EREs in open reading frames (10, 11). Indeed, a strict epigenetic regulation
78 of ERE sequences is applied at both the DNA and histone levels (12). Growing evidence
79 suggests that KRAB zinc finger proteins (KZFPs) are involved in an evolutionary arms
80 race to repress the expression of novel ERE integrations (13). KZFPs recruit numerous
81 restriction factors to silence ERE sequences: the histone methyltransferase SETDB1, DNA
82 methyltransferase proteins, the nucleosome remodeling and deacetylase complex NuRD
83 and the heterochromatin protein HP1 (14). KZFP-independent mechanisms, such as the
84 HUSH complex (15) and the histone demethylase LSD1 (16), also apply non-redundant
85 epigenetic silencing on ERE sequences. Nevertheless, some “domesticated” EREs
86 contribute at many levels to human development and survival. Indeed, ERE sequences
87 provide promoters and enhancers to several human genes and thereby regulate the
88 expression of genes implicated in interferon responses, DNA damage response in the male
89 germline and maintenance of stem cell pluripotency (17-19). Additionally, a LINE-derived
90 transcript is essential to embryonic stem cells (ESCs) self-renewal via activation of rRNA
91 synthesis (20). Finally, syncytins are ERE-derived proteins that mediate cell-cell fusion to
92 allow formation of the placental syncytium (21, 22).

93

94 The dominant paradigm holds that EREs are expressed in ESCs as well as in germline cells,
95 but are repressed in other differentiated cells outside specific contexts in which they have
96 relevant functions (12). However, studies on ERE expression have been limited to subsets
97 of ERE families in one or few tissues. Additionally, to our knowledge, no study has

98 addressed ERE expression in the thymus where central T-cell immune tolerance is
99 established. Hence, we have no clue as to the ability of EREs to induce T-cell tolerance. In
100 the present study, we established an atlas of ERE expression in a panel of 30 healthy human
101 tissues and 2 cell types, including medullary thymic epithelial cells (mTECs). We first
102 demonstrate that ERE expression is widespread in human tissues, but with tissue-specific
103 profiles. Notably, three cell types showed particularly high and diversified expression of
104 EREs: ESCs, testis and mTECs. By analyzing the transcriptome of wild-type and AIRE-
105 deficient mice, we found that the impressive expression of EREs in mTECs was AIRE-
106 independent. In addition, our mass spectrometry (MS) analyses revealed that the three main
107 groups of EREs generate MHC I-associated peptides (MAPs) in healthy cells. Finally, we
108 demonstrate that ERE-derived MAPs (ereMAPs) retained strong homology to viruses.

109

110 **Methods**

111 **Transcriptomic data manifest**

112 RNA-seq data of 30 non-redundant human tissues were downloaded from the Genotype-
113 Tissue Expression (GTEx) on the dbGaP portal (accession number phs000424.v8.p2.c1)
114 (23). When possible, 50 samples were randomly selected per tissue, otherwise all available
115 samples were analyzed. Transcriptomic data of ESCs were downloaded from the sequence
116 read archive from Lister *et al* (24). RNA-seq data of purified hematopoietic cells were
117 obtained from the Gene Expression Omnibus (GEO) (projects PRJNA384650 and
118 PRJNA225999). Six human mTEC samples were analyzed: four from (25) and two
119 additional samples processed with the same protocol with minor modifications: i) after
120 transfer to our laboratory, thymic samples were frozen in cryovials containing a

121 cryoprotective medium composed of 5% DMSO and 95% Dextran-40 solution (5%
122 concentration), ii) CD45⁻ cells were magnetically enriched with the CD45 Microbeads
123 human kit from Miltenyi Biotec (no. 130-045-801) prior to mTEC sorting, iii) cDNA
124 libraries were prepared with the KAPA mRNASeq stranded kit (KAPA, Cat no. KK8421),
125 and iv) sequencing generated around 400x10⁶ reads per sample. For the complete list of
126 human samples analyzed, see Table S1 of Additional File 2. Mature murine mTECs
127 (mTEC^{hi}) data were obtained from St-Pierre *et al* (26) on GEO (accession GSE65617).

128

129 **Expression of transcripts derived from EREs and canonical genes**

130 RNA-seq reads of human samples were trimmed with Trimmomatic 0.35 (27) to remove
131 adapters and low quality sequences. Expression levels of transcripts and endogenous
132 retroelements were quantified in transcripts per million (TPM) with kallisto 0.43.1 (28)
133 with an index composed of i) GRCh38.88 transcripts and human ERE sequences from
134 RepeatMasker (downloaded on the UCSC Table Browser on July 19, 2018) or ii) GRCm38
135 transcripts and murine ERE sequences from RepeatMasker (downloaded on the UCSC
136 Table Browser on March 11, 2019) for human and murine samples, respectively. TPM
137 values of transcripts and ERE sequences were grouped in genes and ERE families based
138 on Ensembl and RepeatMasker annotations, respectively.

139

140 **ERE expression profiling in human tissues**

141 Expression levels of ERE families were computed for each tissue by calculating the median
142 expression across all samples for a given tissue. The numbers of standard deviations from
143 the mean (row Z-score) of ERE families for each tissue were determined using the scale

144 function in R. The Euclidean distance was then calculated between all tissues based on the
145 row Z-scores of ERE families, followed by an unsupervised hierarchical clustering. Finally,
146 the tree was manually separated in three clusters of tissues. Standard deviations of
147 expression of each ERE family between samples of a given tissue were also computed.

148

149 **Quintile ranking of ERE expression in somatic tissues**

150 Median expression of ERE families were calculated among all samples of a given tissue.
151 Tissues were then ranked based on their expression level of each ERE family individually
152 and assigned to quintiles of 6, 6, 8, 6 and 6 tissues, respectively. Finally, tissues were sorted
153 based on the number of times they were assigned to the fifth quintile.

154

155 **Identification and characterization of tissue-restricted EREs (TREs)**

156 The τ -index of tissue specificity was calculated as per Yanai *et al* (29). Briefly, the τ -index
157 is defined as:

158
$$\tau = \frac{\sum_{i=1}^N (1 - x_i)}{N - 1}$$

159 where x_i is the level of expression of a gene or ERE family in tissue i normalized to its
160 maximal expression level among tissues and N is the number of tissues. Genes and ERE
161 families with $\tau \geq 0.8$ were considered as tissue-restricted. To determine in which tissue(s) a
162 tissue-restricted gene or ERE family was overexpressed, a binary pattern was computed as
163 reported by Yanai *et al* (29). Briefly, tissues were sorted based on their expression level for
164 each tissue-restricted gene (TRG) or ERE family (TRE). The distance between neighboring
165 tissues was calculated, and the maximal distance or ‘gap’ was used as threshold for the
166 binary pattern. Tissues with an expression level above the gap were considered as

167 overexpressing the TRG or TRE while other tissues were considered as underexpressing
168 them, and were given a value of 1 or 0, respectively. ERE groups were determined for all
169 identified TREs, and the proportions of LINE, LTR and SINE elements in TREs were
170 compared to their representation among ERE families. A chi-squared test was performed
171 to assess enrichment of discrete ERE groups among TREs. Using the above described
172 binary pattern, the number of overexpressing tissues was determined for each TRG or TRE.

