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Abstract
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Doctor of Philosophy

Dynamic Stall modelling at low Reynolds Numbers

by Johan Boutet

Dynamic stall is described by Mac Croskey et al. [1], [2] as a phenomenon that oc-
curs on airfoils subjected to unsteady motion with high amplitude or frequency. The
phenomenon occurs at higher angles of attack and lift values than steady stall. Dy-
namic stall can also be associated with the shedding of a vortex from the leading edge.
This vortex usually affects the flow around the airfoil such that it increases further
the instantaneous lift acting on the wing and produces a nose down pitching moment
when the vortex is swept toward the trailing edge. The modeling of dynamic stall is
challenging even in 2D because it involves separated and turbulent flow. Typical 2D
approaches range from semi-empirical, such as the Leishman-Beddoes (LB) [3] or the
ONERA models, [4], [5] to Computational Fluid Dynamic (CFD) methods.

This thesis makes two major contributions towards the development of a dynamic
stall model for 3D wings at low Reynolds number based on the 2D Leishman-Beddoes
model. The LB model has not been conceived with very low Reynolds number in
mind. The first contribution of this thesis is the development of a modified Leishman-
Beddoes model able to handle dynamic stall at low Reynolds number ranges. It uses
Wagner theory for the incompressible attached flow and adapts the stall onset criterion
by Sheng et al to low Reynolds numbers. In order to calibrate and validate the model,
an extensive set of dynamic stall experiments were carried out in a low-speed wind
tunnel for three airfoils: a flat plate, a NACA0012 wing, and a NACA0018 wing. This
modified Leishman-Beddoes model results in better aerodynamic load predictions than
the original model for low and medium reduced pitch rates. For the highest reduced
pitch rates, neither model yields fully satisfactory predictions.

The second contribution is the development of a closed-form unsteady attached
flow model for 3D wings. It combines the 2D Wagner unsteady aerodynamic loads
calculation with Prandtl’s lifting line, by means of the unsteady Kutta-Joukowsky
theorem. This new model was validated by means of comparison to the predictions of
an unsteady vortex lattice model for impulsive and oscillatory motions of wings of dif-
ferent planforms and aspect ratios. An additional validation involved the calculation
of the flutter speed and frequency of finite rectangular wings with pitch and plunge
degrees of freedom and comparison to the predictions of an aeroelastic vortex lattice
formulation.
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ss Set of cubic splines function used to fit s
S1,2 , α

0
1 Original LB parameters used to represent s(α)

Sw Wing static imbalance around the pitching axis
tv Time parameter used to track the position of the leading edge vortex
tvl Time needed by the leading edge vortex to reach the trailing edge
Ta Unsteady boundary layer delay time constant
Tp Pressure delay time constant
Tv Circulation dissipation time constant
Tvl Non-dimensional time needed by the LEV to reach the trailing edge
U Airspeed
V∞ Free stream velocity
Vx Vortex induced overshoot shape function
ω(y) Downwash on position y along the wing span
xac Position of the aerodynamic center from leading edge
xe The distance between the pitch axis and the half-chord
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Chapter 1

Introduction

1.1 2D Dynamic stall

Dynamic stall is described by Mac Croskey et al. [1], [2] as a phenomenon that occurs
on airfoils subjected to any kind of unsteady motion. The phenomenon occurs at
higher angles of attack and lift values than steady stall. Dynamic stall can also be
associated with the shedding of a vortex from the leading edge. This vortex usually
affects the flow around the airfoil such that it increases further the instantaneous
lift acting on the wing and produces a nose down pitching moment when the vortex
travels over the rear of the airfoil. The modeling of dynamic stall is challenging
because it involves detached and turbulent flow. Typical approaches range from semi-
empirical, such as the Leishman-Beddoes (LB) [3] or the ONERA models, [4], [5] to
Computational Fluid Dynamic (CFD) methods.

1.1.1 Static stall

The phenomenon known as stall was first defined in the case of steady measurements
of the aerodynamic lift acting on an airfoil. It was first extensively studied as a
function of Reynolds, flow turbulence and boundary layer by Eastman [6] as well as
Millikan and Klein [7] A sketch of different lift curves as a function of the angle of
attack is shown on figure 1.1. All three curves are linear at low angles of attack but
become non linear at higher angles. The phenomenon known as stall is the passage
from linear to non linear behavior of a lift curve. The different types of stall are :
trailing edge, leading edge and thin airfoil, as described by McCulough and Gault [8],
[9], McCormick [10] and detailed by Broeren [11]. Thin airfoil and trailing edge stall
are described as ‘soft’ because the lift curve slope decreases slowly. Leading edge stall
is described as ‘hard’ because there is a sudden loss of lift with the increase of the
angle of attack.

The changes in the lift curve slope with respect of the angle of attacks reflect
modifications of the flow around the airfoil. When the relation is linear, the flow is
fully attached to the airfoil. At stall however, the flow field starts to detach from the
surface of the airfoil, which increases the pressure on the suction side and decreases
the lift generated by the airfoil, with respect to the lift that would have been generated
if the flow had remained attached.

Figure 1.2 represents the thin airfoil stall mechanism. At the low angle of attack
of Figure 1.2(a) the flow is fully attached on the airfoil and the relation between the
angle of attack and the lift is linear. In the case of the moderate angle of attack shown
in Figure 1.2(b), the flow starts to detach from the sharp leading edge and reattach
quickly on the airfoil. This small region of detached flow is known as a separation
bubble and increases the pressure on the suction side. As shown in Figure 1.2(c), the
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Trailing edge stall

Leading edge stall

Thin airfoil stall

Angle of attack

Lift

Figure 1.1: Sketch of the three different stall types taken from Bak
et al. [12]

size of the separation bubble increases with the angle of attack. Finally, the bubble
covers the whole airfoil and the flow becomes fully detached.

According to McCormick [10], thin airfoil stall occurs at low angles of attack
inducing a lower maximum lift coefficient. One way to improve airfoil performance is
to round the leading edge and increase the thickness of the airfoil, so that the flow can
more easily follow the contour of the leading edge. As a result, there is an increase in
the maximum lift coefficient and a modification of the stall mechanism in the form of
either leading edge or trailing edge stall.

The leading edge stall mechanism is shown in Figure 1.3. At low angles of attack
the flow is fully attached as seen in Figure 1.3(a) and the lift curve relation is again
linear. For moderate angles of attack the flow is still mostly attached to the airfoil
but there is the formation of a small separation bubble near the leading edge, as seen
on Figure 1.3(b). As the angle of attack increases, the bubble will burst suddenly and
disrupt the flow field over the entire airfoil and so the flow over the upper surface is
separated, as shown in Figure 1.3(c).

Leading edge stall leads to a better aerodynamic behavior compared to thin airfoil
stall as the maximum lift coefficient is usually higher. However, it leads to a very
dangerous type of stall as the lift will drop suddenly at stall, which can result in the
destruction of the aircraft.

The trailing edge stall mechanism is shown in Figure 1.4. Once again, the relation
between the lift and the angle is linear at low angle of attack and the flow is fully
attached, as seen in Figure 1.4(a). Once the angle of attack increases, one can see
flow separation starting at the trailing edge of the airfoil in Figure 1.4(b) and moving
towards the leading edge in Figure 1.4(c).

This can be seen as the best stall mechanisms because it leads to higher lift than
thin airfoil stall and the stall occurence is relatively smooth. However, the airfoils with
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(a) Low angle of attack

Separation bubble

(b) Medium angle of attack

Bubble size increase

(c) High angle of attack

Figure 1.2: Flow sketches of thin airfoil stall mechanisms

this kind of stall mechanisms are usually heavier and create a higher drag because they
are thicker.

Each steady stall mechanism has been studied separately but the extensive study
by Broeren [11] showed that a trailing edge stall can occur simultaneously with leading
edge or thin airfoil stall. This is possible because trailing edge stall occurs at the
trailing edge while the two other stall types are located at the leading edge. It should
also be noted that the abrupt nature of leading edge stall can hide the occurence of
slower trailing edge stall, as illustrated in Figure 1.1 where the sudden drop of lift
differentiate leading and trailing edge stall.

The stall mechanism is a function of airfoil thickness but also of the Reynolds
number. Gault [9] carried out an extensive analysis of airfoil stall for different Reynolds
numbers and airfoil thicknesses, as shown reported in Figure 1.5. The figure shows the
different regions of stall mechanisms in the plane of Reynolds number and thickness of
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(a) Low angle of attack

Separation bubble

(b) Medium angle of attack

Bubble burst

(c) High angle of attack

Figure 1.3: Flow sketches of leading edge stall mechanisms

the airfoil sections used. It clearly shows that the type of stall is also a function of the
Reynolds number. The results obtained by Gault seem to indicate that with Reynolds
numbers below Re ' 3× 105 the leading edge stall mechanism disappear leaving only
the thin airfoil and trailing edge mechanisms. However, Broeren [11] found all three
types of stall mechanism, as well as combined leading and trailling edge stall, for a
Reynolds number of Re = 3× 105. These discrepancies between the two results could
be explained by the fact that Gault only studied NACA airfoils while Broeren used
other types of airfoil profile. Furthermore, Gault had fewer data points to separate
the different stall mechanism regions for low Reynolds numbers.

1.1.2 Dynamic stall

Following the definition of MacCroskey et. al. [1], [2], [13], dynamic stall occurs on
airfoils subjected to any unsteady motion and involves, flow separations, a stall delay,
a complex reattachment process and, in some cases, a Leading Edge Vortex (LEV),
which is shed near the leading edge and travels downstream.
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(a) Low angle of attack

Trailing edge separation

(b) Medium angle of attack

Separation size increase

(c) High angle of attack

Figure 1.4: Flow sketches of Trailing edge stall mechanisms

The first thorough analysis of dynamic stall was performed by Halfman et. al.[14]
who discussed their own experimental results and those of their contemporaries. Er-
icsson and Reding [15]–[17] carried out a lot of early work on stall delay phenomena
associated with dynamic stall. Ham [18] showed later on that the position of the
separation point at the trailing edge was not constant. The trailing edge separation
effect on dynamic stall was further explored by MacCroskey et. al. [2] and Carr et.
al. [19]. Ham and Young [20] described the spilling of a vortex which increased the
lift generated by the airfoil. The onset of this leading edge vortex was studied by
Currier and Fung [21]. The flow reattachment process was more recently studied by
Green and Galbraith [22] for the case of constant pitch rate ramp-down motions.

The underlying physical process is similar to static stall but does not occur at the
same instantaneous angle of attack. One of the important differences between static
and dynamic stall is that the instantaneous aerodynamic load measurements are not
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Thin airfoil stall

Leading edge stall

Trailing edge stall

Combined leading edge

and trailing edge stall

Figure 1.5: Stall mechanisms of 2D airfoils as a function of Reynolds
number and the upper surface ordinate of the airfoil sections at 0.0125

chord (based on data from Gault [9] )

averaged in time for the latter. Phenomena such as the bursting of the separation
bubble from figure 1.3 are on only inferred from the before and after state of the
steady flow for static stall while observed directly for dynamic stall.

Dynamic stall can occur when unsteady effective angles of attack are involved.
This can include: moving helicopters and the change of angle of attack between the
advancing and retreating blades [13]; wind turbines [24], [25] with wind gusts, tower
shadow and yaw misalignment; flapping wings; gust or unsteady wind changes affect-
ing otherwise steady airfoils. Dynamic stall, even if it is associated with greater lift
generation, is usually not welcome in aerodynamic design. The increase in lift only
occurs during part of the motion, while the lift is lower during the rest of the motion.
Furthermore, a significant increase in drag is associated with the phenomenon. In
some cases, dynamic stall is characterized by the formation of a vortex that is shed
over the airfoil. This vortex disturbs the flow and creates a nose-down pitching mo-
ment, which increases the torque loads on the apparatus which and could result in
fatigue of the material. Dynamic stall is also associated with an aeroelastic instability
known as stall flutter which causes limit cycle oscillations resulting in an even worse
risk of fatigue.

Looking at Figure 1.6, plotting the normal force curve against angle of attack for a
S809 airfoil under steady and unsteady conditions, and the associated flow snapshots
of figure 1.8, one can describe the dynamic stall mechanism:

Unsteady attached flow 1.8(a) : The motion of the airfoil creates trailing edge
vortices which have an effect on the flow field around the airfoil. These reduce
the effective angle of attack seen by the airfoil and add an effective camber, both
of which delay the apparition of stall.
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1.6

Figure 1.6: Evolution of normal lift with unsteady angle of attack
for a thick airfoil (S809 airfoil taken from NREL data [23])

Unsteady detached flow 1.8(b) : For thick airfoils, a delayed trailing edge sepa-
ration will occur similarly to steady trailing edge stall 1.4. The delay is also
caused by the various unsteady effects.

Vortex onset 1.8(c) : At some point, a separation bubble will form at the leading
edge, akin to the steady leading edge stall 1.3. However, the effects of the bubble
burst will only be visible while the resulting leading edge vortex travels toward
the trailing edge. This vortex will further decrease the pressure on the airfoil’s
suction side, increasing the generated lift. The flow field around the airfoil is
also disturbed by the vortex, so that the center of pressure moves towards the
mid-chords which induces a nose-down pitching moment.

Vortex leaves airfoil 1.8(d) : When the leading edge vortex reaches the trailing
edge, its effects quickly vanish.

Full separation 1.8(e) : The flow was heavily disrupted by the vortex and is now
fully separated.

Reattachment 1.8(f) : Once the angle of attack starts to decrease, the flow will
slowly start to reattaches.

The description of dynamic stall presented in figures 1.6 and 1.8 shows mechanism
very similar to the combination of trailing and leading edge static stall detailed in
section 1.1.1. The main differences lie in effective angle of attack being different from
the steady one and the non average of unsteady effects such as the vortex onset.

As the bubble burst from static stall and the leading edge vortex from dynamic
stall are linked, it is expected that the vortex onset angle, that is the angle of attack
at which the leading edge vortex starts to shed, is higher for thicker airfoil. This can
be seen for the S809 airfoil on figure 1.6, the vortex shedding occurs at a very high
angle of attack (point (c) on figure 1.6) and the dynamic trailing edge separation is
easy to locate (point (b) on figure 1.6). For thinner airfoil, it is expected that the
vortex shedding starts at lower angle and can hide the trailing edge separation effects.
This can be seen on figure 1.7 representing the dynamic stall loop for a NACA0012
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airfoil. Here, the vortex onset is more difficult to locate as it begins before any real
trailing edge separation as seen on figure 1.6. The only effect visible is an increase
in the slope of the curve starting around (point a) on figure 1.7. Similarly to static
stall, one can expect that for some airfoil there is no vortex formation during dynamic
stall. The vortex either never form, never detach or is too weak to be really noticed.
In these cases, steps 1.8(c) and 1.8(d) for the dynamic stall are ignored and the flow
is fully detached in step 1.8(e) thanks to the trailing edge separation mechanism.

0 5 10 15 20

0

0.5

1

1.5

a

Figure 1.7: Evolution of normal lift with unsteady angle of attack
for a thin airfoil (N0012 data taken from chapter 3)

1.2 Models

The model by Gormont[26] arising from earlier work by Harris et. all. [27], and
Tarzanin [28], was developed in the 1970s and is one of the first to use semi exper-
imental results to compute the aerodynamic loads in dynamic stall conditions. The
model starts by the flow around an oscillating airfoil using Theodorsen theory. How-
ever, this only allows to represent the unsteady aerodynamic loads before stall. Stall
can be included by incorporating the change in the slopes of the lift and moment
curves of static airfoils. Finally, the effect of stall delay can be added by defining a
delayed angle of attack. This angle evolution is determined experimentally from wind
tunnel experiments on oscillating airfoils..

The model by Gangwani and Bielawa [29]–[31] proposed in the 1980s focused more
on the physics of dynamic stall. Their model defined three important angles : the
dynamic stall onset angle, the angle at which the LEV reaches the trailing edge of the
airfoil, and the reattachment angle. Gangwani and Bielawa defined relationships able
to predict the three angles for specific airfoils, Mach, and Reynold numbers. Then,
the effects of dynamic motion on the value of these parameters is evaluated using a
combination of the instantaneous angle of attack, the reduced pitch rate r = α̇ b

U , and
the equivalent angle of attack defined by Wagner.

So far, the dynamic stall modelling was always based on the different flow mecha-
nisms involved in the phenomenon. The Onera [4], [5] model took a different approach
however. It directly uses a set of differential equations to separately compute the lift
and the moments. In the base model, there are 22 coefficients that are functions of
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(a) Unsteady attached flow (b) Unsteady partially detached flow

(c) Start of vortex shedding (d) Vortex reach the trailing edge

(e) Unsteady fully detached flow (f) Start of reatachement

Figure 1.8: Flow sketches of dynamic stall mechanisms

the angle of attack, the airfoil profile, and the Mach number. As they represent time
derivatives, they have to be experimentally determined from a set of small amplitude
oscillations for different reduced frequencies and mean angles of attack

The Leishman-Beddoes [3] model was developed towards the end of 1980s aim to
compute the aerodynamic loads of airfoils undergoing stall. Its emphasis was put on a
complete physical representation of dynamic stall while keeping the complexity as low
as possible. The model is composed of three modules aiming to represent different
physical phenomena, an attached flow module to represent the unsteady attached
flow, a detached flow module using Kirchhoff-Helmholtz theory to link the separated
lift to the position of the separation point and, a dynamic stall module to take into
account the effects of the leading edge vortex on the airloads.

The Leishman-Beddoes model is often adapted and modified for different appli-
cations. Riso [32] simplified the model for wind turbine application, they removed
compressibility and leading edge separations effects since these do not usually occurs
on thicker windturbine airfoil. Sheng and Galbraith [33]–[36] on the other hand aimed
to change the leading edge separations onset criterion for low Mach numbers.

Examples of CFD solutions for 2-D and 3-D dynamic stall can be found in Srini-
vasan et. al. [37], Ekaterinaris et. al. [38] or Spentzos et. al. [39] works. The
disadvantage of such approaches is that they are very computationally expensive and
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are therefore unsuitable for design purposes. Empirical models are much faster but
they must be well calibrated for each individual airfoil, Mach number and Reynolds
number.

