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Alzheimer’s disease (AD) still remains an enigma for researchers and clinicians.
The onset of AD is insidious, gradually progressive and multifactorial. The recent
accumulated scientific evidences suggests that the pathological changes resemble
the autoimmune-driven self-sustaining inflammatory process as a result of prolonged
oxidative stress and immune dyshomeostasis. Apart from aging, during life span
various other factors—mainly environmental, lifestyle, chronic stress, polymicrobial
infections and neuroendocrine functions—affect the immune system. Here, we provide
crosstalk among “trigger insults/inflammatory stimulus” i.e., polymicrobial infection,
chronic stress, pro-inflammatory diet and cholinergic signaling to put forward a
“Systemic Immune Dyshomeostasis” model as to connect the events leading to AD
development and progression. Our model implicates altered cholinergic signaling and
suggests pathological stages with various modifiable risk factors and triggers at different
chronological age and stage of cognitive decline. The search of specific autoantibodies
for AD which may serve as the suitable blood/CSF biomarkers should be actively
pursued for the early diagnosis of AD. The preventive and therapeutic strategies
should be directed towards maintaining the normal functioning of the immune system
throughout the life span and specific modulation of the immune responses in the brain
depending on the stage of changes in brain.

Keywords: aging, inflammation, autoimmune, amyloid, tau, prevention

INTRODUCTION

Alzheimer’s disease (AD), the most common dementia subtype, affected 50 million individuals
globally in 2018. It is a major cause of disability, poor quality of life and care giver’s burden
(Patterson, 2018). As the world population is aging, the numbers of patients with AD are
expected to increase in the next decade worldwide. The socio-economic burden of AD will pose a
tremendous health risk at the global level in the coming decades. Despite several decades of research,
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the precise pathophysiological process underlying AD is
still unelucidated. To date, there is a lack of definitive
biomarkers for early prediction as well as absence of
disease-modifying therapy.

Although the role of amyloid beta (Aβ) and
hyperphosphorylated tau has explained the molecular
pathogenesis cascade in AD, the quest for a disease-modifying
drug and biomarker(s) for early diagnosis is still on. The search
for the causative components of AD has been a matter of debate
among researchers in the quest for optimal therapeutic and
preventive strategies. There is evidence available demonstrating
an association of AD with educational level, genetics and
vascular, cultural and psychosocial factors from different
epidemiological, neuroimaging and neuropathological studies
establishing the multifactorial nature of this complex debilitating
disorder (Talwar et al., 2016; Scheltens et al., 2016).

Age can be considered as the most reliable risk factor for
AD. With aging, the immune system undergoes a cascade
of remodeling and restructuring called immunosenescence,
leading to an increase in autoimmunity. Various other factors
such as environmental, genetic, neuroendocrine and medical
factors along with the contribution of sociodemographic and
cultural factors also play an important role in immune
alteration (Najjar et al., 2013). The degeneration of the
cholinergic system has been implicated in the etiology of
AD, dementia and aging. The cholinergic hypothesis, first put
forward in 1982, was modified after newer data emerged from
translational and clinical research highlighting the failure of
the cholinergic system in AD pathogenesis (Bartus et al., 1982;
Hampel et al., 2019).

The manifestation of clinical symptoms ∼20 years after
initiation of the pathological process, the degeneration of specific
neuronal subtypes (cholinergic neurons) with the presence of
inflammation and oxidative stress points towards a gradual
systemic homeostatic dysfunction in AD. Here, we propose
an integrated model for AD pathogenesis to understand its
development, progression and prevention (Figures 1A,B).

Aβ–Tau–ApoE: DIRECT OR INDIRECT
PLAYERS

In the last several years, numerous AD therapeutic molecules
have been tested in hundreds of clinical trials (Hung and
Fu, 2017). Most were focused on Aβ as a target based
on the most widely accepted amyloid hypothesis. However,
expected outcomes were not observed due to various reasons
such as poor efficacy, occurrence of adverse events, late
AD stage patients, and poor brain permeability (Cummings,
2018; Cummings et al., 2018). This led to a debate on the
role of Aβ as a central player in the AD pathogenesis (Tse
and Herrup, 2017; Morris et al., 2018). The presence of
Aβ in the brain of cognitively normal healthy individuals
also contradicts the potential of Aβ to cause AD alone
(Neuropathology Group, 2001). Further, it is believed that AD
develops gradually and Aβ accumulation starts 10–20 years
before the onset of clinical AD symptoms. The role of tau
protein has always been shown in association with Aβ as

