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ABSTRACT 

The dynamic behavior of bladed disks in resonance crossing has been intensively investigated in the 

community of turbomachinery, addressing the attention to (1) the transient-type response that appear 

when the resonance is crossed with a finite sweep rate and (2) the localization of the vibration in the 

disk due to the blade mistuning. In real conditions, the two mentioned effects coexist and can interact 

in a complex manner. This paper investigates the problem by means of analytic solutions obtained 

through asymptotic expansions, as well as numerical simulations. The mechanical system is assumed 

as simple as possible: a 2-dof linear system defined through the three parameters: damping ratio , 

frequency mistuning , rotor acceleration  . The analytic solutions are calculated through the 

multiple-scale method. 

INTRODUCTION 

The dynamic behavior of bladed disks in resonance crossing has been intensively investigated in the 

community of turbomachinery. In particular, the attention has been addressed towards two issues: (1) 
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the transient-type response that appear when the resonance is crossed with a finite sweep rate and (2) 

the localization of the vibration in the disk due to the blade mistuning. 

The transient effects produce a reduction of the maximum amplitude of the response and shift 

(upwards in run-up) the rotor speed at which the maximum response appears. Coherently with the 

common intuition, the reduction of the maximum amplitude of vibration is proportional to the rotor 

acceleration. That is, the faster the crossing of the resonance, the lower the response amplification 

e.g. [1-5]. 

Blade mistuning produces the increment of the dynamic response of some blades when the disk is 

excited with a resonant or quasi-resonant force. On this matter the literature is vast, and a wide list of 

references can be found for example in [6] and in the recent monography [7]. Analytical formulations 

developed in the quasi-steady regime, i.e. disregarding the transient effects due to the rotor 

acceleration, show that the increment of dynamic amplification compared to the tuned case is a 

function of the mistuning level and damping [8], as well as the number of active modes involved in 

the disk response [9]. 

In real conditions, the two mentioned effects coexist and can interact in a complex manner, e.g. [3, 

10]. It was observed that the reduction of the dynamic response that is expected in resonant crossing 

due to the transient effects may vanish when dealing with mistuned disks [11]. For some systems it 

was even observed a weak over-amplification with respect to the quasi-steady prediction, which 

appears quite counterintuitive. This phenomenon has been called Transient Amplitude Amplification 

of Mistuned Systems (TAMS) and has been investigated both numerically and experimentally [12-

14]. 

This paper investigates the TAMS by means of analytic solutions obtained through asymptotic 

expansions, as well as numerical simulations. The problem is studied working on the simplest 

possible bladed disk model able to produce TAMS, namely, a 2-dof linear system defined through 

the three parameters: damping ratio , frequency mistuning , rotor acceleration  . The dynamic 
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response is calculated using the multiple-scale method. The differential equation governing the 

evolution of the complex amplitude is derived both for the case of tuned and mistuned disks. 

IDEALIZED DISK MODEL 

In order to analyze the nature of the TAMS, we consider a mechanical system that, remaining as 

simple as possible, retains the important features of a bladed disk. To this purpose, we start from an 

idealized bladed disc composed by N blades modeled as 1-dof systems. The equation of motion has 

the form 

   + =Mu Ku f   (1) 

where M and K are the mass and stiffness matrices, respectively, Nu  is the displacement vector 

and 
Nf is the external force. The damping term is assumed to be small and will be introduced 

later.  

Tuned case 

If the disk is cyclic symmetric, M and K are circulant matrices, i.e. they have the structure [7] 
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where k and kc are, respectively, the direct blade stiffness and coupling stiffness between neighbor 

blades.  

Under the cyclic symmetry condition, the vibration modes have harmonic shape, i.e. their jth 

components are in the form [7] 
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where r is called harmonic index and floor(•) is the rounding towards -. For the cases r=0 and r=N/2 

(if N is even), the eigenvector r
(s) does not exist. In the other cases, the eigenvectors r

(c) and r
(s) 

share the same eigenvalue r = r
2. 