173

174 **Impact of AIRE on ERE expression in mTECs**

175 Lists of AIRE-dependent, AIRE-independent and constitutively expressed genes were
176 generated as per St-Pierre *et al* (26). Expression levels of these three sets of genes as well
177 as ERE families were compared between wild-type (n=3) and AIRE knock-out (n=3)
178 murine mTEC^{hi} using Wilcoxon tests. Expression levels of each individual ERE family
179 were also compared between wild-type and AIRE knock-out mice using Wilcoxon tests.

180

181 **MS analyses**

182 Peptidomic data of a cohort of 16 B-lymphoblastoid cell lines (B-LCL) samples from
183 Pearson *et al* (30) were downloaded from the Pride Archive (Project PXD004023). For the
184 detailed protocol of mild acid elution and peptide processing, see Granados *et al* (31).
185 Peptides were identified using Peaks X (Bioinformatics Solution Inc.) and peptide
186 sequences were searched against the personalized proteome of each sample. For peptide
187 identification, tolerance was set at 5 ppm and 0.02 Da for precursor and fragment ions,
188 respectively. Occurrence of oxidation (M) and deamination (NQ) were considered as post-
189 translational modifications.

190

191 **Identification of ereMAPs**

192 For individual B-LCL samples, RNA-seq reads were aligned to the reference genome
193 GRCh38.88 using STAR (32) with default parameters. Using the intersect mode of the
194 BEDTools suite (33), reads entirely mapping in RepeatMasker and Ensembl annotations
195 were separated in ERE and canonical datasets respectively, and any read seen in the
196 canonical dataset was discarded from the ERE dataset. Unmapped reads, secondary
197 alignments and low quality reads were then removed from the ERE dataset using Samtools
198 view (34) with the following parameters: -f “163”, “147”, “99” or “83” and -F “3852”. In
199 order to keep a manageable database size, ambiguous nucleotides were trimmed from reads
200 of the ERE dataset, followed by translation in all possible reading frames. Finally, the
201 resulting ERE amino acid sequences were spliced to remove sequences following stop
202 codons. Only sequences of at least 8 amino acids were kept and given a unique ID to
203 generate a theoretical ERE proteome. In parallel, a canonical personalized proteome
204 containing the polymorphisms of the donor was generated as per (25) for each sample.
205 Briefly, single-nucleotide variants were detected using freebayes version 1.0.2 (35), and
206 variants with a minimal alternate count of 5 were inserted in transcript sequences using
207 pyGeno (36). Expression levels of transcripts were quantified with kallisto using
208 GRCh38.88 transcripts (downloaded from Ensembl) as index, and only transcripts with a
209 TPM>0 were translated into a canonical proteome, which was concatenated with the ERE
210 proteome to generate a Personalized Proteome unique to each sample.

211

212 **Peptide annotation and validation**

213 Following peptide identification, a list of unique peptides was extracted for each sample
214 and a false discovery rate (FDR) of 5% was applied on the peptide scores. Binding affinities
215 to the sample's HLA alleles were predicted with NetMHC4.0 (37) or with NetMHCpan-
216 4.0 (38) when an HLA allele was not included in NetMHC4.0, and only 8 to 11-amino-
217 acid-long peptides with a percentile rank $\leq 2\%$ were included for further annotation. For
218 each peptide, a binary code was generated based on the presence or absence of its amino
219 acid sequence in the ERE and canonical proteomes and an ERE status of "Yes", "Maybe"
220 or "No" was given to the peptide accordingly. Peptides that were seen only in the ERE
221 proteome or the canonical proteome were classified as "Yes" and "No" respectively. To
222 determine if candidates with a "Maybe" status were ereMAP candidates, we retrieved all
223 their possible nucleotide coding sequences from the sample's reads and split them in a set
224 of 24-nucleotide-long subsequences (k-mers). These k-mers were then queried in 24-
225 nucleotide-long k-mer databases generated from our ERE and canonical reads datasets
226 using Jellyfish version 2.2.3 (39) (with the -C argument to consider the read's sequence
227 and its reverse complement). Only peptides encoded by more than one read were kept for
228 further validation to reduce risks of sequencing errors. If at least one of the MAP-coding
229 sequences (MCS) was only seen in the canonical read dataset, the peptide was discarded.
230 "Maybe" peptides were considered as ereMAP candidates if the minimal occurrence of
231 their most abundant MCS was at least 10 times higher in the ERE k-mer database than in
232 the canonical k-mer database. Because leucine and isoleucine variants are not
233 distinguishable by standard MS approaches, all possible I/L variants for each ereMAPs
234 candidates were searched in the personalized proteome. If one of the I/L variants had a
235 higher expression in the personalized proteome, the ereMAP candidate was discarded. The

236 genomic region generating each ereMAP candidate was determined by mapping the reads
237 coding for the peptide on the GRCh38.88 assembly of the reference genome with the BLAT
238 algorithm of the UCSC Genome Browser. If a clear genomic region could not be found,
239 the peptide was discarded. Genomic regions coding for ereMAPs candidates were then
240 inspected in IGV (40) to see if the MCS contained known germline polymorphisms (using
241 dbSNP v.149), and candidates were kept or discarded based on their orientation in ERE
242 and annotated sequences. Briefly, any ereMAP candidate whose MCS mapped in the sense
243 of a gene coding sequence was discarded, whereas candidates whose coding sequences
244 mapped in intergenic regions were considered as ereMAPs no matter their orientation.
245 Candidates were also discarded if they fulfilled these two conditions: i) their MCS mapped
246 in the sense of an intron and in antisense of the ERE, and ii) if their MCS did not map in
247 other ERE sequences (for the complete decision tree, see Figure S3). Finally, MS/MS
248 spectra of the ereMAPs candidates were manually validated to ensure the quality of the
249 identification. Peptides that passed all these validation steps were then considered as
250 ereMAPs.

