Outcome Prediction after Moderate and Severe Traumatic Brain Injury: External Validation of Two Established Prognostic Models in 1742 European Patients

Simone A. Dijkland,1 Isabel R.A. Retel Helmrich,1 Daan Nieboer,1 Mathieu van der Jagt,2 Diederik W.J. Dippel,3 David K. Menon,4 Nino Stocchetti,5,6 Andrew I.R. Maas,7 Hester F. Lingsma,1 Ewout W. Steyerberg1,8; and the CENTER-TBI Participants and Investigators*

Abstract
The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticoid Randomisation After Significant Head injury (CRASH) prognostic models predict functional outcome after moderate and severe traumatic brain injury (TBI). We aimed to assess their performance in a contemporary cohort of patients across Europe. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study is a prospective, observational cohort study in patients presenting with TBI and an indication for brain computed tomography. The CENTER-TBI core cohort consists of 4509 TBI patients available for analyses from 59 centers in 18 countries across Europe and Israel. The IMPACT validation cohort included 1173 patients with GCS ≤ 12, age ≥ 14, and 6-month Glasgow Outcome Scale-Extended (GOSE) available. The CRASH validation cohort contained 1742 patients with GCS ≤ 14, age ≥ 16, and 14-day mortality or 6-month GOSE available. Performance of the three IMPACT and two CRASH model variants was assessed with discrimination (area under the receiver operating characteristic curve; AUC) and calibration (comparison of observed vs. predicted outcome rates). For IMPACT, model discrimination was good, with AUCs ranging between 0.77 and 0.85 in 1173 patients and between 0.80 and 0.88 in the broader CRASH selection ($n=1742$). For CRASH, AUCs ranged between 0.82 and 0.88 in 1742 patients and between 0.66 and 0.80 in the stricter IMPACT selection ($n=1173$). Calibration of the IMPACT and CRASH models was generally moderate, with calibration-in-the-large and calibration slopes ranging between -2.02 and 0.61 and between 0.48 and 1.39, respectively. The IMPACT and CRASH models adequately identify patients at high risk for mortality or unfavorable outcome, which supports their use in research settings and for benchmarking in the context of quality-of-care assessment.

Keywords: clinical prediction model; external validation; outcome; prognosis; traumatic brain injury

Introduction

Traumatic brain injury (TBI) is a heterogeneous disease with substantial variation in trauma mechanisms, pathophysiology, and clinical presentation.1 Early outcome prediction is important in research settings (e.g., for selecting patients for clinical trials).2 Informed predictions could also facilitate risk communication with patients or relatives and case-mix adjustment for benchmarking quality of care.3 Many prognostic models for functional outcome after moderate and severe TBI have been developed and validated.4–6 Of these, the International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) models and the Corticoid Randomisation After Significant Head injury (CRASH) models are the most widely known.2,8

1Department of Public Health, Center for Medical Decision Making, 2Department of Intensive Care, 3Department of Neurology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
4Division of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom.
5Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
6Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy.
7Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium.
8Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.

*The CENTER-TBI Participants and Investigators are listed at end of the article.
These models were developed a decade ago on large, multicenter cohorts using state-of-the-art statistical methodology. The models combine clinical, radiological, and laboratory admission characteristics to predict risk of mortality and unfavorable outcome. The IMPACT and CRASH models have shown highly variable model performance across different settings. Moreover, previous validation studies were mostly performed in small observational cohorts or randomized clinical trials (RCTs) that may not represent the current TBI population. We aimed to gain insight in the performance of the IMPACT and CRASH prognostic models in contemporary patients across Europe.

Methods

IMPACT and CRASH models

Details of the development of the IMPACT and CRASH prognostic models have been reported. In short, the IMPACT models were developed on 8509 patients with moderate or severe TBI (Glasgow Coma Scale [GCS] ≤12) from eight RCTs and three observational studies. The IMPACT models comprise three variants (core, extended, and laboratory) with increasing complexity (Table 1). The models predict mortality and functional outcome at 6 months post-injury.

The two versions of the CRASH prognostic model (basic and computed tomography [CT]; Table 1) were developed on 10,008 TBI patients with GCS ≤14 from one RCT. The models predict mortality at 14 days and functional outcome at 6 months post-injury.