The force f is assumed as a traveling wave (TW) excitation, whose frequency changes linearly in 

time. It represents an Engine Order (EO) component of a synchronous excitation during a constant-

acceleration run-up or run-down. For reasons that will be clear afterwards, it is convenient to represent 

the force using the complex-valued notation 

 
21

i
2e

r t

r f


=f   (4) 

where f is the force complex amplitude, the index r is here interpreted as EO,   is the rotor 

acceleration, referred to as chirp rate, and r is a vector whose components r,j are given as 
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 = = −  (5) 

Comparing Eq. (3) and Eq. (5), it can be deduced from the Euler’s identity that 

 

( ) ( )
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 (6) 

Since the vectors r and -r are given by two independent linear combinations of eigenvectors sharing 

the same eigenvalues, then they are eigenvectors as well. Due to their nature, r
(c) and r

(s) are called 

Standing Wave (SW) modes, while r and -r are called Traveling Wave (TW) modes. 



GTP-20-1517 5 Carassale 

Let us assume that the blade motion is entirely described by the mode pair with harmonic index r, 

i.e.: 
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where the extraction of the real part is required due to the choice of using a complex-valued force in 

Eq. (4), thus xj and yj are complex valued as well. 

The equations of motion projected on the SW modes read 
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 (8) 

in which a viscous dissipation has been added and parametrized by the modal damping ratio , 

assumed equal for both the modes. 

The two Eqs. (8) are identical and are excited by equal forces with 90-degree phase shift. Besides, 

also the real and imaginary parts of both x1 and x2 have the same amplitude and 90-degree phase shift.  

If the equations of motion are projected on the TW modes, they assume the form 
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  (9) 

where the superscript * represents the conjugate transpose. Also in this case the two equation of 

motion are identical, however the force appears only in the first equation, corresponding to the mode 

having the same whirl direction of the considered force. The relationship between SW and TW 

coordinates can be deduced by substituting Eqs. (6) into Eqs. (7) 
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The assumption of having only two active modes is obviously a simplification with respect to the 

general case. However, it represents the realistic situation in which mistuning is small and the natural 

frequencies are well isolated [9]. 

Mistuning 

Blade mistuning modifies the shape of the matrices M and K and, as a consequence, destroys the 

regular structure of eigenvalues and eigenvectors that have been described above [7]. 

Since we are interested in exploring simple systems, we assume that the blade vibration can be still 

represented by two vibration modes that retain the harmonic structure of the tuned disk. This happens 

rigorously if the two considered modes are isolated and the mistuning pattern has a harmonic shape 

with harmonic index 2r, i.e. the system matrices are updated as [9]: 
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where K and M are complex-valued constants representing the amplitude of the mistuning and 

diag() constructs a diagonal matrix from a vector. This result is actually obtained even when the 

mistuning pattern does not follow the mentioned condition, but, simply, when it is very small. 

As an effect of the mistuning, the double eigenvalue r splits into two separate eigenvalues 
2

,1 ,1r r =   

and 2
,2 ,2r r = . Due to this circumstance, the TW vectors r and -r are not vibration modes of the 

system. Besides, the SW modes defined by Eq. (3) are modified as [15]: 
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where the angle  depends on the constants K and M and is referred to as mode clocking. 

The equations of motion in terms of SW coordinates are a simple update of Eqs. (8), i.e., 

 
( ) ( )

( ) ( )

2

2

1
i i2 2 2 2

1 1 1

1
i i2 2 2 2

2 2 2

2 1 1 e e

2 1 1 ie e

r t

r t

x x x f

x x x f





  

  

 −

 −

+ − + − =

+ + + + =

 (13) 

where 
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The relationship between the SW amplitudes and the TW amplitudes can be obtained by substituting 

Eqs. (12) into Eqs. (7). It yields: 
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The manipulation of Eqs. (13) according to Eqs. (15) provides the equations of motion in terms of 

TW coordinates as: 
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It can be observed that, while the equations in term of SW coordinates remain decoupled, the 

equations in terms of TW coordinates become coupled due to terms that scale with the mistuning 

amplitude. 

