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ABSTRACT

High-contrast imaging instruments are today primarily limited by non-common path aberrations appearing
between the wavefront sensor of the adaptive optics system and the science camera. Early attempts at using
artificial neural networks for focal-plane wavefront sensing showed some successful results but today’s higher
computational power and deep architectures promise increased performance, flexibility and robustness that have
yet to be exploited. We implement two convolutional neural networks (CNN) to estimate wavefront errors from
simulated point-spread functions in both low and high aberration regimes. We then extend our CNN model by a
mixture density network (MDN) and show that it can assess the ambiguity on the phase sign by predicting each
Zernike coefficient as a probability distribution. Our method is also applied with the Vector Vortex coronagraph
(VVC), comparing the phase retrieval performance with classical imaging. Finally, preliminary results indicate
that the VVC combined with polarized light can lift the sign ambiguity.

Keywords: Machine learning, convolutional neural networks, focal plane wavefront sensing, phase retrieval,
vector vortex coronagraphs, high contrast imaging

1. INTRODUCTION

Exoplanet imaging faces several challenges, principally due to the high contrasts and small angular separations
between exoplanets and their parent star. Coronagraphy and, for ground-based observations, adaptive optics
(AO) offer effective instrumental solutions to these limitations. Nonetheless, residual wavefront errors (WFE)
and in particular non-common path aberrations (NCPAs) between the science camera and the AO wavefront
sensor are a key limitation. Slowly varying NCPAs produce quasi-static speckles1 in the focal plane that are very
difficult to calibrate or remove with post-processing techniques due to their dynamic. Additionally, these speckles
share a very similar signature to that of planetary companions. Eliminating NCPAs is of prime importance for
high-contrast imaging today.2

One approach to solve this issue is focal-plane wavefront sensing (FPWFS), which measures the NCPAs from
focal plane images without requiring any additional optical element. An important hindrance to FPWFS is
the so-called twin-image problem,3–5 i.e. the non-unique response in the focal-plane for certain phase modes.
This corresponds to a sign ambiguity regarding Zernike modes of even radial order when using centro-symmetric
pupils. Because knowing the sign of only one even mode is enough to lift the ambiguity, a standard solution is
to incorporate phase diversity.3,6 This is achieved by introducing a known even mode aberration (typically a
defocus) and subsequently by using two images, with and without phase diversity.

Iterative algorithms such as the Gerchberg-Saxton algorithm7,8 have been developed for FPWFS. Although
they can predict the phase with good accuracy, they face some drawbacks: they need a sensible starting guess
while they do not offer the guarantee to converge to a global minimum and their iterative nature make them
not very efficient for real-time corrections. On the other hand, machine learning techniques have already been
implemented for numerous applications with impressive success. Some properties of deep neural networks that
can be advantageous for phase retrieval are their non-linear nature, real-time prediction capabilities and promising
robustness. Convolutional neural networks (CNN) are particularly efficient at modeling the spatial information
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Figure 1: Left: Example of a generated set of Zernike coefficients. Right: Example of a RMS WFE distribution
in a dataset composed of 105 samples. The median RMS WFE considered here is equal to 350 nm.

in images to infer real world quantities. Deep learning-based techniques have already been implemented for
wavefront sensing as a supervised regression task with favourable results. Neural networks were first applied
to estimate phase aberrations inside multiple-telescope arrays9 before being implemented in various projects,
including phase retrieval inside the Hubble Space telescope.10 More recently, CNNs have also been used for
FPWFS, targeting for example segment co-phasing11 or atmospheric compensation.12,13

In this paper we present our CNN-based method for focal plane wavefront sensing in high-contrast imaging.
We most notably propose to implement mixture density models to predict the sign ambiguity with probability
distributions and we test our method with the Vector Vortex coronagraph (VVC). In Sec. 2, we first give a
detailed description of our data generation procedure and deep learning approach. We present in Sec. 3 a
performance comparison between the U-Net and ResNet-50 architecture as a baseline, before evaluating the
mixture density models and studying the impact of simulated post-VVC PSFs on the performance. The effect of
polarization with vortex phase masks regarding the sign ambiguity is also examined. Finally, we conclude and
discuss about the next steps ahead in Sec. 4. While the present work describes specific aspects related to our
method such as the implementation with the VVC, a thorough study in the case of classical imaging is addressed
by Orban de Xivry et al.14 (in preparation).

