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Abstract: A cadaver is colonized by a wide diversity of necrophagous insects. It is well documented
that Dipterans are attracted by the volatile organic compounds (VOCs) released by a corpse during
the first minutes following death. Coleopterans are known to be attracted by highly decomposed
cadavers, but have received less attention regarding the olfaction-based mechanisms underlying
these interactions. In the present study, we impregnated gauzes with VOCs collected from each
decomposition stage of dead rats: fresh, bloated, active, and advanced decay. We collected the
VOCs released by the gauze and confirmed what was previously know from the literature: the
decomposition stages are associated with contrasting chemical profiles. We exposed Dermestes
frischii Kugelann (Coleoptera: Dermestidae) male and female antennae to the same gauzes and
found that stronger electrical responses were recorded when using the smell of the advanced decay
stage. Finally, we performed two choices behavioral assays. Females showed no preference for
the four decomposition stages, while males were attracted by the smell associated with active and
advanced decay stages. These results suggest that specific VOCs released by a decaying body guide
necrophagous coleopterans to their feeding site. Whether D. frischii males release pheromones to
attract females remains to be tested.
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1. Introduction

The decomposition of a corpse is associated with the release of hundreds of chemicals including
volatile organic compounds (VOCs) [1–5]. The abundance and composition of the cadaveric volatilome
are impacted by biotic (e.g., microorganism, insects) and abiotic factors (e.g., temperature, humidity),
but also differs according to the decomposition stage the cadaver is undergoing (fresh, bloated, active
decay, advanced decay, and dry remains) [6–12]. For instance, a cadaver under the bloated stage
typically releases higher amounts of alcohols, ketones, amines, and carboxylic acids, while a corpse
under active decay releases higher quantities of aromatic compounds (e.g., indole) [10–14].

Various necrophagous insect species use cadaveric volatile compounds to find a feeding and/or
mating site [15]. They are attracted to the cadaver in a relatively predictable sequence called the
entomofaunal succession [16]. Dipterans are the first colonizers, with blowflies (Calliphoridae) arriving
on the corpse within the first minutes following death. They are usually followed by flesh flies
(Sarcophagidae) and houseflies (Muscidae). The importance of putrefactive sulfur-based compounds
(e.g., dimethyl trisulfide, dimethyl disulfide) in the attraction of blowflies was confirmed in various
studies [17–20]. Dipterans are not alone on the corpse. They are quickly joined by coleopterans.
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However, coleopterans are more likely to arrive on a corpse during the later stages of decomposition:
active decay, advanced decay, and dry remains [16,21–23]. Through these stages, the corpse dries
more and more. As a consequence, dry protein-rich organic matter (e.g., skin and tissues) are most
abundant and are known to be the favorite feeding source for coleopterans, such as Dermestidae [23–25].
The number of chemo-ecological studies investigating coleopteran species is relatively low compared
with those on blowflies, and among them, Silphidae are the most studied [15]. Silphidae (e.g.,
Thanatophilus sinuatus) have sensitive chemosensors located on their antennae adapted to detect
cadaveric organic compounds [26,27], and both males and females respond behaviorally to polysulfide
compounds, such as dimethyl disulfide [28,29]. Dermestidae have received very limited attention.
However, it has been documented that Dermestes maculatus use saponificated triacyl glycerides and
long-chained fatty acids to locate a cadaver, including benzylbutyrate [15,30,31]. Males D. maculatus
arrive on a corpse before females [30]. Females are then attracted by a combination of cadaveric
volatiles and possibly the odor emitted by males [30]. However, Dermestidae can also be found
on an early decay cadaver, suggesting their ability to detect cadaveric VOCs associated with early
stages [23,32,33].

In the present research, we aimed at evaluating the ability of Dermestes frischii (Coleoptera:
Dermestidae) to perceive and forage for a cadaver using the odor associated with all stages of
decomposition. To the author best knowledge, this is the first study to investigate the olfaction-based
mechanisms underlying the interactions between D. frischii and a cadaver.