Study design and population

We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study, a prospective, observational cohort study in patients with TBI presenting within 24 h of injury and with an indication for brain CT. Participants were recruited from December 2014 through December 2017 from 59 centers in 18 countries across Europe and Israel. The study protocol of CENTER-TBI has been described. Informed consent by patients and/or legal representative/next of kin were obtained, according to local legislations, for all patients recruited in the CENTER-TBI core dataset and documented in the electronic case report form (e-CRF). Ethical approval was obtained for each recruiting site. The sites, ethical committees, approval numbers, and approval dates are listed on the website: https://www.center-tbi.eu/project/ethical-approval.

Because the IMPACT and CRASH models were developed on different selections of TBI patients, the models were validated on separate cohorts with inclusion criteria corresponding to the development cohorts. For the IMPACT core model, we included patients ≥14 years of age with admission GCS ≤12 and available functional outcome. The validation cohort for the CRASH basic model included patients ≥16 years of age with admission GCS ≤14 and available functional outcome. For validation of the IMPACT and CRASH models that included admission CT and laboratory characteristics, patients without CT scan or blood samples in the first 24 h after injury were excluded. To directly compare performance of the IMPACT and CRASH models, we additionally validated the IMPACT models in the CRASH validation cohort and vice versa.

In CENTER-TBI, functional outcome at 6 months post-injury was assessed with the Glasgow Outcome Scale-Extended (GOSE). In line with the original IMPACT and CRASH models, we dichotomized the 6-month GOSE into mortality (GOSE 1) versus survival (GOSE 2–8), and unfavorable (GOSE 1–4) versus favorable (GOSE 5–8) outcome. For the CRASH models, mortality was assessed at 14 days post-injury.

Predictor effects

Definitions and coding of the predictors in the validation cohorts were similar to those in the IMPACT and CRASH development cohorts (Supplementary Tables S1–S3). Major extracranial injury was defined as a score of ≥3 on at least one of the extracranial domains of the Abbreviated Injury Scale. The IMPACT and CRASH logistic regression models were re-fit in the validation data to enable comparison of predictor effects between development and validation cohorts. Associations between predictors and outcomes were expressed as odds ratios (ORs) with 95% confidence intervals (CIs).

Validation

The IMPACT and CRASH models were validated by applying the coefficients of the original models to the validation data (Supplementary Tables S2 and S3). Because participating centers in CENTER-TBI were mainly situated in Western countries, we used the CRASH models for high-income countries. Model performance was assessed with discrimination and calibration. Discrimination was expressed with the area under the receiver operating characteristic curve (AUC). The AUC ranges from 0.5 for a non-discriminative model to 1.0 for a perfect model. Calibration indicates the agreement between predicted and observed outcome probabilities. It was assessed graphically by plotting observed frequencies of mortality and unfavorable outcome versus predicted risk. Additionally, we calculated the calibration slope and calibration-in-the-large. The calibration slope is ideally equal to 1 and represents the overall predictor effects in the validation cohort versus the development cohort. Calibration-in-the-large indicates whether predictions are systematically too high or too low, and should ideally be zero.

Model discrimination at external validation may be affected by the distribution of patient characteristics (case mix) in the validation cohort. Distinguishing patients with good versus

| Table 1. Variables Included in the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation after Significant Head Injury (CRASH) Prognostic Models |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| IMPACT core | IMPACT extended | IMPACT laboratory | CRASH basic | CRASH CT |
| Age | Core model predictors + | Extended model predictors + | Age | Basic model predictors + |
| GCS motor score | Hypoxia | Glucose | GCS total score | Pectechial hemorrhages |
| Pupillary reactivity | Hypotension | Hemoglobin | Pupillary reactivity | Obliteration of third |
| | Marshall CT classification | | Major extracranial injury | ventricle or basal |
| | tSAH | EDH | tSAH | Cisters |
| | | | Midline shift >5 mm | tSAH |
| | | | Non-evacuated hematoma | |

GCS, Glasgow Coma Scale; CT, computed tomography; tSAH, traumatic subarachnoid hemorrhage; EDH, epidural hematoma.
poor outcome is more difficult in a homogeneous population than in a heterogeneous population, leading to higher AUCs in heterogeneous cohorts. We therefore calculated the case-mix–corrected AUC, which reflects model discrimination under the assumption that the regression coefficients are correct for the validation population.