2. METHOD

In this section we describe the building components of our simulations and the deep learning approach considered
to retrieve phase aberrations from point-spread functions.

2.1 Synthetic data generation

2.1.1 Dataset generation procedure

For focal-plane wavefront sensing in a deep learning framework we construct a labelled dataset composed of
point-spread functions and phase maps. In classical imaging, i.e. with a direct optical propagation between
pupil and focal planes, the PSF can be expressed from the phase as

PSF (x, y) = |F [A(x, y) e iΘ(x,y)]|2, (1)

where A(x, y) is the system’s aperture function and Θ(x, y) the phase. One can note that due of the squared
complex modulus, only intensities are encoded in the PSF and the phase information is therefore lost. We
simulate the phase aberrations using Zernike polynomials which make up an orthonormal basis:

Θ(x, y) =

N∑
i=0

ci Zi(x, y), (2)

where Θ is the complete phase map, Zi the Zernike polynomials, ci the corresponding coefficients, and N the
number of modes considered. The sets of Zernike coefficients are first randomly generated within the range [−1, 1]
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Figure 2: Example of phase maps and pre-processed PSFs with a median RMS WFE of 350 nm and an additional
defocus of 550 nm. A fixed stellar flux of 104 photons (SNR = 100) is considered. Top: Phase maps with 20 (left)
and 100 modes (right). Middle: Corresponding normalized in-focus PSFs. Bottom: Normalized out-of-focus
PSFs. (a) Classical imaging PSFs; 20 modes. (b) Post-VVC PSFs; 20 modes. (c) Classical imaging PSFs; 100
modes. (d) Post-VVC PSFs; 100 modes.

and each coefficient is then divided by its corresponding radial order to approximate a 1/f2 power spectral density
profile, typically encountered with good quality optics.15 The entire set of coefficients for each phase map is
re-scaled according to a given median root-mean-square (RMS) wavefront error WFE:

ĉk =
ck

WFE ×median
(√∑

i c
2
k,i

) , (3)

where ĉk is the normalized set of coefficients for the phase map k (see an example Fig. 1; left). Our input
wavefront error is therefore a distribution centered around WFE (Fig. 1; right), and a higher WFE leads to
a larger distribution. We then construct the phase maps using Eq. (2) and we follow the Noll convention16

regarding the ordering of the Zernike polynomials, starting from the tip mode. We simulate a circular entrance
aperture, i.e. without considering the central obstruction and structure support due to a secondary mirror.

The PSFs are computed using the PROPER17 optical propagation package. Our data is generated in the K
band at λ = 2200 nm, we consider an aperture diameter of 10 m, a pixel scale of 0.25λ/D/pix ' 11.43 mas/pix,
and a field-of-view of 32.3λ/D ' 1.47”. The phase maps and final PSFs are cropped to contain 129×129 pixels.
Each sample from the dataset is composed of in-focus and also out-of-focus PSFs to lift the sign ambiguity of
the phase. A defocus of λ/4 = 550 nm is introduced in the pupil plane to obtain the out-of-focus PSFs. Fig. 2
illustrates phase maps and PSFs generated with a median RMS WFE of 350 nm (1 rad) distributed over 20 and
100 modes.

2.1.2 Implementation of the Vector Vortex coronagraph

The Vector Vortex coronagraph18 (VVC) is an optical device designed to suppress the direct starlight in order to
reach higher contrasts in the star’s surroundings. It uses a transparent phase mask at the focal plane that diffracts
the on-axis light outside the pupil. This light is then blocked by a downstream Lyot stop. The VVC generates
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Figure 3: Transmitted flux after the vortex mask and the downstream Lyot stop as a function of the level of
wavefront aberration, for different additional defocus. For each case a single data sample generated with 20
Zernike modes is used.

two conjugated phase ramps exp(i ± lp θ), with lp the topological charge and the θ the azimuthal coordinate,
to both circular polarization of the incoming light. Among the advantages of vortex phase masks compared to
other coronagraphs are their achromaticity and small inner working angle,19 and VVCs have been integrated
with success in several high-contrast imaging instruments since 2012 (VLT/NACO and VISIR, Keck/NIRC2,
LBT/LMIRCam).20 For a flat wavefront and a circular pupil, the VVC perfectly cancel the on-axis PSF. If
the wavefront contains phase aberrations however, some light will leak. Fig. 3 illustrates the influence of the
incoming level of wavefront error on the transmitted flux ratio. One can notice that regardless of the additional
defocus, the transmitted flux tends to converge towards a similar fraction for very high input wavefront errors.
Since the VVC removes the Airy pattern, we can expect the speckle field to be more prominent in the focal plane.
Considering a fixed integration time, the signal-to-noise ratio (SNR) will be lower compared to classical imaging.
These two aspects have an impact for focal-plane wavefront sensing compared to a case without coronagraph
(see Sec. 3.3.1 for some comparison results).

