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Abstract

In this paper, a new computational method for the purpose of multimodal vibration mitigation

using multiple tuned mass dampers is proposed. Classically, the minimization of the maximum

amplitude is carried out using direct H∞ optimization. However, as shall be shown in the paper,

this approach is prone to being trapped in local minima, in view of the nonsmooth character of

the problem at hand. This is why this paper presents an original alternative to this approach

through norm-homotopy optimization. This approach, combined with an efficient technique to

compute the structural response, is shown to outperform direct H∞ optimization in terms of speed

and performance. Essentially, the outcome of the algorithm leads to the concept of all-equal-peak

design for which all the controlled peaks are equal in amplitude. This unique design is new with

respect to the existing body of knowledge.

Keywords: multiple tuned mass damper, multimodal vibration absorber, equal-peak method,

all-equal-peak design, Sherman-Morrison-Woodbury formula

1. Introduction

Tall, slender and light structures are more and more used in various engineering fields for

performance, compliance with regulations and/or esthetic reasons. An inconvenient feature of

these structures is their proneness to exhibit lightly-damped, high-amplitude resonances. Such

resonances may shorten the lifetime of these structures and even render them dangerous for human

use. A possible cure against this is to attach a tuned mass damper (TMD) to the structure in the

attempt to mitigate its vibratory amplitude.
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The TMD was originally proposed by Frahm [1] as a spring-mass device for suppressing a specific

resonance frequency. Ormondroyd and Den Hartog [2] added a damper to this device and tuned

the resulting absorber based on fixed points of the compliance (i.e., the transfer function between a

displacement of interest and the external forcing amplitude) of the controlled structure. The fixed

points, independent on absorber damping, were chosen to be equal in amplitude. Brock [3] proposed

a particular value of the absorber damping coefficient such that the two fixed points simultaneously

be approximate maxima of the compliance. Those developments, gathered in Den Hartog’s book [4],

laid down the foundations of the equal-peak design because the controlled compliance exhibits

two peaks of (approximately) equal amplitude, usually much lower than that of the uncontrolled

structure. Since then, there has been a large number of tuning formulas varying with the loading

conditions and objectives at hand. For instance, Warburton [5] who proposed an unified approach

for the fixed-point method gave optimal parameters for several cases. Nishihara and Asami [6]

found the exact analytical solution to the H∞-optimization problem by minimizing the maximum

value of the compliance under the assumption that the latter exhibits two peaks of equal amplitude

(i.e., an exact equal-peak design).

TMDs are used in a wide range of civil and mechanical engineering applications. Reviews on

the subject can be found in the works of Soto and Adeli [7] and Elias and Matsagar [8]. However,

being tuned to a particular frequency, the TMD may feature a lack of robustness when the targeted

resonance frequency is uncertain or varies with time. A solution to this issue can be to increase

the mass of the absorber. As this is often a limiting factor, non-conventional TMDs can be used,

such as proposed by De Angelis et al [9], wherein masses already present on the structure having

structural or architectural functions are additionally used as tuned masses. Alternatively, an inerter

can be added to TMDs in order to increase their inertance while increasing their actual mass to a

lesser extent, see, e.g., De Domenico and Ricciardi [10]. A recent approach proposed by Dell’Elce et

al [11] tunes the absorber parameters according to the maximum uncertainty on the host structure.

Structural nonlinearities may also detune the absorber, but their effect can be countered effectively

using a nonlinear tuned vibration absorber [12]. Alternatively, a number of small TMDs tuned over

a frequency band centered around the resonance frequency of interest can be robust to variations

in that frequency, but also more efficient than a single TMD in the sense that it yields a smaller

minimum of maximum amplification. The beneficial effects of a TMD array were first discovered by

2



Snowdon [13] and Iwanami and Seto [14], but the true potential of multiple tuned mass dampers

(MTMDs) was unlocked in the works of Igusa and Xu [15], Yamaguchi and Harpornchai [16] and

Abe and Fujino [17], among others.

MTMD can also target multiple resonances by assigning one or several TMDs per mode to be

controlled. Early works about multimodal vibration mitigation used bars [18] and beams [19–21]

as host structures. Rana and Soong [22] applied this approach to spring-mass systems and, as

their discussion reveals, this second use of MTMD received less attention than the first one. In

those studies, the absorbers were tuned such that the controlled compliance displays two pairs of

equal peaks in place of the first two resonances. Clark [23] demonstrated the MTMD efficiency

in reducing the maximum acceleration experienced at the top of a building during an earthquake.

Yau and Yang [24] robustly controlled two modes of cable-stayed bridges traveled by high-speed

trains, by using one TMD array per mode to be controlled.

Closed-form expressions for the absorber parameters are usually available when the absorber

is placed on undamped single-degree-of-freedom oscillators. They can also be used for multiple-

degree-of-freedom structures provided that their resonance frequencies are widely spaced. Real-life

structures always violate these assumptions to some extent. Krenk and Høgsberg [25] proposed

to use quasi-static and quasi-dynamic background correction terms to account for non-resonant

modes. Several numerical optimization techniques were used to tune TMD and MTMD parameters;

examples include parameters space exploration [26, 27], gradient-based optimization [5, 28–35],

metaheuristic optimization (such as particle swarm optimization [36, 37], genetic algorithms [38–

40], harmony search [41–43], ant colony optimization [44, 45], simulated annealing [46] and coral

reefs optimization [47]) and hybrid optimization algorithms, using both metaheuristic and gradient-

based optimizations [48]. The aforementioned optimization procedures suffer from at least one of

the following limitations. First, some of them neglect the effect of damping and/or other non-

resonant structural modes in the structure. Second, metaheuristic optimization algorithms can

be prohibitive in terms of computational cost when the number of variables to optimize becomes

large. Finally, one or several absorber parameters are often assumed to be fixed, which may lead

to a suboptimal design.