tau alone cannot lead to cognitive decline resulting in AD
phenotype (King et al., 2006; Talwar et al., 2016; Bennett et al.,
2017). The mechanism of amyloid metabolic pathways such as
clearance is still emerging. Interestingly, novel mechanisms of
amyloid clearance have emerged. de Leon et al. (2017) recently
showed that the human nasal turbinate (NT) is a part of the
CSF clearance system. CSF clearance abnormalities in lateral
ventricle and superior NT are found in AD, and decreased
ventricular CSF clearance is associated with increased brain
Aβ accumulation (de Leon et al., 2017). Pappolla et al.
(2014) demonstrated lymphatic Aβ clearance in vivo using
Alzheimer’s transgenic mice. The authors also showed that
Aβ levels in lymph nodes increase over time, mirroring
the increase of Aβ levels observed in the brain (Pappolla
et al., 2014). Additionally, the amyloid deposition follows an
extremely complicated aggregation process, and key aspects
of amyloid-β oligomer are still unelucidated (Brannstrom
et al., 2018; Cline et al., 2018). Further, there is also a
presence of Aβ oligomer heterogeneity and fibril polymorphism
(Xue et al., 2019).

The Apolipoprotein E (APOEε4) allele appears to be a risk
factor accounting for only 10%–25% of AD cases and not an
invariant cause of AD, as more than half of AD cases do not
have the high-risk E4 allele, indicating that other environmental
or genetic factors may need to be concurrently acting with this
allele to cause AD (Hyman et al., 1996; Lambert et al., 2013;
Haines, 2018; Jiang et al., 2019). APOE isoforms have been shown
to differentially modulate the Aβ-dependent and independent
pathways (Yamazaki et al., 2019). However, the pathogenesis
involved in sporadic AD without APOEε4 and through
Aβ-independent pathways remains elusive. In an interesting
case report, Mak et al. (2014) reported a patient lacking
functional ApoE protein with normal vision, retinal cognitive
and neurological functions, with no abnormal findings on brain
magnetic resonance imaging (MRI) and with normal CSF levels
of Aβ and tau proteins (Lane-Donovan and Herz, 2014).

SYSTEMIC IMMUNE DYSHOMEOSTASIS
MODEL: AN INTEGRATED MODEL FOR AD
PATHOGENESIS

We envisage AD as a Systemic Immune Dyshomeostasis disorder
that manifests after encountering a ‘‘trigger insult’’ which can be
either through internal (genetic predisposition, neuroendocrine
and gut dysbiosis) or external (stress, infections, diet, lifestyle,
drugs, metal toxicity, alcohol and pollution) factors leading to
blood-brain barrier (BBB) dysfunction (Dosunmu et al., 2007; Xu
et al., 2015; Talwar et al., 2019).

In the beginning, the trigger insults are primarily
responsible for the initiation of autoimmune activity or
auto-inflammatory process (Temajo and Howard, 2014).
Further, repeated challenges by these triggers lead to
polyautoimmunity or hyperinflammation (Anaya, 2014;
Gul, 2018). These systemic alterations along with ageing
and immunosenescence result in BBB dysfunction, allowing
serum proteins to reach CNS or formation of immune passage
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allowing peripheral T lymphocytes to cross the BBB (Carson
et al., 2006; Sonar and Lal, 2018), leading to microglial
activation which in turn initiates neuronal oxidative stress
and inflammatory process, activating amyloid cascade in
cyclic mode causing progressive neurodegeneration. The mild
cognitive impairment occurs once the β-amyloid monomers
convert into soluble oligomers and hyperphosphorylation
of tau protein occurs, which gradually proceeds to AD
with the deposition of amyloid plaques and formation of
neurofibrillary tangles (Jeong, 2017). In advanced stages of
AD, the pathology covers the entire neocortex with complete
degeneration of acetyl cholinergic neurons, cortical atrophy
and enlargement of ventricles, which results in marked
phenotypic, personality and behavior changes along with
cognitive dysfunction and impaired activities of daily living
(ADLs; Figure 1A).

Several studies have reported a higher risk of AD with
bacterial and viral infections (Sochocka et al., 2017; Ashraf et al.,
2019; Talwar et al., 2019). The recent antimicrobial protection
hypothesis has suggested that polymicrobial infection may be
involved in activating the innate immune response leading
to Aβ deposition (Gosztyla et al., 2018; Moir et al., 2018).
Several studies have proposed potential molecular mechanisms
of enhanced Aβ production and reduced Aβ clearance in the
context of viral infections, mainly HIV (Pulliam, 2009; Lan
et al., 2011). Further, Civitelli et al. (2015) showed that Herpes
simplex virus type 1 (HSV1) infection in primary cultures of
cortical neurons leads to production and nuclear localization of
APP intracellular domain (AICD) in vitro (Civitelli et al., 2015).
Some emerging literature has pointed towards the presence of
different Aβ species in response to various microbial infections
(Zhao et al., 2015; Spitzer et al., 2016). Several pathogenic Aβ

and Tau isoforms have been reported which may render the
drugs targeting these proteins ineffective (Lacovich et al., 2017;
Dujardin et al., 2018; Goedert, 2018; Hodgson, 2019).