1.3 3D dynamic stall

1.3.1 3D lift distribution

When a finite wing is considered, the flow inevitably has a third dimensional com-
ponent along the span of the wing. Indeed, as the wing is generating lift, there is
a difference of pressure between the top side and down side. At the wingtip, this
difference of pressure will create a sideway airflow going from the high to low pressure
side as can be seen in figure 1.9(a). As the wing moves, these transversal flow at the

Low pressure

high pressure

Front view

(a) Wing tip flow

V∞

downwash

upwash

upwash

wingtip vortex

wingtip vortex

(b) Wing tip vortices

Figure 1.9: Finite wing schematic (reproduced from Anderson [40])

wingtip will generate the so called wingtip vortex downstream of the wing as shown
on figure 1.9(b). The flow will be influenced by these vortices, creating a downwash
between the wingtips and an upwash outside. This downwash affects the wing and
reduces the effective angle of attack seen by each of its airfoil section because the
geometric angle of attack α is reduced by an induced angle of attack αi

αeff = α− αi (1.1)

The downwash will also change the direction of application of the lift which lower the
effective lift and create an induced drag as shown on figure 1.10. Furthermore, the
effective lift and induce drag are not constant along the span of the wing because,
usually, the downwash is stronger near the wingtips.

1.3.2 lifting line

The idea of Prandtl to compute the effect of the downwash on the wing started
by considering a bound vortex of circulation Γ located on the wing. However, due
to Helmholtz theorem, this bound vortex cannot end in the fluid, two free trailing
vortices that extend toward infinity must be added at the wingtip. This vortices
structure shown on figure 1.11(a) is called a horseshoe vortex.

Now, a representation of the wingtip vortices exists as two trailing edge vortices
of circulation Γ, it is possible to simply compute the downwash generated by these
vortices with the Bio Savart law. The expression of the downwash is then simply

w(y) =
−Γ

4π (s/2 + y)
− −Γ

4π (s/2− y)
(1.2)
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Figure 1.10: Effect of downwash on a typical airfoil section of a finite
wing (Reproduced from Anderson [40])

with w(y) the downwash on the airfoil section in location y and s the wing span.
However, this equation does not represent realistically the downwash on a finite wing.
Furthermore there are two singularities at the wingtips (| y |= s/2) where the down-
wash increases to infinity.

Bound vortex

Free trailing vortex

Free trailing vortex

Horshoe vortex

V∞ Γ

Γ

Γ

Γ
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(a) Single horseshoe vortex
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Γ2

Γ2
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Γ1 + Γ2
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(b) Multiple horseshoe vortices

dΓ

Γ0 Γ(y)

z
y

x
V∞

Lifting line

s/2

−s/2

(c) Infinite number of horseshoe vortices

Figure 1.11: Schematic of the superposition of horseshoe vortices for
Prandtl lifting line theory. (Reproduced from Anderson [40])

To solve these problem, Prandtl added multiple horseshoe vortices of different
length along the span to represent the vorticity around the wing. One example is
shown on figure 1.11(b) where there are two horseshoe vortices : the first one of
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circulation Γ1, extends on the entirety of the wingspan from point A to D and the
second one with a circulation Γ2 is smaller and extend from point B to C. As a result,
the circulation on the wing between AB and CD are only affected by the first horseshoe
vortex and is Γ1. On the other hand, between BC, the circulation is changed by both
horseshoe vortices and the circulation is Γ1 +Γ2. At the end of the day, this approach
allows for a discreet variation of the vorticity along the wing span.

The next step consist to use an infinity of horseshoes vortex as shown on figure
1.11(c). This result in the continuous variation of the circulation on the wing and the
presence of a vortex sheet trailing behind the wing. The downwash applied on the
wing can then be computed with the integral

w(y) = − 1

4π

∫ s/2

−s/2

dΓ/dy0

y − y0
dy0 (1.3)

and the induced angle of attack, for small angle, is

αi(y) = −w(y)

V∞
(1.4)

Finally, it is possible to link the circulation Γ(y) and the lift applied on the finite
wing with the Kutta-Joukowski theorem at the location y0.

l(y0) = ρ∞V∞Γy0 (1.5)

cl(y0) =
2Γ(y0)

V∞c(y0)
(1.6)

with ρ∞ the free stream density, V∞ the free stream speed and cl(y0) the lift coefficient
at location y0. We know that in the case of steady airfoil with attached flow, the lift
is simply

cl = a0 (αeff − α0) (1.7)

where α0 is the angle of attack of zero lift of the airfoil section. Substituting 1.6 and
solving for αeff one get,

αeff =
2Γ(y0)

a0V∞c(y0)
+ α0 (1.8)

Substituting equation 1.4 and 1.8 into 1.1, one get the fundamental equation of
prandtl’s lifting-line theory

α(y0) =
2Γ(y0)

a0V∞c(y0)
+ α0 +

1

4π

∫ s/2

−s/2

dΓ/dy0

y − y0
dy0 (1.9)

Finally, to solve integral 1.9 and find the distribution of circulation Γ(y) on the
wing. The circulation is usually represented with a truncated Fourier series

Γ(y) =
1

2
a0 c0 U

m∑
n=1

An sin(nθ) (1.10)

with a0 the lift curve slope at the wing root, and c0 the chord at the wing root.

1.3.3 Stall cells

To talk about 3D dynamic stall, one must first consider the behavior of separation
over a finite wing. The equivalent of the 2D leading edge vortex will be ignored in
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this section for simplicity and only trailing edge separation or already separated flow
over the wing will be considered. One can expect that the downwash applied on the
wing is preventing or retarding the occurence of flow separation. As the downwash is
strongest near the wingtip, one would expect the flow to detach at the wing centerline
and be attached at the wingtip. This stall cells has a so called mushroom shape as
presented by Winkelmann [41], [42] and shown on figure 1.12.

Figure 1.12: Surface oil flow pattern on a stalled, finite rectangular
wing with a Clark Y-14 airfoil section. AR = 3.5, α = 22.8◦, Re =

245, 000 (based on chord length). (Taken from Anderson [40])

However, stall cells are not that simple. As early as the 70s Gregory et al. [43],
[44] observed the stalled patterns was not stable and multiple stall cells could form
on a single wing. This can be seen on figure 1.13 from the experimental results of
Sarlak et al. [45]. Yon and Katz [46] also showed that the stall cells were not always
stationary and the whole flow structure can move along the wing span. Furthermore,
the shape, numbers and apparition of stall cells are a function of the angle of attack,
the aspect ratio and the Reynold number. Winkelmann and Barlow [47] and Schewe
[48] showed that the number of stall cells increase with span for the same Reynold
and angle of attack. Winkelmann and Barlow [47] also observed that increasing the
angle of attack leads to smaller but wider stall cells. The location of the stall cells
can be forced by locally disturbing the flow as shown by Marinos [49].

Figure 1.13: Visualization of two stall cells formed over the S826
airfoil at Re = 160000 and α = 12◦ (Taken from Sarlak et al. [45])

1.3.4 Omega vortex shedding

The next step to consider 3D dynamic stall is to look at the 3D leading edge vortex
if there is any Freymuth [50] was the first to visualise the complex vortex structure
occurring on unsteady wing which he dubbed a "omega vortex". This structure can
be seen on figure 1.14(a). Further experiment performed by Pizziali [51], Shrek and
Helin [52], Tang and Dowel [53], Werner et. al. [54] and, Coton and Galbraith [55]
on 3D oscillating wing also showed this omega vortex structure for different Reynolds
number, reduced frequency and aspect ratio.

At first, a leading edge vortex forms along the span of wing. This vortex interacts
with the wing tip vortices which prevent it to freely moves away from the wing surface.



14 Chapter 1. Introduction

(a) Flow visualization taken from Shrek and Helin
[52]

(b) CFD representation taken from
Spentzos et. al.[56]

Figure 1.14: Leading edge vortex or omega vortex on unsteady finite
wing

However, with increasing angle of attacks, the part of the leading edge vortex located
at the wing root moves away from the wing while its edges stays connected to the
wing tip vortices close to the wing. Once fully developed, the structure composed of
the wing tip vortices and the partially separated leading edge vortex has an omega
shape.

1.4 Objectives of this thesis

The ultimate aim of this thesis was to build a model able to compute the lift produced
by a wing during 3D dynamic stall at low Reynolds numbers. From the available
models to represent dynamic stall, it was decided to focus on the Leishman-Beddoes
model.

This model wast not conceived with very low Reynolds numbers in mind. The first
step is to create a modified Leishman-Beddoes model able to handle dynamic stall at
these low Reynolds numbers. In order to extend this modified model to 3D, first a 3D
unsteady attached flow model is developed in the present work.

1.5 Outline of this thesis

• Chapter two presents a modified Leishman-Beddoes model able to model dy-
namic stall at low Reynolds numbers. The classical LB model is presented first,
which is built from three parts, the unsteady attached flow, the separated flow,
and the dynamic stall. In the second part of this chapter, a low Reynolds mod-
ification of the LB model is presented.

• Chapter three implements both the LB and modified LB models and compares
their respective predictions to data from a set of experiments. Three wing
sections were chosen, a flat plate, a NACA0012, a NACA0018 because they
are supposed to exhibit three distinct types of stall behaviour at intermediate
Reynolds numbers [9].

• Chapter four presents an analytical unsteady 3D lift model that is required as
a basis for a 3D dynamic stall model. This novel model is a combination of
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2D Wagner theory and 3D Lifting Line theory and therefore is known as the
Wagner Lifting Line model.

• Chapter five compares the result of the Wagner lifting line model with those of
from a numerical Vortex Lattice simulation

• Chapter six presents the conclusions of the thesis and discusses avenues for
further research.
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Chapter 2

Leishman-Beddoes

This chapter starts by introducing the LB model which was selected to model dynamic
stall in the present thesis. Then, a low Reynolds modification of the LB model is
presented.

2.1 State space Leishman-Beddoes model

The popular Leishman-Beddoes dynamic stall empirical model was developed initially
for helicopter rotor applications and tuned for Mach numbers higher than 0.3. It is
designed to represent the unsteady lift and pitching moment of a two dimensional
airfoil undergoing dynamic stall. Leishman and Beddoes built their model around
different modules which represent the different physical phenomena associated with
dynamic stall. They are :

• The computation of the unsteady attached flow, which is the foundation of the
model.

• The computation of the vortex onset criterion and its effect on the aerodynamic
loads.

• Kirchhoff-Helmholtz theory, which is used to represent trailing edge separation
and link the attached and separated aerodynamic loads.

2.1.1 Attached flow

One popular method to compute the unsteady aerodynamic loads is the use of the
Wagner indicial function. However, the Leishman-Beddoes model was initially built
for compressible flow which cannot be directly represented using Wagner theroy. This
is why Leishman and Crouse [57] developed their own indicials functions to compute
the unsteady normal load and pitching moment acting on a 2D airfoil moving in
compressible flow . These aerodynamic loads are computed for a step change in angle
of attack ∆α and pitch rate ∆q = ∆α̇c

V .

ccn =
2π

β
φCα∆α+

π

β
φCq ∆q (2.1)

ccm =
2π

β
φCα (0.25− xac(M)) ∆α− π

8β
φcqm∆q (2.2)

cIn =
4

M
φIα∆α+

1

M
φIq∆q (2.3)

cIm = − 1

M
φIαm∆α− 7

12M
φIqm∆q (2.4)
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where ccn and ccm represent the indicial circulatory normal force and pitching moment
coefficients, cIn and cIm represent the indicial non circulatory normal force and moment
coefficients which are analogous to the apparent mass terms used for incompressible
flow, β is the compressibility factor

√
1−M2 and xac(M) is the distance of the aero-

dynamic center from the leading edge.
The indicial functions φCα , φCq , φCqm , φIα , φIq , φIαm , φIqm are respectively defined as

φCα = 1−A1 exp

(
−b1β2 2V

c
t

)
−A2 exp

(
−b2β2 2V

c
t

)
(2.5)

φCq = φCα (2.6)

φCqm = 1− exp

(
−b5β2 2V

c
t

)
(2.7)

φIα = exp

( −t
KαTI

)
(2.8)

φIq = exp

( −t
KqTI

)
(2.9)

φIαm = A3 exp

( −t
b3KαMTI

)
+A4 exp

( −t
b4KαMTI

)
(2.10)

φIqm = exp

( −t
KqMTI

)
(2.11)

TI = c/a (2.12)

Kα =
1

(1−M) + πβM2(A1b1 +A2b2)
(2.13)

Kq =
0.75

(1−M) + πβM2(A1b1 +A2b2)
(2.14)

Kαm =
A3b4 +A4b3
b3b4(1−M)

(2.15)

Kqm =
7

15(1−M) + 3πβM2b5
(2.16)

The numerical values of the different parameters, used in equations 2.5 to 2.16, are
shown in table 2.1.

A1 = 0.3 b1 = 0.14

A2 = 0.7 b2 = 0.53

A3 = 1.5 b3 = 0.25

A4 = −0.5 b4 = 0.1

b5 = 0.5

Table 2.1: Leishman-Beddoes indicial functions parameters
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The load step responses given by equations 2.1-2.4 can be rewritten in the following
continuous state space representation by using Duhamel’s principle

ẋ = Ax + B

[
α(t)
q(t)

]
(2.17)[

ccn
ccm

]
= Ccx (2.18)[

cIn
cIm

]
= CIx + D

[
α(t)
q(t)

]
(2.19)

where cn = cIn + ccn and cm = cIm + ccm and x is the 8x1 vector.
First, for the circulatory normal force ccn, the state equations for x1 and x2 are

expressed as follows[
ẋ1

ẋ2

]
=

(
2V

c

)
β2

[
−b1 0

0 −b2

] [
x1

x2

]
+

[
1 0.5
1 0.5

] [
α
q

]
(2.20)

and the normal circulatory force coefficient is given by

ccn(t) =
2π

β

(
2V

c

)
β2
[
A1b1 A2b2

] [x1

x2

]
(2.21)

For the non circulatory normal force coefficient, cIn, the state space equations are[
ẋ3

ẋ4

]
=

[
− 1
KαTI

0

0 − 1
KqTI

] [
x3

x4

]
+

[
1 0
0 1

] [
α
q

]
(2.22)

and the non circulatory normal force is given by

cIn(t) =
4

M

(
− x3

KαTI
+ α

)
+

1

M

(
− x4

KqTI
+ q

)
(2.23)

For the circulatory moment coefficient, ccm, the state space equation is

ẋ7 = −b5β2

(
2V

c

)
x7 + q (2.24)

and the circulatory moment coefficient is

ccm(t) = ccn(0.25− xac)−
π

8β

(
2V

c

)
β2b5x7 (2.25)

Finally, for the non circulatory moment coefficient, cIm, the state space equations areẋ5

ẋ6

ẋ8

 =

−
1

b3KαmTI
0 0

0 − 1
b4KαmTI

0

0 0 − 1
KqmTI


x5

x6

x8

+

1 0
1 0
0 1

[α
q

]
(2.26)

and the non circulatory moment is given by

cIm(t) =
1

M

[
A3

b3KαmTI
A4

b4KαmTI

] [
x5 x6

]
− 1

M
α− 7

12M

(
− x8

KqmTI
+ q

)
(2.27)



20 Chapter 2. Leishman-Beddoes

From equations 2.20-2.27, one can easily assemble the matrices in equations 2.17,
2.18 and 2.19

A =



a11 0 0 0 0 0 0 0
0 a22 0 0 0 0 0 0
0 0 a33 0 0 0 0 0
0 0 0 a44 0 0 0 0
0 0 0 0 a55 0 0 0
0 0 0 0 0 a66 0 0
0 0 0 0 0 0 a77 0
0 0 0 0 0 0 0 a88


B =

[
1 1 1 0 1 1 0 0

0.5 0.5 0 1 0 0 1 1

]T
Cc =

[
c11 c12 0 0 0 0 0 0
c21 c22 0 0 0 0 c27 0

]

CI =

[
0 0 c13 c14 0 0 0 0
0 0 0 0 c25 c26 0 c28

]

DI =

[
4
M

1
M−1

M
−7

12M

]
where the elements of matrix A are

a11 = −2V

c
b1β

2, a22 = −2V

c
b2β

2

a33 = − 1

kαTI
, a44 = − 1

kqTI

a55 = − 1

b3kαMTI
, a66 = − 1

b4kαMTI

a77 = −2V

c
b5β

2, a88 = − 1

kqMTI

(2.28)

and the elements of matrices Cc and CI are given by

c11 =
2π

β

2V

c
β2A1b1, c12 =

2π

β

2V

c
β2A2b2

c13 = − 4

M

(
1

kαTI

)
, c14 = − 1

M

(
1

kqTI

)
c21 = c11(0.25− xac), c22 = c12(0.25− xac)

c25 =
−1

M

( −A3

b3KαMTI

)
, c26 =

−1

M

( −A4

b4KαMTI

)
c27 = − 2π

16β

2V

c
β2b5, c28 =

−7

12M

(
− 1

kqMTI

)
(2.29)

2.1.2 Vortex onset

One important aspect of dynamic stall that needs to be represented is vortex onset.
A criterion described by Evan and Morts [58] is the existence of an extremum in
pressure at the airfoil’s leading edge, followed by its collapse. Leishman and Beddoes
chose to define a criterion based on the normal force coefficient cn because the leading
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edge pressure applied on the airfoil can be directly linked to the normal force. They
used a critical normal force static value cn(static) = cn1 as the criterion representing
the steady lift at which vortex onset occurs for a given Mach number. Figure 2.1,
built from data extracted from Leishman and Beddoes [3], shows the variation of
this normal force critical criterion with Mach number for a NACA0012 airfoil. For
higher Mach Numbers they used instead the shock reversal criterion where the flow
separation of the boundary layer is created by adverse pressure gradient caused by
shock waves on the airfoil.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

Shock reversal criterion

Leading edge criterion

Figure 2.1: Critical normal force separation onset boundary for the
NACA0012 airfoil.

There is a lag in the leading edge pressure response during unsteady motion. This
also leads to a lag in the normal force cn(t) and, hence, vortex onset occurs at a
higher instantaneous angle of attack. To implement this time delay on the vortex
onset criterion, a first order lag Tp is applied to the normal lift as follows

ċ′n =
ccn + cIn − c

′
n

Tp
(2.30)

where ccn is the attached circulatory normal lift and cIn is the non circulatory normal
lift. The time constant Tp is a function of Mach number and mostly independent of
airfoil shape according to Leishman and Beddoes [3]. Finally, c′n represent the lagged
normal lift, so that vortex onset is simply reached when

|c′n| = cn1(M) (2.31)

assuming that the airfoil is symmetrical.