Our post-VVC PSFs are generated using the HEEPS21 optical propagation package which incorporates
PROPER.17 We consider a topological charge lp = 2. In order to simulate non-polarized light, two PSFs
are generated with each opposite topological charge lp before being added together. We also perform some
experiments with only one sign of the phase screw (lp = +2) to investigate whether selecting one circular
polarization could lift the sign ambiguity (Sec. 3.3.2). The diffracted light outside the geometric pupil is blocked
by a Lyot stop undersized to 98% of the pupil. To generate the out-of-focus PSFs the defocus is introduced in the
entrance pupil plane instead of the Lyot plane. This is equivalent to injecting the defocus with the deformable
mirror instead of shifting the detector out of focus. Hence, a defocus upstream of the vortex mask will produce
a greater leakage of the on-axis PSF, producing higher SNR and thus more precise measurements. Examples of
post-VVC PSF pairs can be found in Fig. 2.

2.1.3 Data pre-processing

In our simulations we only consider photon noise, which means the SNR is defined as SNR =
√
Nph with Nph

the number of photons. A SNR of 100 is chosen for most of our experiments. We also take into account the
extinction factor induced by the VVC when comparing with classical imaging (Sec. 3.3.1). Then we apply a
square-root stretching operation to the PSFs to help the CNN identify the speckle distribution. Finally, we
normalize the PSFs with a min-max scaling to obtain flux in the range [0,1], which ensures we feed to the CNN
same-scale quantities. This has been shown to provide better stability and performance during the training of
deep neural networks.22
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2.2 Deep learning models

2.2.1 Convolutional Neural Networks

We build models whose goal is to map phase aberrations y from PSFs x, i.e. to approximate a non-linear
function f such that y ≈ f(x). In order to do so, we have implemented two deep neural network architectures:
ResNet-5023 and U-Net.24 Two other architectures, VGG-1625 and Inception-v3,26 have also been tested but
produced poorer results on our datasets and are thus not presented in this study.

On the one hand, ResNet-50 is a residual neural network composed of 50 layers that uses skip connections by
summation, improving the gradient’s flow during backpropagation, as well as batch normalization layers. The
architecture therefore overcomes the vanishing gradient problem27 and the degradation inherent to very deep
networks.23 In our case ResNet-50 predicts the Zernike coefficients from PSFs. On the other hand, U-Net is an
architecture developed for image segmentation that is composed of a downsampling path followed by upsamplings
of the feature maps, producing outputs at the same dimension as the input. It also uses skip connections by
concatenating feature maps from previous layers in order to retain relevant information. The softmax layer at the
end of the architecture was removed to perform a regression task instead of segmentation and we infer directly
phase maps from PSFs. Finally, with ResNet-50 the initialized weights used are pre-trained with the ImageNet
dataset while U-Net is trained from scratch.

2.2.2 Mixture Density Layer

A Mixture density network28 (MDN) predicts weighted sums of probability distributions instead of single quan-
tities, allowing to estimate uncertainties in the data. We decide to use a mixture of Gaussian distributions for
our models. We only need to modify the last layer of ResNet-50 to produce three parameters per Gaussian m
and Zernike mode z: the mean µz,k(x), the standard deviation σz,k(x) and the weight αz,k(x) given to each
Gaussian. From these outputs, we reconstruct the likelihood of a coefficient yz given an input x as

p(yz|x) =
∑
k

αz,k(x) N (yz|µz,k(x), σ2
z,k(x))

=

N∑
k=1

αz,k(x)√
2π σz,k(x)

exp

(
− (yz − µz,k(x))

2σ2
z,k(x)

2
)
.

(4)

For our study we use two Gaussian distributions (N = 2), which means that we predict six targets for each
Zernike mode instead of a single one. We also set

∑
k αz,k(x) = 1, with αz,k(x) ∈ [0, 1]. This architecture allows

us to measure prediction uncertainties and to assess the sign ambiguity observed with even Zernike modes. We
expect to predict one Gaussian close to the true value of the Zernike coefficient and another one around the
opposite value when there is sign degeneracy, i.e. only for even modes. Such method could for instance be
exploited to measure the capability of diversity techniques on lifting the sign ambiguity. In the following sections
we call ResNet-MDN the ResNet-50 architecture combined with the mixture density layer.