ApoE has also been implicated in various pathologies,
including infection, dyslipidemia, vascular pathologies, apart
from AD due to structural isoforms (Urosevic and Martins, 2008;
Tudorache et al., 2017). The role of ApoE4 derived antimicrobial
peptide analogs has also been reported (Kelly et al., 2007).

Kamer et al. (2009) showed that TNFα and antibodies to
periodontal bacteria discriminate between AD patients and
normal subjects, indicating a role of bacterial infection and
inflammation in AD (Kamer et al., 2009).

In people with chronic stress, such as medical professionals
and those in the armed forces, higher risk of AD has been
observed (Wang et al., 2012; Veitch et al., 2013; Greenberg
et al., 2014; Ridout et al., 2019; Yaffe et al., 2019). Strong
evidence is emerging that shows sleep disturbances and/or
disorders as an important risk factor in the early pathogenesis
of AD (Bubu et al., 2017; Van Egroo et al., 2019). Sleep
abnormalities lead to systematic inflammation and an increase
in reactive oxygen species (ROS) production, neuronal activity,
interstitial fluid (ISF) and CSF tau, and decrease in glymphatic
clearance of Aβ protein. Prolonged oxidative stress can initiate
or augment the neuropathological process in AD (Ning
and Jorfi, 2019). Xie et al. (2013) provided evidence that

sleep drives clearance of potentially neurotoxic metabolites,
including amyloid, from the adult brain (Malkki, 2013;
Xie et al., 2013).

Although there is insufficient evidence associating certain
diets with risk of AD, several studies reported higher risk of
AD in people consuming western diets rich in meat, sugar and
processed foods. A diet rich in plant foods, whole grains, fresh
dairy products and fish as included in several dietary patterns
such as the DASH, Mediterranean, and Japanese diets has been
shown to be protective against AD (Hu et al., 2013; Grant, 2016).

These substantial evidences allow us to suggest that
polymicrobial infection, chronic stress and a pro-inflammatory
diet are the main ‘‘trigger insults/inflammatory stimulus’’ that
cause altered cholinergic signaling leading to systemic immune
dyshomeostasis, resulting in AD development and progression.
All three trigger insults lead to an altered cholinergic signaling
pathway in brain, bone marrow, liver and gut by modulating
one carbon (1C) metabolism, bone marrow-derived monocytes
and bone marrow-derived mesenchymal stem cells (BMSCs),
gut microbiome, hypothalamic pituitary axis and glucocorticoid
regulation culminating in immune alteration and autoimmunity.
The pathways showing systemic immune dyshomeostasis and the
effect of inflammatory trigger insults on cholinergic signaling in
AD are represented in Figure 2.

CROSSTALK BETWEEN CHOLINERGIC
SIGNALING, TRIGGER INSULTS AND ONE
CARBON (1C) METABOLISM

Adequate levels of acetylcholine (Ach) are essential for normal
immune and cognitive functions like alertness, attention,
learning and memory. As peripheral Ach cannot cross the BBB,
it is primarily synthesized in the basal nucleus of Meynert and
medial septal nucleus of basal forebrain from choline and acetyl
coenzyme A (acetyl-CoA) for various physiological functions.
Choline is also essential for the development and functioning
of the hippocampus and frontal cortex, which are mainly
responsible for memory and high-level thinking respectively. The
choline levels are controlled by one-carbon (1C) metabolism
involving folate, DHA, EPA, vitamin B12 and homocysteine in
liver (Blusztajn et al., 2017).

Reduced transport of acetyl-CoA into the ER lumen has
been shown to cause neurodegeneration along with increased
predisposition to inflammation and infections. NAA produced
from Acetyl-CoA and aspartate serves as an extensive reservoir
of acetate for Acetyl-CoA synthesis, and its loss impairs
Acetyl-CoA signaling, leading to neuronal injury (Moffett
et al., 2007, 2013). The inhibition of enzyme acetyl-CoA
carboxylase (ACC), involved in the conversion of acetyl-CoA to
malonyl-CoA, is considered as a potential therapeutic target for
different complex disorders including viral infections (Greseth
and Traktman, 2014; Merino-Ramos et al., 2015). Previous
studies have suggested a role for acetylcholine (Ach) and
catecholamines (CAs) in the crosstalk between pathogens and
the immune system. The presence of pathogenic signatures
modulates cholinergic and catecholaminergic signaling pathways