2.1.3 Trailing edge separation

Computation of s(α)

Trailing edge stall is characterized by flow separation from the airfoil’s trailing edge.
The Leishman-Beddoes model uses Kirchhoff-Helmholtz [13] theory to approximate
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the normal force coefficient acting on a static airfoil as

cn =
2π

β

(
1 +
√
s

2

)2

α (2.32)

where 2π
β is the compressible lift curve slope, α is the angle of attack and s is the

position of the separation point on the airfoil. A drawing defining the separation
point s is shown in figure 2.2, s = 1 when the flow is fully attached and s = 0 when
the flow is fully separated.

x

c

s = x
c

flow separation point
U

Figure 2.2: Flow separation scheme for a flat plate

By inverting relation 2.32, an expression for the position of the separation point s
can be deduced from airfoil experimental steady data.

s =

2

√
cn,exp

2π
β (α− α0)

− 1

2

(2.33)

This gives a value of s at each angle of attack at which cn was measured but an
analytic function s(α) is required by the model. Leishman and Beddoes [3] chose the
relation

s =

{
1− 0.3 exp {(α− α1)/S1} α ≤ α1

0.04 + 0.66 exp {(−α+ α1)/S2} α > α1
(2.34)

where coefficients S1 and S2 define static stall characteristics and α1 corresponds to
the static stall angle which, for most airfoils, occurs when s ' 0.7. These coefficients
are chosen to fit the data obtained from equation 2.33. Figure 2.3 shows an example
of such a fit from data obtained during the course of the present research. The fit
is very good for α > 6 but unsatisfactory for alpha < 6, due to the presence of a
laminar separation bubble near the leading edge at these low angles of attack. The
phenomenon will be discussed in more detail in a later chapter.

Computation of g(s)

A general expression for the pitching moment around the quarter chord cannot be
obtained from Kirchhoff theory. Leishman [57] chose to empirically represent the
position of the center of pressure as a function of the position of the separation point.
The center of pressure position can be determined from the ratio cm−cm0

cn
where cm0

is the steady moment coefficient at zero lift. Leishman proposed the following fit

g(s) =
cm − cm0

cn
= K0 +K1(1− s) +K2 sin(πsm) (2.35)
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(a) Curve fitting of function s(α)
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(b) reconstructed cn

Figure 2.3: Leishman-Beddoes fitting of the separation point for the
normal force

Parameters K0, K1, K2 and m can be adjusted for different airfoils to give the best
moment reconstruction using a least squares fit; An exemple of curve fit of the function
g(f) and the reconstructed pitching moment coefficient is shown in figure 2.4.

0 0.2 0.4 0.6 0.8 1
-0.15

-0.1

-0.05
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Leishman-Beddoes

Data point

(a) Curve fitting of function g(α)

0 10 20 30 40 50
-0.15

-0.1

-0.05
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Leishman-Beddoes
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(b) reconstructed cm

Figure 2.4: Leishman-Beddoes fitting of the separation point for the
pitching moment

Dynamic effects on s(α) and g(s)

For dynamic cases, flow separation will occur at a higher angle of attack than in the
static case. This is caused by a delay in the airfoil pressure distribution and boundary
layer dynamic response.

The delay in the pressure distribution can be expressed using an effective angle of
attack αs(t) which is computed from the delayed normal lift response c′n, computed
using equation 2.30, as follows

αs(t) =
c
′
n

2π/β
(2.36)
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This effective angle of attack is used to represent the first order Tp which, as explained
previously, represents a delay in the pressure response.

The effect of the unsteady boundary layer is represented by applying a first order
lag to the computation of s(αs). This gives the following unsteady trailing edge
separation point s′

ṡ′ =
s(αs)− s′

Ta
(2.37)

As for Tp, the constant time delay Ta is Mach number dependent.
Finally, the unsteady nonlinear normal force cfn is given by

cfn(t) = ccn

(
1 +
√
s′

2

)2

(2.38)

and the unsteady nonlinear pitching moment cfm is

cfm = g(s
′
)ccn + cm0 (2.39)

2.1.4 Dynamic stall modelling

One of the aspects of dynamic stall involves the formation of a vortex at the leading
edge. At some point this vortex detaches and travels downstream, disturbing the flow
field as explained in the previous section 1.1.2.

Leishman [3] proposed to add a normal lift term cvn that represents an excess of
circulation that has not shed until some critical condition is reached. This critical
condition, is the vortex onset which was defined in sections 2.1.2 as

c
′
n(t) ≥ cn1 (2.40)

At vortex onset, the accumulated circulation is shed over the airfoil. This process is
represented by equation

ċvn(t) =
ċv − cvn
Tv

(2.41)

where

cv =

{
ccn − cfn for τv ≤ 2Tvl

0 for τv > 2Tvl
(2.42)

In this formulation, the accumulation of circulation cvn is proportional to the rate of
change of circulation dΓ

dt ∝ ċv and dissipates with a time constant Tv. As a result, cvn
can only increases or accumulates when there is a rates of change greater than the
dissipation term Tv. At lower rates of change, the dissipation term dominates and the
airload will revert smoothly back to the steady nonlinear condition with cvn = 0.

When the critical conditions for leading edge separation occurs, i.e. c′n(t) exceeds
cn1 , there is an abrupt loss of leading edge suction and the accumulated vortex starts
to convect over the airfoil’s chord. At this point, a non dimensional time τv = 0 is
defined to track the position of the vortex. The time taken by the vortex to reach the
trailing edge is defined as τv = Tvl. The Leishman beddoes model assumes that the
circulation keeps building up during the convection process. Finally, the build up is
assumed to stop when the vortex is located far enough from the airfoil τv = 2Tvl.
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The position of the center of pressure is disturbed by the movement of the vortex
along the airfoil, affecting the pitching moment acting on the airfoil. The Leishman-
Beddoes model proposes the following approximation of the motion of the center of
pressure,

CPv = 0.25

[
1− cos

(
πτv
Tvl

)]
(2.43)

The center of pressure is assumed to reach the mid-chord when the vortex is located
at the trailing edge (τv = Tvl).

The pitching moment perturbation created by the vortex, cvm, is then simply

cvm = −CPv cvn (2.44)

2.1.5 Coupling of the stall mechanisms

As noted by Leishman and Beddoes [59], the model described in the previous section
involves different mechanisms associated with dynamic stall which are assumed to be
uncoupled.

In reality, these different mechanisms can interact with each other. First of all,
vortex shedding, which is a leading edge phenomenon, has an effect on trailing edge
separation. In fact, vortex shedding increases the speed with which the trailing edge
separation point moves towards the leading edge. To represent this behavior, the
model discreetly changes the time constant Tf associated with trailing edge separa-
tion as a function of the position of the vortex on the airfoil, as shown in table 2.2
summarized by Chantharasenawong [60].

c
′
n ≥ cn1 0 ≤ τv ≤ Tvl Tvl < τv ≤ 2Tvl 2Tvl < τv

αα̇ ≥ 0 Tf = Tf0 Tf = 1
3Tf0 Tf = 4Tf0

αα̇ < 0 Tf = 0.5Tf0 Tf = 0.5Tf0 Tf = 4Tf0

Table 2.2: Variation of the trailing edge separation lag parameters
Tf during the vortex shedding phase.

In section 2.1.4, it is assumed that the shedding of the vortex has no effect on the
accumulation and dissipation of the term cvn while the vortex is close to the airfoil.
However, when the vortex starts to move, the model should increase the dissipation
rate of the accumulated circulation. This can be done by decreasing the time constant
Tv as a function of the position of the vortex, as shown in table 2.3 summarized by
Chantharasenawong [60].

c
′
n ≥ cn1 0 ≤ τv ≤ Tvl Tvl < τv ≤ 2Tvl 2Tvl < τv

αα̇ ≥ 0 Tv = Tv0 Tv = 0.25Tv0 Tv = 0.9Tv0

αα̇ < 0 Tv = 0.5Tv0 Tv = 0.5Tv0 Tv = 0.9Tv0

Table 2.3: Variation of the vortex dissipation time parameters Tv
during the vortex shedding phase.
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2.1.6 Complete equations

Finally, the equations for the total unsteady aerodynamic loads can be assembled.
First the state space variables are computed from the following state space equations.

ẋ = Ax + B

[
α(t)
q(t)

]
ċ′n =

ccn + cIn − c
′
n

Tp

ṡ′ =
s(αs)− s′

Ta

ċvn(t) =
Ċv − cvn
Tv

Then, the aerodynamic loads are defined by the relations[
ccn
ccm

]
= Ccx[

cIn
cIm

]
= CIx + Dl

[
α(t)
q(t)

]

cfn(t) = ccn

(
1 +
√
s′

2

)2

cfm = g(s
′
)ccn + cm0

cvm = −CPv cvn
cn = cfn + cvn + cIn

cm = cfm + cvm + cIm
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2.2 Modified Leishman-Beddoes model

Sheng et al.[33]–[35] showed that at lower Mach numbers the LB model required mod-
ifications in order to better correspond to experimental observations. In particular,
the computation of dynamic stall onset and vortex onset must be modified at such
Mach numbers.

Airfoil movement

Attached flow module
Wagner function

Airfoil geometry

cCn cIn , c
I
m

Dynamic stall

Unsteady flow module

s(αe)

cn = cIn + cfn + cvn +∆cvn

cm = cIm + cfm + cvm +∆cvm

Detached flow module
Kirchhoff-Helmholtz

Static stall

g(αe)

αe

cfn, c
v
n,∆cvn cfm, c

v
m,∆cvm

experiment

(Aeroelasticity feedback)

Dynamic stall module
Sheng criterion

experiment

αds(α̇e) Ta

Tvl

Figure 2.5: Modified Leishman Beddoes overview

As discussed in section 2.1, the Leishman Beddoes model applies to rigid airfoils
with pitch and/or plunge degrees of freedom undergoing forced motion, usually sinu-
soidal or constant pitch-up. It can represent stall delay, trailing edge separation and
the shedding of leading edge vortices. Its inputs are the airfoil geometry, flight condi-
tion and motion and its outputs are the unsteady aerodynamic loads as a function of
time. The modified version of the model proposed here can be visualized as a block
diagram (see figure 2.5) containing the following blocks:

• Attached flow module: This module computes the circulatory and impulsive
normal loads acting on the airfoil, ccn and cIn respectively. It will take as inputs :

– The pitch and/or plunge motion of the rigid airfoil section;

– The airfoil geometry.

• Detached flow module: This module represents the nonlinear effects of sepa-
ration and stall delay on the aerodynamic load responses. It will use as input :

– The experimental static stall characteristics for pitching moment and nor-
mal force.

Flow separation is represented by the location of the separation point s and
the position of the center of pressure g which are obtained from the static ex-
perimental data. Leishman and Beddoes [3] used a preset function to fit the
experimental result 2.34. In the current model, the functions s and g are curve
fitted with a series of cubic splines. The position of the center of pressure is also
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defined directly as a function of the angle of attack g(α) instead of a function of
the separation point g(s) as previously defined by Leishman and Beddoes 2.35.

• Dynamic stall module: This module creates a function αds(r(t)) that esti-
mates the angle of attack at which vortex shedding will begin, if there is one.
It also calculates a characteristic unsteady time lag Ta applied to the angle of
attack and to the separation point

α̇′ =
U

b

αe − α′

Ta
(2.45)

ṡ′ =
U

b

ss(αe)− s′

Ta
(2.46)

where αe is the effective angle of attack due to the motion, to be defined in
section 2.2.1. Finally, this module also calculates the time taken by the vortex
to shed over the airfoil, Tvl. It will take as input :

– The airfoil experimental dynamic stall characteristics at different ampli-
tudes and reduced frequencies.

The angle of vortex shedding onset αds was defined by Sheng et. al. [33] to
replace the Leishman [3] criterion at low Reynold numbers. Sheng et. al. curve
fitted the result with a set of two linear function. In the present model, the
function αds is fitted with the inverse of a second order polynomial.

• Unsteady flow module: This final module computes the aerodynamic loads
acting on the airfoil.

2.2.1 Attached flow module

Circulatory lift

In the classical Leishman-Beddoes model, the circulatory loading associated with the
unsteady attached flow is computed by means of indicial compressible aerodynamic
response functions. As the flow is assumed incompressible in the present work, the
step change in lift coefficient, for an airfoil undergoing a step change in downwash
∆w << U , is expressed using the Wagner function, Φ(t), as follows :

ccn(t) = a0Φ(t)
∆w

U
(2.47)

where a0 is the lift curve slope of the airfoil, which is usually approximated by 2π for
thin airfoils, while Φ(t) is Jones’ [61] approximation of the Wagner function

Φ(t) = 1−Ψ1e
− ε1U

b
t −Ψ2e

− ε2U
b
t

with Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455, ε2 = 0.3.
Duhamel’s principle can be applied to equation 4.9 in order to express a continuous

lift response as the time integral of infinitesimal step responses [62]

ccn(t) = a0

(
w(0)

U
Φ(t) +

∫ t

0

1

U

∂w(τ)

∂τ
Φ(t− τ) dτ

)
(2.48)

where w(t) is the downwash at time t and τ is an integration variable. The troublesome
∂w(τ)
∂τ term inside the integral can be removed by applying integration by parts, such
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that

ccn(t) = a0

(
w(t)

U
Φ(0)−

∫ t

0

1

U

∂Φ(t− τ)

∂τ
w(τ) dτ

)
(2.49)

The downwash w(t) must now be computed as a function of the kinematics of the
wing. In this work, the modified Leishman-Beddoes model is presented in a general
formulation involving pitch and plunge degrees of freedom. Figure 4.1 defines the
plunge, h(t), and pitch, α(t), degrees of freedom, the chord c, and the distance between
the pitch axis and the half-chord, xe. The downwash becomes

ḣ

α̇

α

b

xe

c = 2b

U

Figure 2.6: Rigid thin plate airfoil scheme

w(t) = Uα(t) + ḣ(t) + α̇(t)d (2.50)

where d = (1/2 − a)b and a = xe/b. Note that this definition of w(t) assumes low
pitch and plunge velocities and small angles of attack. Nevertheless, the definition
is retained for higher angles of attack, because the lift is modified by the detached
flow module, as explained in section 2.2.2. From the downwash, an effective angle of
attack is defined as

αe =
w

U
(2.51)

After combining equations 4.11 and 4.12, the circulatory normal force coefficient be-
comes

ccn(t)

a0
=

(
α+

ḣ

U
+
α̇d

U

)
Φ(0)

+

∫ t

0
Ψ1ε1

U

b
e
−ε1U
b

(t−τ)

(
α(τ) +

ḣ(τ)

U
+
α̇(τ)d

U

)
dτ︸ ︷︷ ︸

I

+

∫ t

0
Ψ2ε2

U

b
e
−ε2U
b

(t−τ)

(
α(τ) +

ḣ(τ)

U
+
α̇(τ)d

U

)
dτ︸ ︷︷ ︸

II

(2.52)
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Following Lee et al. [63], the following changes of variables are performed in order to
eliminate the integrals from equation 4.13

z1(t) =

∫ t

0
e
−ε1U
b

(t−τ)h(τ) dτ z3(t, y) =

∫ t

0
e
−ε1U
b

(t−τ)α(τ) dτ

z2(t) =

∫ t

0
e
−ε2U
b

(t−τ)h(τ) dτ z4(t, y) =

∫ t

0
e
−ε2U
b

(t−τ)α(τ) dτ

(2.53)

where the variables zi(t) are called aerodynamics states. Working through the inte-
grals,

I = Ψ1ε1
U

b

∫ t

0
e
−ε1U
b

(t−τ)

α(τ)︸︷︷︸
e1

+
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e
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U
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U
− h(0)

U
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ε1U
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b
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U
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U
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h

U
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U
+
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U
+
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(2.54)

The unsteady normal force coefficient is then expressed as follows:

ccn(t)

a0
=

(
α+

ḣ

U
+
α̇d

U

)
Φ(0)− Φ̇(t)

(
h(0)

U
+
α(0)d

U

)
+ Φ̇(0)

(
h

U
+
αd

U

)
−Ψ1ε

2
1

U

b2
z1 −Ψ2ε

2
2

U

b2
z2

+ Ψ1ε1
U

b

(
1− ε1d

b

)
z3 + Ψ2ε2

U

b

(
1− ε2d

b

)
z4

(2.55)

First order differential equations for the aerodynamic state variables can be ob-
tained by applying Leibnitz’s integral rule, such that

ż1(t) = h− ε1U

b
z1(t) ż3(t) = α− ε1U

b
z3(t)

ż2(t) = h− ε2U

b
z2(t) ż4(t) = α− ε2U

b
z4(t)

(2.56)



2.2. Modified Leishman-Beddoes model 31

Finally, the continuous unsteady circulatory lift coefficient can be written as follows

ccn(t) = Cq̇ + Dq + Ez + χΦ̇(t) (2.57)
ż = Wz + Fq (2.58)

where

q =
[
h(t) α(t)

]T
z =

[
z1(t) z2(t) z3(t) z4(t)

]T
D =

a0

U

[
Φ̇(0) UΦ(0) + dΦ̇(0)

]
E =

a0U

b

[
−Ψ1ε21

b −Ψ2ε22
b Ψ1ε1

(
1− ε1 db

)
Ψ2ε2

(
1− ε2 db

)]
C =

a0

U
Φ(0)

[
1 d

]
χ = −a0

U
(h(0) + dα(0))

W = −U
b
diag (ε1 , ε2 , ε1 , ε2)

F =

[
1 1 0 0
0 0 1 1

]T
while the pitching moment coefficient around the pitching axis is obtained from

ccm(t) =
1

2

(
1

2
+ a

)
ccn(t)− 1

2

(
1

2
− a
)
πb

U
α̇ (2.59)

There is also an additional moment coefficient associated with the circulatory flow,
given by Fung [62]

ccm1
(t) = −1

2

(
1

2
− a
)
πb

U
α̇ = Bmq̇ (2.60)

As this term is circulatory, it will be affected by flow separation.

Impulsive loads

The non-circulatory sectional lift and moment coefficients, also known as the added
mass effect, can be computed from the non-circulatory terms derived by Theodorsen [64]
and presented by Fung [62]

cIn =
πb

U2

(
ḧ− a b α̈

)
+
πb

U
α̇ = Anq̈ + Bnq̇ (2.61)

cIm =
πb

2U2

[
aḧ−

(
a2 +

1

8

)
bα̈

]
= Amq̈ (2.62)

As these termes are non-circulatory, they are assumed to be unaffected by flow sepa-
ration.

2.2.2 Detached flow module

This module aims to compute the non linear effect of flow separation on the normal
force and pitching moment coefficients. To this end, empirical functions s(α) and g(α)
are developed from steady experimental data. Furthermore, this module represents
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the stall delay phenomenon by applying a time delay Ta to the instantaneous effective
angle of attack.

Computation of s(α)

Similarly to equation 2.32, Kirchhoff-Helmholtz theory [13] is used to represent the
effects of the flow separation on the normal force coefficient.

cn = a0 (α− α0)

(
1 +

√
s(α)

2

)2

(2.63)

where a0 is the lift curve slope, α is the angle of attack, α0 is the zero lift angle and
s is the position of the separation point on the airfoil, as defined in figure 2.2.