Statistical analysis

Statistical analyses were performed with R software (version 3.4.3; R Foundation for Statistical Computing, Vienna, Austria). Calibration plots were created with an updated version of the val.prob function (rms library in R). Missing 6-month GOSE as a consequence of loss to follow-up (in patients with at least one GOSE observation at another time point) were imputed with a Bayesian mixed-effect model (Supplementary Table S3). Patients without any GOSE observation were excluded from the analyses. Derived variables for GCS (motor) score and pupillary reactivity were generated based on methodology as used in the IMPACT database (Supplementary Table S3). The remaining missing predictor values were statistically imputed with multiple imputation based on the predictors and outcomes included in the IMPACT and CRASH models (mice package in R). CENTER-TBI data were collected through the Quesgen e-CRF (Quesgen Systems Inc, Burlingame, CA), hosted on the International Neuroinformatics Coordinating Facility (INCF) platform and extracted by the INCF Neurobot tool (INCF, Sweden). Version Core 1.1 of the CENTER-TBI dataset was used in this study.

Results

Study population

In total, 4509 patients included in the CENTER-TBI core study could be analyzed. Of those, 1173 and 1742 patients met the inclusion criteria for the IMPACT and CRASH validation cohort, respectively (Supplementary Fig. S1). Missing predictor values for the IMPACT (5%) and CRASH (4%) cohorts were imputed (Supplementary Table S4).

The IMPACT validation cohort consisted mainly of severe TBI patients (72%). At 6 months, 347 patients had died (30%), and 644 patients (55%) had unfavorable outcomes (Table 2). In the CRASH validation cohort, one third of the patients had an admission GCS of 13–14. At 14 days, 266 patients had died (15%), and at 6 months, 751 patients (43%) had unfavorable outcomes (Table 2).

Compared to the IMPACT and CRASH development cohorts, patients in the CENTER-TBI validation cohorts were, on average, 20 years older and had more-severe TBI (Table 2). More patients had major extracranial injury in the CRASH validation cohort (49%) than the development cohort (22%). Traumatic subarachnoid hemorrhage occurred almost twice as often in the CENTER-TBI validation cohorts versus the IMPACT and CRASH development cohorts. Overall, functional outcomes at 6 months were poorer in CENTER-TBI, with a higher proportion of unfavorable outcomes in both validation cohorts compared to the development cohorts (Table 2).

IMPACT models

In CENTER-TBI, associations of the predictors in the IMPACT models with 6-month outcome were similar to those reported for the IMPACT development cohort (Supplementary Table S5). However, presence of hypoxia and traumatic subarachnoid hemorrhage did not significantly increase risk of poor outcome in the CENTER-TBI cohort. The IMPACT models distinguished well between patients who died and patients who were alive, indicated by AUCs >0.80 (Table 3). Addition of CT variables to the core model for mortality increased discriminative ability (AUC 0.81 for the core model vs. 0.85 for the extended model; Table 3).

The IMPACT laboratory model for mortality also had an AUC of 0.85 (Table 3). The IMPACT models had slightly lower discriminative ability for unfavorable outcome (AUC core, 0.77; extended, 0.80; laboratory, 0.81; Table 3).

Calibration showed that observed mortality risk was lower than predicted (Supplementary Table S6; Fig. 1) and the IMPACT models slightly over- (core and extended) or underestimated (laboratory) risks for unfavorable outcome (Supplementary Table S6; Fig. 1). Calibration slopes ranged between 1.20 and 1.32 for the models for mortality and between 0.97 and 1.02 for the models for unfavorable outcome (Supplementary Table S6; Fig. 1), reflecting stronger (mortality) or similar (unfavorable outcome) predictor effects in CENTER-TBI versus the IMPACT development cohort.