2.2.3 Training procedure

To train our model we need to define a loss function that an optimizer will minimize by successive updates of
the neural network’s weights, allowing to fit the model to the data. In the standard case, i.e without the mixture
density layer, our loss function is the root-mean-square error of the phase residuals

Lcnn(Θ, Θ̂(x;φ)) =

√√√√ 1

N

N∑
i,j

(Θi,j − Θ̂i,j(x;φ))2, (5)

where Θi,j and Θ̂i,j(x;φ) are the true and estimated phase respectively, φ represents the neural network weights,
x corresponds to the input PSF(s) and N is the total number of pixels in each phase map. On the other hand,
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Figure 4: Illustration of training and validation losses obtained through the epochs, with phase diversity and on
a dataset comprising 100 modes, a median input RMS WFE of 350 nm and classical imaging PSFs. Left: Using
ResNet-50 with and without weight decay (”wd”). Right: Using ResNet-MDN (without weight regularization).

with ResNet-MDN architecture we want to maximize the likelihood p(yz|x) of the true Zernike coefficients yz
defined in Eq. (4). This amounts to minimizing

Lmdn(yz, x;φ) = − log pφ(yz|x). (6)

We also add a small offset ε = 0.005 rad to the predicted σz,m(x) to improve the stability of the minimiza-
tion. During training the loss is averaged over the elements of the current batch before being fed to the back-
propagation algorithm.

A dataset composed of 105 PSF pairs is randomly split into training (90%) and validation (10%) sets. A
batch of 64 data samples is fed to the neural network at each iteration and we use the Adam optimizer,29 which is
a well known flavour of stochastic gradient descent. We set a learning rate of 10−3 for the CNN while a learning
rate of 10−5 is preferred for ResNet-MDN to avoid training instabilities which we have observed with its loss
function. We then decrease the learning rate by a factor of 2 each time the validation loss stagnates over 20
epochs, resulting in immediate drops of the loss, as it can be noticed in Fig. 4. Only the model defined at the
epoch with the lowest validation loss is kept for evaluation.

Since we have observed ResNet-50 to be particularly prone to overfitting, we apply weight regularization with
this architecture. Weight decay adds a penalty to the loss function and we found a factor of 10−7 to yield the
best performance. More generally, DNNs trained with Adam and/or batch normalization have a specific response
to weight decay, and multiple discussions can be found about this topic in the literature.30–32 An example of
the impact of regularization in our case is shown Fig. 4 (left). When training with only in-focus PSFs, even if
overfitting can be overcome with a higher weight decay, performance do not improve in this case.

3. EXPERIMENTS AND RESULTS

In this section, performance are assessed with both classical and coronagraphic imaging and we also illustrate
how mixture density models can exhibit prediction uncertainties. To evaluate our models, we use test datasets
composed of 1000 samples generated the same way as the training and validation sets, except for a different
random seed on the Zernike coefficients.

3.1 Comparison between CNN architectures

We give an overview of the performance of the ResNet-50 and U-Net architectures with our approach. A more
detailed analysis is done by Orban de Xivry et al.14 (in preparation).

Here the models are trained with datasets containing classical imaging PSFs (without the VVC). Models
trained with and without phase diversity are also compared. We make predictions on the test dataset and
compute the root-mean-square error (RMSE) on the phase residuals, defined the same way as the loss function
metric in Eq. (5). The performance are illustrated in Fig. 5 for a median input RMSE of 350 nm (1 rad)
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Table 1: Comparison of RMS WFE on the phase residuals (in nm) averaged over 103 test samples. The models
were trained on 105 PSF pairs with phase diversity and a SNR of 100.