For a systematic analysis of the problem, Eqs. (13) and (16) are non-dimensionalized introducing the 

scaling 
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Besides, the harmonic index r is set equal to 1 without introducing any conceptual restriction. After 

these modifications, the equations of motion of become: 
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The scaled model depends on the damping ratio , the mistuning ratio , the (non-dimensional) chirp 

rate   and the mode clocking angle . 

QUASI-STEADY RESPONSE OF A TUNED SYSTEM 

If the system is tuned (i.e. =0) and if the chirp rate   is very small (to be quantified next), the 

system response can be obtained as the steady-state response due to a harmonic load of frequency 

t= , i.e.: 
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where only y1 shows a resonance at =1, while y2 remains ( )  and can be neglected. The solution 

is readily available in the form: 

 i
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  (21) 
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showing that, for  ≪ 1, the maximum amplitude appears at 1/t =   and is equal to 1 

 max 1QS tunedA A− = =   (22) 

Figure 1 shows the response of a bladed disk with N = 6 blades and  = 310-3. The amplitude |A| is 

reported together with the displacement uj of the individual blades. It can be observed that all the 

blades share the same envelope, but vibrate with a different phase angle. 

TRANSIENT RESPONSE OF A TUNED SYSTEM 

If the sweep velocity   is not very small, transient effects during the resonance crossing appear. This 

situation is typical of the resonance crossing of rotors during run-up or run-down. The effects are (1) 

a shift of the amplification peak towards high frequencies for run-up and low frequencies for run-

down; (2) reduction of the peak height; (3) increment of the peak width; (4) amplitude modulation 

after the resonance crossing due to the beating of the transient free-decaying response and the forced 

response (e.g. [1-5]). 

The equation of motion is obtained from Eq. (19) by letting =0 and reads 
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  (23) 

Likewise for Eq. (20), y2 is not excited by the load and can be disregarded. Besides, it is convenient 

to first shift the time to the vicinity of the resonance as t ← t – t0, with 0 1/t =  . With this substitution, 

the equation of motion becomes: 

 
21 1

i i
i2 2

1 1 12 2 ie e e
t

ty y y 


+ + =   (24) 



GTP-20-1517 10 Carassale 

The first exponential term in the forcing gives a constant phase change on the solution, and can be 

removed by introducing the variable 

 
i

2
1 ey Y =   (25) 

After this substitution, the equation of motion becomes:  
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The small damping 1  and chirp rate 1  produce a slow time modulation of the solution that 

can be captured using the multiple scales method (see, e.g. [16-17]). To this purpose, it is necessary 

to formalize the relative smallness of the two parameters by letting, without loss of generality,  =  

and q=  where 0 1 ,   1 and 0q  .     
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The solution is expanded using two time scales 1t  and t =  

 ( ) ( )0 1, ,Y Y t Y t  = + +   (28) 

and, inserted into Eq. (27), equating terms with the same power of , gives: 
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The solution at the leading order is directly available and reads 

 ( )0 ie tY A =   (30) 
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where the amplitude A(τ) is a function of the slow time scale and will be determined with a secularity 

condition. As far as the order 1 is concerned, it must be noted that the governing equation should not 

depend explicitly on the small parameter . It is therefore necessary to re-write the right-hand side of 

Eq. (29) by choosing 2qt t  =  so that the parameter  disappears. Substituting  = t indicates that 

it is necessary to choose  = q and  +  = 2, so that the governing equation at the order  becomes 
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To prevent the presence of secular terms, to assure that Y1 is finite, it is necessary to force to zero the 

resonant terms present at the RHS. If q ≠ 2 this condition leads to the equation 

 0
dA

A
d

+ =   (32) 

which, with the initial condition A → 0 at  → −∞, only admits the trivial solution A = 0. In order to 

find a non-trivial solution, it must be set q = 2, thus the secularity condition reads: 
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The general solution of this linear problem can be written as 
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s s

A C ds
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−
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where the constant C can be set to zero to select the solution that verifies A → 0 as  → −∞. Moreover, 

the Faddeeva function [18] 
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allows to finally express the envelope A() in the form 
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which gives a much more straightforward way to compute the response. Substituting Eq. (36) back 

into Eqs. (30), (28), (25) and (10), the response can be expressed as 
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This result provides a method to calculate the transient response of the system, but also indicates that 

the right scaling for the chirp rate is obtained by choosing 2= . This suggests that 2/ =  is 

the correct parameter that should be employed to represent the chirp rate, as it was already deduced 

in [4] on the basis of different arguments. 