We observed higher AUCs for the IMPACT models for mortality in the validation cohort compared to the development cohort (e.g., for the laboratory model: AUC 0.85 vs. 0.79, respectively; Table 3). When calculating the case-mix–corrected AUC, these differences in discriminative ability disappeared (Table 3). For the models for unfavorable outcome, the AUC at external validation and the case-mix–corrected AUC were similar, indicating comparable case mix.

CRASH models

Associations between some predictors and outcomes varied between the CENTER-TBI validation cohort versus the CRASH development cohort. For instance, presence of major extracranial injury did not significantly increase mortality risk in CENTER-TBI, and the effect of midline shift was non-significant (Supplementary Table S7).

Discriminative ability of the CRASH models was good for both mortality and unfavorable outcome (Table 3). We observed comparable AUCs for the CT model (0.88 for mortality and 0.84 for unfavorable outcome; Table 3) versus the basic model (0.86 for mortality and 0.82 for unfavorable outcome; Table 3).

Assessment of model calibration revealed differences between observed and predicted risk of mortality and unfavorable outcome for the CRASH CT model (Supplementary Table S6; Fig. 2). The CRASH basic model adequately predicted mortality and unfavorable outcome, whereas the CT model strongly overestimated risk of mortality and unfavorable outcome (Supplementary Table S6; Fig. 2). The moderate calibration slopes for the CRASH CT model reflect the smaller predictor effects in CENTER-TBI compared to the CRASH development cohort (Supplementary Table S6; Fig. 2).

Discriminative ability was similar in the validation versus development cohort, although the validation cohort had a somewhat more homogeneous case mix (Table 3).

Comparison IMPACT and CRASH

When validating the IMPACT models in the broader CRASH selection in CENTER-TBI (n = 1742), performance of the IMPACT and CRASH models for mortality and unfavorable outcome was similar (Supplementary Table S8; Supplementary Fig. S2).

Validation of the CRASH models in the stricter IMPACT selection within CENTER-TBI (n = 1173) yielded lower AUCs and larger discrepancies between observed and predicted rates of mortality and unfavorable outcome for the CRASH models compared to the IMPACT models (Supplementary Table S8; Supplementary Fig. S3).
Discussion

We performed detailed evaluations of the external validity of the IMPACT and CRASH prognostic models in a large contemporary European cohort of TBI patients. Both sets of models showed good discriminative ability, which modestly improved with addition of CT variables to the IMPACT core and CRASH basic models. There were substantial differences between observed and predicted outcome risk, specifically for the CRASH CT model.

Over the past decade, the IMPACT and CRASH models have been externally validated in many different, but mostly small, selected or single-country cohorts. A recent systematic review on prognostic models in moderate and severe TBI showed that discriminative ability of the IMPACT and CRASH models at external validation was moderate to good across different settings (mean AUCs weighted for sample size, 0.77–0.82 over 91 validations). 4 Calibration was, however, highly variable and substantial mis-calibration was observed in subgroups of TBI patients (e.g., patients who underwent decompressive craniectomy). Compared to previous external validation studies, the IMPACT and CRASH models performed generally well in the CENTER-TBI validation cohort, indicating that the models stood the test of time. 4 Overall,
observed mortality was lower than predicted, and observed unfavorable outcome was similar as predicted, which may indicate that survival has improved over time, but more patients survive with (severe) disabilities.

Our validation cohort was part of a large and unique multi-center observational study with data from contemporary TBI patients throughout Europe. We could validate the original IMPACT and CRASH models because of availability of all included predictors and outcomes. However, discrepancies might still exist in the assessment method and definitions of predictors and outcomes. For example, imaging techniques may have improved or changed over time. Another limitation of our study is that the CRASH models for low- to middle-income countries could not be validated because mainly high-income countries participated in CENTER-TBI.