Equation 2.63 is a simple model to compute the nonlinear force and moment
behavior due to a progressive trailing edge separation process. However, it can also
be used to represent separation created by leading edge stall. As explained in section
1.1.1, leading edge stall induces the sudden separation of the whole flow around the
airfoil, which can be represented with equation 2.63 with a sudden change of the
position of the separation point s(α).

By inverting relation 2.63, an expression for the separation point s can be deduced
from experimental steady normal load data,

s(α) =

(
2

√
cn

a0 (α− α0)
− 1

)2

(2.64)

This expression gives the values of s at all the discrete angles of attack at which cn
was measured but an analytic function s(α) is required by the model.

In this modified version of the Leishman-Beddoes model, the static separation
function s is curve fitted by a set of cubic splines to obtain the function ss(α), where
the subscript s denotes steady conditions. This choice affords much greater flexibility
for modelling s(α) data from any lift curve in comparison to equation 2.34.

Figure 2.7 demonstrates the proposed fitting process for a NACA 0012 static lift
curve obtained in chapter 3. Equation 2.64 is applied to this lift curve in order to
obtain the data points (crosses) in figure 2.7(a). These points are then curve-fitted
by cubic splines in order to obtain the solid line. The figure also plots the best fit
obtained with the classic Leishman-Beddoes method from equation 2.34 (line and
circles), demonstrating that the cubic spline approach follows the data much better
for all angles α > 5◦. Function ss(α) can then be substituted into equation 2.63
to reconstruct the normal force curve. Figure 2.7(b) shows that the reconstruction
obtained from the cubic spline fit is much more accurate than the one obtained from
equation 2.34, especially for angles of attack α > 25◦. Furthermore, as cubic splines
are analytic, function ss(α) is also analytic.

It should be noted that both curve fits in figure 2.7 are inaccurate for angles
α < 5◦ because the Kirchhoff-Helmholtz model only represents a “trailing edge" stall
mechanism, whereas the experimental data suggest that a laminar separation bubble
forms near the leading edge at low angles of attack. Nevertheless, function s(α) only
aims to represent the trailing edge separation process, so the impact of the laminar
separation bubble near the leading edge has been ignored when computing the curve
fit of ss(α).
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Figure 2.7: Curve fitting function s(α) for the NACA0012 wing using
cubic splines

Computation of g(α)

Under attached flow conditions and thin airfoil theory assumptions the aerodynamic
centre of a 2D wing section lies on the quarter chord, which means that the pitching
moment around c/4 is constant with angle of attack. As the flow separates this is
no longer the case and the aerodynamic centre starts to move downstream, as shown
in figure 2.8. Function g(α) is estimated experimentally in a similar way as for the
classical Leishman-Beddoes [3] in equation 2.35 which is repeated here

g(α) =
c0
m1/4

− cm1/4

cn
(2.65)

where cm1/4
is the measured moment coefficient at the quarter chord, cn is the mea-

sured normal force coefficient and c0
m1/4

is the zero lift moment coefficient at the
quarter chord.

c/4 g(α)c
cfn

b+ xe

cm0

Figure 2.8: Position of the point of application of the normal force
under separated flow conditions.

As in the case of the separation point position s(α), equation 2.65 gives g(α) at the
discrete angles of attack at which the normal force and pitching moment coefficients
were measured from static tests. In order to obtain an analytical expression for g(α),
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the empirical relation g is computed directly as a function of the angle of attack
and cubic splines are used in order to curve fit gs(α) from experimental data, as
shown in figure 2.9. Again, cubic splines can fit the data with better accuracy than
equation 2.35, as cubic splines are more flexible. Furthermore gs(α) can be easily
extended to negative angles of attack, which is not as straightforward for g(s) from
equation 2.35.
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(a) Curve fit of function g(α)
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Figure 2.9: Curve fitting function g(α) for the NACA0012 wing using
cubic splines

In figure 2.9(a), obtained with data from chapter 3 ,gs(α) is equal to zero at
angles α < 5◦ and at around α = 10◦, denoting fully attached flow. In the interval
5◦ < α < 10◦, gs(α) increases up to 0.03 and then decreases again. Again, this
phenomenon is assumed to be due to a laminar separation bubble at this low Reynolds
number; it is ignored in the computation of g(α) because the model does not aim
to represent the effects of separation bubbles. Once the function gs(α) has been
evaluated, the pitching moment coefficient around the pitch axis can be computed
from

cm =

(
1

2

(
1

2
+ a

)
− gs(α)

)
cn + c0

m1/4
(2.66)

Cubic spline curve fit

The functions s(α) and g(α) are curve fitted with a series of cubic splines defined by
a chosen number of N nodes as follows

υ(α) =


i1,0α

3 + j1,0α
2 + k1,0α+ l1,0 for α ≤ α0

in,n−1α
3 + jn,n−1α

2 + kn,n−1α+ ln,n−1 for αn−1 ≤ α ≤ αn
iN,N−1α

3 + jN,N−1α
2 + kN,N−1α+ lN,N−1 for α ≥ αN

(2.67)
Each node is defined by its position and the slope of the function going trough the node
(υ(αn),dυ(αn)

dα ). These nodes are fixed in order to get a solution for the parameters in,
jn, kn and ln.

The positions of the nodes are chosen manually. Two nodes are placed at each
extremity of the dataset to avoid unwanted extrapolation. Nodes are placed at angles
of attack where the slope changes abruptly in order to prevent exaggerated oscillations
of the spline. The slopes at each node are obtained by a least squares fit of the
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experimental data points (αi,fi) using the following error criterion

e =
E∑
i=1

(υ(xi)− υi)2 (2.68)

except for the slopes of the first and last nodes, which are set manually. For the
computation of s(α), the effects of the laminar bubble are ignored by removing the
first few data points of s(α) up to the first local maximum of ss(α). At this point, we
assume that "trailing edge" separation is the dominant effect. The first node is fixed
manually at α0 = 0◦. The airflow is expected to be fully attached at zero angle of
attack and s(α) should decrease as the angle of attack becomes positive or negative.
Consequently, the first node is defined as

α0 = 0◦, s(α0) = 1,
ds(α0)

dα
= 0 (2.69)

The complete node locations for s(α) are shown in figure 2.10(a) for the NACA0012
airfoil, obtained with data from chapter 3.

For the computation of g(α), the effects of the laminar bubble are removed by
ignoring the same data points as for the computation of s(α). Again, the first node
is set manually. The center of pressure is assumed to be located at the quarter chord
at zero angle of attack and should slowly move toward the mid-chord as the angle of
attack increases. The first node is then

α0 = 0, g(α0) = 0,
dg(α0)

dα
= 0 (2.70)

Figure 2.10(b) plots the node locations for the NACA0012 and for the g(α) func-
tion.
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Figure 2.10: Curve fitting function s(α) and g(α) for the NACA0012
wing showing the cubic splines nodes

2.2.3 Dynamic stall module

This module models dynamic stall, stall delay and the effect of the shedding and
motion of the leading edge vortex. In particular, the time instance at which the
vortex is shed and the time it takes to clear the trailing edge are estimated from the
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load measurements obtained during the dynamic tests. Furthermore, the aerodynamic
load overshoot due to the passage of the vortex is included in the model.

Dynamic stall onset

Dynamic stall onset angle, αds, is defined as the angle at which the vortex is shed.
If no LEV is involved, the dynamic stall onset angle can be defined as the angle at
which the lift versus instantaneous pitch angle curve starts to depart from linearity.

It is therefore important to determine the dynamic stall onset angle for all the dif-
ferent airfoils. Sheng and Galbraith [33] stated that the dynamic stall onset involving
a Leading Edge Vortex can be identified from experimental plots of the aerodynamic
loads against instantaneous angle of attack by looking for one or more of the following:

• A change of slope in the normal force coefficient;

• A local maximum in the upstroke section of the chordwise force coefficient;

• A sudden drop in the pitching moment coefficient by ∆cm = 0.05.

More generally, these criteria stem from the collapse of the pressure coefficient at the
airfoil’s leading edge, which occurs when the leading edge vortex start to shed over
the airfoil and leave the leading edge.

Figures 2.11(a), 2.11(b), and 2.11(c) show an example of the experimentally mea-
sured median and interquartile envelopes for the normal force, chordwise force and
pitching moment coefficients respectively, plotted against instantaneous pitch angle.
The airfoil is the NACA0012 showcased in chapter 3, oscillating with mean angle of
A0 = 10◦, amplitude A = 10◦ and frequency f = 5 Hz. On each of the figures, the
dynamic stall onset angle is identified, according to the three criteria given above.

Sheng and Galbraith [33] showed that there is a degree of uncertainty in the mea-
surement of the angle of dynamic stall onset depending on the choice of onset criterion.
In their case, the dispersion was of the order of around one degree. Figures 2.11(a),
2.11(b), and 2.11(c) show a greater dispersion for the onset angle (of the order of 3
degrees). Of the three criteria, the change of slope in cn is difficult to locate precisely
and the drop of ∆cm = 0.05 seems arbitrary. The maximum of the chordwise force
coefficient, figure 2.11(b), is the most robust criterion for locating the dynamic stall
onset in this example.

Sheng et al [33], [35] related the dynamic stall angle for airfoils at low Mach
numbers to the constant reduced pitch rate for pitch ramp experiments

r(t) = α̇
b

U
(2.71)

where α̇ is the constant pitch velocity. For sinusoidal motion, the pitch velocity
oscillates so that the reduced pitch rate is a function of time, i.e.

r = Aωb
U cos (ωt) = Ak cos (ωt) (2.72)

Sheng et al [33], [35] defined an equivalent (or maximum) reduced pitch rate as

r
′

= Ak (2.73)

They plotted graphs of the variation of the dynamic stall angle, αds, against r′ and
derived a bilinear relationship between these two quantities. The alternative proposed
in the present work is to relate the dynamic stall angle to the instantaneous reduced
pitch rate, as given by equation 2.71. The procedure is the following:
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Figure 2.11: Aerodynamic loads for a NACA0012 oscillating with
amplitude A = 10◦, frequency f = 5 Hz and mean angle A0 = 10◦ and

Reynolds number Re ' 1.8× 104.

1. For a particular choice of airfoil, amplitude and frequency, plot cc(t) against
α(t) and identify the point where cc(t) is a maximum.

2. Evaluate the time at which the maximum value of cc(t) occurs, tds, and the
corresponding pitch angle αds = α(tds), pitch velocity α̇ds = α̇(tds) and reduced
pitch rate r(tds).

3. Plot αds against r(tds).

4. Choose a test with different amplitude and frequency values and repeat from
step 1.

Figure 2.12 compares the results obtained from plotting αds against r′ and r(tds)
for the NACA 0012 airfoil. At low dynamic stall angles the two plots are nearly
identical but, for the highest stall angles, there is a difference of up to 0.005 between
r′ and r(tds). The advantage of plotting αds against r(tds) rather than r′ is that the
pitch rate is calculated from instantaneous values and therefore applies to any general
type of motion, not just sinusoidal oscillations. This characteristic is particularly
useful when one would use αds(r) to model the aeroelastic responses of airfoils at high
angles of attack, which are generally not sinusoidal. During such a response, if the
flow is initially attached, dynamic stall will occur when α(t) and r(t) are such that
α(t) = αds(r(t)) and α(t)α̇(t) > 0.

As mentioned earlier, Sheng and Galbraith [33] derived a bilinear relationship
between dynamic stall angle and reduced pitch rate, as shown in figure 2.13(a). The
figure plots the dynamic stall angles obtained by Sheng and Galbraith for the NACA



38 Chapter 2. Leishman-Beddoes

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

Figure 2.12: Comparison between equivalent reduced pitch rate and
reduced pitch rate with angle of dynamic stall onset for a NACA0012

0012 undergoing pitch ramp up tests at a Reynolds number of 1.5 × 106, along with
the data measured in chapter 3 for the same airfoil, against r. The relationship
between dynamic stall onset angle and reduced pitch rate can indeed be represented
as bilinear, with the break between the two linear regions occurring around r = 0.01.
The dynamic stall angles identified at Re ' 1.8 × 104 are all much lower than the
ones obtained by Sheng and Galbraith due to the much more laminar nature of the
boundary layer at this low Reynolds number.
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Figure 2.13: Comparison of two curve fitting methods for the
dynamic stall onset angle applied to NACA0012 at high and low

Reynolds.

The bilinear model used by Sheng and Galbraith is not the only possible represen-
tation of the αds(r) relationship. Figure 2.13(b) shows that the same data can also
be represented by a continuous function, in this case a square root of the form

αds(r) =
−bds +

√
b2ds − 4ads(cds − r)

2ads
(2.74)
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where ads, bds, cds are coefficients to be evaluated by a curve fit and αds is the angle
of dynamic stall onset in degrees. Again, the advantages of using a continuous model
for αds(r) become evident when modelling general motions that are not pitch ramps
or sinusoidal oscillations, in particular aeroelastic responses. The absence of a discon-
tinuity makes the time integration of the equations of motion simpler and less prone
to numerical instabilities.

Dynamic stall and stall delay

The functions ss(α) and gs(α) only apply to static stall and so do the normal and
pitching moment coefficients of equations 2.63 and 2.80. During pitching and plunging
motion, the positions of the separation point and centre of pressure must be calcu-
lated as functions of the effective angle of attack of equation 2.51. Furthermore, as
mentioned earlier, dynamic stall occurs at instantaneous pitch angles higher than
those at which static stall occurs, due to the stall delay effect. As for the standard
Leishman-Beddoes model, the stall delay is representend by applying a time lag to
the instantaneous separation point, such that

ṡ′ =
U

b

ss(αe)− s′
Ta

where s′ is the lagged separation point and Ta is the time lag.
For the standard LB model, the position of the center of pressure g is computed

as a function of the lagged separation point gs(s
′
). In the present modified approach,

the center of pressure displacement is computed as a function of the angle of attack
instead. A lagged equivalent angle α′ is introduced such that

α̇′ =
U

b

αe − α′
Ta

Hence, the position of the center of pressure is gs(α
′
).
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Figure 2.14: Two methods used to compute time lag Ta for a
NACA0012 at Reynolds ' 1.8× 104

Sheng et al. [34] defined the time lag Ta as the slope of the second straight
line fitting the dynamic stall onset data, as shown in figure 2.14(a). As the present
modelling of αds(r) is based on a square root curve fit, the definition of Ta is generalized
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as
Ta(r) =

dαds
dr

=
1√

b2ds − 4ads (cds − r)
2π

180
(2.75)

Leading edge vortex

A vortex is created at the leading edge and starts to shed over the airfoil when the
following conditions are met

αe ≥ αds(r) (2.76)
α̇eαe ≥ 0 (2.77)

Hence, the shedding of the vortex occurs during the upstroke and is related to the
onset of dynamic stall. As discussed in section 2.1.4, once the vortex starts to shed,
a non dimensional time variable

tv = (t− t0)
V

b
(2.78)

is defined to keep track of the position of the vortex over the airfoil, where t is the
current time and t0 is the last time at which the stall onset criterion was met. The
vortex clears the trailing edge when tv = tvl, the total time it takes for the vortex to
travel over the entire surface of the airfoil. A non-dimensional version of tvl is given
by

Tvl =
U

b
tvl

Estimation of Tvl

The parameter Tvl represents the time taken by the vortex to shed over the airfoil. It
can be estimated with these different experimental methods :

• Time-resolved particle image velocimetry (PIV) to identify the vortex and its
motion;

• Unsteady pressure data to identify the vortex pressure effects along the chord;

• Infer the position of the vortex from the measured unsteady aerodynamic load
responses.

In the current work, only the last method can be used as there is no PIV or pressure
data available for the test cases from sections 3.

The time taken by the vortex to shed over the airfoil can be obtained from two
time instances:

• The dynamic stall onset time, computed in section 2.2.3.

• The time when the normal load is maximum, assumed to be the time when the
vortex reaches the trailing edge of the airfoil.

These two time instances are shown in the normal force plot of figure 2.15(a) and
in the α(t) plot of 2.15(b). Estimating Tvl for all the test cases and plotting it against
instantaneous reduced pitch frequency leads to figure 3.8. It can be seen that Tvl
can be curve-fitted as a continuous hyperbolic function of r. Plotting 1/Tvl against
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Figure 2.15: Determination of the time taken by the vortex to travel
over the airfoil tvl, for a NACA0012 airfoil and Reynolds number Re '

1.8× 104.

r for the NACA0012 (figure 2.16(b)) results in a square-root behaviour, so that a
reasonable choice for the curve fit is

Tvl =
2aTvl

−bTvl +
√
b2Tvl − 4aTvl(cTvl − r)
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Figure 2.16: Variation of Tvl with r for the two NACA wings (left),
1/Tvl vs r for the NACA 0012 (right).

Looking at figure 3.8, Tvl increases significantly for very low reduced pitch rates.
In their original paper [3], Leishman and Beddoes simply stated that this parameter
should be constant for a given Mach number and did not study its variation with
reduced pitch rate. This phenomenon is perhaps linked to a shielding effect of the
airfoil as discussed by Choudhry et al. [65] in the case of ramp tests with the airfoil
stopping at the end of the ramp motion.
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2.2.4 Unsteady flow module

This module calculates the total aerodynamic loads applied on the wing section. It
assembles the loads due to the attached flow, the trailing edge separation and the
vortex shedding.

Loads associated with trailing edge separation

As in the classical formulation of the LB model [3], the normal force due to the un-
steady trailing edge separation process, cfn, can be estimated by means of a modified
formulation of the Kirchhoff-Helmholtz relation. It is done by using the circulatory
normal force computed by the attached flow module with the lagged static flow sep-
aration location s′ , i.e.

cfn = ccn

(
1 +
√
s′

2

)2

(2.79)

The associated pitching moment coefficient, cfm, is then obtained using the sepa-
rated ccn, an expression for the variation of the centre of pressure with respect to the
delayed angle of attack α′ and the moment induced by the wake, so that

cfm =

[(
1

2

(
1

2
+ a

)
− gs(α′)

)
ccn −

1

2

(
1

2
− a
)
πb

U
α̇

](
1 +
√
s′

2

)2

+ c0
m1/4

(2.80)

Circulation change

Leishman [57] added a vortex-induced normal lift coefficient cvn to represent the effects
of the vortex on the total lift. As explained in section 2.1.4, it is an accumulation
of vorticity that is lost in the wake when vortex shedding occurs. This vortex lift is
represented by the following differential equation

ċvn = ċv −
U

b

cvn
Tv

(2.81)

In the modified model, the interpretation of the vortex-induced normal lift coef-
ficient cvn is adapted. It is not directly linked to vortex shedding effects but mostly
represents the delay in the change of circulation around the airfoil for abrupt mo-
tion. This lagged change of circulation is estimated from the difference between the
attached and separated lift, i.e.

cv = ccn − cfn = ccn

1−
(

1 +
√
s′

2

)2
 (2.82)

This change of circulation is also allowed to decay exponentially with a non dimen-
sional time constant Tv. By combining the circulation buildup and decay one gets an
added normal force that can be computed using equation 2.81 This force represents
unsteady effects on the circulation caused by high pitch rates; cvn decreases with pitch
rate, becoming equal to zero at static conditions. In the present, work, the decay time
of this circulation was chosen equal to the dynamic stall time delay, i.e. Tv = Ta to
reduced the number of free parameters.