Figure 2 shows the transient response of a tuned disk with N = 6,  = 310-3 and  = 10. The blade 

response uj and the TW coordinate y1 are obtained by numerical integration of Eqs. (23) and (7), while 

the envelope A is calculated by the asymptotic solution (36). To save computational time, the 

numerical integration is started with zero initial conditions at the time tstart=0.8t0. It was verified that 

this choice makes the effects of the initial conditions at the resonance crossing negligible for the 

whole considered parameter space. 

It can be observed that, likewise in the QS case, the vibration of all the blades share the same envelope, 

which is very well approximated by the asymptotic solution, even for the considered case with 

relatively high chirp rate. It can be appreciated that the maximum response amplitude is below the 
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maximum QS response AQS-tuned. This fact is general and can be proved analytically by multiplying 

Eq. (33) by A* and adding the complex conjugate of the equation to obtain the energy equation 

 
2 2

2 1 1
i i2 * 2 22 2 e e

d A
A A A

d

 



−
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As the maximum amplitude appears for d|A|/d = 0, therefore: 

 
2 21 1

i i2 * 2 22 e eA A A
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Then, using the complex variable 
2i 2eB A −=  and its real and imaginary parts B = R + iI, Eq. (39) 

simplifies to 

 
2 2R I R+ =   (40) 

which corresponds to a circumference in the complex plane with maximum distance to the origin 

equal to 1. This prove that: 

 
2 2 1A B R I= = +    (41) 

Figure 3 shows the maximum response uj as a function of , calculated by numerical integration of 

Eq. (24) for different values of the damping  ranging between 10-3, 10-2, compared with the 

maximum amplitude provided by the asymptotic solution. The perfect matching of the results 

confirms that the asymptotic solution is accurate in a very wide range of  and that the system 

response does not depend on the   and  separately, but only jointly through . Besides, Figure 3 

demonstrates that transient effects vanish when 1 .  
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QUASI-STEADY RESPONSE OF A MISTUNED SYSTEM 

When mistuning is present, the equations of motion in terms of TW coordinates become coupled and 

also y2, which is not directly forced, plays a role in the response. If the chirp rate is very small, the 

response of Eq. (19) approaches its steady-state and can be written in the form 

 
1 1 i

2 2

e t
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y A
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  (42) 

where t= , and the amplitudes A1 and A2 can be obtained by manipulating the system FRF. For 

, 1  , it yields 
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  (43) 

Due to the definition of the TW coordinates, the quantity |A1+A2| represents the vibration amplitude 

of the blade 0 and depends on the angle of the mistuning pattern . Besides, the angle  also controls 

the relative phase angle between A1 and A2, in such a way that it is always possible to select a value 

of  for which A1 and A2 are aligned in the complex plane. This condition provides the maximum of 

|A1+A2| and the envelope of the blade vibration 

 1 2 1 2maxQSA A A A A


= + = +    (44) 

Figure 4 shows the QS response of a disk with N=27 blades, =310-3, =4.410-3. The detail of the 

figure shows that the envelope is reached only by a few blades, while the others vibrates with a lower 

amplitude. AQS depends on , which in turns depends on t. The maximum amplitude of vibration 
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occurring during the resonance crossing can be obtained by maximizing numerically Eqs. (43)-(44) 

with respect to . 

Figure 5 shows the maximum amplitude of vibration as a function of  and . It can be noted that for 

 / →0 the maximum response tends to 1, the QS response of the tuned system. The tip of the curve 

is consistent with the Whitehead’s limit (1 2) / 2+ . For small levels of mistuning the maximum 

response is determined only by the ratio  / , while when    their separate influence is visible, 

though relatively small. 