This paper proposes a novel MTMD tuning methodology for multimodal vibration mitigation

of linear structures. The developed algorithm finds the resonance peaks of the compliance and
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minimizes their amplitude simultaneously. It results in a so-called all-equal-peak design, i.e., all

the peaks of the controlled resonances are equal in amplitude. The paper is organized as follows.

In Section 2, the general principles of the tuning methodology approach and of the optimization

algorithm are introduced. Section 3 details the numerical optimization procedure. Section 4 then

illustrates the concept of all-equal-peak design with a simple spring-mass system and a simply

supported plate featuring high modal density. Finally, the conclusions of the present study are

drawn in Section 5.

2. A norm-homotopy approach for H∞ optimization

In this paper, the structure without absorbers and with Na attached absorbers is referred to as

host structure and controlled structure, respectively. In the presence of harmonic forcing, the vi-

bratory amplitude of a single-degree-of-freedom host structure is classically mitigated through the

minimization of the H∞ norm of a given transfer function, i.e., its maximum amplitude, resulting in

the equal-peak design for which there exist well-established analytical tuning rules, e.g., [6]. How-

ever, multiple-degree-of-freedom host structures have more complicated transfer functions, which

rules out the possibility of tuning the absorbers analytically. Resorting to numerical optimization

for minimizing the H∞ norm is then necessary.

When considering multiple resonances, one inherent difficulty with the H∞ norm is that it

considers only the resonance peak exhibiting the largest amplitude, i.e., it disregards the other

controlled peaks. Their amplitude is thus minimized later in the optimization process when they

themselves feature the largest amplitude. This typically results in a nonsmooth cost function which

may lead to a premature termination of the algorithm. The alternative strategy proposed in this

paper relies on a norm-homotopy optimization during which problems of increasing complexity

are solved sequentially using the previously-obtained parameters as an initial guess for the next

problem. Specifically, the p-norm of the vector containing the controlled peak amplitudes, i.e.,

‖x‖p = (
∑n

i=1 |xi|p)
1/p, is minimized, and p is sequentially increased so as to approach the H∞

norm, as schematically presented in Fig. 1. A low value of p puts more weight on the resonance

peaks with lower amplitudes and makes the optimization problem less stiff, whereas the subsequent

increase in p ensures that resonances with large amplitudes are penalized enough. This approach

does not theoretically guarantee to find the global minimum of the H∞ norm, but it enables a

significant improvement of the local optimum found by a direct H∞ optimization, as will be shown
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Figure 1: Conceptual flowchart of the proposed norm-homotopy optimization algorithm.

A typical output of the norm-homotopy optimization is shown in Fig. 2 for the mitigation of

the resonances of a two-degree-of-freedom system (studied more in depth in Section 4.1). Clearly,

the algorithm is able to enforce the same amplitude for the four resonances. Existing algorithms

in the literature, see, e.g., [21], can also enforce equal peaks for each resonance, but the amplitudes

associated with each pair of peaks are not equal, and the transfer function thus exhibits a higher

H∞ norm. This all-equal-peak design appears as a generalization to multiple modes of the equal-

peak design, and can only be achieved through numerical optimization, given the complexity of

the problem at hand.

3. The proposed optimization algorithm

The objective is to optimize the parameters of the different absorbers (mass, damping and

stiffness) gathered in a vector ξ. A tuning based on the well-established single-degree-of-freedom

formulas from the literature provides an initial guess ξ0. The resulting performance is usually not

satisfactory, and the parameters have to be optimized. As discussed in Section 2 and illustrated in
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Figure 2: MTMD applied to a two-degree-of-freedom system: uncontrolled structure (—), solution from [21] (—)
and norm-homotopy solution (—).

Figure 1, the proposed algorithm is based on successive optimizations of the p-norm of the vector

containing the resonance peaks amplitude to avoid a nonsmooth objective function. The algorithm

relies extensively on evaluations of the compliance, which may become computationally expensive

for structures with a large number of degrees of freedom. To cope with this issue the dynamics of

the controlled structure are formulated using the Sherman-Morrison-Woodbury formula [49].

3.1. Initial tuning

A MTMD with one TMD per targeted mode is considered herein, and we assume that the nth

absorber targets the nth resonant mode of the host structure. It may be shown (see Appendix

A or [5]) that, if one neglects non-resonant modes, the structure acts from the absorber point of

view as an equivalent one-degree-of-freedom mechanical oscillator with the following modal mass,

damping and stiffness:

mn =
1

φ2a,n
, cn = 2ωnmnζn, kn = ω2

nmn (1)

where φa,n is the nth mass-normalized mode shape of the host structure at the location where the

absorber is attached, ωn is the resonance frequency, and ζn is the modal damping ratio. Classical

formulas from the literature can then be used for absorber tuning ([4–6] or even [50] if damping in

the host structure is taken into account). In this paper, the formulas from Nishihara and Asami [6]
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are used. Since they are exact in the undamped single-degree-of-freedom case, they are expected

to be a reasonably accurate initial guess for a multiple-degree-of-freedom case. From Eq. (1) the

modal mass ratio for an absorber of mass ma,n is defined as

µa,n =
ma,n

mn
, (2)

and the absorber stiffness and damping are computed as

ka,n =
8

(1 + µa,n)2
16 + 23µa,n + 9µ2a,n + 2(2 + µa,n)