The normal force cvn is linked to the circulation around the airfoil and applied to
the center of pressure of the airfoil. Therefore, the pitching moment coefficient due to
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the excess accumulation of circulation in the vicinity of the airfoil is given by

cvm =

(
1

2

(
1

2
+ a

)
− gs(α′)

)
cvn (2.83)

Vortex shedding effects

The aerodynamic load overshoot caused by the motion of the vortex over the airfoil
can be computed following Sheng’s [35] assumption that this overshoot is proportional
to the difference between the lagged s(α′) and non-lagged s(αe) separation points, i.e.

∆cvn = B1

(
s
′ − ss(αe)

)
Vx (2.84)

∆cvm = −B2∆cvn (2.85)

where B1 and B2 are parameters controlling the amplitude of the overshoot and Vx is
a modified shape function proposed in this paper,

Vx =
∣∣∣sin( πtv

2Tvl

)∣∣∣ (2.86)

(2.87)

The shape function is periodic in order to represent the possibility of multiple vortex
shedding and its effects on the aerodynamic loads. The coefficients B1 and B2 are
assumed to be independent of the pitch rate and estimated to best fit the available
data.

2.2.5 Complete equations

Finally, the total unsteady aerodynamic loads can be calculated. First the state space
variables are computed from the following equations

ż = Wz + Fq

ṡ′ =
V

b

ss(αe)− s′

Ta

α̇′ =
V

b

αe − α′

Ta

ċvn = ċv −
V

b

cvn
Ta
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Then, the aerodynamic loads are defined by the relations

cIn =
πb

U2

(
ḧ− a b α̈

)
+
πb

U
α̇

cIm =
πb

2U2

[
aḧ−

(
a2 +

1

8

)
α̈

]
ccn = Cq̇ + Dq + Ew + rΦ̇(t)

cfn = ccn

(
1 +
√
s′

2

)2

cfm =

[(
1

2

(
1

2
+ a

)
− gs(α′)

)
ccn −

1

2

(
1

2
− a
)
πb

U
α̇

](
1 +
√
s′

2

)2

+ c0
m1/4

cvm =

(
1

2

(
1

2
+ a

)
− gs(α′)

)
cvn

∆cvn = B1

(
s
′ − ss(αe)

)
Vx

∆cvm = −B2∆cvn

Finally, the total loads are

cn = cIn + cfn + cvn + ∆cvn

cm = cIm + cfm + cvm + ∆cvm

From here, one can compare the equations of this modified Leishman-Beddoes model
equations with those of the classical model given in section 2.1.6.
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Chapter 3

Application of the modified LB
model

In this chapter, the predictions obtained from the modified LB model are compared to
those obtained from the original LB and to experimental measurements. The unsteady
loads during dynamic stall are measured on three chosen wing sections, a flat plate, a
NACA0012, a NACA0018.

3.1 Experimental setup

The experiments were performed in a closed-loop low-speed wind tunnel at LadHyX,
which has a rectangular test-section 0.26 m wide and 0.24 m high. Tests have been
performed at a mean flow velocity U ' 7.5m/s and U ' 7.25m/s, for which the
non-uniformity in the test section is less than 1% and the turbulence intensity is close
to 1.2%.

3.1.1 Three wing models

Three wing sections were chosen for the experiments, a flat plate, a NACA0012 and
a NACA0018. For intermediate Reynolds numbers, Re ' 106, these wing sections are
supposed to exhibit three distinct stall behaviours [9], a smooth thin-airfoil stall for
the flat plate, a sharp leading-edge stall for the NACA0012 and a moderate trailing-
edge stall for the NACA0018. At the low Reynolds number range of the present
study, Re ' 104, these stall classifications could be still relevant, even if both the
NACA models are also affected by a laminar separation bubble process at low angles
of attack. This will be discussed further in section 3.3.

The flat plate model was made from a carbon fiber plate of span 130 mm, chord
35 mm and thickness 1.5 mm. This model featured a rectangular cross section with a
thickness-to-chord ratio of 4.3%. The leading and trailing edges were not rounded off,
so that they remained sharp. The NACA0012 and NACA0018 models of span l = 130
mm and chord c = 38 mm were produced by means of 3D printing. Hand sanding
was used to smooth the residual roughness caused by the 3D printing process. The
three wing models are shown in figure 3.1 and their dimensions are summarised in
table 3.1. Each model was mounted horizontally in the test section. A small distance
from the wall was allowed at one end to limit boundary layer perturbations. An end
plate was installed at the other extremity of the model to suppress three-dimensional
flow effects.
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Figure 3.1: Side view of the tested wings.

Wing Chord [mm] Span [mm] Reynolds
Flat plate 35 130 17500
NACA0012 38 130 18400
NACA0018 38 130 18400

Table 3.1: Wings dimensions and Reynolds numbers

3.1.2 Measurement setup

The harmonic pitching motion was directly driven by a brushless motor (Maxon
flat motor EC 60, 100W). The motor was controlled by a digital position controller
(EPOS2 24/5) using Proportional/Integral/Derivative (PID) control. The unsteady
loads acting on the wings were measured by a six-axis force/torque sensor (ATI
Nano43) mounted between the motor and the models. A 24-bit data acquisition
system furnished by Muller- BBM was used to receive the analog transducer signals
and convert them to force and moment using the calibration matrix provided by ATI.
Figure 3.2 shows the mounting of the motor, force/torque sensor and wing (from left
to right respectively) in the wind tunnel. The motion imposed by the motor was
sinusoidal of the form

α(t) = A0 +A sin 2πft

where α(t) is the instantaneous pitch angle, A0 the mean pitch value, A the pitch
amplitude and f the frequency.

A laser displacement sensor (Keyence LB-11W) was used to measure the instan-
taneous angle of attack simultaneously with the unsteady forces and moments. All
data were recorded with a sampling rate of 1024 kHz and the acquisition time was
equal to or higher than 50 times the period of the harmonic pitching motion.
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Figure 3.2: NACA0012 in mounted configuration inside the wind
tunnel.

3.2 Data processing

The loads of interest were the normal force, N , chordwise force, C and pitching
moment, M , as well as their coefficient forms

cn =
N

1/2ρU2S
, cc =

C

1/2ρU2S
, cm =

M

1/2ρU2Sc

where ρ is the air density, U the wind tunnel airspeed and S = c× l the wing surface.
Direct unsteady load measurements on moving models are subjected to two types of
error. The first source is the natural vibration of the wing and motor supports, which
in this case were designed to be as light and as stiff as possible. The second source of
error involves the combination of static weight and dynamic inertia effects. Dynamic
tare subtraction and low-pass filtering were applied to the data during post-processing
in order to remove these errors. Dynamic tare was systematically identified at wind-off
conditions prior to each dynamic test for a given amplitude and frequency of motion.
A brick-wall low-pass filter was used to filter the dynamic loops at frequencies above
40 Hz for the flat plate, NACA0012 and NACA0018. This cut-off frequency eliminated
the first resonant frequency of the full setup, while it preserved up to the 7th harmonic
of the unsteady aerodynamic load for frequencies up to 5 Hz, i.e. a reduced pulsation
close 0.08 in our experiments (see Tables 3.2 and 3.3). Nevertheless, some of the
higher harmonics were lost to the filter at the higher motion frequencies, 7.5 and 10
Hz.

The complete unsteady measurement and data reduction procedure is demon-
strated for the normal force measurement in Figure 3.3 for a pitching motion of am-
plitude A = 15◦, frequency f = 2.5 Hz and wind tunnel velocity U = 7 m/s. The
reduced frequency is defined as

k =
ωb

U
(3.1)

where ω = 2πf and b = c/2 is the half-chord. For the example of figure 3.3, k = 0.045.
It must be noted that the wind-off load measurements included added mass aerody-
namic effects but their amplitude was negligible at such low reduced frequencies.
Therefore, it was assumed that structural inertial loads constituted the only measur-
able load component at U = 0 m/s. The procedure was the following:

1. Simultaneous measurement of the pitching motion, normal force (figure 3.3(b)),
chordwise force and pitching moment at wind-off conditions.
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2. Low pass filtering of the wind-off normal force (figure 3.3(c)), chordwise force
and pitching moment.

3. Calculation of the statistics of the wind-off normal force (figure 3.3(d)), chord-
wise force and moment over at least 50 consecutive cycles of motion.

4. Simultaneous measurement of the pitching motion (figure 3.3(a)), normal force
(figure 3.3(e)), chordwise force and pitching moment at wind-on conditions.

5. Low pass filtering of the wind-on normal force (figure 3.3(f)), chordwise force
and pitching moment.

6. Calculation of the statistics of the wind-on normal force (figure 3.3(g)), chord-
wise force and moment over at least 50 consecutive cycles of motion.

7. Subtraction of the wind-off (dynamic tare) forces and moment from the wind-on
loads (Figure 3.3(h)).

8. Calculation of the resulting dynamic loops for the normal (figure 3.3(i)), chord-
wise and moment coefficients.

The statistics used to show the results are the median and the interquartile region
defined as the area between the first and third quartiles. At each considered time
point on the cycles :

• The first quartile is the value below which lie the first lower 25% of all measured
points at this specific time instance of the cycle.

• The median is the value below which lie the first lower 50% of all measured
points at this specific time instance of the cycle.

• The third quartile is the value below which lie the first lower 75% of all measured
points at this specific time instance of the cycle.

3.3 Static stall experiments

A first set of experiments was carried out in order to measure the aerodynamic forces
acting on the wings at static conditions. The measurements concerned the normal and
chordwise force coefficients and the pitching moment coefficient at angles of attack,
ranging from 0◦ to 45◦. The Reynolds number was constant at Re ' 1.8 × 104. For
each fixed angle of attack, the average values of the load coefficients were calculated
from 10 seconds of measurements acquired at a sampling frequency of 1024 Hz.

Figure 3.4 plots the variation of the normal force and pitching moment coefficients
with angle of attack. Measured data are plotted along with the results obtained using
semi-empirical reconstruction models that were discussed in detail in section 2.2.2.
As mentioned earlier, the three airfoil shapes were chosen because they have different
static stall mechanisms at intermediate and high Reynolds numbers: smooth thin
airfoil stall (Flate plate), sharp leading edge stall (NACA0012) and moderate trailing
edge stall (NACA0018). The thin airfoil stall behaviour is confirmed for the flat plate
which exhibits a short linear region followed by a smooth stall behaviours, i.e. the lift
smoothly moves away from the linear evolution, without any local maxima or minima
for angles up to 40◦. The NACA 0012 model exhibits a sharper stall behaviour for
which a local maximum in lift is noticeable close to α = 9◦. Broeren [11] showed
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Figure 3.3: Summary of the unsteady measurement process for a
NACA0012 airfoil with a pitching motion of amplitude 15◦, frequency
f = 2.5 Hz, wind velocity U = 7.25 m/s and reduced frequency k =

0.043.
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that a leading edge stall mechanism is characterized by an abrupt and sudden drop
in normal force coefficient; such a drop cannot be seen in figure 3.4(c) and in the
absence of pressure measurements, it is not possible to confirm wether the NACA
0012 experienced a leading edge stall at the low Reynolds number tested here. The
NACA 0018 exhibits a smoother stall behavior (compared with the NACA 0012),
which also occurs at a rather low angle of attack, close to α = 5.5◦. Again it is
difficult to say wether the stall mechanism is different between the NACA 0018 and
NACA 0012, but for both airfoils a laminar separation bubble process occurs at low
angles of attack, which may have an effect on the stall mechanisms.

Indeed, it is obvious that the normal force for the two NACA airfoils is not linear
at low angles of attack.This phenomenon was observed by Lutz et al [66] for the NACA
0009 airfoil; they attributed it to a laminar separation bubble that is formed near the
leading edge at low angles of attack. This nonlinearity is ignored in the present work,
as discussed in section 2.2.2.

3.4 Dynamic stall experiments

3.4.1 Prescribed pitch motion

The frequencies chosen for the pitching oscillations were f = [1, 2.5, 5, 7.5, 10] Hz. The
corresponding ranges of reduced frequency are k = [0.015, 0.15] for the flat plate and
k = [0.016, 0.16] for the two NACA wings. The mean pitch angle was always set to
A0 = 10◦ and the oscillation amplitude to A = [5, 10, 15, 20]◦. As a consequence, the
maximum 2D wind tunnel blockage coefficient, defined as c sin(30◦)/Hv, where Hv

is the height of the test section, was always less than 8.4%. Therefore, no blockage
corrections were necessary throughout the present study. Higher frequency and ampli-
tude combinations were not possible due to motor limitations. All tests were carried
out at a a mean flow velocity of U ' 7.5m/s for the flat plate and U ' 7.25m/s for
the two NACA wings.

The reduced frequency and equivalent reduced pitch rate, previously described in
equations 3.1 and 2.73, are tabulated in table 3.2 for the flat plate and 3.3 for the
two NACA wings for the different dynamic stall tests carried out in the context of the
present work.

f [hz] 1 2.5 5 7.5 10

k [−] 0.015 0.037 0.073 0.11 0.15

A = 5 0.0013 0.0033 0.0066 0.099 0.0132
A = 10 0.0026 0.0066 0.0132 0.0199 0.0265
A = 15 0.04 0.099 0.0199 0.0298 0.0397
A = 20 0.0053 0.0132 0.0265 0.0397 0.0529

Table 3.2: Equivalent reduced pitch rate for the flat plate as a func-
tion of the frequency and amplitude of motion.

3.4.2 Dynamic stall onset criteria

The general dynamic stall onset criterion for the two NACAs has already been pre-
sented in section 2.2.3. Figure 3.5 plots the dynamic stall onset angle function αds(r)
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Figure 3.4: Normal force cn and pitching moment cm coefficient
variation with angle of attack from static tests
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f [hz] 1 2.5 5 7.5 10

k [−] 0.016 0.041 0.082 0.12 0.16

A = 5 0.0015 0.0037 0.0073 0.011 0.0146
A = 10 0.0029 0.0073 0.0146 0.0219 0.0292
A = 15 0.044 0.011 0.0219 0.0329 0.0439
A = 20 0.0058 0.0146 0.0292 0.0439 0.0585

Table 3.3: Equivalent reduced pitch rate for the NACA 0012 and
0018 as a function of the frequency and amplitude of motion.

for the NACA0012 and NACA0018 airfoils, along with the square root curve fits. Ta-
ble 3.4 gives the coefficient values ads, bds and cds used for the curve fit for each airfoil.
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Figure 3.5: Dynamic stall onset angle variation with instantaneous
reduced pitch rate for the NACA 0012 and 0018 airfoils.

3.4.3 Flat plate Dynamic stall onset

The chordwise force response, cc(t), for the flat plate did not exhibit a clear maximum,
so that this criterion could not be used for determining the dynamic stall angle. A
different criterion was used, based on observing the variation of the normal force
coefficient variation with pitch angle, cn(α), at both static and dynamic conditions.
Figure 3.6(a) shows that the static normal force curve can be seen as an asymptote
of two straight lines, one with a high slope before stall and one with a low slope
after stall. A static stall angle can therefore be defined as the angle at which these
two straight lines intersect. Figure 3.6(b) demonstrates that similar behaviour occurs
during pitch oscillations. On the upstroke, cn(α(t)) can be seen as an asymptote of
two straight lines. Consequently, the dynamic stall angle is defined as the angle αds at
which these two lines intersect. The variation of the stall angle αds with instantaneous
reduced pitch rate r for the flat plate is shown in figure 3.7. The function αds(r) is
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curve-fitted using the square root representation of equation 2.74. Note that αds(r)
curves upwards for the flat plate while it curves downwards for the NACA 0012 and
0018 airfoils (see figure 3.5).
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Figure 3.6: Static and dynamic stall criterion for the flat plate.
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Figure 3.7: Stall angle variation with instantaneous reduced pitch
rate for the flat plate.

The coefficient values for each airfoil are given in table 3.4

N0012 N0018 Flat plate

ads 1.0053× 10−4 5.206× 10−5 −2.9713× 10−5

bds 0.0017 0.0013 0.0035

cds −0.0157 −0.0095 −0.0259

Table 3.4: Curve fit coefficients of the dynamic stall onset angle for
each airfoils
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From the coefficients from table 3.4, one can compute the dynamic stall onset
angle αds and the time lag Ta as

αds(r) =
−bds +

√
b2ds − 4ads (cds − r)

2ads
(3.2)

Ta(r) =
dαds
dr

=
1√

b2ds − 4ads (cds − r)
2π

180
(3.3)

3.5 Vortex shedding

The computation of the time Tvl taken by the vortex to shed over the airfoil was
described in section 2.2.3.

Figure 3.8, shows the variation of the vortex shedding time as a function of the
reduced pitch r for the two NACA aifoils studied in this work.
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Figure 3.8: Variation of Tvl with r for the two NACA wings.

Table 3.5 gives the values of the curve fit coefficients aTvl , bTvl and cTvl for the two
NACA airfoils studied in this work. The coefficients can be used to compute Tvl as
follow

Tvl =
2aTvl

−bTvl +
√
b2Tvl − 4aTvl(cTvl − r)

Flat Plate N0012 N0018

aTvl − 0.166 0.036

bTvl − 0.0794 0.07

cTvl − −3.1128× 10−4 −1.2074× 10−4

Table 3.5: Vortex passage time curve fit coefficients for each airfoil

No coefficient are tabulated for the flat plate, since vortex shedding is assumed to
not be present for this airfoil.
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3.6 Validation of the modified Leishman-Beddoes model

3.6.1 Original Leishman-Beddoes

The results of the modified Leishman-Beddoes model presented in the present work
are compared with experimental measurements and predictions from the original
Leishman-Beddoes model [3]. The code used to compute the LB model comes from
Dimitriadis [67]. The parameters used for the original Leishman-Beddoes model for
each airfoil are presented in table 3.6. It should be noted that the parameter cn1 was
set to ∞ for the flat plate in order to remove any vortex shedding in the Leishman-
Beddoes model similarly to what was done for the modified LB model presented in
this paper.