TRANSIENT RESPONSE OF A MISTUNED SYSTEM 

Eq. (19) contains the small parameter , beside the two parameters  and   already discussed for 

the tuned case. Like in the previous section, we formalize the relative smallness of this new parameter 

by setting 
iie pm − =  where |m|  1 and 0p   is to be determined in order to obtain a distinguished 

limit. Besides, the chirp rate is set to 2=  according to the findings of the previous section, the 

time is shifted to the resonance condition t ← t – t0, and the resulting constant phase is absorbed in 

the new variables 

 2

i i

2 2
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 After this substitution the equations of motion result 
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The solution is then expanded using the two time scales t ~1 and τ = εt 
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and inserted into Eq. (46) to obtain, equating the terms at the same power of : 
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with the following order being 1+p. Since p > 0, the governing equation at the leading order is the 

first of Eqs. (48), whose solution can be expressed as 
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The second of Eqs. (48), at the order p, cannot be fulfilled unless by the trivial solution. For this 

reason, p, which is still to be defined, cannot be lower than 1. On the other hand, if it were p>1, then 

the third of Eqs. (48) would be the next-order equation and the solution would result independent of 

the mistuning. Consequently, the condition to find a non-trivial solution depending on mistuning is 

setting p=1. With this condition, the second and the third of Eqs. (48) combine and the next-order 

problem reads 
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The cancellation of the terms proportional to eit to impose the secularity condition gives the following 

system of equations for the slow time evolution of the amplitudes A1 and A2 
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The solution of this linear system that verifies A1, A2 → 0 at  → −∞ can be expressed in closed form 

using again the Faddeeva function as 
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The dynamic response can be obtained by substituting Eqs. (52) and (53) back into Eqs. (49), (47), 

(45) and (15). 
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The displacement of the blade j = 0 is given by the quantity |A1+A2|, thus the computation of the 

maximum response requires to maximize the quantity 

 ( ) ( )i
1 2 1 2 1 2

1
ie

2
A A I I I I−+ = + + −   (56) 

over τ, κ, |m|, . The maximization over  can be easily performed as 
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 1 2 1 2 1 2

1 1
max

2 2
A A A I I I I


= + = + + −   (57) 

because the modulus of the sum of the two complex numbers (I1+I2) and (I1−I2) will reach its 

maximum when they are aligned. 

Figure 6 shows the transient response of a mistuned disk, as well as its envelope calculated through 

the TW coordinates and the asymptotic solution. The parameters employed for the calculation are 

N=27, =310-3, |m|=1.5 and =10. The blade displacement uj and the TW coordinates are calculated 

by numerical integration, while the envelope A is obtained from Eq. (57). It can be observed that the 

asymptotic solution is very accurate. 

A represents the maximum amplitude of vibration in the disk (i.e. the amplitude of worst blade) at a 

given time τ, for a specified chirp rate κ and mistuning intensity |m|. The maximum response during 

the whole resonance crossing is obtained by maximizing A with respect to τ. Figure 7 shows this 

result (solid lines), compared by the maximum response calculated by numerical integration of Eqs. 

(19) and expressed as max(|y1|+|y2|) (dashed lines). These latter results are provided for 8 values of 

damping in the range [10-3, 10-2]. The maximum amplification of the transient response because of 

mistuning is always below the maximum mistuning amplification for the QS case (Whitehead’s 

limit), but, on the other hand, for a given chirp rate, κ=fixed, mistuning amplification with respect to 

the tuned transient response can be much larger than Withehead's limit. 

It has been observed that chirp rate and mistuning play an opposite role on the response amplification 

in resonance crossing. Namely, while the transient effects due to a non-zero chirp rate lead to a 

reduction of the response, mistuning produces an increment of the amplitude. However, these two 

phenomena are not decoupled as the ability of mistuning in over-amplifying the resonant response 

increases as the chirp rate increases. This circumstance can be observed in Figure 8 representing the 

ratio between the maximum transient response of a mistuned system (function of |m| and ) and the 

maximum transient response of a tuned system driven with the same chirp rate. It can be observed 
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that the amplification due to mistuning is well above the Whitehead’s limit in a very wide region of 

the parameter space; and it grows as |m| and   become larger. 