Number of modes 20 100

Input WFE (nm) 70 350 70 350

U-Net 8.7 13.6 20.2 56.9
ResNet 8.8 12.5 19.9 38.9

ResNet-MDN 9.2 15.0 20.7 71.8

Figure 5: Empirical distributions of RMS WFE on the test dataset for models trained over 100 modes and with
a median WFE of 350 nm (green). Performance with the ResNet-50 and U-Net architectures are compared, as
are the cases with (in-out-focus; darker colors) and without (in-focus; lighter) phase diversity.

distributed over 100 Zernike modes and with a SNR of 100. The histograms represent the RMSEs computed
from each test sample. Using diversity clearly reduces the error on the phase residuals, due to having two inputs
instead of a single one (the effective SNR increases by a factor

√
2), but most importantly because the predictions

are especially improved on the even modes, since the sign ambiguity is overcome. ResNet-50 is able to learn
100 modes slightly better than U-Net but, as shown in Tab. 1, we obtain almost identical RMSEs between the
two architectures when trained with 20 modes or an input WFE of 70 nm. In the following experiments, we use
exclusively ResNet-50 and ResNet-MDN.

3.2 Predicted uncertainties with mixture density models

From mixture model predictions, the RMS WFE can be assessed by computing the weighted mean µ̂∗
z = α̂z,1µ̂z,1+

α̂z,1µ̂z,2 as the predicted Zernike coefficient for each mode z before obtaining the RMSE of the residual phase
with Eqs. (2) and (5). We observe a degradation in performance with the mixture density models in terms of
RMSE compared to the standard CNN models (Tab. 1). This is especially true for 100 Zernike modes and an
input WFE of 350 nm, and we have observed that training on 5×105 images compensate for the difference in
performance. We thus present the following results from models trained with this dataset size.

As illustrated with reconstructed distributions from the predicted parameters in Fig. 6, ResNet-MDN is
well capable of recognizing the sign ambiguity when fed only with in-focus PSFs, by estimating two Gaussian
distributions centered near the true coefficient and its opposite value. This works particularly well for low order
Zernike modes, while the estimations degrade for higher order modes: the predicted absolute weight difference
∆α̂z = |α̂z,1 − α̂z,2| starts to be equal to 1 for even modes from z > 20, which means only one Gaussian is
predicted instead of two (Fig. 7; left). In these cases the predicted µ̂z of the single Gaussian is approximately
equal to zero, which is what the standard CNN predicts for even mode when facing the twin-image problem.
More training data helps improve the predictions for high-order even modes. On the other hand, with phase
diversity the MDN predicts a single Gaussian for every Zernike mode as expected.
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Figure 6: Examples of predicted distributions with a mixture model for an odd mode (tip; left), a low order even
mode (defocus; middle) and a higher order even mode (right).

Figure 7: Left: Absolute difference of the predicted weights. A value of 1 indicates only a single Gaussian
is predicted while 0 shows that two Gaussians with equal weights are obtained. Right: The entropy of the
predicted Gaussian mixture for each Zernike mode. In both plots the median values are represented and the
shaded regions extend to the 5-95th percentiles.

The metric we use here to measure the sign ambiguity is the entropy33

H = −
∑
i

p(yi|x) log2 p(yi|x), (7)

where yi are Zernike coefficient values (x-axis of Fig. 6). The advantage of this metric is that it depends both
on the number of Gaussians and their widths, i.e. it considers the total uncertainty in the prediction. We
show the entropy computed for each Zernike mode in Fig. 7 (right). The entropy is consistently higher for
even modes compared to odd modes without phase diversity, which showcases the twin-image problem. One can
also notice that for the high order modes for which ResNet-MDN is not able to predict two Gaussians (Fig. 7;
left), the entropy is still important because the predicted σ̂z is sufficiently large in these cases. Regarding odd
Zernike modes, the entropy is always higher when trained only with in-focus PSFs since it lacks the additional
out-of-focus PSFs that naturally improves the performance.

3.3 Influence of the Vector Vortex coronagraph

3.3.1 Performance comparison with classical imaging

In this section we study the performance using post-coronagraphic PSFs, i.e. a dataset generated with the VVC
described in Sec. 2.1.2, comparing the residual errors obtained with models trained on classical imaging PSFs. In
particular, we study three types of models: trained using classical PSFs and a fixed SNR of 100, using post-VVC
PSFs at the same SNR of 100 (for both in and out-of-focus PSFs) and using post-VVC PSFs at a fixed stellar
flux, resulting in lower SNRs in the focal plane because of the flux suppression caused by the vortex mask.

The results are displayed Fig. 8. At low input RMS WFE, the performance for each compared cases reach
a plateau set by the photon noise limit.14 On the other hand, at high RMS WFE the performance degrades
and this deviation from the photon noise limit relates to an additional model error (for classical imaging, see
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Figure 8: Left: Comparison of residual RMS WFE between models trained on post-VVC and classical imaging
PSFs for different input WFE, each reported point corresponding to a specific model. Right: SNR of the in and
out-of-focus PSFs for each model with the VVC, considering a fixed stellar flux (blue curve in the left plot). In
both plots the median values are represented and the error bars correspond to the 5-95th percentiles.