√
4 + 3µa,n

3(64 + 80µa,n + 27µ2a,n)
ω2
nma,n (3)

ca,n =
1

2

√
8 + 9µa,n − 4

√
4 + 3µa,n

1 + µa,n

√
ka,nma,n, (4)

respectively. With these formulas, the maxima of the compliance are expected to be near the two

resonance frequencies ωn1 and ωn2 defined by

ωn1,n2 =
1

1 + µa,n

(
1±

√
µa,n

2 + µa,n

)
ωn. (5)

If maximum efficiency is sought, the modal mass ratio should be maximized [6], which, according

to Eq. (2), is equivalent to minimizing the modal mass mn. Going back to Eq. (1), the modal mass

is minimized if the absorber is placed at a maximum of modal amplitude of the nth mode in the

host structure. This result is by no means new; further considerations are given in Petit et al [51]

when either this location is not acceptable for attaching an absorber, or when the activity of the

neighboring modes is too prominent.

This procedure can be repeated for each absorber to yield an initial design for the attached

MTMD. For illustration, a damped single-degree-of-freedom host structure controlled by a single

TMD, is studied through Section 3. Its purpose is to demonstrate the working principles of the

algorithm with a simple example. The parameters of the host structure are m0 = 1 kg, k0 =

1 N m−1 and c0 = 0.02 kg s−1, giving rise to 1% modal damping. The mass ratio between

the absorber and the host structure is 5%. Fig. 3 shows that the peaks of the compliance are

unbalanced. Neither the fixed-point tuning [4] nor the exact H∞ tuning [6] yield balanced peaks

because of the presence of damping in the host. Unlike the H2 norm optimization case, there is no

closed-form solution to this problem [50]. The initial tuning is thus to be improved.
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Figure 3: Compliance of the damped single-degree-of-freedom system: uncontrolled (—) and controlled (—) struc-
ture.

3.2. Dynamics of a structure with multiple tuned mass dampers

3.2.1. Dynamics of the uncontrolled structure

The dynamics of the discretized host structure is governed by the set of N coupled linear

second-order ordinary differential equations (ODEs)

M0ẍ + C0ẋ + K0x = f , (6)

where M0, C0 and K0 are the structural mass, damping and stiffness matrices, respectively, x is

the vector of generalized coordinates and f is the vector of conjugated generalized forces. Subscript

0 refers to the host structure, and an upper dot (˙) denotes time derivation. Assuming harmonic

forcing at angular frequency ω, the Fourier transform of Eq. (6) is given by(
−ω2M0 + jωC0 + K0

)
X(ω) = H0(ω)X(ω) = F(ω). (7)

j is the unit imaginary number (i.e., j2 = −1), X and F are the Fourier transforms of x and

f , respectively, and H0 is the dynamic stiffness matrix. Because the host structure is in general

lightly damped, the assumption of proportional damping is made. Using a modal expansion of the

displacement and projecting the equations of motion onto the modal basis, the following inverse

relation can be derived [52]:

X(ω) = H−10 (ω)F = Φ0

(
−ω2I + 2jωZ0Ω0 + Ω2

0

)−1
ΦT

0 F(ω), (8)
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where Φ0 is the matrix of the mass-normalized mode shapes, I is the identity matrix, Ω0 is

a diagonal matrix containing the undamped resonance frequencies of the structure and Z0 is a

diagonal matrix containing the associated modal damping coefficients. The superscript T denotes

matrix transposition. In the remainder of this article, the modal expansion given by Eq. (8) is

assumed to be known, so that H−10 is known as well.

3.2.2. Dynamics of the controlled structure

The dynamic equations of the controlled structure with Na absorbers are given by the set of

N +Na ODEs  M0 0

0 Ma

 ẍ

ẍa

+

 C0 + BCaB
T −BCa

−CaB
T Ca

 ẋ

ẋa

+ K0 + BKaB
T −BKa

−KaB
T Ka

 x

xa

 =

 f

0

 , (9)

where xa is the vector of generalized coordinates associated with the absorbers, B is a localization

matrix collecting every localization vector bn associated with the nth absorber

B = [b1 , · · · , bNa ] , (10)

and Ma, Ca and Ka are diagonal matrices containing TMD parameters

Ma =


ma,1

. . .

ma,Na

 , Ca =


ca,1

. . .

ca,Na

 , Ka =


ka,1

. . .

ka,Na

 .
(11)

Expressing the equations of motion in the frequency domain, it is possible to derive the com-

pliance matrix in a manner similar to Eqs. (7)–(8). The burden associated with computing the

compliance may however be alleviated by the Sherman-Morrison-Woodbury (SMW) formula [49]

(A + UQV)−1 = A−1 −A−1U
(
Q−1 + VA−1U

)−1
VA−1. (12)

for invertible matrices A and Q. The principles of this alleviation were proposed in previous works.

Ozer and Royston [53] used the Sherman-Morrison formula [54] as a simplifying numerical tool to

tune the parameters of one absorber. Štepánekand Máca [35] recently used that formula recursively

to adapt it to multiple absorbers. Another generalization to multiple lumped elements based on
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the SMW formula was also proposed by Cha [55], but no attempt was made to use the formula to

tune the absorbers.