Frontiers in Aging Neuroscience | www.frontiersin.org 3 October 2019 | Volume 11 | Article 290

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Talwar et al. Revisiting Alzheimer’s Disease

FIGURE 1 | (A) Systemic Immune Dyshomeostasis Model representing stages leading to the development and progression of Alzheimer’s disease (AD).
(B) Possible assessment and prevention strategy at different stages of AD model. The blue line in (A) represents stages and events leading to AD. In response to
different trigger insults, over years, the autoimmune activity begins to increase in the humans due to immunosenescence gradually from around 30 years of age
(Stage I). Further, progression in immune impairment due to repeated trigger insults may be attributed to polyauoimmunity/hyperinflammation, which leads to
blood-brain barrier (BBB) dysfunction and then amyloid cascade activation through microglial activation and oxidative stress (stage II and III). Inflammation,
autoimmune activity and BBB alterations (at stages I and II) are known to be associated with amyloid oligomers and tau pretangles. Abeta and tau pathology in the
form of soluble oligomers and pretangles or paired helical fragments could be present at middle age (40–50) without causing clinical cognitive decline (stages II and
III). In the absence of any preventive action, irreversible immune dysfunction cascade begins along with amyloid and tau pathological changes (around 60 years),
leading to cognitive impairment (Stage IV). Activation of dyshomeostatic events leads to faster decline in immune functions and cognitive functions, resulting in the
development of AD (Stage V). These systemic immune dyshomeostatic events can be controlled through periodic assessment and lifestyle modifications along with
the use of neuroprotective/immune strengthening anti-inflammatory agents, which signifies “Preventive aging” (green line). The “Healthy aging” (yellow line) shows the
ideal condition where there is neither any predisposing risk factor nor exposure to pathological trigger insults. Only aging-related immune dysfunction appears at late
age with slow decline and mild cognitive impairment in cognitive functions.
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leading to the production of pro-inflammatory cytokines
(Weinstein et al., 2015).

Altered synthesis and import of fatty acids—mainly
cholesterol, glycerophospholipids and sphingolipids—have
been implicated in AD, cancers, obesity, diabetes and
viral infections (Merino-Ramos et al., 2015). In the liver,
phosphatidylethanolamine N-methyltransferase (PEMT), a
transferase enzyme, converts phosphatidylethanolamine (PE) to
phosphatidylcholine (PC), which serves as a precursor of choline
for Ach synthesis. The PEMT gene is shown to be regulated by
estrogen—which increases the PEMT activity—and lower level
of estrogen has been implicated in post-menopausal women
as a risk factor for AD (Resseguie et al., 2007). A correlation
of plasma choline and betaine [choline oxidation product
involved in dimethylglycine formation through methylation of
homocysteine (Hcy) to methionine (Met)] with serum folate,
plasma S-adenosyl-methionine and S-adenosyl-homocysteine
has been well established (Imbard et al., 2013). Folate and
choline are metabolically interrelated, and their deficiency is
associated with increased plasma Hcy concentration as reported
in patients with AD (Jacob et al., 1999; da Costa et al., 2005).
Diets rich in red and processed meat, fried food, peas and
legumes with a lower proportion of whole grains has been shown
to alter 1C metabolism, resulting in release of proinflammatory
cytokines and accelerated cognitive dysfunction at older
ages as also demonstrated by the Whitehall II cohort study
(Ozawa et al., 2017).

CROSSTALK BETWEEN CHOLINERGIC
SIGNALING, TRIGGER INSULTS AND
BONE MARROW-DERIVED
MONOCYTES/BONE MARROW-DERIVED
MESENCHYMAL STEM CELLS (BMSCs)

It is well known that most of the proinflammatory cytokines
released systemically during sustained inflammatory
responses are produced from tissue macrophages and
not by circulating monocytes. Higher concentration of
pro-inflammatory cytokines modulates synaptic plasticity
and neurotransmitter signaling. The crosstalk between the
innate immune system and the cholinergic nervous system
through synapse requires the α7 subunit of the acetylcholine
receptor (AChR). The interaction of cholinergic agonists
including nicotine and acetylcholine with the AChR inhibits
the production of pro-inflammatory cytokines released by
activated macrophages, but not the anti-inflammatory cytokines.
The pro-inflammatory cytokine-inhibiting effects of Ach
work on monocytes, which express little or no α7 AChR,
only at supra-physiological concentrations of cholinergic
agonists. This highlights the anti-inflammatory effect of the
parasympathetic nervous system (PNS) via acetylcholine
(Czura et al., 2007).