251

252 **Characterization of ereMAPs**

253 During manual validation in IGV, characteristics regarding the family and group of the
254 ERE generating the peptides, the type of genomic region encoding the peptide (coding
255 sequence, intronic or intergenic) and the orientation of the peptide sequences (sense or
256 antisense) were retrieved for individual ereMAPs. When a peptide was identified in
257 multiple samples and had different characteristics depending upon the sample, all
258 possibilities were kept, otherwise they were aggregated to reduce redundancy. The

259 expression levels of ERE families that were source or non-source of ereMAPs were
260 averaged among B-LCL samples, and their distributions were compared with a Mann-
261 Whitney test. We next compared the proportions of the three main groups of EREs (LINE,
262 LTR and SINE) in the genome, transcriptome and immunopeptidome. Representation of
263 EREs in the transcriptome was assessed in our B-LCL samples: the expression levels of
264 LINE, LTR and SINE elements were summed in each sample and divided by the expression
265 level of all EREs. We then averaged these transcriptomic proportions across all B-LCL
266 samples. We used immunopeptidomic proportions of LINE, LTR and SINE elements from
267 the ereMAPs identified in this work, whereas the genomics proportions were taken from
268 Treangen *et al* (8). A chi-squared test was performed to compare the proportions of ERE
269 groups at the genomic, transcriptomic and immunopeptidomic levels. The proportions of
270 ERE sequences located in intergenic and intronic regions as well as in coding sequences
271 were determined by intersecting the genomic localization of ERE sequences with the
272 localization of introns and exons from the UCSC Table Browser (files downloaded on
273 August 21, 2019). A chi-squared test was used to determine the enrichment of a certain
274 genomic region for ereMAPs generation. Finally, Pearson correlation between the number
275 of ereMAPs generated by each ERE family and the number of copies of the family's
276 sequence in the human genome (determined from RepeatMasker annotations) was
277 computed with a confidence level of 95%.

278

279 **GTEX profiling of ereMAP expression**

280 To evaluate the expression of the ereMAP-coding sequences in peripheral tissues, we
281 downloaded RNA-seq data of 30 tissues from the GTEx consortium (phs000424.v7.p2).

282 For the complete protocol of this analysis, see Laumont *et al* (25). Briefly, we generated
283 24-nucleotide-long k-mer databases for each sample, in which we queried each ereMAP-
284 coding sequence's 24-nucleotide-long k-mer set. For each ereMAP, the minimal
285 occurrence in the k-mer set was used as the number of reads coding for the peptide in a
286 given sample ($r_{overlap}$). The number of reads coding for a peptide was normalized between
287 RNA-seq experiments by dividing $r_{overlap}$ by the total number of reads of the sample and
288 multiplying this number by 10^8 to obtain the number of reads detected per hundred million
289 reads sequenced (rphm). We then averaged the log-transformed rphm values ($\log_{10}(rphm$
290 $+ 1)$) for each tissue, and an average expression superior to 10 rphm in a tissue was
291 considered as significant.

292

293 **Amino acid composition of ereMAPs**

294 In addition to the list of ereMAPs identified on our B-LCL samples, two linear and MHC
295 I-restricted epitopes' sequences datasets were downloaded from the Immune Epitope
296 Database: a first dataset of 36 472 MAPs from any virus infecting human cells and a second
297 one of 282 069 human canonical MAPs (downloaded on August 7, 2019). Lists of 8 to 11-
298 amino-acid-long MAPs were extracted from these two datasets. Usage frequency of each
299 amino acid was calculated by dividing their occurrences by the total number of amino acids
300 in the ERE, viral and human canonical MAPs datasets. In parallel, datasets were separated
301 in subsets of 8, 9, 10 and 11-amino-acid-long MAPs, and frequencies of amino acids were
302 computed for each peptide position of each subset of MAPs. The 11-amino-acid-long MAP
303 subset was discarded because of an insufficient number of ereMAPs (n = 2).

304

305 **Viral homology**

306 To assess the similarity between ereMAPs and viral peptides, we used the same datasets of
307 viral and human canonical MAPs from the Immune Epitope Database used for the amino
308 acid composition analysis (see section “Amino acid composition of ereMAPs” of the
309 Methods). We aligned ereMAP sequences to this database of viral peptides using version
310 2.2.28 of the Protein Basic Local Alignment Tool (BLASTp) (41) in the blastp-short mode
311 with the following arguments: -word_size 2, -gapopen 5, -gapextend 2, -matrix PAM30,
312 and -evalue 10 000 000. As a control, human canonical MAPs were aligned to the viral
313 peptides dataset with BLASTp. For the viral homology analysis, we compared the 104 ERE
314 MAPs to 10,000 groups of 104 randomly sampled canonical MAPs. We calculated the
315 percentage of identity (%I) of ereMAPs and canonical MAPs with viral peptides as:

$$316 \quad \%_I = \frac{M_{max} \times L_a}{L_p} \times 100\%$$

317 where M_{max} is the maximal percentage of identical matches with the viral MAPs database,
318 L_a is the length of the alignment and L_p is the length of the ereMAP or the canonical MAP.
319 The average percentage of identity of ereMAPs and each subgroup of the bootstrap
320 distribution was computed, and the p-value was determined as the number of times that the
321 percentage of identity of the bootstrap distribution was higher than the percentage of
322 identity of ereMAPs divided by the number of bootstrap iterations (10,000) as per Granados
323 *et al* (42).

324

325 **Results**326 **Expression of ERE transcripts in normal human tissues and cells**

327 To assess ERE expression in healthy human tissues, we quantified the expression levels of
328 the 809 ERE families contained in the RepeatMasker annotations in 1371 samples from 32
329 different healthy human tissues and cell types. We calculated the median expression of
330 each ERE family among samples of a given tissue or cell type (Table S2) and then
331 computed the row Z-score across tissues. Unsupervised hierarchical clustering of tissues
332 based on ERE expression allowed us to identify 3 clusters of high (cluster 1), intermediate
333 (cluster 2) and low (cluster 3) ERE expression (Fig. 1). High ERE expression (cluster 1) in
334 ESCs and testis was expected. The salient finding was the high ERE expression in mTECs
335 which, to the best of our knowledge, has never been reported before. Comparison with
336 hematopoietic cell types at several differentiation stages confirmed the high ERE
337 expression in mTECs and ESCs (Figure S1A). For brevity, mTECs and ESCs will be
338 referred to as tissues in the following paragraphs. Computing the standard deviation of ERE
339 expression among individual samples for each tissue also revealed that most ERE families
340 displayed low interindividual variability (Figure S1B). Finally, while quintile ranking
341 analysis showed that ERE expression was generally concordant among ERE families in
342 each tissue analyzed, almost all tissues expressed some ERE families at high level (Figure
343 S2), suggesting that some tissue-specific factors regulate ERE expression in human tissues.
344

345 **Most human tissues show a tissue-specific ERE expression.**

346 To ascertain if expression of discrete ERE families was restricted to specific tissues, we
347 computed the τ -index of tissue-specificity as defined by Yanai *et al* (29). Briefly, the τ -
348 index compares the expression of a gene in a set of tissues and has a value ≤ 0.4 for
349 housekeeping genes and ≥ 0.8 for tissue-restricted genes (43). We identified a total of 124