2. Materials and Methods

2.1. Insect Rearing

D. frischii were mass-reared in a sealed plastic box (50 × 30 × 40 cm) containing wood chips and
polystyrene. The box was permanently placed in an incubator, in the dark, at 30.0 ± 0.1 ◦C and at
controlled humidity (40 ± 1%) [12]. They were fed twice a month with a dead rat which was used as
oviposition site and food source for the larvae [12]. Lucilia sericata Meigen (Diptera: Calliphoridae)
were purchased as larvae in a fishery (Lacroix Pêche, Perwez, Belgium). They were placed in a group
of 100 individuals in a Petri dish (d = 20 cm) at 23 ± 1 ◦C under a 8:16 h light:dark photoperiod.
They were daily fed with pig liver until pupation [34]. Pupae were collected and placed in a net cage
(30 × 30 × 30 cm) until emergence. Adults were sexed and placed separately in similar net cages.

2.2. Rat Decomposition

Four male laboratory rats (408.05 ± 30.15 g) (Rattus norvegicus, Berkenhout, 1769) were raised and
euthanized at the Faculty of Veterinary Medicine of the University of Liège (ethic agreement n◦18-2021),
by CO2 asphyxia, before being frozen until the start of the experiment. Each rat was defrosted in a hot
water bath (≈ 40 ◦C) and let to decompose inside 30-L glass cylindrical tanks. In order to mimic natural
decomposition, five couples of newly emerged L. sericata were introduced into all-glass tanks [12].
Water and sugar were also added in each tank to ensure the survival of adult flies. A fifth tank was
also set up as a control, under the same conditions but containing no rat. Temperature and relative
humidity were measured using Data logger® sensors (Lutron®, Taipei, Taiwan).

2.3. Odor Collection and Analysis

In order to collect the VOCs released during the different decomposition stages, sterile gauzes
(n = 90 per tank) (1/3, 5 × 5 cm; Stella®; Lohmann & Rausher s.a.; Liège-Rocourt; Belgium) were
suspended using a fishing line in the headspace of each tank, as suggested in previous reports [35,36].
The decomposition stage (i.e., fresh, bloated, active and advanced decay) of each rat was evaluated
daily [10]. At the start of each decomposition stage, new gauzes were placed for 24 h at a distance
of 10 cm from the cadaver, before being removed and stored in sealed glass Petri dishes (d = 20 cm)
placed at −20 ◦C.
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In order to confirm that the four groups of sterile gauzes are carrying contrasted blends of
cadaveric VOCs, half a gauze was directly inserted in an empty VOC sampling tube (length 8.9 cm;
external diameter 0.64 cm; Markes international®; Llantrisant; UK) for gas chromatography analyses
(Shimadzu; Kyoto; Japan). VOCs were thermodesorbed at 280 ◦C during eight minutes, before being
cryofocused by Peltier effect at −20 ◦C, and heated at 280 ◦C to be injected on a capillary column (5%
diphenyl; 30 m × 0.25 mm I.D.; film thickness 0.25 µmm) (Filter service®; Eupen; Belgium). The gas
chromatograph setup, temperature program, quantification and identification methodology were
previously described in Martin et al., 2019 [12].

2.4. Electroantennography

Electroantennography assays were performed to compare the ability of D. frischii to discriminate
the VOC blend from each decomposition stage, by measuring the total antennal response to each
blend. The setup used was completely described in Verheggen et al. (2008) [37]. Glass electrodes were
shaped to fit Coleoptera antennae [29,38,39]. The head of each insect was cut off from the entire body
and connected to the ground electrode, while the extremities of both antennae were placed in contact
with the working electrode. The electrical responses of ten males and ten females were recorded.
Six stimulations were performed in random order on each antenna, separated by 30 s: Each antenna
was exposed to the VOCs of the four decomposition stages (provided by a 0.25 × 0.5 cm piece of
sterile gauze) as well as to a positive and negative control. The positive control consisted of 110 ng of
dimethyl disulfide (purity > 99%; Sigma-Aldrich®; Saint-Louis, MO, USA) placed on a piece of sterile
gauze. The negative control was a piece of gauze taken from the control tank.