The following two ideas could give an explanation for this (a priori surprising) mistuning 

amplification larger than in the QS case: 

1. As mistuning is increased, the two mistuned resonant frequencies split. For a fixed amount of 

mistuning (vertical line in Figure 8), if the frequency sweep is too slow, the first excited 

mistuned mode has decayed too much when the sweep arrives to the second resonance and there 

is no possible interaction between the two modes to generate amplification. Only if the sweep 

is appropriately fast then there could be interaction between the two mistuned modes that can 

lead to an amplification of the response. 

2. On the other hand, the tuned amplitude (which is in the denominator of the amplification ratio) 

is reduced as the frequency ramp becomes faster. For high chirp rates the maximum response 

can be much smaller than 1 (see Figure 3), but, in the QS case, the maximum tuned response is 

fixed to 1 (see Figure 1). 

Figure 9 shows the ratio of the transient response of the mistuned system and its QS response. It can 

be observed that, in a relatively narrow region of the parameter space the ratio is above unity 

indicating that, for the same system, the transient response is larger than the QS response. 

CONCLUSIONS 

When the vibration of a bladed disk is governed by a pair of isolated modes, the system can be 

represented as a 2-dof linear oscillator. For this system, we derived asymptotic solutions valid both 

for the tuned and the mistuned case. This result has consequences both for the quantitative and 

qualitative analysis of bladed disks in resonance crossing condition. 

From a quantitative point of view, the asymptotic solutions enable a fast calculation of the transient 

response avoiding the numerical integration of the equations of motion. 
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From a qualitative point of view, the development demonstrates that the problem is governed by two 

non-dimensional parameters, namely, the reduced chirp rate 2/ =   and the mistuning parameter 

/m =  . These two parameters provide a proper quantification of the importance of transient effects 

and mistuning, enabling the judgment and the comparison of systems under this point of view. 

The asymptotic solutions, as well as the numerical simulation showed that the amplification due to 

mistuning is significantly more effective in transient conditions than in QS condition. This 

circumstance has two consequences. First, the increment of amplitude due to mistuning should be 

evaluated using a transient formulation as the use of the QS increment is not on the safe side. Second, 

the design of mistuned disks in resonance crossing should not rely on the beneficial effects of a fast 

resonance crossing. In the most unfavorable case, the transient effects can even over-amplify the QS 

response producing an effect that is opposite to the usual one. 
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FIGURE CAPTIONS 

Figure 1. Quasi-steady response of a tuned disk. N = 6,  = 310-3. 

Figure 2. Transient response of a tuned system; uj and y1 calculated by numerical integration; A 

calculated by asymptotic expansion. N = 6,  = 310-3,  = 10. 

Figure 3. Maximum amplitude of vibration as a function of  calculated by numerical integration 

(dots) with 8 values of  in the range [10-3, 10-2] and asymptotic solution (solid line). 

Figure 4. Quasi-steady response of a mistuned disk. N = 27,  = 310-3,  = 4.410-3. 

Figure 5. Maximum QS response of a mistuned disk. 

Figure 6. Transient response of a mistuned disk. N = 27,  = 310-3,  = 10, |m|=1.5. 

Figure 7. Maximum transient response; y1 and y2 are calculated by numerical integration for 8 values 

of [10-3, 10-2] (thin concour lines); A is obtained by the asymptotic solution (thick contour lines). 

Figure 8. Transient amplification with respect to the tuned disk. 

Figure 9. Transient amplification with respect to the QS response (TAMS). 

 

  



GTP-20-1517 24 Carassale 

Figure 1 

 
  



GTP-20-1517 25 Carassale 

Figure 2 

 
  



GTP-20-1517 26 Carassale 

Figure 3 

 
  



GTP-20-1517 27 Carassale 

Figure 4 

 
  



GTP-20-1517 28 Carassale 

Figure 5 

 
  



GTP-20-1517 29 Carassale 

Figure 6 

 
  



GTP-20-1517 30 Carassale 

Figure 7 

 
  



GTP-20-1517 31 Carassale 

Figure 8 

 
  



GTP-20-1517 32 Carassale 

Figure 9 

 
 