The Fourier transform of the second line of Eq. (9) yields

Xa(ω) =
(
−ω2Ma + jωCa + Ka

)−1
(jωCa + Ka) BTX(ω). (13)

Inserting this relation back into the Fourier transform of the first line of Eq. (9), one gets

(
H0(ω) + B

{
jωCa + Ka − (jωCa + Ka)

(
−ω2Ma + jωCa + Ka

)−1
(jωCa + Ka)

}
BT
)

X(ω)

= F(ω). (14)

Carrying out simplifications on the diagonal matrices related to the absorbers, the dynamic stiffness

matrix of the controlled structure Hc can be expressed as

Hc(ω) = H0(ω) + BHA(ω)BT . (15)

where HA is a diagonal matrix given by

HA(ω) = −ω2 (jωCa + Ka)
(
−ω2Ma + jωCa + Ka

)−1
Ma (16)

Thus, the dynamic stiffness matrix of the controlled structure is equal to the sum of the dynamic

stiffness matrix of the host structure and a rank-Na update representing the feedback action of

the absorbers on the host structure. Consequently, the SMW formula (Eq. (12)) can be used to

compute the compliance of the controlled structure as

H−1c (ω) = H−10 (ω)−H−10 (ω)B
(
H−1A (ω) + BTH−10 (ω)B

)−1
BTH−10 (ω) (17)

Eq. (17) can be subject to singularity issues in three cases. The first one is ω = 0, because HA(0)

is a zero matrix. In that case, Eq. (15) simply indicates that H−1c (0) = H−10 (0). The second case

occurs if any ma,n is zero, or if any pair (ca,n, ka,n) is zero. These cases correspond to an absence of

absorber or to an unattached absorber mass, which is irrelevant in the design problem. Finally, the

SMW formula requires H0 to be non-singular. This condition might not be met at the resonance

frequencies of an undamped host structure. In this case, a small amount of damping may be added

to resolve this numerical issue while still representing faithfully the dynamics of the host.

The SMW formula reduces the cost of computing the dynamic stiffness matrix of the controlled

structure. Indeed, instead of inverting a system of equations of size (N +Na)× (N +Na) (Eq. (9)),
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the SMW formula requires an inversion of a matrix of size Na × Na (Eq. (17)) when H−10 is

known. Accounting for the additional matrix products, the theoretical complexity of computing

the controlled FRF then becomes O(N2Na +N3
a ) instead of O((N +Na)3), which is advantageous

when N � Na.

Finally, the compliance at a given displacement located by a vector wu, is

h(ω) = wT
u H−1c (ω)wf , (18)

where wf is a vector describing the spatial distribution of the forcing vector F, and H−1c is evaluated

using Eq. (17). Alternatively, the accelerance (i.e., the transfer function between an acceleration

of interest and the external forcing amplitude) may be considered simply as

ha(ω) = −ω2h(ω) (19)

3.3. Peak finding

The resonance frequencies occur at the maximum of the compliance, i.e.,

ωs = arg min
ω∈R

s1(ω) = arg min
ω∈R

(
−|h(ω)|2

)
, (20)

where the square modulus of the complex compliance is used to make the function s1 smooth with

respect to ω. A necessary condition to satisfy this relation is

ωs :
∂s1(ω)

∂ω

∣∣∣∣
ω=ωs

= −
(
∂h∗(ω)

∂ω
h(ω) + h∗(ω)

∂h(ω)

∂ω

)∣∣∣∣
ω=ωs

= 0, (21)

where the superscript ∗ denotes a complex conjugation. This equation can be solved numerically

starting from an initial guess (e.g. Eq. (5)) using either root-finding algorithms (paying attention

to the fact that a root might not correspond to a maximum of the compliance) or linesearch

algorithms [56]. This procedure yields a set of frequencies ωi and associated amplitudes noted

|h(jωi)| = |h|i with i = 1, ..., 2Na, assuming there are two peaks per controlled mode, as in the

baseline case [6].

A similar procedure for the accelerance consists in finding the roots of

ωs :
∂s2(ω)

∂ω

∣∣∣∣
ω=ωs

= −4ω3 |h(jω)|2 − ω4

(
∂h∗(ω)

∂ω
h(ω) + h∗(ω)

∂h(ω)

∂ω

)∣∣∣∣
ω=ωs

= 0, (22)
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3.4. p-norm optimization

The goal of the optimization algorithm is to find the optimal mass, damping and stiffness of

the absorbers through the nonlinear programming problem

minimize
ξ

fp(ξ)

subject to

Na∑
n=1

ma,n −mMax ≤ 0

, (23)

where ξ is the vector containing the absorber parameters, and fp is the p-norm of the vector

containing the squared amplitudes of the controlled resonance peaks

fp = χ p

√√√√2Na∑
i=1

(
1

χ
|h|2i

)p

, (24)

The sum considers 2Na peaks by reference to the baseline single-mode case [6]. The user can

nonetheless consider a different number of peaks, if an initial guess for the frequency of each of

these peaks is given. χ is a normalizing factor, which does not affect the norm and avoids bad

numerical conditioning for large p. A typical choice for χ is

χ = max
i∈[1,2Na]

|h|2i (25)

For practical reasons, the total mass of the absorbers should not exceed a maximum mMax, which

is translated by the addition of a linear inequality constraint in problem (23). It was generally

observed in the literature (e.g. [6, 36]), and by the authors as well, that the mass constraint is

usually active in the optimum design. The convergence of the algorithm may thus be accelerated

when an equality constraint is imposed.