350 ERE families with a tissue-restricted expression. As control, we computed the τ -index for
351 annotated genes and known tissue-restricted genes (TRGs), such as *INS*, *CRP* and
352 *CHRNA1*. The majority (108/124) of the tissue-restricted ERE families (TREs) were
353 identified in ESCs, testis and mTECs, revealing that in addition to their high expression of
354 EREs, these tissues expressed a broader repertoire of EREs than other tissues (Fig. 1, Fig.
355 2A). Nonetheless, tissue-restricted expression of EREs is a widespread phenomenon across
356 human tissues because we identified TREs in 17 out of the 32 human tissues analyzed. For
357 a given tissue, the number of TREs is positively associated with the number of TRGs (Fig.
358 2A) suggesting some commonality between expression of TRGs and TREs. We also
359 identified in TREs a significant enrichment of LTRs relative to LINE and SINE families
360 (Fig. 2B). Finally, TREs' expression was typically restricted to fewer tissues than TRGs,
361 with 91.7% of TREs being tissue-specific (Fig. 2C, Table S3). Altogether, these results
362 show that ERE expression in healthy human tissues is widespread but not homogenous.
363 Indeed, 124 ERE families, most of which are LTR elements with low copy numbers,
364 showed tissue-specific expression.

365

366 **Impact of the *AIRE* gene on ERE expression in mTECs**

367 Out of the three tissues with high ERE expression (Fig. 1), two are known to express no or
368 barely detectable MHC-I molecules (testis and ESCs, respectively), whereas mTECs
369 express standard levels of MHC I (44-46). Promiscuous expression of genomic sequences
370 is a quintessential feature of mTECs that is driven in part by the *AIRE* gene and also by
371 other genes whose identity is still debated (47). Since the role of mTECs is to induce
372 tolerance to the MAPs that they display, EREs expressed in mTECs could be tolerogenic.

373 However, T cell-mediated responses towards EREs were previously observed, suggesting
374 that the establishment of central tolerance towards EREs in the thymus is incomplete (48,
375 49). Therefore, we next investigated the contribution of the AIRE transcription factor to
376 ERE expression in mTECs. To do so, we quantified the expression of ERE families as well
377 as canonical genes in mTECs extracted from wild-type and AIRE knock-out mice.
378 Canonical genes were sorted in three categories based on St-Pierre *et al* (26) : i)
379 constitutively expressed genes, ii) AIRE-independent TRGs and iii) AIRE-dependent
380 TRGs. As expected, expression of AIRE-dependent TRGs significantly decreased in the
381 absence of AIRE, whereas constitutively expressed genes and AIRE-independent TRGs
382 were minimally affected by AIRE absence (Fig. 3A) Strikingly, global ERE expression
383 was independent of AIRE since it was unchanged in AIRE knock-out relative to wild-type
384 mice (Fig. 3A). Furthermore, computing Mann-Whitney tests for each ERE family revealed
385 that the absence of AIRE did not affect the expression of any ERE family (Fig. 3B). Hence,
386 expression of all ERE families was independent of AIRE in mTECs.

387

388 **Translation of ERE transcripts by healthy cells**

389 We next sought to determine whether some ERE transcripts are translated in healthy cells.
390 When performed on whole cell extracts, MS is strongly biased for identification of
391 abundant and stable proteins at the proteome level. We therefore decided to investigate the
392 contribution of EREs to the immunopeptidome, which is mainly composed of peptides
393 derived from rapidly degraded proteins (50, 51). To do so, we reanalyzed previously
394 reported transcriptomic and peptidomic data from 16 B-lymphoblastoid cell lines (B-LCL)
395 (Table S4) (30). As conventional approaches do not include ERE sequences, precluding

396 identification of ereMAPs, we developed a proteogenomic workflow combining RNA-
397 sequencing and MS to enable ereMAP identification (Fig. 4A, Figure S3). Briefly, we
398 generated for each B-LCL a personalized proteome that contained only the sample's
399 expressed sequences as well as its polymorphisms. Canonical and ERE RNA sequences
400 were translated *in silico* and concatenated to generate a personalized proteome that was
401 used to identify MAPs in MS analyses (Fig. 4A). For each MAP identified, we retrieved
402 the peptide's coding sequence and proceeded to its annotation. Two categories of peptides
403 were kept as ereMAP candidates to be further manually validated: i) peptides that were
404 only seen in the ERE proteome, and ii) peptides seen in both the ERE and canonical
405 proteomes ("Maybe" candidates) and for which the occurrence of the coding sequences
406 was at least 10-fold higher in ERE reads compared to canonical reads. Our proteogenomic
407 approach enabled the identification of 130 ereMAPs in the 16 B-LCL samples analyzed,
408 revealing that ERE sequences are translated in non-neoplastic cells (Fig. 4B). Of those, 104
409 were non-redundant, confirming that ereMAPs can be shared by multiple individuals
410 (Table S5). Of course, the extent of interindividual sharing would be considerably greater
411 in cohorts of HLA-matched individuals since various HLA allotypes present different sets
412 of MAPs (50). Profiling of the ereMAPs' RNA expression in healthy human tissues showed
413 that 26% (27/104) of ereMAPs' coding sequences were expressed at high levels by multiple
414 tissues (Figure S4). Hence, since highly expressed transcripts are preferential sources of
415 MAPs (30), ereMAPs derived from abundant transcripts could be presented on the surface
416 of a wide range of tissues (Figure S4). We also observed that ereMAPs were generated by
417 the three main groups of ERE sequences (SINE, LINE, LTR), confirming that they all have
418 the potential to be translated in healthy cells (Fig. 4C). Together, these proteogenomic

419 analyses show that several EREs are translated and generate ereMAPs in B-LCLs, and
420 suggest that this is also the case for a wide range of human tissues.

421

422 We next investigated the mechanisms leading to presentation of ereMAPs on the cell
423 surface. First, we noted that ereMAPs preferentially derived from highly expressed ERE
424 transcripts (Fig. 5A). For the majority of ereMAPs, this transcription was in the same sense
425 as the ERE sequence in the genome, but ~30% of ereMAPs (34/104) resulted from
426 antisense transcription (Fig. 5B), which is common for EREs (52-54). Even though
427 ereMAPs were generated by the three main groups of EREs (Fig. 4C), the relative
428 frequency of LTR translation was higher than that of LINEs and SINEs (Fig. 5C). Indeed,
429 the representation of LTRs in the immunopeptidome was superior to the space they occupy
430 in the genome or their abundance in the transcriptome (Fig. 5C). Additionally, intronic
431 EREs were a preferential source of ereMAPs: while 51% of EREs were intronic, 79% of
432 ereMAPs derived from intronic EREs (Fig. 5D). Finally, when we assigned a genomic
433 location to ereMAPs, we noted that some ERE families generated several distinct ereMAPs
434 (Table S5). This can be explained in part by variations in the genomic space occupied by
435 the various ERE families. Indeed, for the various ERE families, we observed a moderate,
436 yet significant, correlation between the number of genomic copies and the number of
437 ereMAPs (Fig. 5E). Altogether, these results demonstrate that i) ereMAPs are generated by
438 both sense and antisense transcripts that are preferentially located in introns and expressed
439 at high levels, and ii) generation of ereMAPs is enhanced when a family belongs to the
440 LTR group occupying a large genomic space.