Flat Plate N0012 N0018

a0 6.18 5.2 5.2

S1 0.0705 0.0494 0.0494

S2 0.0936 0.0635 0.0423

α◦1 7.89 8.5 5.8

K0 −0.1475 0 0

K1 −0.0027 −0.1125 −0.0719

K2 0 0.0013 −0.0356

c0
m1/4

0.0174 0.006 0.006

cn1 ∞ 0.5687 0.4585

Tp 1.7 1.7 1.7

Tf 8.2 8.8 8.2

Tv 4 8.8 4

Tvl 12 8.2 12

Table 3.6: Original Leishman-Beddoes parameters for each airfoil

3.6.2 Comparison

Given the large number of test cases, only three reduced pitch rates have been cho-
sen for each airfoil in order to compare the predictions obtained from the modified
Leishman-Beddoes model presented in this section (plain line), the original Leishman-
Beddoes model [3] (dot dashed line) and the experimental results (dashed line) . Fig-
ures 3.9, 3.10 and 3.11 respectively show the comparison of the normal force and
pitching moment coefficient for the flat plate, the NACA0012 and the NACA0018.
Note that the case f = 10 hz, A = 20◦ was not shown for the NACA0018 because the
experimental results were unreliable.

For the low reduced pitch rate there is good agreement between both models
and the experimental results for the flat plate (see Figures 3.9(a) and 3.9(b)). For the
NACA0012 and NACA0018 sections (see Figures 3.10(a), 3.10(b) and Figures 3.11(a),
3.11(a)), the modified Leishman-Beddoes model is in good agreement with the exper-
iments and improves significantly the prediction of the normal force overshoot, nose
down pitching moment and hysteresis effect, in comparison to the original LB Model.
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Qualitatively, the agreement between both models and the experimental results
deteriorates with increasing pitch rate. Nevertheless the modified Leishman-Beddoes
model is still acceptable for intermediate pitch rates (see Figures 3.9(c), 3.9(d), 3.10(c),
3.10(d), 3.11(c), 3.11(d)). In particular, the dynamic loop shapes for both normal
force and pitching moment obtained from the modified model better match the ex-
periments. Nevertheless both models underestimate the normal force overshoot (see
Figures 3.9(c), 3.10(c), 3.11(c)) and for both the NACA sections, the nose down pitch-
ing moment is overestimated with the original LB model and underestimated with the
modified formulation (see Figures 3.9(d), 3.10(d), 3.11(d))).

Both model predictions become less accurate at the highest pitch rate. For the
flat plate section the modified Leishman-Beddoes model gives better results than the
original one for the normal force dynamic loop (Figures 3.9(e)), but the amount of
hysteresis in the pitching moment is strongly overestimated. For the NACA sec-
tions both the models underestimate significantly the normal force overshoot (see
Figures 3.10(e) and 3.11(e)), overestimate the pitching moment dynamic loop and,
as for the intermediate pitch rate, the nose down pitching moment is overestimated
with the original LB model and underestimated with the modified formulation (see
Figures 3.10(f) and 3.11(f)).

Concerning the normal force overshoot for medium and high pitch rates, the mod-
ified model gives slightly better results than the original one. Nevertheless the model
could be improved using B1 and B2 coefficients in equations 2.84 and 2.85, dependant
on the pitch rate.

Concerning the pitching moment, the main issue for both models is to better
capture the hysteretic effect for moderate and high pitch rates. This could be achieved
with a better representation of the variation of the center of pressure position during
the dynamic stall process. A better prediction of the nose down pitching moment
could also be achieved with a more accurate identification of the Tvl nondimensional
parameter.



3.6. Validation of the modified Leishman-Beddoes model 57

-20 -10 0 10 20 30
-1

-0.5

0

0.5

1

1.5

Modified model

Experiment

Original LB

(a) Normal force

-20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2
Modified model

Experiment

Original LB

(b) Moment

-20 0 20 40
-2

-1

0

1

2

3

Modified model

Experiment

Original LB

(c) Normal force

-20 0 20 40
-0.3

-0.2

-0.1

0

0.1

0.2
Modified model

Experiment

Original LB

(d) Moment

-20 0 20 40
-2

-1

0

1

2

3

Modified model

Experiment

Original LB

(e) Normal force

-20 0 20 40
-0.4

-0.2

0

0.2

Modified model

Experiment

Original LB

(f) Moment

Figure 3.9: Comparison between model and experiment for the flat
plate.
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Figure 3.10: Comparison between model and experiment for the
NACA0012.
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Figure 3.11: Comparison between model and experiment for the
NACA0018.
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Chapter 4

3D unsteady attached flow

In the previous chapters, a modified Leishman Beddoes model was developed in order
to compute unsteady aerodynamic loads acting on 2D airfoils at low Reynolds number.
In order to extend this model to finite wings, closed form 3D unsteady aerodynamic
model must be developed first.

The current chapter presents such an analytical unsteady 3D aerodynamic model.
It is constructed by combiningWagner’s unsteady 2D aerodynamic theory and Prandtl’s
lifting line theory. It is known as the Wagner lifting line model (WLL)

4.1 Closed form solutions

Closed form solutions for the attached incompressible unsteady flow problem around
a two-dimensional (2D) airfoil exist in both the frequency domain [68] and in the time
domain:

• Wagner theory [69], [70]

• Finite state flow model [71]

• Leishman unsteady state-space representation [57])

For three-dimensional (3D) wings there exists one closed form solution for the unsteady
aerodynamics of elliptical wings [69]. For general geometries, closed form solutions
are usually obtained either from strip theory (see for example Dowell [72]) or from
panel methods, such as the Doublet Lattice Method (DLM) [73] or the Vortex Lattice
Method (VLM) [74]. Strip theory is based on estimating the 3D unsteady loads by
integrating 2D loads along the span. It therefore ignores the downwash induced by the
trailing vortices and overestimates the lift; it is mostly used on lifting surfaces with
very high aspect ratios, such as helicopter or wind turbine blades. The DLM can be
used to estimate modal, frequency domain aerodynamic loads in the form of the gen-
eralised aerodynamic force matrix. This matrix is evaluated numerically at discrete
reduced frequency values and is interpolated in order to estimate the aerodynamic
loads at intermediate frequencies. The generalised force matrix can be transformed to
the time domain using rational function, Chebyshev polynomial or indicial function
representations, again based on a set of discrete frequency estimations. Several effi-
cient transformation methodologies have been developed, notably the Minimum State
approach [75], but they remain approximations. The Vortex Lattice Method can also
be used to derive a generalised aerodynamic force matrix [76], [77], which can then be
transformed to the time domain.

Alternative closed form solutions of the 3D attached flow problem include Reiss-
ner’s method [78], which combined the Theodorsen and lifting line theories and was
formulated in the frequency domain. Chopra [79] developed expressions for the lift,
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thrust and moment of lunate tails oscillating in pitch and plunge, based on the lifting
line assumption that the flow is locally 2D around cross-sections of the wing’s span
but that the local angle of attack is influenced by the vorticity in the wake. The work
was limited to rectangular wings and frequency domain solutions for the aerodynamic
loads that were obtained. Furthermore, Chopra and Kambe [80] formulated an un-
steady lifting surface theory and applied it to wings with non-rectangular planforms
but the aerodynamic load calculations were still calculated in the frequency domain.
James [81] developed an unsteady lifting line theory for wings of large aspect ratio
with smooth tip geometries (such as elliptical planforms). He used a matched asymp-
totic expansion approach to obtain solutions for impulsively started motion, constant
acceleration and sinusoidal oscillations in pitch, plunge or flap. Nevertheless, the
method failed to yield total aerodynamic loads for wings whose chord jumps abruptly
to zero at the tip (such as rectangular or trapezoidal wings). Furthermore, Ahmadi
and Widnall [82] argued that James’s theory is only valid for low reduced frequencies
and that its 3D results are incorrect. Van Holten [83] also used a matched asymptotic
expansion to develop an unsteady lifting line theory for pitching wings and rotating
blades but Ahmadi and Widnall [82] again claimed that the work is only valid for low
reduced frequencies . Phlips, East, and Pratt [84] derived a time domain unsteady
lifting line theory for flapping (but not pitching) wings.

Other frequency domain unsteady lifting line approaches were proposed by Dragos
[85], Sclavounos [86] and, more recently, Drela [87]. State-space time domain mod-
els are usually quasi-steady, such as the models by Nabawy and Crowther [88], [89].
The present chapter details a robust, closed form, time-domain, 3D unsteady aero-
dynamic model that does not involve a transformation from the frequency domain.
The approach is based on Wagner’s 2D unsteady lift theory and Prantdt’s lifting line
theory and will be referred to as the Wagner Lifting Line (WLL) method. It was first
proposed by Boutet and Dimitriadis [90] but is presented here in much more detail,
including aeroelastic validation test cases. A similar approach was proposed later by
Izraelevitz et al [91], although it was based on a horseshoe vortex representation of
3D wing vorticity, rather than the Fourier Series representation used by the WLL
method.

4.2 Method

One of the main characteristics of lifting line theories is that the flow is two-dimensional
around spanwise cross-sections but the local angle of attack is affected by the down-
wash induced by the wake. In the classical version of the theory, the wing and wake
are modelled using a superposition of horseshoe vortices whose strength is constant
in time. In this way, the wake is constant and semi-infinite and its strength varies in
the spanwise but not in the chordwise direction.

In Wagner’s and Theodorsen’s 2D unsteady aerodynamic theories, the wake is still
straight and semi-infinite but its strength varies in the chordwise direction since it is
calculated from the unsteady Kutta condition. The wake is assumed to propagate
with the free stream velocity, U , so that chordwise displacement and time are directly
related by the equation x = Ut. A change in vorticity at the trailing edge that occurs
at time t0 will be reflected in the wake at a downstream distance U(t− t0) at time t.

Lifting line and Wagner theories are not directly compatible because in the former
the chordwise strength of the trailing vortices is constant while in the latter it varies.
In the present work, Wagner theory is applied to spwanwise cross-sections so that the
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strength of the wake varies in both the spanwise and chordwise direction. A quasi-
steady version of lifting line theory is used in order to approximate the downwash
velocity caused by the wake and to add it to the other sources of downwash used in
Wagner theory.

There are three sources of downwash on finite wings in unsteady flow:

• Geometric downwash due to camber and twist.

• Downwash due to the motion of the wing (including the free stream and angle
of attack).

• Downwash due to the three-dimensionality of the flow (wing tip vortex effect).

The 3D downwash will be calculated using Prandtl’s lifting line theory, as detailed
in Kuethe and Chow [92]. The other two downwash contributions will be modelled
from Wagner’s unsteady aerodynamic theory, as presented by Fung [70].

4.2.1 Lifting line theory

A truncated Fourier series is used to represent an arbitrary time-varying circulation
distribution along the span of a flat plate wing

Γ(t, y) =
1

2
a0 c0 U

m∑
n=1

an(t) sin(nθ) (4.1)

where a0 is the lift curve slope at the wing’s axis of symmetry, c0 is the chord length
at the wing’s axis of symmetry, U is the free stream airspeed, an(t) are the time
varying Fourier coefficients, m is the number of terms kept in the series, θ comes
from the substitution y = (s/2) cos(θ), y represents the location along the span and
s represents the span of the wing. In the classical lifting line theory, the wing is split
into m spanwise strips and the order of the Fourier series is also m so that the number
of unknowns (Fourier coefficients an) is equal to the number of equations (spanwise
strips).

Using Prandtl’s lifting line theory it is possible to compute the downwash wy
caused by the 3D circulation distribution at a location y along the wing span

wy = − 1

4π

∫ s/2

−s/2

dΓ/dy0

y − y0
dy0

= −a0c0U

4πs

m∑
n=1

nan(t)

∫ π

0

cos(nθ0)

cos(θ0)− cos(θ)
dθ0 (4.2)

Glauert [93] showed a way to solve the integral so that the downwash wy can be
computed as a function of the Fourier coefficients and the location y(θ) along the
span:

wy(t) = −a0c0U

4s

m∑
n=1

nan(t)
sin(nθ)

sin θ
(4.3)

Note that this is a quasi-steady version of lifting line theory, since any instantaneous
changes in vorticity over the wing affect the entire wake simultaneously.
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4.2.2 Unsteady Kutta-Jukowsky

It is possible to express the unsteady sectional lift coefficient as a function of an(t)
and location along the span y, using the unsteady Kutta-Jukowsky theorem and con-
sidering a lumped spanwise vortex element, as explained by Katz and Plotkin [74] on
page 439. The circulatory sectional lift coefficient becomes

ccl (t, y) =
2Γ

Uc(y)
+

2Γ̇

U2
(4.4)

where Γ is the vortex strength and c(y) is the chord at span section y. The unsteady
term Γ̇ comes from the unsteady Bernouilli equation as shown by Katz and Plotkin
[74]. The vortex strength can be replaced by its Fourier series representation from
equation 4.1, to obtain

ccl (t, y) = a0

m∑
n=1

(c0

c
an +

c0

U
ȧn

)
sin(nθ) (4.5)

Furthermore, the circulatory lift coefficient for the entire wing can be computed from

Ccl (t) =

∫ s/2

−s/2

1
2ρU

2 c(y) ccl (t, y)dy
1
2ρU

2 S
(4.6)

where S is the wing’s surface area.
The lift will cause a pitching moment around the pitch axis of each wing section,

i.e. the axis around which the wing section can pitch. One can compute the circulatory
moment distribution from the lift distribution, assuming that the sectional lift acts
on the quarter chord. Refer to figure 4.1, which shows a wing section with chord c
and half-chord b at pitch angle α to a free stream U . The position of the pitch axis,
xe, is defined with respect to the half-chord point. The circulatory sectional moment
equation is simply

ccm(t, y) =
c(y)/4 + xe(y)

c(y)
ccl (t, y) (4.7)

where xe and c are allowed to vary in the spanwise direction y. Note that the pitch
axis is measured from the mid-chord point and is defined positive if it lies downstream
of that point as defined by Theodorsen [68]. The total circulatory moment coefficient
is

Ccm(t) =

∫ s/2

−s/2

1
2ρU

2 c(y)2 ccm(t, y)dy
1
2ρU

2 Sc̄
(4.8)

where c̄ = S/s is the mean chord.

4.2.3 Wagner’s sectional circulatory lift

The computation of the unsteady circulatory aerodynamic loads is based on the circu-
latory sectional lift ccl (t, y) response of an airfoil undergoing a step change in downwash
∆w(y) << U at span location y. The resulting step change in lift coefficient can be
expressed in terms of the Wagner function, Φ(t), as follows

ccl (t, y) = a0(y)Φ(t)
∆w(y)

U
(4.9)
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where a0(y) is the lift curve slope of the local airfoil section, which is approximated
by 2π for thin airfoils, and Φ(t) is Jones’ [94] approximation of the Wagner function

Φ(t) = 1−Ψ1e
− ε1U

b
t −Ψ2e

− ε2U
b
t

with Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3.
Duhamel’s principle can be applied to equation 4.9 in order to express a continuous

lift response as the time integral of infinitesimal step responses

ccl (t, y) = a0(y)

(
w(0, y)

U
Φ(t) +

∫ t

0

1

U

∂w(τ, y)

∂τ
Φ(t− τ) dτ

)
(4.10)

The troublesome ∂w(τ,y)
∂τ term inside the integral can be removed by applying integra-

tion by parts, such that

ccl (t, y) = a0(y)

(
w(t, y)

U
Φ(0)−

∫ t

0

1

U

∂Φ(t− τ)

∂τ
w(τ, y) dτ

)
(4.11)

The downwash w(t, y) must now be computed; it will depend on the kinematics of
the wing. In this work, the wing is assumed to be rigid with pitch and plunge degrees
of freedom but flexible wings with bending and torsion modes can also be considered.
Figure 4.1 defines the local plunge and pitch degrees of freedom, h(t, y) and α(t, y)
respectively. A local downwash wy is added in order to represent the 3D downwash
effects, so that w(t, y) becomes

b

b

ḣ

α̇

α

b

xe

c = 2b

U

Figure 4.1: Rigid thin plate airfoil scheme

w(t, y) = Uα(t, y) + ḣ(t, y) + α̇(t, y)d+ wy(t) (4.12)

d =

(
1

2
− a
)
b

a =
xe
b
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where d is the non-dimensional distance between the mid-chord and the pitch axis as
defined by Theodorsen [68]. After combining equations 4.11 and 4.12,

ccl (t, y)

a0(y)
=

(
α+

ḣ

U
+
α̇d

U
+
wy
U

)
Φ(0)

+

∫ t

0
Ψ1ε1

U

b
e
−ε1U
b

(t−τ)

(
α(τ) +

ḣ(τ)

U
+
α̇(τ)d

U
+
wy(τ)

U

)
dτ

+

∫ t

0
Ψ2ε2

U

b
e
−ε2U
b

(t−τ)

(
α(τ) +

ḣ(τ)

U
+
α̇(τ)d

U
+
wy(τ)

U

)
dτ

(4.13)

The following changes of variables are performed in order to eliminate the integrals
from equation 4.13, where the variables zk(t) are called aerodynamics states.

z1(t, y) =

∫ t

0
e
−ε1U
b

(t−τ)h(τ, y) dτ z4(t, y) =

∫ t

0
e
−ε2U
b

(t−τ)α(τ, y) dτ

z2(t, y) =

∫ t

0
e
−ε2U
b

(t−τ)h(τ, y) dτ z5(t, y) =

∫ t

0
e
−ε1U
b

(t−τ)wy(τ)

U
dτ

z3(t, y) =

∫ t

0
e
−ε1U
b

(t−τ)α(τ, y) dτ z6(t, y) =

∫ t

0
e
−ε2U
b

(t−τ)wy(τ)

U
dτ

(4.14)

Working through the integrals, we obtain

ccl (t, y)

a0(y)
=

(
α+

ḣ

U
+
α̇d

U
+
wy
U

)
Φ(0)− Φ̇(t)

(
h(0)

U
+
α(0)d

U

)
+ Φ̇(0)

(
h

U
+
αd

U

)
−Ψ1ε

2
1

U

b2
z1 −Ψ2ε

2
2

U

b2
z2

+ Ψ1ε1
U

b

(
1− ε1d

b

)
z3 + Ψ2ε2

U

b

(
1− ε2d

b

)
z4 + Ψ1ε1

U

b
z5 + Ψ2ε2

U

b
z6

(4.15)

First order differential equations for the aerodynamic state variables can be derived
using Leibnitz’s integral rule. As an example, the equation for z1(t, y) is

ż1(t, y) = e
−ε1U(t−t)

b h(t, y)
∂t

∂t
− e

−ε1Uτ
b h(0, y)

∂0

∂t
− ε1U

b

∫ t

0
e
−ε1U
b

(t−τ)h(τ, y) dτ

= h− ε1U

b
z1(t, y) (4.16)

The equations for all the aerodynamic states are given by

ż1(t, y) = h− ε1U

b
z1(t, y) ż4(t, y) = α− ε2U

b
z4(t, y)

ż2(t, y) = h− ε2U

b
z2(t, y) ż5(t, y) =

wy
U
− ε1U

b
z5(t, y)

ż3(t, y) = α− ε1U

b
z3(t, y) ż6(t, y) =

wy
U
− ε2U

b
z6(t, y)

(4.17)
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Finally, the continuous unsteady circulatory lift coefficient can be written as follows

ccl (t, y) = Cq̇ + Dq + Ez + rΦ̇(t) + a0(y)Φ(0)
wy
U

(4.18)

ż = Wz + Fq + G
wy
U

(4.19)

where

q =
[
h(t, y) α(t, y)

]T
z =

[
z1(t, y) z2(t, y) z3(t, y) z4(t, y) z5(t, y) z6(t, y)

]T
D =

a0(y)

U

[
Φ̇(0) UΦ(0) + dΦ̇(0)

]
E =

a0(y)U

b

[
−Ψ1ε21

b −Ψ2ε22
b Ψ1ε1

(
1− ε1 db

)
Ψ2ε2

(
1− ε2 db

)
Ψ1ε1 Ψ2ε2

]
G =

[
0 0 0 0 1 1

]T
C =

a0(y)

U
Φ(0)

[
1 d

]
r = −a0(y)

U
(h(0, y) + dα(0, y))

W = −U
b
diag (ε1 , ε2 , ε1 , ε2 , ε1 , ε2)

F =

[
1 1 0 0 0 0
0 0 1 1 0 0

]T

4.2.4 Added mass effect

The non-circulatory sectional lift and moment coefficients, also known as the added
mass effect, can be computed from the non-circulatory terms derived by Theodorsen
[68]

cil(t, y) =
πb

U2

(
ḧ− a b α̈

)
+
πb

U
α̇ (4.20)

cim(t, y) =
πb

2U2

[
aḧ−

(
a2 +

1

8

)
α̈

]
−
(

1

2
− a
)
πb

2U
α̇ (4.21)

The computation of the total non-circulatory lift Cil and moment Cim coefficient follows
the same principle as equations 4.6 and 4.8 and the final result is given in equations
4.51 and 4.52 for a rectangular wing.