Trigger insults induce macrophages from bone marrow
derived monocytes to secrete proinflammatory cytokines mainly
IL-1, TNFα, IFNγ, IL-17, IL-18 and IL-23, which can
cross the BBB and induce Aβ generation along with Tau

hyperphosphorylation via GSK-3β or nicotinic acetylcholine
receptors (nAChR) activation. These proinflammatory cytokines
have been shown to increase the mRNA expression and
synthesis of APP in endothelial and neuronal cells (Chen et al.,
2014; Tahmasebinia and Pourgholaminejad, 2017; Alasmari
et al., 2018). Higher serum levels of these pro-inflammatory
cytokines have been reported in patients with AD (Lai et al.,
2017). However, IL-17A, when overexpressed in an AD mouse
model, led to increased ABCA1 expression which in turn
resulted in reduction of Aβ levels in the hippocampus and
cerebrospinal fluid levels (CSF), which may point towards their
protective role at initial stages (Yang et al., 2017). Sustained
inflammatory stimulus results in hyperinflammation, which
results in continuous production of inflammatory cytokines
and decreases production of anti-inflammatory cytokines
(e.g., IL-4, IL-10, IL-11, IL-13), causing accumulation and
deposition of Aβ. This activates a cyclic cascade wherein
Aβ induces neuronal damage which activates astrocytes and
microglia to produce chemokine C-C Motif Chemokine
Ligand 2 (CCL2), resulting in recruitment of more immune
effector cells to the site of Aβ deposition. Macrophages
differentiated from blood-derived monocytes, phagocytose and
clear Aβ plaques more effectively than brain resident microglia
(Hohsfield and Humpel, 2015).

In an interesting in vitro study, it has been reported
that human neural stem cells (hNSCs) from human bone
marrow-derived mesenchymal stem cells (hBMSCs) could be
differentiated into cholinergic neurons (CNs) using basic
fibroblast growth factor (bFGF), epidermal growth factor
(EGF) and B27 (media supplement) followed by replacement
with nerve growth factor (NGF), suggesting a role of these
factors in the generation of cholinergic neurons (Adib et al.,
2015). The role of EGF, EGFR and NGF has been previously
implicated in AD (Talwar et al., 2014, 2017; Cuello et al., 2019;
Fahnestock and Shekari, 2019).

CROSSTALK BETWEEN CHOLINERGIC
SIGNALING, TRIGGER FACTORS AND GUT
MICROBIOME

AD development has also been attributed to gut–brain axis
dyshomeostasis and pathogen-derived amyloidogenesis. Chronic
inflammatory stimulus in the gut may induce release of
proinflammatory cytokines. The endogenous gut microbiome
may release amyloid-associated factors such as amyloids,
lipopolysaccharide, and serum amyloid A, which may escape
from the gastrointestinal (GI) tract and further increase the
proinflammatory cytokine levels. Increased BBB permeability
due to aging or dysfunction allows the proinflammatory
cytokines to enter brain inducing glia reactivity, TLR2/1,
CD14 signaling and iNOS increase. Additionally, altered
expression of BBB-associated receptor for advanced glycation
end products (RAGE), low-density lipoprotein receptor related
protein 1 (LRP) receptors and tight junctions facilitate transit
of amyloid proteins and leukocytes, leading to activation of
NF-κB signaling and an increase of ROS levels resulting in
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FIGURE 2 | Pathways showing systemic immune dyshomeostasis and the effect of inflammatory trigger insults on cholinergic signaling in AD: the figure shows
crosstalk among “trigger insults/inflammatory stimulus” i.e., polymicrobial infection, chronic stress, pro-inflammatory diet and cholinergic signaling to put forward the
“Systemic Immune Dyshomeostasis” model as to connect the events leading to AD development and progression. All three trigger insults lead to altered cholinergic
signaling pathway in brain, bone marrow, liver and gut by modulating: (a) one carbon (1C) metabolism; (b) bone marrow-derived monocytes and bone
marrow-derived mesenchymal stem cells (BMSCs); (c) gut microbiome, hypothalamic pituitary axis; and (d) glucocorticoid regulation culminating in immune alteration
and autoimmunity (e). The Violet shaded circles represent the “direct players,” the gray shaded circles represent the “indirect players” and the orange shaded circles
represent the “pathological players” in AD pathogenesis cascade. ∗ Infection, stress and inflammatory diet; Hcy, Homocysteine; PE, Phosphatidylethanolamine; PC,
Phosphatidylcholine; PEMT, Phosphatidylethanolamine N-methyltransferase; ChAT, Choline O-Acetyltransferase; nAChR, Nicotinic acetylcholine receptors; GSK3β,
Glycogen synthase kinase 3 beta; IL, interleukins; TNFα, Tumor necrosis factor alpha; IFNγ, interferon γ; hBMSCs, human bone marrow-derived mesenchymal stem
cells; hNSCs, human neural stem cells; bFGF, basic fibroblast growth factor; EGF, Epidermal growth factor; NGF, Nerve growth factor; ApoE, Apolipoprotein E; Aβ,
Amyloid beta; CCL2, C-C Motif Chemokine Ligand 2; CCR2, C-C chemokine receptor type 2.