441

442 **ereMAPs have a viral-like amino acid composition**

443 We next asked to what extent ereMAPs and their coding transcripts might retain some
444 traces of their phylogeny (“viral features”). We found conspicuous differences between
445 amino acid frequencies in ereMAPs relative to both viral MAPs and canonical human
446 MAPs listed in the Immune Epitope Database (Fig. 6A). Indeed, ereMAPs showed lower
447 abundance of multiple amino acids (aspartic and glutamic acids, phenylalanine,
448 methionine, asparagine and tryptophan) and higher frequencies of leucine (L) and proline
449 (P) residues. Overall, ereMAPs had therefore a less balanced (i.e., more skewed) amino
450 acid composition. Furthermore, analysis of amino acid usage at individual MAP positions
451 revealed that, relative to human MAPs, some residues were specifically enriched in ERE
452 and viral MAPs, such as arginine (R) in P5 of 8 amino acid-long MAPs (Figure S5). We
453 therefore aligned ereMAPs sequences to the viral MAPs dataset using BLAST and
454 calculated the average percentage of identity between ereMAPs and viral MAPs. We then
455 compared this result with a bootstrap distribution (10,000 iterations) of randomly selected
456 canonical MAPs that were also aligned to the viral MAPs dataset (Fig. 6B). This analysis
457 revealed that ereMAPs had a significantly higher percentage of identity with viral MAPs
458 than all 10,000 randomly selected sets of canonical MAPs. Hence, ereMAPs clearly retain
459 features that reflect their viral origin.

460

461 **Discussion**

462 Hundreds of scientific articles have alluded to the potential implication of EREs in various
463 human diseases, particularly cancer and autoimmunity (2, 55-60). We therefore felt
464 compelled to draw the global landscape of ERE expression in human somatic cells. We

465 hope that this atlas will serve as a reference in further studies on EREs in various
466 physiological and pathological conditions. One salient point emerging from this atlas is
467 that ERE expression in somatic tissues is more pervasive and heterogeneous than
468 anticipated. All tissues express EREs but the breadth and magnitude of ERE expression are
469 very heterogeneous from one tissue to another. Thus, we identified 124 ERE families
470 expressed in a tissue-restricted fashion, most of which were LTR elements. LTRs can act
471 as promoters and enhancers to stimulate gene expression (17, 19), and some LTR families
472 are tissue-specifically enriched in intronic enhancer regions containing transcription factor
473 binding sites (61). Our work therefore suggests that EREs, and more particularly LTRs,
474 may regulate gene expression in a wide range of somatic tissues. In future experiments,
475 single cell analyses might unveil a further level of heterogeneity that we could not capture
476 by global tissue expression profiling. It was previously reported that EREs were expressed
477 at high levels in two MHC I-deficient cell types: ESCs and testis (62, 63). That similar
478 levels of expression were found in mTECs for three major groups of EREs (LINE, SINE
479 and LTR) (Fig. 1) is remarkable and raises fundamental questions as to the mechanism and
480 role of ERE expression in mTECs. The key role of mTECs is to induce central immune
481 tolerance to a vast repertoire of self-peptides displayed by somatic tissues (47, 64). Given
482 the large-scale expression of EREs in peripheral tissues highlighted in the present report,
483 we speculate that it may be important for gnathostomes to be tolerant to a wide array of
484 ERE-derived antigens. As a corollary, when EREs are overexpressed, for instance in cancer
485 cells (65, 66), only those that are not expressed in mTECs may be immunogenic. Induction
486 of tolerance to the multitude of self-peptides depends on the unique ability of mTECs to
487 promiscuously express thousands of otherwise tissue-specific genes (67, 68). Promiscuous

488 gene expression in mTECs is driven in part by *AIRE* and in part by other genes whose
489 identity is unresolved and may include *FEZF2* as well as genes involved in DNA
490 methylation, histone modification and RNA splicing (26, 47, 69-71). Our data clearly show
491 that the overexpression of numerous ERE families in mTECs is entirely AIRE-independent
492 (Fig. 3). This observation underscores the relevance of further studies on the mechanisms
493 of AIRE-independent promiscuous gene expression in mTECs.

494

495 A notable finding was that our MS analyses identified ereMAPs derived from LINEs (n =
496 48), SINEs (n = 29) and LTRs (n= 27). This means that these EREs are translated and
497 produce peptides that are adequately processed for presentation by MHC-I molecules. A
498 few ereMAPs have previously been identified in cancer cells (25, 59, 66). The presence of
499 ereMAPs on normal cells means that the mere identification of ereMAPs on cancer cells is
500 not sufficient to infer that these MAPs are cancer-specific nor immunogenic. Nevertheless,
501 we have previously shown in mice that some ereMAPs are truly cancer-specific,
502 immunogenic and can elicit protective anti-tumor responses (25). Furthermore, compelling
503 evidence has been reported that some LTRs can generate immunogenic ereMAPs in clear
504 cell renal cell carcinoma in humans (56). These studies coupled to our finding that
505 ereMAPs retain viral like features (Fig. 6) suggest that ereMAPs may represent particularly
506 attractive targets for the development of cancer vaccines. In line with this, we must also
507 emphasize that the number of translated EREs is certainly superior to the number of
508 ereMAPs identified in our study: i) collectively our 16 B-LCLs expressed 39 MHC-I
509 allotypes out of the thousands that can be found in human populations (Table S5), and ii)
510 like canonical proteins (30), some translated EREs may not generate MAPs.

511

512 We anticipate that the biogenesis of ereMAPs in normal and neoplastic cells will be a fertile
513 field of investigation. First, several observations suggest that the landscape of ereMAPs is
514 highly diversified: i) the MAP repertoire is shaped by several cell type-specific variations
515 in gene expression (72), and ii) ERE transcription is highly heterogeneous among various
516 cell types (Fig. 1) and can be drastically affected by neoplastic transformation (73). The
517 processing of ereMAPs is also intriguing. Indeed, following their integration in human
518 genomes, EREs have undergone several rounds of mutation and truncation and very few
519 have previously been shown to be translated (2, 74). Because ERE sequences are
520 degenerate, they are not expected to yield stable polypeptides. However, MAPs
521 preferentially derive from rapidly degraded unstable peptides, commonly referred to as
522 defective ribosomal products (51). We therefore hypothesize that for most EREs,
523 translation may yield ereMAPs but not stable long-lived proteins. In other words, the
524 products of ERE translation may be detectable only in the immunopeptidome and not in
525 the proteome.