The gradients of the p-norm are computed analytically in the proposed algorithm. From

Eq. (24), the lth element of the gradient of the p-norm with respect to the absorbers parame-

ters is given by

∂fp
∂ξl

=

(
2Na∑
i=1

(
1

χ
|h|2i
)p−1(∂h∗i

∂ξl
hi + h∗i

∂hi
∂ξl

))(2Na∑
i=1

(
1

χ
|h|2i
)p
) 1

p
−1

. (26)

There is also an implicit dependency of the resonance frequencies on the absorbers parameters, but

it can be shown using the chain rule and the necessary condition for resonance frequencies (Eq. (21))
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that this implicit dependency does not affect the gradient. The derivatives of the compliance with

respect to ξl are computed thanks to Eq. (17) and (18) as

∂hi
∂ξl

= wT
u G(ωi)

∂H−1A (ωi)

∂ξl
GT (ωi)wf (27)

where ωi are the solutions of Eq. (21) or Eq. (22), and

G(ωi) = H−10 (ωi)B
(
H−1A (ωi) + BTH−10 (ωi)B

)−1
. (28)

Despite the rather complicated structure of Eqs. (27) and (28), computing the gradient of the cost

function is not cumbersome for two reasons. First, each element in Eq. (28) is known from the

computation of |h|i. Second, the derivative of H−1A with respect to ξl can be computed analytically

and contains only one non-zero entry. Assuming ξl is a parameter associated with the nth absorber,

the corresponding entry is given by

(
∂H−1A (ωi)

∂ξl

)
n,n

=



1

m2
a,nω

2
i

if ξl = ma,n

− jωi

(ka,n + jωica,n)2
if ξl = ca,n

− 1

(ka,n + jωica,n)2
if ξl = ka,n

(29)

Hence, the gradients of the cost function are obtained analytically by plugging Eq. (29) into Eq. (27)

and then into Eq. (26). The gradients of a cost function based on the accelerance are obtained

through multiplication by ω4
i .

The result of the 1-norm optimization of the initial tuning in Fig. 3 is displayed in Fig. 4. The

algorithm has thus reduced the initial mistuning.

3.5. Norm-homotopy optimization procedure

Once the optimization has converged for a given value of p, p is then increased in order to

penalize high-amplitude peaks more strongly and approach the H∞ optimum. A heuristic scheme

for p given by the double exponential progression

p = 22
k
, k ∈ N. (30)
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Figure 4: Compliance of the damped single-degree-of-freedom system: uncontrolled structure (—), initial tuning
(—) and p-norm optimization with p = 1 (—).

is considered. The value of k starts from zero and is incremented by one after convergence. This

norm-homotopy algorithm may be terminated when no significant change is observed in the ab-

sorbers parameters and/or in the value of the p-norm.

The end result of the norm-homotopy procedure applied to the single-degree-of-freedom system

is shown in Fig. 5. The optimization was stopped when k was equal to 4 (i.e., p was equal to

65536). The peaks are now equal.

3.6. Summary

The proposed algorithm is summarized schematically in Fig. 6.

Two remarks are outlined to close this section. First, the compliance and accelerance were

used throughout this work in the cost function of the optimization algorithm, but other transfer

functions such as mobility could easily be considered as well. Second, only one input-output pair

was taken into account (through the vectors wu and wf ) for this transfer function for simplicity;

more elaborate cost functions than that given in Eq. (24) could be conceived to generalize the

approach to multiple inputs and/or outputs (see e.g. [47]).
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Figure 5: TMD on a damped single-degree-of-freedom system: uncontrolled structure (—), initial tuning (—),
p-norm optimization with p = 1 (—) and norm-homotopy optimization (—).

4. Examples

Two examples serve to demonstrate the algorithm in this section. The maximum allowable

mass for the absorbers is set to 5% of that of the host structure. The optimization problem (23)

is solved in MATLAB thanks to the fmincon routine. This routine is called for each p-norm

optimization step with an initial guess given by the optimal solution computed by the previous

p-norm optimization (except for the first optimization, where the initial guess is formed using

Equations (3) and (4)). Each time the cost function is called, the peak-finding algorithm solves

Eqs. (20)-(21) using a linesearch approach, as described in [56].

The results of the proposed approach were compared with those of a direct H∞ optimization.

The H∞ norm was computed using a standard method [57]. CPU times were also measured (the

PC on which these computations were made has a processor Intel Core i7-7820HQ CPU @ 2.90

GHz and 16 GB of RAM).

4.1. A two-degree-of-freedom host structure

The two-degree-of-freedom structure with the two attached absorbers is depicted in Fig. 7.

The parameters of the host system are listed in Table 1. The first absorber, labelled ”1” in Fig. 7,

targets the first mode whereas the second absorber targets the second mode.
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convergence?
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Figure 6: Flowchart of the norm-homotopy optimization algorithm; the dark gray area represents the peak-finding
algorithm, and the pale gray area represents the p-norm optimization algorithm.

Fig. 8 displays the compliance of the host structure for different values of k. The initial tuning

(whose associated parameters are listed in Table 2) is clearly unsatisfactory, mostly because of

the cross-influence between both absorbers. After the optimization for k = 0, almost equal peaks

16



k1,0
m1,0

k2,0
m2,0

k3,0

ma,1

ka,1

ca,1

ma,2

ka,2

ca,2

f

x

Figure 7: Schematic representation of the two-degree-of-freedom structure with the two attached absorbers.