2.5. Behavioral Assays

The bioassays were performed using a glass cylindrical olfactometer (32.0 cm long; 3.6 cm
internal diameter) (Figure 1) [40,41]. The central opening (GL14) of the olfactometer allowed a
single insect to be introduced. One additional opening was located at both ends of the olfactometer,
connected with beakers containing a piece of gauze (0.25 cm2). Each piece of gauze was used only
once. Parafilm covered both beakers to concentrate the odor into the olfactometer. The odor of each
decomposition stage was tested against a control (clean gauze). The positions of the control and the
odor-impregnated gauzes were randomly assigned. Before being introduced in the olfactometer, each
insect (n = 90 males and 90 females for each decomposition stage) was placed on the ice for 30 s,
to reduce escape and stress effects. The insect was allowed to move for 30 min in the olfactometer.
Ten olfactometers were used at the same time. All behavioral tests were performed in the dark to avoid
light bias. Each individual was tested once. Between each bioassay, the olfactometers were cleaned
with pentane (purity = 99.8%; Sigma-Aldrich®; Saint-Louis, MO, USA).

2.6. Statistical Analysis

All the results were statistically processed using RStudio® software (3.6.1 version). Behavioral
data were analyzed with a generalized linear mixed model (GLMM) (function “glmer”, R-package
“lmertest”) [42] to evaluate the effect from two random factors: sets of trials and rats. Since these effects
were not significant, a simple generalized linear model (GLM) was used (function “glm”, R-package
“lme4”) to assess the impact of sex and stage of decomposition. In order to highlight differences
between the odor profiles of the different stages of decomposition, a principal component analysis
(PCA) followed by a multivariate analysis by permutation test (PERMANOVA) were performed.
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Figure 1. The dual choice olfactometer used to assess the preferences of Dermestes frischii for the volatile
cues associated with each decomposition stage.

3. Results

The PERMANOVA analysis shows that the volatile compositions of the sterile gauzes associated
with each decomposition stage were statistically different (F3,12 = 3.648; p = 0.001). This conclusion is
displayed by the PCA (Figure 2). Because of the specific method used to trap the volatile compounds
(i.e., impregnation of sterile gauze), many VOCs were identified under the limit of quantification.
Carboxylic acids (e.g., propionic acid, butanoic acid, acetic acid) and amines (e.g., Pyrazine, tetramethyl)
were specifically identified during the advanced decay stage. Indole was only detected during the
active stage. The bloated stage was characterized by alcohol (e.g., ethanol) and alkanes (e.g., eicosane).
Alkanes were also detected during the fresh stage.

Male antennae produced different electrical responses to each of the four stages of decomposition
(F4,36 = 8.262; p < 0.001). With the exception of the fresh stage, the smell of all decomposition
stages elicited electrical responses different from the control (fresh: t36 = −1.725; p = 0.093; bloated:
t36 = −2.415; p = 0.021; active decay: t36 = −4.140; p < 0.001 and advanced decay: t36 = −5.175;
p < 0.001) (Figure 3). Female antennae did elicit response only for the advanced stage of decomposition
(t36 = −2.618; p = 0.013) but not for the other stages (fresh: t36 = −1.891; p = 0.067; bloated: t36 = −1.164;
p = 0.252; active decay: t36 = −1.309; p = 0.199) (Figure 3).

None of the random factors (i.e., rat used for VOCs collection and batch of bioassays) impacted
beetles’ behavioral responses. Since males and females did not exhibit the same behavioral responses
(F1,715 = 8.562; p = 0.003), they were analyzed separately (Figure 4). Males responded to the VOCs
associated with a cadaver under active (p = 0.050) and advanced decay (p = 0.001) decomposition, but
did not respond to earlier decomposition stages including fresh (p = 0.673) and bloated (p = 0.293).
Females were not attracted to the volatile cues associated with any decomposition stage (fresh: p = 0.093;
bloated: p = 0.883; active decay: p = 0.883; advanced: p = 0.673).
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Figure 2. Principal component analysis displaying the contrasted composition of the cadaveric COVs
collected from each stage of decomposition.

Figure 3. Mean electrophysiological response of male (dark grey) and female (light grey) antennae
towards the scent of the different stages of decomposition (µV ± SD). *** p < 0.001; ** p < 0.01; * p < 0.05;
NS Not Significant.
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Figure 4. Female and male behavioral responses to the volatile cues associated with each decomposition
stage. Dark grey areas in pie charts display proportions of responding individuals. *** p < 0.001; ** p <
0.01; * p < 0.05; NS Not Significant.