526

527 **Conclusions**

528 In summary, transcriptomic analysis demonstrated that ERE expression is heterogeneous
529 in healthy human tissues, with a higher expression in mTECs, ESCs and testis than in other
530 tissues. mTECs are the sole normal human cells that express high levels of both EREs and
531 MHC-I molecules. In mutant mice, we report that the exceptional expression of EREs in
532 mTECs is AIRE-independent. We also identified ERE families expressed in a tissue-
533 restricted manner, revealing that most healthy human tissues have a unique ERE signature.

534 MS analyses of 16 B-LCL samples enabled the identification of 104 non-redundant
535 ereMAPs, showing that EREs contribute to the immunopeptidome of healthy cells.
536 Interestingly, sharing of ereMAPs by multiple B-LCL samples was observed, and
537 ereMAPs' coding sequences are expressed at similar levels in other somatic tissues,
538 suggesting that ereMAPs could also be presented by other cell types. Finally, we found that
539 ereMAPs bear strong homology to viral MAPs and therefore have the potential to be
540 particularly immunogenic.

541

542 **Abbreviations**

543 B-LCL: B-lymphoblastoid cell line; ERE: Endogenous Retroelements; ereMAP: ERE-
544 derived MAP; ESC: Embryonic stem cells; FDR: False discovery rate; GTEx: Genotype-
545 Tissue Expression project; LINE: Long interspersed nuclear element; LTR: Long terminal
546 repeat; MCS : MAP-coding sequence; MAP: MHC I-associated peptide; mTEC: medullary
547 thymic epithelial cells; MS: Mass spectrometry; SINE: Short interspersed nuclear element;
548 TPM: transcripts per million; TRE: Tissue-restricted ERE; TRG: Tissue-restricted gene;
549 WT: Wild-type; KZFP: KRAB Zinc Finger Protein

550

551 **Declarations**

552 **Ethics approval and consent to participate**

553 The study of MHC-associated peptides on human lymphoid cells was approved by the
554 Comité d'Éthique de la Recherche de l'Hôpital Maisonneuve-Rosemont (Permit Number
555 CÉR 2018-1396).

556

557 **Consent for publication**

558 Not applicable.

559

560 **Availability of data and materials**

561 **XXXXXXX**

562

563 **Competing interests**

564 The authors declare that they have no competing interests.

565

566 **Funding**

567 This work was supported by grants from the Canadian Institutes of Health Research (FDN
568 148400) and the Canadian Cancer society (#705604).

569

570 **Authors' contributions**

571 JDL, KV and CP designed the study. LH and CC digested the thymic samples, isolated the
572 mTECs and did the RNA extraction. JDL, AT, GE, PG and JPL contributed to the
573 bioinformatic analyses. CD and EB did the PEAKS database searches and the MS/MS
574 spectra validation. JDL and CP wrote the manuscript. All authors read and approved the
575 final manuscript.

576

577 **Acknowledgements**

578 We acknowledge Annie Gosselin and Gaël Dulude for cell sorting. We thank Raphaëlle
579 Lambert and Jennifer Huber for performing the RNA sequencing. We also thank Céline M

580 Laumont and Qingchuan Zhao for their conceptual input, as well as Marie-Pierre Hardy
581 and all other members of our laboratory for their suggestions. We thank the Leucegene
582 group for sharing transcriptomic data for hematopoietic cells. Finally, we thank the
583 Genotype-Tissue Expression (GTEx) Project for providing RNA-seq data from human
584 tissues used in this study. The GTEx Project was supported by the Common Fund of the
585 Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI,
586 NIDA, NIMH, and NINDS.

587

588 **References**

- 589 1. Dewannieux M, Heidmann T. Endogenous retroviruses: acquisition, amplification
590 and taming of genome invaders. *Curr Opin Virol.* 2013;3(6):646-56.
- 591 2. Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the
592 bad with the good. *Nat Rev Immunol.* 2016;16(4):207-19.
- 593 3. Sverdlov ED. Perpetually mobile footprints of ancient infections in human genome.
594 *FEBS Lett.* 1998;428(1-2):1-6.
- 595 4. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may
596 comprise over two-thirds of the human genome. *PLoS Genet.* 2011;7(12):e1002384.
- 597 5. Tristem M. Identification and characterization of novel human endogenous
598 retrovirus families by phylogenetic screening of the human genome mapping project
599 database. *J Virol.* 2000;74(8):3715-30.
- 600 6. Vargiu L, Rodriguez-Tome P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, et al.
601 Classification and characterization of human endogenous retroviruses; mosaic forms are
602 common. *Retrovirology.* 2016;13:7.
- 603 7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial
604 sequencing and analysis of the human genome. *Nature.* 2001;409(6822):860-921.
- 605 8. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing:
606 computational challenges and solutions. *Nat Rev Genet.* 2011;13(1):36-46.
- 607 9. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten
608 things you should know about transposable elements. *Genome Biol.* 2018;19(1):199.
- 609 10. Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA.
610 Double-strand breaks associated with repetitive DNA can reshape the genome. *Proc Natl
611 Acad Sci U S A.* 2008;105(33):11845-50.
- 612 11. Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active
613 in the human genome? *Trends Genet.* 2007;23(4):183-91.

614 12. Deniz O, Frost JM, Branco MR. Regulation of transposable elements by DNA
615 modifications. *Nat Rev Genet.* 2019;20(7):417-31.

616 13. Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the
617 evolution of gene regulatory networks. *Nature.* 2017;543(7646):550-4.

618 14. Bruno M, Mahgoub M, Macfarlan TS. The Arms Race Between KRAB-Zinc Finger
619 Proteins and Endogenous Retroelements and Its Impact on Mammals. *Annu Rev Genet.*
620 2019;53:393-416.

621 15. Robbez-Masson L, Tie CHC, Conde L, Tunbak H, Husovsky C, Tchasovnikarova IA,
622 et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and
623 new genes. *Genome Res.* 2018;28(6):836-45.

624 16. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1
625 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. *Cell.*
626 2018;174(3):549-63 e19.

627 17. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through
628 co-option of endogenous retroviruses. *Science.* 2016;351(6277):1083-7.

629 18. Beyer U, Moll-Rocek J, Moll UM, Dobbelstein M. Endogenous retrovirus drives
630 hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great
631 apes. *Proc Natl Acad Sci U S A.* 2011;108(9):3624-9.

632 19. Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A, et al. Deep
633 transcriptome profiling of mammalian stem cells supports a regulatory role for
634 retrotransposons in pluripotency maintenance. *Nat Genet.* 2014;46(6):558-66.

635 20. Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-
636 Nucleolin Partnership Regulates Early Development and ESC Identity. *Cell.*
637 2018;174(2):391-405 e19.

638 21. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive
639 retroviral envelope protein involved in human placental morphogenesis. *Nature.*
640 2000;403(6771):785-9.