4.2.5 Assembling the pieces together

In order to compute the m Fourier coefficients an, m spanwise wing strips are con-
sidered, as shown in figure 4.2 which represents m strips along the wing span, their
respective local aerodynamics variables zi, 3D downwash effects wy,i and chord section
ci. For an arbitrary strip i, equations 4.1 and 4.18-4.19 can be combined to obtain
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1st, z1, wy,1, y1, c1

ith, zi, wy,i, yi, ci

jth, zj, wy,j, yj, cj

y

Figure 4.2: Representation of m strips along the wing span and their
respective local variables

the following system

ccl (t,yi)︷ ︸︸ ︷
a0(yi)

m∑
n=1

(
c0

ci
an +

c0

U
ȧn

)
sin(nθi) = Ciq̇ + Diq + Eizi + a0(yi)Φ(0)

wyi
U

żi = Wizi + Fq + G
wyi
U

(4.22)

The variables zi represent the local aerodynamic state variables for the ith strip.
Matrices Ci, Di, Ei, Wi are the matrices computed in section 4.2.3 where the chord c
is replaced with its local value ci. Variable wyi represents the 3D downwash effect on
the ith strip; its value is given by equation 4.3. Substituting for wyi and re-arranging,
equations 4.22 become

a0(yi)
m∑
n=1

((
c0

ci
+ Φ(0)

a0c0n

4s sin(θi)

)
an +

c0

U
ȧn

)
sin(nθi) = Ciq̇ + Diq + Eizi

żi = Wizi + Fq−G
a0c0

4s

m∑
n=1

nan(t)
sin(nθi)

sin θi
(4.23)

Applying equations 4.23 to all m strips, a set of 7m ordinary linear differential
equations for 7m unknowns (m for the Fourier coefficients an and 6m for the aero-
dynamic states z1, . . . zm) is obtained. Once this system of ODEs is solved and the
coefficients an(t) are evaluated, the lift distribution acting on the wing can be com-
puted from relation 4.5, the total lift from 4.6 and the total pitching moment from 4.8.

The computation of the aerodynamic loads for a rectangular wing is fully detailed
in the appendix with equations 4.26 to 4.54.

4.2.6 Asymptotic behavior for a rectangular wing (c = c0)

By imposing stationarity, all derivatives in time vanish and the system of equa-
tions 4.23 should reduce to the classical lifting line theory. After imposing stationarity
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on equations 4.17, the aerodynamic states variables become

z1(y) =
b

ε1U
h(y) z4(y) =

b

ε2U
α(y)

z2(y) =
b

ε2U
h(y) z5(y) =

b

ε1U2
wy

z3(y) =
b

ε1U
α(y) z6(y) =

b

ε2U2
wy

(4.24)

Injecting these expressions in equations 4.23 and applying the necessary simplifica-
tions, the system becomes

a0(y)

m∑
n=1

(
1 + Φ(0)

a0(y)nc

4s sin(θi)

)
an sin(nθi) = a0(y)α(y) + a0(y)Φ(0)

wy
U

or
m∑
n=1

(
1 +

a0(y)nc

4s sin(θi)

)
an sin(nθi) = α(y)

which is the equation derived by Kuethe and Chow [92] for a rectangular wing, using
Prandtl’s lifting line theory for a constant pitch angle α(y) = α.

If the span of the wing is infinite, s = ∞, all 3D effects vanish and system 4.23
should reduce to the 2D Wagner solution. Looking at equation 4.3, it is obvious that
lim
s→∞

wy = 0. It can then be shown from equations 4.14 that z5 = 0 and z6 = 0. The
system of equations 4.23 is now reduced to

ccl (t) = a0(y)
m∑
n=1

(
an +

c

U
ȧn

)
sin(nθi) = Cq̇ + Dq + Ezi

żi = Wzi + Fq

zi =
[
z1,i z2,i z3,i z4,i 0 0

]T (4.25)

which is the classical 2D Wagner formulation, as given by Fung [70] for all arbitrary
strips i.

4.3 Wagner lifting line aeroelastic matrix computation

4.3.1 Sectional normal lift

First, equation 4.5 for the sectional normal lift coefficient can be expressed in matrix
form as

ccl (t, yi) = a0

m∑
n=1

(
c0

ci
an +

c0

U
ȧn

)
sin(nθi) (4.26)

= Ayi
an + Dyi

ȧn (4.27)

where ccl (i) is the sectional lift at the ith strip, y(i) is the location y of the ith strip,
an = [a1 a2 . . . am]T , while Ayi

and Dyi
are matrix coefficients. The special cases

i = 0 and i = m + 1 correspond to the wingtips which are not normal strips. There
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is no lift at the wingtips, so that

y0 = −s/2
ym+1 = s/2

ccl (t, y0) = ccl (t, ym+1) = 0

4.3.2 Downwash

The equation for the downwash 4.3 can be expressed in the following matrix form

wyi(t) = −a0c0U

4s

m∑
n=1

nan(t)
sin(nθi)

sin θi
(4.28)

= Wyi
an (4.29)

where Wyi
is a matrix coefficient.

4.3.3 Wagner lifting line

Using expressions 4.27 and 4.29 the Wagner lifting line equations 4.22 at the ith strip
can be rewritten in the following matrix form

Ayi
an + Dyi

ȧn = Ciq̇ + Diq + Eizi +
a0Φ(0)

U
Wyi

an (4.30)

żi = Wizi + Fq +
G

U
Wyi

an (4.31)

For simplicity, it is assumed that a0 is not a function of the span location y. Then,
expressions 4.30 and 4.31 are extended to include the equations for all the m strips.

DyM ȧn = CMq̇ + DMq + EMz + (WyM −AyM)an (4.32)
ż = WMz + FMq + WGM

an (4.33)

where

z =
[
z1 . . . zi . . . zm

]T (4.34)

AyM =
[
Ay1 . . . Ayi

. . . Aym

]T (4.35)

DyM =
[
Dy1 . . . Dyi

. . . Dym

]T (4.36)

CM =
[
C1 . . . Ci . . . Cm

]T (4.37)

DM =
[
D1 . . . Di . . . Dm

]T (4.38)
EM = diag (E1, . . . ,Ei, . . . ,Em) (4.39)

WyM =
a0Φ(0)

U

[
Wy1 . . . Wyi

. . . Wym

]T (4.40)

WM = diag (W1, . . . ,Wi, . . . ,Wm) (4.41)

FM =
[
F . . . F . . . F

]T (4.42)

WGM
=

[
G
UWy1 . . . G

UWyi
, . . . , GUWym

]T (4.43)
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4.3.4 Trapezoidal rule

The computation of the circulatory lift for a rectangular wing can be expressed by
the integral

Lc(t) =
1

2
ρU2 c

∫ s/2

−s/2
ccl (t, y)dy (4.44)

Then, using the trapezoidal rule, this integral can be approximated by the sum

Lc(t) =
1

2
ρU2 c

m+1∑
i=1

yi − yi−1

2
(ccl (t, yi−1) + ccl (t, yi)) (4.45)

or, in matrix form,

Lc(t) =
1

2
ρU2 c

[
y1 − y0 . . . ym+1 − ym

]


ccl (t, y1)
...

ccl (t, yi−1) + ccl (t, yi)
...

ccl (t, ym)

 (4.46)

=
1

2
ρU2 c

[
y1 − y0 . . . ym+1 − ym

]


1 0 . . . 0

1 1
. . .

...

0
. . . . . . 0

...
. . . 1 1

0 . . . 0 1


 c

c
l (t, y1)

...
ccl (t, ym)

(4.47)

= T


ccl (t, y1)
ccl (t, y2)

...
ccl (t, ym)

 (4.48)

Using expression 4.27 one can write

Lc(t) = TAyi
an + TDyi

ȧn (4.49)

As the chord and the location of the pitch axis are constant with span for a rectangular
wing, the circulatory moment in pitch M c is simply

M c(t) = (c/4 + xe)L
c(t) (4.50)

4.3.5 Non-circulatory loads

It is assumed that the wing is rectangular, therefore the non-circulatory load coefficient
are identical to the sectional lift coefficients described in section 4.2.4. They are
written as

Li(t) =
1

2
ρU2 c

(
πb

U2

(
ḧ− a b α̈

)
+
πb

U
α̇

)
= Alq̈ + Blq̇ (4.51)

M i(t) =
1

2
ρU2 c2s

(
πb

2U2

[
aḧ−

(
a2 +

1

8

)
α̈

]
−
(

1

2
− a
)
πb

2U
α̇

)
= Amq̈ + Bmq̇(4.52)
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4.3.6 Total aerodynamic loads

The total lift applied on the wing can be written as

L = Lc(t) + Li(t)

= TAyi
an + TDyi

ȧn + Alq̈ + Blq̇ (4.53)

Similarly, the total pitching moment is

M = M c(t) +M i(t)

= (c/4 + xe)TAyi
an + (c/4 + xe)TDyi

ȧn + Amq̈ + Bmq̇ (4.54)

4.3.7 Structural equations

From expression 4.53 and 4.54, equations 5.5 can be written as([
mw Sw

]
+ Al

)
q̈ + TDyi

ȧn = −TAyi
an −Blq̇−

[
kh 0

]
q (4.55)([

Sw Iw
]

+ Am

)
q̈ + (c/4 + xe)TDyi

ȧn = −(c/4 + xe)TAyi
an −Bmq̇−

[
0 kα

]
q(4.56)

4.3.8 Aeroelastic system matrix

Finally, expressions 4.32, 4.33, 4.55 and 4.56 can be summarized in the following
algebraic linear form

H1


ȧn
ż
q̇
q̈

 = H2


an
z
q
q̇

 (4.57)

Then, the global aeroelastic system matrix H of equation 5.6 is given by

H = H1
−1H2 (4.58)
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Chapter 5

3D model comparisons

In the previous chapter, the Wagner Lifting Line model was developped as a mean to
compute the unsteady attached lift and moment acting on a finite wing.

In the present chapter, the WLL is applied on both a rectangular and a tapered
wing undergoing unsteady motion. The results are then compared to the predictions
obtained from Vortex Lattice simulation. Both forced motion and free aeroelastic
responses are considered in this validation.

5.1 Test cases

The Wagner Lifting Line method is applied here to a rectangular and a tapered wing.
The rectangular wing, shown on Figure 5.1, has constant chord c = 1 m, span s,
surface S = cs and aspect ratio AR = s2/S. It has two degrees of freedom, a pure
plunge h(t, y) = h(t) and a pure pitch angle α(t, y) = α(t) around its pitch axis. Two
positions of the pitch axis are considered: one at the leading edge and one at the
quarter chord.

s

α

c

h

L s

α

c

h

L M

MU

Leading edge axis Trailing edge axis

Figure 5.1: Rectangular wing with pitch axis at the leading edge
and quarter chord.

The tapered wing, shown on Figure 5.2 has root chord c0 = 1m, tip chord ct =
0.5m, span s, surface S = (c0 + ct)

s
2 and aspect ratio AR = s2/S. It has the same

degrees of freedom as the rectangular wing. The pitch axis is defined with respect to
the root chord, as shown in figure 5.2. Again, leading edge and quarter chord pitch
axis locations are considered.
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s

α

cth

L s

α

h

L MM

U

Leading edge axis Trailing edge axis

c0

ct

c0

Figure 5.2: Tapered wing with pitch axis at the leading edge and
quarter chord.

5.1.1 Types of motion

The degrees of freedom of the wings are subjected to two kinds of motion: step changes
and sinusoidal oscillations. The step is expressed as the function f = A

(
1− e−10t

)
where t is the time and A is the position of the degree of freedom after the step. Steps
∆h = 0.1m and ∆α = 5˚ are separately applied to the plunge and pitch degrees of
freedom.

Sinusoidal oscillations with ten distinct frequencies are tested separately for each
degree of freedom, in order to assess the WLL model’s frequency response. The
oscillations are expressed as f = A cos

(
2Uk
c0
t
)
where t is the time, A the amplitude of

the oscillation, k = [0.1, 0.2, 0.3 . . . 1] is the reduced frequency. The pitch and plunge
amplitudes are respectively set to A = 5˚ and A = 0.1m.

5.1.2 Validation

The unsteady Vortex Lattice Method (VLM) is used as a reference solution to which
the results obtained by the Wagner Lifting Line approach are to be compared. The
particular implementation of the VLM used here is more thoroughly described by Dim-
itriadis, Gardiner, Tickle, et al. [95]. The difference between the solutions obtained
from WLL and VLM is quantified using the Normalized Root-Mean-Square Deviation
(NRMSD).

RMSD =

√∑N
t=1 (yw,r − yv,r)2

N
(5.1)

NRMSD = 100× RMSD

max(yv)−min(yv)
[%] (5.2)

where N is the number of time instances, yv,r represents the lift or moment coefficient
computed by the VLM at the rth time instance and yw,r represents the lift or moment
coefficient computed by the WLL approach at the rth time instance.
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5.2 Convergence

The differential equations 4.23 are solved by means of a Runge-Kutta-Fehlberg 45
numerical time integration technique. A time convergence analysis is therefore needed
in order to minimise numerical integration errors without increasing too much the
computation time. A convergence analysis is also performed for the vortex lattice
method.

As shown in equation 4.1, the WLL uses a truncated Fourier series with j co-
efficients, which correspond to the j spanwise strips shown in figure 4.2. A spatial
convergence study must also be carried out in order to determine the effect of the
number of strips on the aerodynamic load predictions. Note that the number of states
in the system is 7j, therefore keeping j as low as possible is important. The NRMSD
is used in order to determine if convergence has been achieved, such that

RMSD(i) =

√∑N
t=1 (yi,t − yref,t)2

N
(5.3)

NRMSD(i) = e(i) = 100× RMSD

max(yref )−min(yref )
[%] (5.4)

where yi,t represents the lift coefficient response at the tth time instance for the ith
value of the convergence parameter. The latter can be either the time step tolerance
of the Runge-Kutta-Fehlberg scheme or the number of strips; yref represents the
reference lift coefficient against which the convergence is assessed. This reference is
computed for an appropriately high value of the convergence parameter.

5.2.1 Runge-Kutta convergence
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Figure 5.3: WLL convergence with tolerance parameter and number
of spanwise strips for a rectangular wing

The time step tolerance controls the error of the Runge-Kutta time integration
scheme. Given the solution arrays r4 and r5 of the respective 4th and 5th order Runge-
Kutta estimates for a current time ti and time step ∆t, the Runge-Kutta-Fehlberg
algorithm used in this work is given by

• if Tol < (r5 − r4)(r5 − r4)T , reduce the time step to ∆t/2
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• otherwise, go to the next time instance ti+1 = ti+∆t and reset ∆t to its default
value

Figure 5.3 plots the variation of the error of equation 5.4 with the tolerance Tol
used in the Runge-Kutta-Fehlberg 45 algorithm with respect to a reference Tol =
10−9. The solid line represents the convergence for a step case and the dashed line
the convergence for a sinusoidal oscillation case with a reduced frequency k = 0.3.
Assuming that e < 10−2% is good accuracy, the figure shows that a tolerance value
of 10−7 is sufficient to achieve convergence for both the step and sinusoidal motion.

Figure 5.3(b) plots the variation of the error of equation 5.4 with number of strips
for different aspect ratios and kinematics with respect to a reference number of strips
j = 26. The time step tolerance is fixed to 10−7. It can be seen that, for all cases, a
value of j = 20 is sufficient to achieve errors e < 10−2%. The figure also shows that
the higher the AR, the greater the number of strips necessary to reach the same level
of convergence. This phenomenon is due to the fact that higher aspect ratios require
more strips to achieve good spatial resolution.

5.2.2 Vortex lattice convergence

The quality of the solutions obtained from the vortex lattice method is based on the
number of panels used to represent the wing in the spanwise and chordwise directions.
The VLM is more sensitive to the chordwise than the spanwise number of panels [96],
so a convergence for the number of chordwise panels is performed.

0 10 20 30 40 50 60 75 90 100
0

1

2

3

4

5

Chordwise pannel

e
[%

]

Figure 5.4: VLM convergence with number of chordwise panels.

Figure 5.4 plots the variation of the error of equation 5.4 with number of chordwise
panels for a rectangular wing (AR = 6) oscillating around its leading edge with a
reduced frequency k = 0.3. The reference chordwise panels is m = 100. The number
of spanwise panels is set to 15. It can be seen that m = 75 is sufficient to achieve
errors e < 10−1% for the rectangular wing case with a leading edge pitch axis.

All other test cases used in this work converge for m = 75, as long as the pitch
axis does not lie at c0/4. A larger number of chordwise panels m = 100 is necessary
for convergence when the pitch axis lise on the quarter chord because the moment
loads need to converge to values very close to zero for the oscillating case with low
reduced frequency. Convergence is therefore harder to achieve.