Parameter m1,0 (kg) m2,0 (kg) k1,0 (N m−1) k2,0 (N m−1) k3,0 (N m−1)

Value 1 1 1 1 1

Table 1: Parameters of the two-degree-of-freedom host structure.

around the two resonances are retrieved, but the amplitude of the peaks around the first mode is

still significantly larger than that around the second mode. Increasing k up to 4 eventually leads to

the so-called all-equal-peak design. The optimal parameters of the absorbers are listed in Table 3.

In this case, the results were identical to those given by a direct H∞ optimization.

Parameter ma (kg) ca (N s m−1) ka (N m−1)

Absorber 1 0.5mMax 0.0093 0.0476
Absorber 2 0.5mMax 0.0162 0.1428

Table 2: Initial parameters of the absorbers in Fig. 7 for compliance optimization.

Parameter ma (kg) ca (N s m−1) ka (N m−1)

Absorber 1 0.94mMax 0.0237 0.0840
Absorber 2 0.06mMax 0.0007 0.0183

Table 3: Optimal parameters of the absorbers in Fig. 7 for compliance optimization.

4.1.1. Computational cost

To make a first assessment of the approach proposed in this paper, three different optimization

approaches are compared, namely the norm-homotopy optimization using the SMW formula, the

norm-homotopy optimization without SMW formula and a direct H∞ optimization. The three
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Figure 8: MTMD on a two-degree-of-freedom system: initial tuning (—), solution for k = 0 (—), solution for k = 1
(-·-), solution for k = 2 (—), solution for k = 3 (-·-), solution for k = 4 (—), and norm-homotopy optimal solution
(-·-).

approaches yielded identical optimal results, and are compared here in terms of runtimes. Table 4

gives the CPU times (averaged over 50 optimizations of each type). It indicates that the SMW

formula offers a slight speedup in spite of the low number of variables. A direct H∞ optimization

is nonetheless the fastest approach in this case.

Case tf tTot t0 t1 t2 t3 t4 t5
NH, SMW 0.0027 1.4563 0.2038 0.2841 0.1792 0.2567 0.3747 0.1556

NH, no SMW 0.0035 1.8756 0.2596 0.3680 0.2404 0.3412 0.4684 0.1977
H∞ 0.0024 1.0427 / / / / / /

Table 4: CPU times (in s) of the different optimizations of two absorbers (NH stands for norm-homotopy optimization,
H∞ stands for direct H∞ optimization, tf is average time per cost function evaluation, tTot is the average total
runtime, tk is the average time spent for a p-norm optimization with a specific value of k (Equation (30)) in the NH
case).

4.1.2. Accelerance optimization

Figure 9 shows the results of a norm-homotopy optimization on the accelerance, and Table 5

gives the corresponding optimal characteristics. Again, peaks of equal amplitude are observed,

which illustrates the versatility of the approach.
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Figure 9: MTMD on a two-degree-of-freedom system: initial tuning (—), and norm-homotopy optimal solution (—).

Parameter ma (kg) ca (N s m−1) ka (N m−1)

Absorber 1 0.37mMax 0.0057 0.0342
Absorber 2 0.63mMax 0.0213 0.1720

Table 5: Optimal parameters of the absorbers in Fig. 7 for accelerance optimization.

4.2. A simply-supported aluminum plate

The second example is a homogeneous, isotropic, simply-supported rectangular plate that fea-

tures closely-spaced resonances. According to Kirchhoff-Love theory, the mode shapes and eigen-

frequencies of a plate of length a, width b and thickness h are given by

φmn(x, y) =
2√
M

sin
(mπx

a

)
sin
(nπy

b

)
ωmn =

√
D

ρh

[(mπ
a

)2
+
(nπ
b

)2] , (31)

respectively [52]. ρ is the density of the plate, M = ρabh is the mass of the plate, and D =

Eh3/(12(1 − ν2)) is the plate bending stiffness, where E and ν are Young’s modulus Poisson’s

ratio, respectively. The plate parameters are given in Table 6.

To discretize the model, the mode shapes are sampled spatially at locations (xs,ys), where

xs = [xu, xa,1, xa,2, xa,3, xa,4, xf ]T = [0.25a, 0.5a, 0.15a, 0.4a, 0.25a, 0.75a]T

ys = [yu, ya,1, ya,2, ya,3, ya,4, yf ]T = [0.25b, 0.5b, 0.4b, 0.15b, 0.75b, 0.75b]T
, (32)

and only a finite number of modes is retained, up to m = MMax = 10 and n = NMax = 10.

The mode shape matrix of the host structure and the matrix of squared resonance frequencies are
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Characteristic Value

Length a 1 m
Width b 0.7 m

Thickness h 1 mm
Young modulus E 68 GPa

Poisson ratio ν 0.36
Density ρ 2700 kg m−3

Table 6: Parameters of the simply-supported aluminum plate.

ordered such that

Φ0 = [φ11(xs,ys), φ12(xs,ys), · · · , φMMaxNMax
(xs,ys)] , (33)

Ω2
0 = diag

(
ω2
11, ..., ω

2
MMaxNMax

)
. (34)

The plate is loaded by a harmonic point force located at (xf , yf ). Three/four absorbers are

considered to mitigate the first three/four resonances, respectively. Fig. 10 depicts the geometrical

configuration. The first and fourth TMDs were placed at an antinode of the first and fifth modes,

associated to (m,n) = (1, 1) and (m,n) = (2, 2), respectively, to maximize their effect on these

modes. The second and third TMDs were placed away from the nodal lines of modes for which

n = 2 or m = 2, but not at their antinodes in order to affect higher-frequency modes as well. The

forcing and displacement measurement locations were chosen arbitrarily, away from the TMDs and

in a non-collocated fashion to contrast with the previously studied example.