641 22. Blaise S, de Parseval N, Benit L, Heidmann T. Genomewide screening for fusogenic
642 human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on
643 primate evolution. *Proc Natl Acad Sci U S A.* 2003;100(22):13013-8.

644 23. Consortium GT. The Genotype-Tissue Expression (GTEx) project. *Nat Genet.*
645 2013;45(6):580-5.

646 24. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human
647 DNA methylomes at base resolution show widespread epigenomic differences. *Nature.*
648 2009;462(7271):315-22.

649 25. Laumont CM, Vincent K, Hesnard L, Audemard E, Bonneil E, Laverdure JP, et al.
650 Noncoding regions are the main source of targetable tumor-specific antigens. *Sci Transl
651 Med.* 2018;10(470).

652 26. St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential Features of
653 AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial
654 Cells. *J Immunol.* 2015;195(2):498-506.

655 27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
656 sequence data. *Bioinformatics.* 2014;30(15):2114-20.

657 28. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
658 quantification. *Nat Biotechnol.* 2016;34(5):525-7.

659 29. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-
660 wide midrange transcription profiles reveal expression level relationships in human tissue
661 specification. *Bioinformatics.* 2005;21(5):650-9.

662 30. Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, et al. MHC
663 class I-associated peptides derive from selective regions of the human genome. *J Clin
664 Invest.* 2016;126(12):4690-701.

665 31. Granados DP, Sriranganadane D, Daouda T, Zieger A, Laumont CM, Caron-Lizotte
666 O, et al. Impact of genomic polymorphisms on the repertoire of human MHC class I-
667 associated peptides. *Nat Commun.* 2014;5:3600.

668 32. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
669 universal RNA-seq aligner. *Bioinformatics.* 2013;29(1):15-21.

670 33. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
671 features. *Bioinformatics.* 2010;26(6):841-2.

672 34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
673 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25(16):2078-9.

674 35. Garrison E, Marth G. Haplotype-based variant detection from short-read
675 sequencing. *arXiv e-prints* [Internet]. 2012 July 01, 2012. Available from:
676 <https://ui.adsabs.harvard.edu/abs/2012arXiv1207.3907G>.

677 36. Daouda T, Perreault C, Lemieux S. pyGeno: A Python package for precision
678 medicine and proteogenomics. *F1000Res.* 2016;5:381.

679 37. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural
680 networks: application to the MHC class I system. *Bioinformatics.* 2016;32(4):511-7.

681 38. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0:
682 Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and
683 Peptide Binding Affinity Data. *J Immunol.* 2017;199(9):3360-8.

684 39. Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
685 occurrences of k-mers. *Bioinformatics.* 2011;27(6):764-70.

686 40. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al.
687 Integrative genomics viewer. *Nat Biotechnol.* 2011;29(1):24-6.

688 41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
689 tool. *J Mol Biol.* 1990;215(3):403-10.

690 42. Granados DP, Yahyaoui W, Laumont CM, Daouda T, Muratore-Schroeder TL, Cote
691 C, et al. MHC I-associated peptides preferentially derive from transcripts bearing miRNA
692 response elements. *Blood.* 2012;119(26):e181-91.

693 43. Fergusson JR, Morgan MD, Bruchard M, Huitema L, Heesters BA, van Unen V, et
694 al. Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of
695 Tissue Restricted Antigens. *Front Immunol.* 2018;9:2902.

696 44. Boegel S, Lower M, Bukur T, Sorn P, Castle JC, Sahin U. HLA and proteasome
697 expression body map. *BMC Med Genomics.* 2018;11(1):36.

698 45. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, et al.
699 Characterization of the expression of MHC proteins in human embryonic stem cells. *Proc
700 Natl Acad Sci U S A.* 2002;99(15):9864-9.

701 46. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the
702 thymus for positive selection and central tolerance induction. *Nat Rev Immunol.*
703 2009;9(12):833-44.

704 47. Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance:
705 Lessons from Mice. *Trends Immunol.* 2019;40(4):279-91.

706 48. Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA, Simmons HA, et al. Vaccination
707 with cancer- and HIV infection-associated endogenous retrotransposable elements is safe
708 and immunogenic. *J Immunol.* 2012;189(3):1467-79.

709 49. Young GR, Ploquin MJ, Eksmond U, Wadwa M, Stoye JP, Kassiotis G. Negative
710 selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to
711 retroviral infection. *PLoS Pathog.* 2012;8(5):e1002709.

712 50. Granados DP, Laumont CM, Thibault P, Perreault C. The nature of self for T cells-a
713 systems-level perspective. *Curr Opin Immunol.* 2015;34:1-8.

714 51. Yewdell JW, Dersh D, Fahraeus R. Peptide Channeling: The Key to MHC Class I
715 Immunosurveillance? *Trends Cell Biol.* 2019;29(12):929-39.

716 52. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting
717 DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including
718 Endogenous Retroviruses. *Cell.* 2015;162(5):974-86.

719 53. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-
720 Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by
721 Endogenous Transcripts. *Cell.* 2015;162(5):961-73.

722 54. Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, et al. Bioinformatic analysis of
723 regulation of natural antisense transcripts by transposable elements in human mRNA.
724 *Genomics.* 2019;111(2):159-66.

725 55. Attig J, Young GR, Stoye JP, Kassiotis G. Physiological and Pathological
726 Transcriptional Activation of Endogenous Retroelements Assessed by RNA-Sequencing of
727 B Lymphocytes. *Front Microbiol.* 2017;8:2489.

728 56. Smith CC, Beckermann KE, Bortone DS, De Cubas AA, Bixby LM, Lee SJ, et al.
729 Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell
730 carcinoma. *J Clin Invest.* 2018;128(11):4804-20.

731 57. Treger RS, Pope SD, Kong Y, Tokuyama M, Taura M, Iwasaki A. The Lupus
732 Susceptibility Locus Sgp3 Encodes the Suppressor of Endogenous Retrovirus Expression
733 SNERV. *Immunity.* 2019;50(2):334-47 e9.

734 58. De Cecco M, Ito T, Petraschen AP, Elias AE, Skvir NJ, Criscione SW, et al. L1 drives
735 IFN in senescent cells and promotes age-associated inflammation. *Nature.*
736 2019;566(7742):73-8.

737 59. Attig J, Young GR, Hosie L, Perkins D, Encheva-Yokoya V, Stoye JP, et al. LTR
738 retroelement expansion of the human cancer transcriptome and immunopeptidome
739 revealed by de novo transcript assembly. *Genome Res.* 2019.

740 60. Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative
741 tumour-specific antigens. *Nat Rev Cancer.* 2019.

742 61. Trizzino M, Kapusta A, Brown CD. Transposable elements generate regulatory
743 novelty in a tissue-specific fashion. *BMC Genomics.* 2018;19(1):468.

744 62. Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of
745 targeting transposable elements by piRNA pathway in human testis. *RNA*.
746 2017;23(11):1614-25.