4. Discussion

The main objective of the present study was to evaluate the ability of D. frischii to perceive and
respond to the volatile compounds associated with the different stages of decomposition of a cadaver.
It aimed at confirming a common observation: necrophagous beetles are more likely to colonize a
corpse during the advanced decay stage [43–48].

The electrophysiological experiment revealed differences in the ability of the olfactory apparatus
of females and males to perceive the chemical cues released during the entire decomposition process.
Unfortunately, really poor information is available on the structural characterization of the diversity of
sensilla in this species. Such data may explain why females perceive the chemical compounds released
during the advanced decay stage, while males perceive the smell of a cadaver at the earliest stages of
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decomposition. Males and females in the species Thanatophilus sinuatus Fabricius, a necrophagous
beetle belonging to the Silphidae family, were already shown to have different abilities to perceive
cadaveric compounds [29]. However, here also, the structural characterization of the antennae was
not performed.

We wanted to have sterile compresses impregnated with cadaveric odors to be able to carry out
electrophysiological and behavioral assays. This method of volatile capture is, however, not adapted
to perform a fine screening and quantification of the volatile organic compounds released by dead rats.
As a consequence, many VOCs were identified but were found to be under the limit of quantification.
Based on the quantifiable compounds, all decomposition stages were shown to have distinct volatile
signature, confirming many previous reports [12,21].

The behavioral trials showed that even if males can detect compounds from the early stages of
decomposition, they are only attracted by a cadaver under active and advanced decay stages. On the
other hand, even if females perceive cadaveric VOCs from the advanced stage, they are not attracted
by this stage. These information confirm the common observation that necrophagous coleopterans
prefer colonizing advanced decay corpses [43–48].

Our behavioral and electrophysiological data confirm previous field observations stating that
males are the first to colonize a corpse. One could raise the hypothesis that females do not respond
to the smell of a cadaver unless they detect the presence of males. Upon encounter with a cadaver,
males might be releasing pheromones that attract females and possibly reinforcing males’ attraction.
This pheromonal cue could act in synergy with cadaver VOCs, to inform females about the presence
of a mating site where they can both reproduce or lay their eggs. Such a chemical communication
has been shown in Nicrophorus vespilloides Herbst (Coleoptera: Silphidae) and D. maculatus [27,30,49].
The existence and composition of such a pheromone is yet to be characterized [27,50]. Futures studies
using two-dimensional gas chromatography could help to detect the pheromonal compounds in such
a complex blend of volatile molecules [51].

While D. frischii males perceive the volatiles from a cadaver at any decomposition stage, they do
not behaviorally respond to each of them. How D. frischii differentiates between the early stages and
the latter stages remains to be solved. Some specific chemical compounds might be used to evaluate
the decomposition stage of the cadaver. While some compounds are continuously released during the
entire decomposition process, some specific compounds are associated with a specific decomposition
stage [10,15]. Sulfured compounds (such as dimethyl trisulfide and dimethyl disulfide) are released
during the entire process of decomposition and are probably responsible for the electrical depolarization
recorded from male and female antennae [10,12,52,53]. Indeed, several other necrophagous coleopterans
are able to perceive these compounds. For instance, Silphidae commonly use these compounds to
target a potential corpse to colonize [15,27,28,54]. However, since D. frischii is attracted by specific
decomposition stages and not all of them. This might be explained by the perception of additional
compounds and/or by the ability of D. frischii to perceive variation in the relative concentrations of each
volatile compound. Some chemicals may be attractive or repellent to necrophagous insects, according
to their concentration [15,29]. Also, some necrophagous coleopterans respond to saponificated long
chain fatty acids such as benzylbutyrate (e.g., D. maculatus) [30]. These compounds are released during
the later stages of decomposition and could act in synergy to inform D. frischii to the best moment to
colonize the corpse [10,15].

5. Conclusions

D. frischii male and female antennae elicited strong electrical depolarization during exposure
to the smell of a cadaver at the advanced decay stage. While female D. frischii were not attracted to
the smell of a cadaver (in any stage of decomposition), males were attracted by the smell associated
with the active and advanced decay stages. These results suggest that specific VOCs released by a
decaying body guide necrophagous coleopterans to their feeding site. These results lend support to
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the hypothesis that females do not respond to the smell of a cadaver unless they detect the presence of
males, releasing either sex or aggregation pheromones.
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