To have a numerically well-conditioned problem, the compliance measured at coordinates

(xu, yu) is normalized with the static displacement xst of the structure

xst(xu, yu) =

MMax∑
m=1

NMax∑
n=1

φmn(xu, yu)φmn(xf , yf )

ω2
mn

f. (35)

4.2.1. Vibration mitigation with three absorbers

The first three modes, i.e., (m,n) = (1, 1), (2, 1) and (1, 2), are first targeted. The result of

the H∞ optimization (limiting the range of frequencies up to ω = 150 rad s−1) and the norm-

homotopy optimization are presented in Fig. 11, and Table 7 lists the parameters of the resulting

absorbers. Although it shows improvement with respect to the initial tuning, the direct H∞ norm

optimization stops somewhat prematurely, and only four peaks are equated in amplitude. With

the norm-homotopy optimization, the six peaks around the first three resonances all feature the

same amplitude, which further validates the proposed methodology.
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Figure 10: Geometry of the plate: point force location (×), displacement measurement location (◦), first TMD
location (N), second TMD location (�), third TMD location (�), fourth TMD location (F), nodal line of modes for
which m = 2 (- -) and nodal line of modes for which n = 2 (− · −).
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Figure 11: Compliance of the plate with three absorbers targeting modes (1, 1), (2, 1) and (1, 2): uncontrolled struc-
ture (—), initial tuning (—) and optimized tuning (—: direct H∞ optimization, —: norm-homotopy optimization).

Absorber number ma (kg) ca (N s m−1) ka (N m−1)

1 0.65mMax 1.1348 110.42
2 0.3mMax 0.6044 225.36
3 0.05mMax 0.0666 94.93

Table 7: Parameters of the three absorbers.

4.2.2. Vibration mitigation with four absorbers

In the previous example, the fifth mode of the plate remained largely unaffected (whereas the

fourth mode was mitigated). To improve the situation, a fourth absorber targeting this mode is

placed on the plate. Fig. 12 displays the result of the optimization processes (where a maximum

frequency of ω = 250 rad s−1 was considered when computing the H∞ norm). The direct H∞
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norm optimization only features marginal improvement compared to the initial design. The norm-

homotopy optimization obeys the all-equal-peak design and has a lower H∞ norm, in the considered

frequency range. However, we note that modes 3, 4 and 5 do not feature two peaks around their

uncontrolled resonance. Looking at the absorber parameters in Table 8 reveals that the third

absorber is in fact eliminated by the optimization algorithm (zero mass), while modes 3-5 are

controlled by an action of the three TMDs simultaneously. This result probably originates from

the fact that plates have closely-spaced frequencies, and the peak-finding algorithm described in

Section 3.3 finds the peak associated to mode 4 starting from the assumed first peak frequency of

mode 5.
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Figure 12: Compliance of the plate with four absorbers targeting modes (1, 1), (2, 1), (1, 2) and (2, 2): uncon-
trolled structure (—), initial tuning (—) and optimized tuning (—: direct H∞ optimization, —: norm-homotopy
optimization).

Absorber number ma (kg) ca (N s m−1) ka (N m−1)

1 0.56mMax 0.9074 96.0221
2 0.22mMax 0.3665 164.7649
3 1×10−7mMax 67.1701 442.2204
4 0.22mMax 1.0619 444.1343

Table 8: Parameters of the four absorbers.

An additional configuration was considered where TMDs 2 to 4 were placed on a nodal line of

mode 4, i.e., by changing their x coordinate in Eq. (32) to a/3. For this configuration, the result

featured in Fig. 13 is more in line with the expectation: each controlled mode features a pair of

peaks of equal amplitude. The associated parameters are given in Table 9. This result shows that a

significant part of the observed vibration reduction of mode 4 is due to the first TMD, but the third
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TMD also played a role in reducing the amplitude of this mode. It also highlights the importance

of the absorbers positions, which could be an interesting aspect to integrate in the optimization,

but is beyond the scope of the present work.
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Figure 13: Compliance of the plate with four absorbers targeting modes (1, 1), (2, 1), (1, 2) and (2, 2): uncontrolled
structure (—) and optimized tuning with norm-homotopy optimization using the TMDs positions depicted in Fig. 10
(—) and placing TMDs 2-4 on the nodal line of mode 4 (—).

Absorber number ma (kg) ca (N s m−1) ka (N m−1)

1 0.64mMax 1.0663 105.5866
2 0.26mMax 0.4858 188.7259
3 0.05mMax 0.0669 99.1084
4 0.04mMax 0.0739 136.6114

Table 9: Parameters of the four absorbers (with TMDs 2-4 on the nodal line of mode 4).

4.2.3. Computational cost

Using the same three optimization approaches as in Subsection 4.1.1, the two cases of the plate

with three and four absorbers can be compared in terms of CPU times (averaged over 10 optimiza-

tions) in Tables 10 and 11, respectively. These tables highlight the computational advantage of the

SMW formula, with which both the time to evaluate the cost function and the total runtime are

decreased by two orders of magnitude. The norm-homotopy approach (with and without SMW

formula) requires more cost function evaluations, but converges to a solution with a lower H∞

norm than the direct H∞ optimization.