neuroinflammation. Perturbations of gut homeostasis due to
trigger insults can also lead to altered GABA, NMDA, and BDNF
signaling, causing impaired glucose metabolism and reduced
insulin sensitivity, culminating in neurodegeneration and
cognitive impairment (Pistollato et al., 2016; Bostanciklio ğlu,
2019; Kowalski and Mulak, 2019; Mohajeri, 2019).

The microbiota can modulate events in the periphery
and brain by different ways, including cytokine production,
vagus nerve activation, neuropeptide and neurotransmitter
release, short-chain fatty acids (SCFA), α-Amino-β-
methylaminopropionic Acid (BMAA) and lipocalin-2 release.
These signals reach the brain and influence the microglial
maturation and activation. Activated microglia facilitate
immune surveillance, regulate hypothalamic-pituitary-adrenal
(HPA) axis, and manages synaptic pruning and clearance of
debris (Rea et al., 2016). In a recent interesting study by Werbner

et al. (2019), chronic social stress is shown to promote the
expression of virulent genes in the murine gut microbiota which
activates the immune response, compromising tolerance to self
and resulting in increased risk for autoimmune disorders in
susceptible individuals (Werbner et al., 2019).

CROSSTALK BETWEEN CHOLINERGIC
SIGNALING, TRIGGER FACTORS AND
GLUCOCORTICOID HORMONES

Inflammatory stimulus may induce the release of glucocorticoid
hormones as a consequence of HPA axis activation, which can,
in turn, activate the brain microglia as well as influence release
of proinflammatory cytokines and monocyte trafficking from
the periphery to the CNS (Rea et al., 2016). Glucocorticoids
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(mainly cortisol) primarily target the cortical and limbic brain
regions, including the hippocampus, which contain the basal
forebrain cholinergic neuronal projections and are involved in
the etiology of stress, cognitive aging and neurodegenerative
diseases including AD.

Trigger insults (stress) affect the release of ACh,
glucocorticoids and their receptor affecting cognitive
processes and functions. During stress, interaction between
glucocorticoids and the cholinergic system contributes to
degeneration of basal forebrain cholinergic neurons, leading
to progressive cognitive decline with aging and in AD (Paul
et al., 2015). Physiological stress has been shown to alter
the post-translational modification of acetylcholinesterase
(AChE) by shifting it from healthy (AChE-S splice variant)
to a less stable AChE-R variant. Stress, inflammation
and iron have been reported to modulate the microglial
phenotype. Additionally, evidence showing crosstalk between
α7nAChR and the ferroportin signaling pathway is also present
(Cortes et al., 2017).

Basal forebrain cholinergic neurons also mediate HPA axis
activation and regulate rapid eye movement (REM) sleep. The
HPA axis can be activated directly by the cholinergic agonists and
indirectly via an inflammatory stimulus including chronic stress
(Krieg and Berger, 1989). In 1995, Korth proposed the theory of
co-evolution between sleep and BBB, which stated that ‘‘sleep
primarily evolved to protect the brain against a wakefulness-
dependent increase in the permeability of the BBB.’’ It implies
that sleep is regulated by bacterial cell wall constituents from gut
microbiota through BBB permeability and cytokine production
(Korth, 1995).

AUTOIMMUNITY IN AD PATHOGENESIS

The presence of antigenic homology between Aβ42 with
pathogens (including viruses), food antigens such as microbial
transglutaminase (mTG), β-NGF, BDNF, component BBB
antigens and enteric neuronal antigens has been reported. These
Aβ42 cross-reactive autoantibodies (aAb) have been shown to
cause neuronal degeneration in individuals with compromised
BBB (Vojdani and Vojdani, 2018). There are numerous aAb
detected in human sera, and some of them have specific
roles in the pathogenesis of AD. A comprehensive list of aAb
associated with AD is provided in Supplementary Table S1.
These antibodies are directed against Aβ and tau proteins,
neurotransmitters, glial markers, lipids and cellular enzymes. The
natural antibodies are produced by human beings against Aβ

and tau proteins, which was the basis of immunotherapy. The
patients with autoimmune disorders such as rheumatoid arthritis
(RA) have been shown to have higher risk of developing cognitive
dysfunction leading to AD (Li et al., 2018). Several studies have
demonstrated the involvement of autoimmune factors such as
Aβ aAb, anti-angiotensin 2 type 1 receptors (anti-AT1R) aAb,
intermediate neurofilament heavy (NFH) protein as primary
self-antigen (pSAg), immunoglobin (Ig) positive neurons and
NGF reduction in AD pathogenesis (Supplementary Table S1).
In the study by Nagele et al. (2011), the authors identified
a panel of AD autoantibody markers with a sensitivity of