Model performance at external validation is sensitive to several study characteristics. Differences in case mix in the validation cohorts compared to the development cohorts influenced the discriminative ability of the IMPACT and CRASH models. The CENTER-TBI validation cohort generally consisted of older and more severely affected TBI patients and was more heterogeneous than the IMPACT database, which predominantly included RCTs. The CENTER-TBI cohort was somewhat more homogeneous than the CRASH trial, which fits with the relatively broad inclusion criteria in that trial. We observed substantial mis-calibration for the IMPACT and CRASH models in CENTER-TBI. This could be explained by differences in prevalence and effects of predictors between the derivation and validation cohorts. Major extracranial injury, traumatic subarachnoid hemorrhage, and midline shift were more prevalent in CENTER-TBI than in the CRASH development cohort, whereas mortality at 14 days was similar (Table 2). Presence of midline shift was not associated with mortality and unfavorable outcome in CENTER-TBI (Supplementary Table S7). This may explain the substantial overestimation of mortality and unfavorable outcome by the CRASH CT model.

Overall, discriminative ability of the IMPACT and CRASH models only marginally improved with increasing model complexity. This observation confirms that the core clinical predictors (age, GCS [motor], score, and pupillary reactivity) are essential for adequate identification of TBI patients at high risk of mortality or unfavorable outcome, and that additional predictors add relatively little prognostic information. Calibration of the IMPACT core models was similar or inferior compared to the more-complex models (Supplementary Table S6; Fig. 1). This underscores the need for model updating (e.g., refitting the model intercept or re-fitting the coefficients) to adjust models to specific clinical settings. Extension of the IMPACT and CRASH models with new predictors has been attempted previously, but did not yield substantial improvement in model performance. In CENTER-TBI, updating the IMPACT (and CRASH) models may be pursued.

For instance, performance of the IMPACT extended model may be improved by replacing the Marshall CT classification with a more-recent CT score (e.g., Rotterdam or Helsinki) or a combination of...
individual CT characteristics. Also, the models could be enriched with promising biomarkers or dynamic characteristics obtained during the clinical course.

Continuous external validation of prognostic models for moderate and severe TBI in recent cohorts has been recommended. The IMPACT and CRASH models were developed on relatively historic data, whereas the epidemiology of TBI has changed substantially over the last years (e.g., regarding age distribution). This study adds to the existing evidence by showing that the IMPACT and CRASH models are valid for outcome prediction in contemporary TBI patients across Europe. Nevertheless, discrepancies between observed and predicted rates of mortality and unfavorable outcome exist for both sets of models. Adjustment of the models to local hospital and patient characteristics is therefore strongly recommended.

Performance of the IMPACT and CRASH models in the broadest selection of TBI patients was comparable. The additional effect of major extracranial injury in CRASH seems limited,
probably because patients in CENTER-TBI were selected based on TBI and not any trauma. The decision on which model to use should mainly be guided by the characteristics of a specific setting or population (e.g., TBI severity, country economic status). Use of either the IMPACT or CRASH model and degree of complexity of the model also depends on availability of predictors. Given that the substantial uncertainty on likely outcomes in individual patients, the IMPACT and CRASH models are not recommended for clinical decision making. Treatment options for TBI patients are scarce, and documenting prognosis in the intensive care setting does not seem to substantially affect treatment decisions.

On the other hand, there is an increasing recognition that estimates of prognosis by clinicians often are unduly pessimistic for TBI patients, and regular comparison of outcome predicted by these models with clinical expectations may help individual clinicians calibrate their prognostication and practice. Based on the good discriminative ability of the IMPACT and CRASH models, potential applications in research settings are risk stratification in trials and covariate adjustment in statistical analyses to increase statistical power. The models may also provide a point of reference for quality of care by comparing observed versus expected outcomes.

Conclusions

The IMPACT and CRASH models adequately identify patients at high risk for mortality or unfavorable outcome, which supports their use in research settings and for benchmarking in the context of quality-of-care assessment.

Acknowledgments

We are grateful to all patients that participated in the CENTER-TBI study to help us in our efforts to improve care and outcome for TBI.