5.3. Lift and moment results for rectangular wing 77

5.3 Lift and moment results for rectangular wing

In this section the WLL method is applied to the rectangular wing under different
kinematic conditions. The lift and moment estimates are compared to predictions
obtained by the VLM technique and by strip theory. In all cases, the VLM estimates
were obtained from time-converged and spatially converged simulations.
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Figure 5.5: Comparison between VLM, WLL and strip theory for a
rectangular wing undergoing a step motion

For the first comparison, the pitch axis is located at the leading edge and the
wing undergoes a step change in pitch or plunge, as explained in section 5.1.1. The
resulting lift and moment responses are shown in figure 5.5; the WLL estimates are
in good agreement with the VLM results for both pitch and plunge motions. In
contrast, the strip theory result is significantly overestimated in the pitch step case and
underestimated in the plunge step case. Note that the agreement in pitching moment
for the step pitch case is not as good as in the other results. Furthermore, small
differences between the VLM and WLL predictions persist at steady-state conditions;
this is due to the fact that the steady VLM and lifting line theory model the bound
vorticity in a different manner. Repeating the simulations after relocating the pitch
axis to the quarter chord resulted in WLL predictions that were also in good agreement
with the VLM estimates.

For the second comparison, the WLL, VLM and strip theory techniques are applied
to a rectangular wing with aspect ratio 6 undergoing sinusoidal oscillations in pitch
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Figure 5.6: Lift comparison between VLM, WLL and strip theory
for a rectangular wing undergoing an oscillation motion.

or plunge, as detailed in section 5.1.1. Several reduced frequency values were tested
but only the results for k = 0.1 and k = 0.3 are presented here. The lift results
are plotted in figure 5.6 and the moment results in figure 5.7. There is very good
agreement between the WLL and VLM predictions for all frequencies, while the strip
theory estimates are quite inaccurate at both values of k.

Figure 5.8(a) plots the NRMSD values calculated from equation 5.2, for all the
tested values of k. The difference between the WLL and VLM predictions increases
with reduced frequency but stays lower than 3% for all kinematics and aerodynamic
loads. This level of difference is considered good for such high frequencies. Repeat-
ing the simulations after moving the pitch axis to the quarter chord, as shown in
figure 5.8(b), results in equally good agreement between the WLL and VLM aerody-
namic load predictions.

5.4 Lift and moment results for tapered wing

In this section, step and sinusoidal numerical tests are applied to the tapered wing
with aspect ratio 6 described in section 5.1. Initially the pitch axis is located at
the leading edge of the root chord and the wing undergoes step changes in pitch or
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Figure 5.7: Moment comparison between VLM, WLL and strip the-
ory for a rectangular wing undergoing an oscillation motion.
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Figure 5.8: NRMSD between VLM and WLL aerodynamics re-
sponses for a rectangular wing AR = 6 undergoing oscillations motion.

in plunge, as detailed in section 5.1.1. The resulting lift and moment responses are
shown in figure 5.9. In all cases, the WLL and VLM predictions are in very good
agreement, while the strip theory results are highly overestimated in the pitch step



80 Chapter 5. 3D model comparisons

case. Moving the pitch axis to the quarter chord results in equally good agreement
between the WLM and VLM aerodynamic load responses.
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Figure 5.9: Comparison between VLM, WLL and strip theory for a
tapered wing, AR = 6, undergoing a step motion

Finally, the WLL and VLM are compared for the case of pitch or plunge sinusoidal
oscillations at different reduced frequencies for the tapered wing. The pitch axis is
located at the leading edge of the root chord. Figure 5.10(a) plots the variation of the
NRMSD values between the two sets of predictions, for increasing k values. It can be
seen that in all cases the maximum NRMSD stays below 5%. It is concluded that the
WLL approach can predict accurately the aerodynamic load responses for oscillating
tapered wings. Moving the pitch axis to the quarter chord results in equally good
predictions, as seen in figure 5.10(b).

5.5 Computational cost

The computation times of the WLL and VLM approaches are compared for a step
and three sinusoidal oscillations in pitch, with reduced frequencies k = [0.1, 0.5, 1]
and a total simulation time Tf = 1.3 s. The following parameters have been used for
each method :

VLM: There are 15 spanwise and 20 chordwise panels and the time step is ∆t = 10−3.
The wake shape is prescribed in order to reduce computational cost.
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Figure 5.10: NRMSD between VLM and WLL aerodynamic re-
sponses for a tapered wing AR = 6 undergoing oscillations motion

WLL: The computation parameters used are 15 strips, a Tolerance Tol = 10−8 and
an initial Time step ∆t = 10−3 for the Runge-Kutta-Fehlberg 45 algorithm.

All the computations were run on a compuer with a quadcore Intel i7 processor
running at 2.5 Ghz, running iOS version 10.9.5.

Table 5.1: Computation time comparison between VLM and WLL

Model step oscillation k = 0.1 oscillation k = 0.5 oscillation k = 1

VLM 503 [s] 504 [s] 495 [s] 497 [s]
WLL 15 [s] 36 [s] 57 [s] 32 [s]

Table 5.1 shows that WLL calculation times are much lower than VLM numerical
simulations to simulate 1.3 [s] of pitch step or sinusoidal oscillations with reduced
frequency k = [0.1, 0.5, 1]. The benefit of an adaptative time step for WLL can
also be seen as the computation time is lower for cases with low or high reduced
frequencies. It should be stressed that the implementation of the two methods is
completely different; the WLL is implemented purely in Matlab while the VLM is
implemented as a combination of Matlab and C code (mex functions). If the WLL
was also implemented using compiled code it would be even faster.

5.6 Aeroelastic test case

In order to further validate the Wagner Lifting Line approach, an aeroelastic test case
is presented for a rigid rectangular wing with pitch and plunge degrees of freedom.
The flutter speed will be computed as a function of the position of the pitching axis
and the wing’s aspect ratio using both the Wagner Lifting Line and the Vortex Lattice
method.
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5.6.1 Aeroelastic equations of motion

The structure simply consists of a rigid wing with two degrees of freedom in pitch and
plunge. The structural equations of motion are given by[

mw Sw
Sw Iw

]
q̈ +

[
kh 0
0 kα

]
q =

[
−L(t)
M(t)

]
(5.5)

where q = [h α]T , h is the plunge displacement, α the pitch displacement, mw the
mass, Sw the static imbalance around the pitching axis, Iw the moment of inertia
around the pitching axis, kh and kα are the stiffnesses of the springs providing restoring
loads in the plunge and pitch degrees of freedom respectively and L(t) and M(t) are
the lift and moment around the pitching axis computed using the VLM or WLL
approaches.

The wing is chosen as an aluminum rectangular flat plate with chord c0 = 1 [m],
thickness h = 0.005 [m] and span s; the distance between the pitch axis and the
mid-chord is xe. The mass matrix components can then be computed as

mw = ρalshc0

Iw =
mwc

2
0

12
+mwc

2
0x

2
e

Sw = −mwxe

where ρal = 2300 [kg/m3] is the density of aluminium. The spring stiffnesses for
the two degrees of freedom are chosen such that the uncoupled, wind-off natural
frequencies of the system are fh = 1 [hz] and fα = 5 [hz]. The stiffnesses are then
given by

kh = mw (2πfh)2

kα = Iw (2πfα)2

The normal force L(t) and moment around the pitching axis M(t) are computed
from equations 4.6 and 4.8, together with the added mass effects described in expres-
sions 4.20 and 4.21. The integrals are approximated using the trapezoidal rule.

Finally, the complete linear aeroelastic system composed of equations 5.5 and 4.22
can be written in first order form as

ẋ = H(U, xe)x (5.6)

The aeroelastic system matrix H is derived in appendix 4.3, while x represents the
system states and is defined as

x =
[
a1 . . . am z1 . . . zm q q̇

]T (5.7)

where ai is the ith Fourier coefficient, zi are the local aerodynamic state variables for
the ith strip

zi =
[
zi,1 zi,2 zi,3 zi,4 zi,5 zi,6

]
q = [h α] and m is the number of strips. Consequently, the total number of states is
7m+4.

Finally, the WLL flutter solution is obtained by computing the eigenvalues of
matrix H(U, xe) as a function of the airspeed U . An indirect search procedure is
employed to pinpoint the airspeed at which one pair of complex conjugate eigenvalues
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become purely imaginary, which is the definition of the flutter speed. The number of
strips used to estimate matrice H(U, xe) is m = 20 and the flutter solution is obtained
for several values of the position of the pitch axis xe.

The VLM flutter solution is obtained using the modal frequency domain version
of the method, as detailed in [77]. Rigid body modes are chosen, one for the plunge
and one for the pitch. The mode shapes are given by

wh(x, y) = 1

wα(x, y) = x

where wh(x, y) is the plunge mode shape and wα(x, y) the pitch mode shape. The
elements of the mass matrix are then obtained from

mw = ρalh

∫ c

0

∫ y

0
w2
h(x, y)dxdy

Iw = ρalh

∫ c

0

∫ y

0
w2
α(x, y)dxdy

Sw = ρalh

∫ c

0

∫ y

0
wh(x, y)wα(x, y)dxdy

The resulting flutter problem is of the form((
kU

b

)2

Aq̈ + Eq− ρU2Q(k)

)
q(k) = 0 (5.8)

where As is the structrural mass matrix, Es is the structural stiffness matrix and
Q(k) is the frequency-depended generalised aerodynamic force matrix generated by
the VLM approach. The flutter problem is solved using the p− k method.

5.6.2 Results

The resulting flutter speed and frequency values are plotted against the position of the
pitch axis in Figure 5.11 for two aspect ratios : AR = 4 and AR = 10. Figure 5.11(a)
plots the flutter airspeeds and shows that the VLM and WLL predictions are in
good agreement with each other for both aspect ratios. Figure 5.11(b) plots the
flutter frequency predictions; the agreement is still very good as the highest frequency
discrepancy is of the order of 5%. It can be concluded that the Wagner lifting line
method can predict accurately the flutter of a wing with a finite span.

5.7 Conclusions

The WLL method results in a closed form, state-space representation of the unsteady
aerodynamic loads acting on finite rectangular and tapered wings of different as-
pect ratios, under attached incompressible flow conditions. The technique combines
Wagner’s 2D unsteady lift theory, Prandtl’s lifting line theory, the unsteady Kutta-
Joukowsky theorem and the added mass terms from Theodorsen’s analysis. Sample
simulations on wings with and without taper have shown very good agreement be-
tween the WLL predictions and VLM simulation results. The method can also be
readily applied to wings with twist and camber. Sweep is more problematic, since
lifting line theory has to be modified in order to work in the presence of sweep. This
modification will be addressed in future work.



84 Chapter 5. 3D model comparisons

-0.5 0 0.5

10

12

14

16

18

20

22

AR = 10, VLM

AR = 10, WLL

AR = 4,   VLM

AR = 4,   WLL

(a) Flutter speed

0 0.2 0.4 0.6 0.8 1

3

4

5

6
AR = 10, VLM

AR = 10, WLL

AR = 4,   VLM

AR = 4,   WLL

(b) Flutter frequency

Figure 5.11: Comparison of flutter with aeroelastic axis for 3D wing,
computed with vortex lattices (dashed line) and Wagner lifting line

(solid)

The VLM approach is still more general than the WLL technique, as it can easily
represent sweep. The advantage of WLL is the fact that the resulting aerodynamic
loads are written in state space form, as functions of the structural and aerodynamic
states. They can therefore be easily included in aeroelastic and flight dynamic calcu-
lations. In contrast, the VLM or DLM techniques result in time-marching simulations
or, if using a modal frequency domain technique, in equation 5.8, which is a hybrid
time-frequency domain equation that must be transformed to the time domain in order
to carry out aeroservoelastic calculations. In the present examples the wings were rigid
with discrete degrees of freedom but flexible wings with generalised modes can also
be treated. Finally, the WLL calculations are significantly faster than time-domain
VLM numerical simulations.
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Chapter 6

Conclusion

6.1 Summary of contribution

The main achievements of this thesis are the following:

• The adaptation of the Leishman-Beddoes model to low Reynolds numbers. This
was done by implementing Wagner theory as the incompressible attached flow
solver, adapting the Sheng et al dynamic stall onset criterion, and estimating the
values of the steady and unsteady model parameters from experimental results.

• The creation of a full experimental data set for a flat plate, a NACA0012 wing,
and a NACA0018 wing, all three undergoing different levels of dynamic stall.
These experimental results were used to calibrate and validate the modified
Leishman-Beddoes model developed during the course of the current work.

• The formulation of a the Wagner Liftin Line model, a 3D unsteady attached flow
lift and moment computation model. It was made by combining the unsteady 2D
loads predicted by Wagner thoery with Prandtl’s lifting line approach, thanks
to unsteady Kutta-Joukowsky theorem. The model was validated through com-
parisons to the predictions of a vortex lattice solver for impulsive and oscillatory
motions.

For all three wings tested experimentally, the modified Leishman-Beddoes model gave
better aerodynamic load predictions than the original formulation for low to medium
values of the reduced pitch rate. For the highest values of the reduced pitch rate
neither model resulted in fully satisfactory load predictions. Nevertheless, the present
work demonstrated that the variation of the dynamic stall angles at low reduced pitch
rates is represented better by a continuous quadratic function than the discontinuous
piecewise linear function proposed by Sheng et al, at least for the range of Reynolds
numbers investigated in this work. This is one of the major contributions of the
present thesis to the understanding of dynamic stall at low Reynolds numbers. From
a mathematical point of view, the use of cubic splines to represent the steady lift
curve that is proposed in this thesis results in better curve fits of both the lift and the
position of the separation point than the exponential functions used in the original
Leishman-Beddoes model.

The Wagner Lifting Line model is an unsteady lifting line approach that models
the trailing vortices as infinitely long, ignoring the spanwise vortex segments shed
into the wake. This modelling methodology is different from the standard unsteady
lifting line techniques that calculate the downwash induced by vortex rings instead
of trailing vortices only (see for example Jones [61]). This simplification was chosen
consciously in order to allow easy application of the technique to non-elliptical wing
planforms. The resulting aerodynamic load predictions are in very good agreement
with the higher-fidelity VLM results despite this simplification. The reason for this
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is that Wagner’s 2D theory already contains the effect of the spanwise shed vortex
segments in its wake model. Jones [94] had to subtract the 2D shed vorticity from
the downwash calculation, precisely because he included the spanwise trailing vortex
in his model. Aeroelastic calculations based on the WLL yielded very good flutter
predictions, a fact that strengthens the case for ignoring the trailing wake segments
in unsteady lifting line calculations.

6.2 Suggestion for further work

The present work resulted in a modified Leishman-Beddoes model, in order to compute
the loads acting on an airfoil undergoing dynamic stall and the Wagner lifting Line
model to represent the unsteady 3D aerodynamic loads on a finite wing with attached
flow. The next step would be to explore ways to build a 3D dynamic stall model. The
main idea is to use to take inspiration from the 2D LB model and add the detached
flow effects on top of the 3D attached loads computed with the Wagner Lifting Line
method. This is no trivial task since it would require to determine whether dynamic
stall occurs at each spanwise position separately and to follow the spanwise variation
of the positions of both the trailing edge separation and the leading edge vortex.

The development of such a 3D dynamic stall model would imperatively require
experimental data for calibration and validation. Unsteady pressure data should be
measured at several chordwise and spanwise positions, a requirement that has limited
the number and quality of such experiments available in the literature. Nevertheless,
apart from calibrating and validating models, such data could be used to obtain
new insights into the phenomenon of dynamic stall on finite wings. Finally, the
same experimental setup could be tested for small oscillation amplitudes in order
to validate experimentally the attached flow aerodynamic load predictions obtained
from the WLL and VLM approaches.

Another avenue for further research concerns the modified Leishman-Beddoes
model the values of the B1 and B2 coefficients in equations 2.84 and 2.85 are as-
sumed to be constant with pitch rate. It is believed that developing a pitch-rate
dependence model for these coefficients would significantly improve the performance
of the model at high pitch rates. Furthermore, the possibility of including the laminar
separation bubble occurring in steady flow at low angles of attack in the model should
be explored.
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Figure B.1: Comparison between the modified LB model and exper-
imental results for the flat plate with f = 1 Hz.
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Figure B.2: Comparison between the modified LB model and exper-
imental results for the flat plate with f = 2.5 Hz.
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Figure B.3: Comparison between the modified LB model and exper-
imental results for the flat plate with f = 5 Hz.
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Figure B.4: Comparison between the modified LB model and exper-
imental results for the flat plate with f = 7.5 Hz.
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Figure B.5: Comparison between the modified LB model and exper-
imental results for the flat plate with f = 10 Hz.
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Figure B.6: Comparison between the modified LB model and exper-
imental results for the NACA0012 with f = 1 Hz.
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Figure B.7: Comparison between the modified LB model and exper-
imental results for the NACA0012 with f = 2.5 Hz.
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Figure B.8: Comparison between the modified LB model and exper-
imental results for the NACA0012 with f = 5 Hz.
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Figure B.9: Comparison between the modified LB model and exper-
imental results for the NACA0012 with f = 7.5 Hz.
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Figure B.10: Comparison between the modified LB model and ex-
perimental results for the NACA0012 with f = 10 Hz.



100 Appendix B. Full models comparison

0 5 10 15 20

0.4

0.5

0.6

Modified model

Experiment

Original LB

(a) Normal force

0 5 10 15 20
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

Modified model

Experiment

Original LB

(b) Moment

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

Modified model

Experiment

Original LB

(c) Normal force

0 5 10 15 20 25
-0.06

-0.04

-0.02

0

0.02
Modified model

Experiment

Original LB

(d) Moment

-10 0 10 20 30
-0.5

0

0.5

1

Modified model

Experiment

Original LB

(e) Normal force

-10 0 10 20 30
-0.08

-0.06

-0.04

-0.02

0

0.02

Modified model

Experiment

Original LB

(f) Moment

-10 0 10 20 30 40
-1

-0.5

0

0.5

1

Modified model

Experiment

Original LB

(g) Normal force

-10 0 10 20 30 40
-0.1

-0.05

0

0.05

0.1
Modified model

Experiment

Original LB

(h) Moment

Figure B.11: Comparison between the modified LB model and ex-
perimental results for the NACA0018 with f = 1 Hz..
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Figure B.12: Comparison between the modified LB model and ex-
perimental results for the NACA0018 with f = 2.5 Hz.
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Figure B.13: Comparison between the modified LB model and ex-
perimental results for the NACA0018 with f = 5 Hz.
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Figure B.14: Comparison between the modified LB model and ex-
perimental results for the NACA0018 with f = 7.5 Hz.
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Figure B.15: Comparison between the modified LB model and ex-
perimental results for the NACA0018 with f = 10 Hz.
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