747 63. Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, et al. Intrinsic
748 retroviral reactivation in human preimplantation embryos and pluripotent cells. *Nature*.
749 2015;522(7555):221-5.

750 64. Abramson J, Anderson G. Thymic Epithelial Cells. *Annu Rev Immunol*. 2017;35:85-
751 118.

752 65. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
753 properties of tumors associated with local immune cytolytic activity. *Cell*. 2015;160(1-
754 2):48-61.

755 66. Kong Y, Rose CM, Cass AA, Williams AG, Darwish M, Lianoglou S, et al.
756 Transposable element expression in tumors is associated with immune infiltration and
757 increased antigenicity. *Nat Commun*. 2019;10(1):5228.

758 67. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T
759 cell repertoire: what thymocytes see (and don't see). *Nat Rev Immunol*. 2014;14(6):377-
760 91.

761 68. Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC,
762 Deadman ME, et al. Population and single-cell genomics reveal the Aire dependency,
763 relief from Polycomb silencing, and distribution of self-antigen expression in thymic
764 epithelia. *Genome Res*. 2014;24(12):1918-31.

765 69. Ucar O, Rattay K. Promiscuous Gene Expression in the Thymus: A Matter of
766 Epigenetics, miRNA, and More? *Front Immunol*. 2015;6:93.

767 70. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, et al. Fezf2
768 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. *Cell*.
769 2015;163(4):975-87.

770 71. Danan-Gotthold M, Guyon C, Giraud M, Levanon EY, Abramson J. Extensive RNA
771 editing and splicing increase immune self-representation diversity in medullary thymic
772 epithelial cells. *Genome Biol*. 2016;17(1):219.

773 72. Caron E, Vincent K, Fortier MH, Laverdure JP, Bramouille A, Hardy MP, et al. The
774 MHC I immunopeptidome conveys to the cell surface an integrative view of cellular
775 regulation. *Mol Syst Biol*. 2011;7:533.

776 73. Chong C, Müller M, Pak H, Harnett D, Huber F, Grun D, et al. Integrated
777 proteogenomic deep sequencing and analytics accurately identify non-canonical peptides
778 in tumor immunopeptidomes. *bioRxiv*. 2019.

779 74. Bonnaud B, Bouton O, Oriol G, Cheynet V, Duret L, Mallet F. Evidence of selection
780 on the domesticated ERVWE1 env retroviral element involved in placenta. *Mol Biol
781 Evol*. 2004;21(10):1895-901.

782

783 **Figure legends**

785 **Fig. 1.** Expression profiling of endogenous retroelements in 30 healthy human tissues and
786 2 cell types. Hierarchical clustering of tissues based on the expression levels of the 809
787 ERE families sorted in LINE, LTR and SINE elements. For each tissue, mean expression
788 of ERE families was computed among available samples. Row Z-scores were then
789 determined for each ERE family across tissues.

790

791 **Fig. 2.** Tissue specificity of ERE expression in healthy human tissues. Tissue-specificity
792 indexes were computed for ERE families as well as annotated genes. (A) Barplots showing
793 the number of TRGs and TREs for each of the 32 healthy human tissues analyzed. (B) Pie
794 charts depicting the proportions of the 809 ERE families (left panel) or TREs (right panel)
795 belonging to the LINE, LTR and SINE groups (Chi-squared test, $*P \leq 0.05$). (C) Histogram
796 showing the number of tissues in which each identified TRGs and TREs are overexpressed.

797

798 **Fig. 3.** ERE expression is independent of AIRE in mouse mTECs. (A) Boxplot showing
799 the expression levels of constitutively expressed genes, AIRE-dependent TRGs, AIRE-
800 independent TRGs (lists of genes based on St-Pierre *et al* (26)) as well as ERE families in
801 wild-type (n=3) and AIRE knock-out (n=3) mice. (B) Heatmap depicting the expression
802 levels of ERE families in each replicate of wild-type and AIRE knock-out murine mTECs.
803 A Mann-Whitney test was used for statistical analysis in both panels, n.s. not significant
804 ($P > 0.05$), $***P \leq 0.001$.

805

806 **Fig. 4.** ERE sequences are translated and contribute to the immunopeptidome of B-LCLs.
807 (A) Schematic depicting how the personalized proteome of each B-LCL sample was

808 generated. The personalized proteome was generated by combining the ERE and the
809 canonical proteomes and then used to identify MAPs by MS. MAPs were annotated to keep
810 only ereMAPs. (B, C) Barplots showing the number of ereMAPs identified in B-LCL
811 samples separated by (B) individual samples analyzed and (C) according to the three main
812 groups of EREs.

813

814 **Fig. 5.** Sense transcription of intronic EREs is the main source of ereMAPs. (A) Boxplot
815 showing the mean expression levels ($\log_{10}(\text{TPM} + 1)$) of ERE families that are source or
816 non-source of ereMAPs in B-LCLs (Mann-Whitney test, $***P \leq 0.001$). (B) Barplot
817 showing the number of ereMAPs generated by sense or antisense transcription of ERE
818 sequences. (C) Stacked barplot depicting the proportions of LINE, LTR and SINE groups
819 in the genome, transcriptome and immunopeptidome. Statistical significance was
820 computed with a chi-squared test ($**P \leq 0.01$). (D) Pie charts depicting the percentages of
821 all ERE sequences (left) and of ereMAPs-coding sequences (right) that are localized in
822 intergenic regions, introns or coding sequences (Chi-squared test, $***P \leq 0.001$). (E)
823 Scatterplot showing the Spearman correlation between the number of ereMAPs generated
824 by each ERE family and the number of copies of the ERE family's sequence in the human
825 genome based on RepeatMasker annotations.

826

827 **Fig. 6.** Endogenous retroelements retained sequence homology with viruses. (A) Barplot
828 showing the frequencies of each amino acid in ereMAPs, viral MAPs and human canonical
829 MAPs. Abbreviations for amino acids: Y, Tyrosine; W, Tryptophan; V, Valine; T,
830 Threonine; S, Serine; R, Arginine; Q, Glutamine; P, Proline; N, Asparagine; M,

831 Methionine; L, Leucine; K, Lysine; I, Isoleucine; H, Histidine; G, Glycine; F,
832 Phenylalanine; E, Glutamic Acid; D, Aspartic Acid; C, Cysteine; A, Alanine. (B) Human
833 canonical MAPs and ereMAPs were aligned to a database of viral peptides using BLAST,
834 and the percentage of identity of their sequences with viral peptides was computed. The
835 red line represents the average percentage of identity of ereMAPs with viral MAPs. A
836 bootstrap procedure was used to calculate the percentage of identity of 10,000 sets of 104
837 randomly selected human canonical MAPs with viral MAPs. P-value was calculated as the
838 number of times the bootstrap distribution had a higher percentage of identity with viral
839 MAPs than ereMAPs ($P < 0.0001$).