4.2.4. Design robustness

In real-life applications, the model parameters may be known with limited accuracy. For illus-

tration, variations of ±5% of Young’s modulus are presented herein, while every other parameter is

23



Case tf tTot t0 t1 t2 t3 t4 t5
NH, SMW 0.0050 4.7483 0.8229 0.6875 0.6771 0.8472 1.4826 0.2309

NH, no SMW 0.58112 490.83 95.29 77.62 66.77 83.69 130.34 37.12
H∞ 1.3951 232.97 / / / / / /

Table 10: CPU times (in s) of the different optimizations of three absorbers (NH stands for norm-homotopy opti-
mization, H∞ stands for direct H∞ optimization, tf is average time per cost function evaluation, tTot is the average
total runtime, tk is the average time spent for a p-norm optimization with a specific value of k (Equation (30)) in
the NH case).

Case tf tTot t0 t1 t2 t3 t4 t5
NH, SMW 0.0070 7.2431 2.4688 2.0972 0.9080 1.3368 0.1372 0.2951

NH, no SMW 0.8599 1053.91 104.80 159.68 258.97 160.83 303.34 66.30
H∞ 1.7156 187.00 / / / / / /

Table 11: CPU times (in s) of the different optimizations of four absorbers (NH stands for norm-homotopy optimiza-
tion, H∞ stands for direct H∞ optimization, tf is average time per cost function evaluation, tTot is the average total
runtime, tk is the average time spent for a p-norm optimization with a specific value of k (Equation (30)) in the NH
case).

kept constant. The absorbers parameters of Table 8 are used. As depicted in Fig. 14, the absorbers

are detuned in a fashion similar to that of the single-degree-of-freedom case, and an increase in the

maximum amplification of 15% (-5% case) and 27% (5% case) can be noticed.
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Figure 14: Design robustness: nominal value of E (—), 5% increase (—) and 5% decrease (—).

5. Conclusion

A norm-homotopy numerical optimization algorithm was proposed in this paper to tune mul-

tiple TMDs targeting several resonances of a host structure. The algorithm solves a sequence of

optimization problems of increasing complexity in which the cost function depends on the p-norm
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of the peak amplitudes of the compliance/accelerance of the controlled structure. The value of

p is controlled by increments of a parameter k. Small values of k (or p) are associated with an

optimization problem with a smoother objective function than the H∞ norm, thereby easing con-

vergence. High values of k (or p) are used at the end of the algorithm to make the optimization

problem close to a H∞ one. As demonstrated by the examples, the outcome of the algorithm is an

all-equal-peak design, in which all controlled peaks feature the same amplitude. The algorithm can

deal with a variety of discretized structures with moderate computational cost and was also found

to outperform direct H∞ optimization. Specifically, the norm-homotopy approach enabled the op-

timizer to reach a lower H∞ norm, and the use of the SMW formula speeded up the optimization.

The norm-homotopy approach does not have a theoretical guarantee to reach the global minimum

of the H∞ norm, but the all-equal-peak outcome appears as a satisfactory local optimum.

Future works may adapt the algorithm to other types of absorbers (e.g., nonlinear absorbers)

and may involve the experimental validation of the proposed design approach. The position of the

absorbers on the structure could also be considered as optimization variables in the method.
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Appendix A. Single TMD on a multiple-degree-of-freedom structure

It is considered that only the nth absorber is attached to the host structure. Around its

resonance frequency ωn, it can be assumed that a resonant mode n dominates the structural

response. Thus, the following relation approximately holds for ω ≈ ωn X(ω)

Xa,n(ω)

 =

 φn 0

0 1

 ηn(ω)

Xa,n(ω)

 = An

 ηn(ω)

Xa,n(ω)

 , (A.1)

where φn is the mass-normalized resonant mode shape, ηn is the associated resonant modal coordi-

nate and Xa,n is the generalized degree of freedom associated with the nth absorber. Substituting

Eq. (A.1) into Eq. (9) (where only the nth absorber is considered), premultiplying it by AT
n and
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taking into account the modal orthogonality relationships [52], one gets−ω2

 1 0

0 ma,n

+ jω

 2ζnωn + φ2a,nca,n −φa,nca,n

−φa,nca,n ca,n

+ ω2
n + φ2a,nka,n −φa,nka,n

−φa,nka,n ka,n

 ηn(ω)

Xa,n(ω)

 =

 φT
nF(ω)

0

 , (A.2)

where ζn is the nth modal damping ratio and φa,n = bT
nφn is the mode shape of the host structure

at the location where the absorber is to be attached. The base displacement of the nth absorber

Un is given by

Un(ω) = bT
nX(ω) = bT

nφnηn(ω) = φa,nηn(ω). (A.3)

Inserting Eq. (A.3) into Eq. (A.2) and multiplying the first line of the latter by 1/φa,n, one obtains−ω2

 1

φ2a,n
0

0 ma,n

+ jω

 2ζn
ωn

φ2a,n
+ ca,n −ca,n

−ca,n ca,n

+

 ω2
n

φ2a,n
+ ka,n −ka,n

−ka,n ka,n



 Un(ω)

Xa,n(ω)

 =

 φT
nF(ω)

φa,n

0


(A.4)

which has the same form as the equations of motions of a single-degree-of-freedom oscillator to

which an absorber is attached. Warburton [5] arrived to the same conclusion using energy consid-

erations.
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