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The goal of this research is to improve the learning of

bayesian networks in high-dimensional problems.

This has great potential in many applications :

Bioinformatics

Power networks
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The choice of the structure search space is a compromise.

Sets of all bayesian networks

Ability to model any density

Superexponential number of structures
⇒ Structure learning is difficult
⇒ Overfitting

Inference is difficult

Sets of simpler structures

Reduced modeling power

Learning and inference potentially easier

A tree is a graph without cycle where each variable has at most one
parent.
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Mixtures of trees combine qualities of bayesian networks

and trees.
A forest is a tree missing edges : A mixture of trees is an ensemble

method :

PMT (x) =

m∑

i=1

wiPTi
(x)
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Mixtures of trees combine qualities of bayesian networks

and trees.

Several models → large modeling power

Simple models → low complexity :
◮ inference is linear,
◮ learning : most algorithms are quadratic.

Quadratic complexity could be too high for very
large problems.
In this work, we try to decrease it.

Learning with mixtures of Trees, M. Meila & M.I. Jordan, JMLR 2001.
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Quadratic scaling is due to the Chow-Liu algorithm.

Maximize data likelihood

Composed of 2 steps :
◮ Construction of a complete graph whose

edge-weight are empirical mutual informations
(O(n2N))

◮ Computation of the maximum width spanning tree
(O(n2 log n))

Approximating discrete probability distributions with dependence trees, C. Chow & C. Liu,

IEEE Trans. Inf. Theory 1968.
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We propose to consider a random fraction δ of the edges

of the complete graph.

No longer optimal

Reduction in complexity (for each
term) :

◮ Construction of an uncomplete graph :
O(δn2N)

◮ Computation of the maximum width
spanning tree (O(δn2 log n))
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Intuitively, the structure of the problem can be exploited to

improve random sampling.

In an euclidian space, similar problems can be approximated by
sub-quadratic algorithms. When 2 points B and C are close to A, they are
likely to be close as well.

d(B ,C ) 6 d(A,B) + d(A,C )

Mutual information is not an euclidian distance. However the same
reasoning can be applied. If the pairs A ;B and A ;C have high mutual
information, I(B ;C) may be high as well.

I (B ;C ) > I (A;B) + I (A;C )− H(A)

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees JFRB 2010 8 / 19



We want to obtain knowledge about the structure.
The algorithm aims at building :

a set of clusters on the variables,

relationships between these clusters,

and then exploit it to target interesting edges.
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We build the clusters iteratively :

A center (X5) is randomly chosen and compared to the 12 other variables.
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We build the clusters iteratively :

First cluster is created : it is composed of 5 members and 1 neighbour.
Variables are assigned to a cluster based on two thresholds and their
empirical mutual information with the center of the cluster.
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We build the clusters iteratively :

The second cluster is built around X13, the variable the furthest away from
X5. It is only compared to the 7 remaining variables.
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We build the clusters iteratively :

After 4 iterations, all variables belong to a cluster, the algorithm stops.
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We build the clusters iteratively :

Computation of mutual information among variables belonging to the
same cluster.

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees JFRB 2010 10 / 19



We build the clusters iteratively :

Computation of mutual information between variables belonging to
neighboring clusters.
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Our algorithms were compared against two similar

methods.

Complexity reduction :
Random tree sampling (O(n)),
no connection to the data set.

Variance reduction :
Bagging (O(n2 log n)).

Probability Density Estimation by Perturbing and Combining Tree Structured Markov Networks,

S. Ammar and al. ECSQARU 2009.
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Experimental settings

Tests were conducted on synthetic binary problems :

1000 variables,

Average on 10 target distributions × 10 data sets,

Targets were generated randomly.

Accuracy evaluation :

Kullback-Leibler divergence is too computationally expensive :

DKL(Pt ||Pl) =
∑

x

Pt(x) log
Pt(x)

Pl(x)
.

→ Monte carlo estimation :

D̂KL(Pt ||Pl ) =
∑

x∼Pt

log
Pt(x)

Pl(x)
.
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The proposed algorithm succeeds in improving the random

strategy.
Edges similar to the MWST for single trees of 200 variables :
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Variation of the proportion of edges selected

Results for a mixture of size 100 :

Random edge sampling is :
◮ better than the optimal tree

for small data sets,
◮ worse for bigger sets,

The more edges considered, the
closer to the optimal tree.

60%, 35%, 20%, 5% (⊲, ♦, △, �)
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The more terms in the mixture, the better the performance

300 samples :

More sophisticated methods
tend to converge slower,

Random trees are always worse
than an optimal tree,

Other mixtures outperform CL
tree.
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The fewer samples, the (relatively) better the randomized

methods.
For high-dimensional problems, data sets will be small.

Results for a mixture of size 100 :

Random trees (�) are better
when samples are few,

Bagging (-) is better for N > 50,

Clever edge targeting (▽) is
always better than random edge
sampling (⋄).

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees JFRB 2010 17 / 19



Methods can also be mixed :

A combination (⊳) of bagging (-) and
random edge sampling (⋄, 35%) :

Performance lies between base
methods.

Improve bagging complexity.

The fewer the sample, the closer
to bagging.
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Conclusion

Our results on randomized mixture of trees :

Accuracy loss is in line with the gain in complexity.

The interest of randomization increases when the sample size
decreases.

Clever strategies improve results without hurting complexity

→ Worth developing.

Future work :

Experiment other strategies,

Include and test those improvements in other algorithms for building
MT.
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Significance of the curves



Computation time

Rand. trees Rand. edge sampling Clever edge sampling Bagging

2,063 s 64,569 s 59,687 s 168,703 s

Table: Training CPU times, cumulated on 100 data sets of 1000 samples
(MacOS X ; Intel dual 2 GHz ; 4GB DDR3 ; GCC 4.0.1)



H(B ,C ,A) > H(B ,C )

H(A) + H(B |A) + H(C |AB) > H(B ,C )

H(A) + (B |A) + H(C |A) > H(B ,C )

H(B) + H(C ) + 2H(A) > H(B ,C ) + H(B)

+H(B |A) + H(C |A) +H(C ) + H(A)

H(B) + H(C ) − H(B ,C ) > H(B) + H(A)− H(B ,A)

+H(C ) + H(A) − H(C ,A)− H(A)

I (B ;C ) > I (A;B) + I (A;C )− H(A)
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