96.6% and a specificity of 92.5%. In a study by Tuszynski
et al. (2015) involving 10 AD subjects and NGF gene therapy,
neuronal regeneration, tissue growth and improvement in
cognitive functions were reported. The proNGF converts into
mature NGF in the brain, which stops in AD, leading to
Aβ formation and brain inflammation resulting in neuronal
degeneration and dysfunction. Further, the role of NGF in
selectively protecting acetylcholine-activated neurons has been
demonstrated, indicating potential for its use in the treatment of
AD (Aloe et al., 1994).

As many aAb have been detected in AD patients contributing
to the pathogenesis of AD and also displaying the protective
role, these antibodies can serve as corroborative diagnostic
or prognostic biomarkers. The presence of neuronal aAb in
combination with BBB disruption is the main contributing factor
in AD pathogenesis. The identification of pSAgs is a challenge, as
the autoimmune process continues for years before manifesting
as disease. In recent years, hippocampal self-antigens have been
found in the sera of patients with autoimmune encephalitis
(Graus et al., 2016). The identification of pSAgs depends on
the humoral immune system. The optimum function of normal
homeostasis, maintenance and proper neuronal function is
modulated by intact BBB. Disruption in the BBB allows serum
proteins or antigens to reach the brain regions. Antibodies to
different brain proteins have been identified which are produced
after an autoimmune response. These specific antibodies act as
mediator to cause inflammation, resulting in severe neuronal and
glial dysfunction. In neurodegenerative disorders, the chronic
inflammation is associated with specific brain areas. The T
lymphocyte mediated degeneration of cholinergic myelinated
large axons in the fore brain leads to severe cognitive deficits
(Lueg et al., 2015). The crosstalk between activated B and
T lymphocytes regulates the pathogenic antibody responses
through the antibody class-switching and glycosylation pattern
(Ludwig et al., 2017).

THE WAY FORWARD: PREVENTIVE
STRATEGIES AND MULTITHERAPY
APPROACH

There are only four FDA-approved drugs for AD—namely
Donepezil, Rivastigmine, Galantamine, and Memantine. All
these medications only treat the symptoms of AD and neither
stop nor reverse the cognitive decline. At present, there is
no disease-modifying treatment available for patients with
AD (Vojdani and Vojdani, 2018). Although it is presently
not possible to reverse the cognitive decline in the clinically
diagnosed patients with AD due to neuronal degeneration and
atrophy in brain regions, it is possible to increase the resilience of
the immune system in advance to counter or delay the effect of
‘‘trigger insult.’’

The possible way to lower the future increase in burden of
AD is to focus on the prevention strategy. As AD is considered
a multi-factorial disorder, the strategy needs to be multi-focal,
with a central focus on immune strengthening process targeting
population of age less than 40 years (primary prevention).
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The preventive measures include regular physical activity,
meditation, anti-inflammatory diet and use of supplements
with potential antioxidant, neuro-protective and immune-
strengthening properties.

Lifestyle changes—primarily physical activity (exercise, yoga),
sleep hygiene, meditation, social engagement and educational
status—also play an important role in maintaining cognitive
functions and cognitive reserve over the years (Shatenstein et al.,
2015; Xu et al., 2015). An anti-inflammatory diet which includes
fresh fruits such as berries, spices (garlic, ginger, turmeric,
black pepper), gluten-free products, fermented food items, fish
and red wine is believed to promote healthy ageing (Daulatzai,
2015). The periodic use of supplements—mainly omega-3 fatty
acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA)], vitamin B12, vitamin E, folic acid, curcumin with black
pepper (piperine), grape seed extracts (gallic acid and catechins),
Withania Somnifera (withanolide withaferin A), Ginko
Biloba (ginkgolide), barberry (berberine), ginseng (Gintonin),
Resveratrol and probiotics—can prevent autoimmune activity
and inflammation through different mechanisms and can also
be beneficial in preventing early onset of cognitive impairment
among at-risk individuals (Daulatzai, 2015; Viña and Sanz-Ros,
2018; Wang et al., 2018). These lifestyle modifications may deal
with trigger insults and maintain the immune homeostasis,
preventing or delaying BBB dysfunction and allowing cross-
reactive antibodies to enter into the CNS through cerebral
vasculature. The integrated combination therapy approach
targeting different stages of the proposed pathological pathway
is needed to prevent, delay and/or control the development and
progression of AD (Figure 1B).