Orban de Xivry et al., in preparation14). Models trained with post-VVC PSFs at a fixed stellar flux (blue curve)
give higher residual RMS WFE for any input WFE which is essentially due to their lower SNR in the focal plane
(see Fig. 8; right). Finally, models trained on post-VVC PSFs at a fixed SNR of 100 (purple curve) give better
performance in the low aberration regime (≤ 125 nm) compared to classical PSFs at the same SNR, but poorer
performance at higher aberration levels. Since the vortex mask removes the Airy disk, we would expect the
aberrations to be better revealed in the focal plane, potentially improving learning the mapping between the
phase and PSFs. This could explain the gain in performance obtained with the VVC at low levels of aberrations
but the stronger degradation in performance with higher input RMS WFE is not understood at present. This
trend has also been observed with models trained on other SNRs and level of additional defocus. However, the
differences of performance are relatively small and mostly within the error bars.

3.3.2 Impact of polarized light on the sign ambiguity

We investigate whether polarized light could help to lift the sign ambiguity. For that we use a dataset composed
of post-VVC PSFs simulated with only one circular polarization, as described in Sec. 2.1.2. Fig. 9 (top plots)
shows the entropy of the predicted mixture of Gaussians from models trained at low (70 nm) and high (350 nm)
aberration regimes, considering 20 Zernike modes and a SNR of 100. The figure demonstrates that the ambiguity
is lifted in both aberration levels, which can be observed with an entropy that tends to be flatten along the radial
orders (even compared to odd modes). Even though the prediction uncertainties can be higher with polarization
regarding the odd modes, the resulting RMSEs on the residual phase maps are nonetheless lower (Fig. 9; bottom
plots). The ambiguity appears to be lifted at all trained SNR levels.

Using phase diversity with additional out-of-focus PSFs clearly improves the performance, especially at higher
SNR. It is likely that applying both circular polarizations as separated input to the CNN will reduce this gap
in performance and an analysis in this regard is currently on-going. The main disadvantage of using defocused
PSFs is that their measurements decrease the science duty cycle, while with the polarization approach all PSFs
could be exploited. Depending on the scientific objective, polarized light can be beneficial,34,35 and an optical
polarizing system could potentially be added after the VVC.36

4. CONCLUSIONS

In this work we have developed a deep learning-based method to predict wavefront aberrations typical of NCPAs
from simulated PSFs, notably using the ResNet-50 architecture. We have tested our approach on both classical
and post-coronagraphic PSFs with vector vortex phase masks. Models trained with both types of PSFs yield
similar performance at the same level of photon noise, albeit with slight differences. We have also introduced
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Figure 9: Top: Entropies on the predicted mixture of Gaussian distributions with phase diversity (cyan) and
only in-focus PSFs with and without polarized light (red and blue respectively). Bottom: Residual phase RMSE
for models trained at different levels of SNR. The datasets used are composed of post-VVC PSFs and a median
input RMS WFE of 70 nm (left) and 350 nm (right), each distributed over 20 Zernike modes. In each case the
median value is represented and the associated errors are the 5-95th percentiles.

mixture density models to predict the ambiguity on the phase sign that proved to work well in our setup, even
though some limitations regarding higher order Zernike modes have been observed. Finally, a preliminary study
indicates that the sign ambiguity can be lifted with polarized light when using the Vector Vortex coronagraph.
The performance using both circular polarization as separated input images have yet to be assessed. A more
detailed study of our method applied to classical imaging is presented by Orban de Xivry et al.14 (in preparation).
In particular, it discusses the robustness of the models, how the performance relate to the theoretical limit and
a comparison is made with the iterative Gerchberg-Saxton algorithm.

Future work will comprise the generation of more realistic datasets. For example, to consider the central
obstruction in the entrance pupil can be crucial, especially with the VVC.35 We are currently focusing on
developing a CNN-based method to model real data using our simulations and in-lab data sets of much smaller
size. Introducing other types of phase diversity techniques such as taking into account atmospheric turbulence
residuals will also be studied. Finally, even though CNNs offer very promising results, applications to in-lab and
on-sky observations with the possible use of WFS telemetry will most likely lead us to explore other machine
learning techniques.
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