The CENTER-TBI Participants and Investigators

1Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2Department of Neurosurgery, University of Pécs, Pécs, Hungary
3Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
4Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
5Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway
6Trauma Surgery, Medical University Vienna, Vienna, Austria
7Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France
8Raymond Poincare Hospital, Assistance Publique–Hôpitaux de Paris, Paris, France
9Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
10Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
11Department of Neurosurgery, University of Szeged, Szeged, Hungary
12International Projects Management, ARTTIC, Munchen, Germany
13Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
14Department of Neurosurgery & Anesthesia & Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
15NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
16Anestesia-Reanimation, Assistance Publique–Hôpitaux de Paris, Paris, France
17Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino–Orthopedic and Trauma Center, Torino, Italy
18Department of Neurology, Odense University Hospital, Odense, Denmark
19BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Clayton, Victoria, Australia
20Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
21Quesgen Systems Inc., Burlingame, California, USA
22Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
23Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
24Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary and Neurotrauma Research Group, János Széntágothai Research Centre, University of Pécs, Pécs, Hungary
25Department of Medical Psychology, Universitätssäklinikum Hamburg-Eppendorf, Hamburg, Germany
26Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
27Neuro ICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
28ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia
29Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
30NeuroIntensive Care, Niguarda Hospital, Milan, Italy
31School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
32NeuroIntensive Care, ASST di Monza, Monza, Italy
33Department of Public Health, Erasmus Medical Center–University Medical Center, Rotterdam, The Netherlands
34Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
35Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
36School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia
37Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
38Institute of Medical Psychology and Medical Sociology, Universitätmedizin Göttingen, Göttingen, Germany
39Oxford University Hospitals NHS Trust, Oxford, United Kingdom
40Intensive Care Unit, CHU Poitiers, Poitiers, France
41Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
42Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
43Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy
44Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
45Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
46Division of Anesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
47Center for Stroke Research Berlin, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
48Intensive Care Unit, CHR Citadelle, Liège, Belgium
49Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
50Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark
51National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
52Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
53Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway
54Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
55Fundación Instituto Valenciano de Neurorehabilitación (FIVAN), Valencia, Spain
56Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University/School of Medicine, Shanghai, China
57Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden
58Emergency Department, CHU, Liège, Belgium
59Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
60Department of Computing, Imperial College London, London, United Kingdom
61Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
62Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
63College of Health and Medicine, Australian National University, Canberra, Australia
64Department of Neurosurgery, Neurosciences Centre & JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
65Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
66Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
Division of Psychology, University of Stirling, Stirling, United Kingdom
Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, United Kingdom
Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
Hungarian Brain Research Program–Grant No. KTIA_13_NAP-A-II/8, University of Pécs, Pécs, Hungary
Cyclotron Research Center, University of Liège, Liège, Belgium
Emergency Medicine Research in Sheffield, Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, United Kingdom
Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany
VP Global Project Management CNS, ICON, Paris, France
Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France
Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
Department of Anesthesiology & Intensive Care, University Hospitals Southampton NHS Trust, Southampton, United Kingdom
Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany
Intensive Care Unit, Southmead Hospital, Bristol, Bristol, United Kingdom
Department of Neurological Surgery, University of California, San Francisco, California, USA
Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy
Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
Department of Medical Genetics, University of Pécs, Pécs, Hungary
Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
School of Medical Sciences, Örebro University, Örebro, Sweden
Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
Department of Radiology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy
Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France
Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain
Department of Neurosurgery, Kaunas University of Technology and Vilnius University, Vilnius, Lithuania
Department of Neurosurgery, Rezekne Hospital, Rezekne, Latvia
Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburgh, Edinburgh, United Kingdom
Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway
Division of Surgery and Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
Broad Institute, Cambridge MA Harvard Medical School, Boston, Massachusetts, USA and Massachusetts General Hospital, Boston, Massachusetts, USA
National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
Department of Neurosurgery, Odense University Hospital, Odense, Denmark
International Neurotrauma Research Organisation, Vienna, Austria
Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
Department Health and Prevention, University Greifswald, Greifswald, Germany
Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria
Department of Neurology, Elisabeth-Tweesteden Ziekenhuis, Tilburg, The Netherlands
Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
Department of Neurosurgery, University of Pécs, Pécs, Hungary
Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA
Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
Funding Information

The research leading to these results was supported by the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 602150 (CENTER-TBI). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany) from OneMind (USA), and from Integra LifeSciences (many), from OneMind (USA), and from Integra LifeSciences (USA). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:
Simone A. Dijkland, MD, PhD
Department of Public Health
Erasmus MC-University Medical Center
PO Box 2040
3000 CA Rotterdam
The Netherlands
E-mail: s.dijkland@erasmusmc.nl