Recent meta-analysis studies have shown lower acetylcholine,
GABA, pyruvate, DHA, choline, vitamin B12, C, E and
folate levels in AD (de Wilde et al., 2017; Manyevitch
et al., 2018). Supplementation with choline compounds has
been associated with improvement in cognitive functions
through regulation of epigenomic activities including brain-
specific histone modifications and DNA methylations and with
alterations in the expression of genes associated with learning
and memory processing (Blusztajn et al., 2017). However, a
few studies have shown no cognitive improvement despite
higher blood levels of choline in recipients (Sanchez et al.,
1984; Amenta et al., 2001). The probable reason could be
low acetyl-CoA levels as both choline and Acetyl-CoA are
essential for the synthesis of acetylcholine and improvement in
cognitive functions. Acetate, pyruvate and ketone bodies can
also be used as acetyl-CoA precursors (Nakamura et al., 1970;
Pietrocola et al., 2015). Frost et al. (2014) have shown that
acetate supplementation can activate acetyl-CoA carboxylase,
leading to an increase in the levels of acetyl-CoA in the
brain (hypothalamus). Administration of pyruvate after severe
hypoglycemia has been reported to reduce neuronal death and
resulting cognitive impairment (Suh et al., 2005; Zhou et al.,
2012). Ketone bodies—mainly water-soluble acetoacetate and
beta-hydroxybutyrate molecules—which are produced in the
liver and can cross the BBB and reconverted to acetyl-CoA.

To control inflammation, curcumin with piperine as part
of the supplementation is essential, as it has been shown to

downregulate human TNF-α levels in a systematic review and
meta-analysis involving randomized controlled trials (Sahebkar
et al., 2016). In addition, other important supplement candidates
are Ginkgo Biloba (Increase NGF), Withania Somnifera (steroid-
like activity), Glycyrrhiza glabra or Tripterygium wilfordii [heat
shock protein 90 (Hsp90) inhibitors], Centella asiatica (increases
neurite outgrowth in the presence of NGF), vitamin D with zinc
and drug selegiline (elevates NGF, BDNF, and GDNF) (Aloe
et al., 1994; Sehgal et al., 2012; Berti et al., 2015; Dal Piaz et al.,
2015; Gray et al., 2017; Puttarak et al., 2017; Campanella et al.,
2018; Farooqui et al., 2018; Kandiah et al., 2019; Park et al., 2019;
Talwar et al., 2019).

LIMITATIONS

The hypothesis involves multiple systems of the body at different
points of time, which is difficult to study simultaneously.
However, it can be validated through carefully designed
longitudinal studies assessing multiple parameters in precisely
phenotyped cohorts. Further, immune function is a subject-
dependent dynamic entity which varies in response to
several internal and external stimuli, and controlling for
them in the ageing human population is extremely difficult.
Also, complex genetic and epigenetic processes involved
in AD may act as limiting factors in the elucidation of
underlying neurodegenerative mechanisms in ethnically
different phenotypic groups. However, context-dependent
underlying physiological mechanisms could be elucidated
through in vivo and in vitro studies. The hypothesis may also
hold true for gradually progressive late-onset disorders with
multi-physiological system involvement such as Parkinson’s
disease and cannot be seen exclusively as AD-specific.

CONCLUSION

Several hypotheses have been put forward in the last 100 years,
but the precise etiology of AD pathogenesis is still unelucidated.
In the present review, we have presented the crosstalk among
‘‘trigger insults/inflammatory stimulus,’’ i.e., polymicrobial
infection, chronic stress, pro-inflammatory diet and cholinergic
signaling and proposed a model that potentially connects
the events leading to AD development and progression. We
envisaged systemic immune dyshomeostasis as a multifactorial
combination of age- and immune-related changes that modulate
the body and brain functions, effectively enabling opportunistic
pathobiological alterations leading to AD pathology. The review
highlights some of the recent findings on how different
inflammatory responses exacerbate neurodegenerative processes
associated with AD and how the systemic immune changes,
along with a litany of other processes, including chronic
stress, cholinergic signaling defects, polymicrobial invasion
and other chronic insults, may be responsible for many
of these changes. We propose AD as an inflammation-
driven self-sustaining autoimmune process and timely immune
strengthening interventions may be instrumental in preventing
morbidity and mortality. The preventive strategies should be
directed towards maintaining the normal functioning of the
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immune system, and therapeutic strategies should focus on a
multitherapy approach.
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