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Abstract 

Background. Neuronal hyper-excitability characterizes the early stages of Alzheimer’s disease 

(AD). In animals, early misfolded tau and amyloid-beta (Aβ) protein accumulation, both central 

to AD neuropathology, promote cortical excitability and neuronal network dysfunction. In 

healthy humans, misfolded tau and Aβ aggregates are first detected, respectively, in the 

brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD 

cognitive symptoms. Whether cortical excitability is related to early brainstem tau, and its 

associated neuroinflammation, and cortical Aβ aggregations remains unknown.  

Methods. We probed frontal cortex excitability, using transcranial magnetic stimulation 

combined with electroencephalography, in a sample of 64 healthy late middle-aged individuals 

(50-69 y; 45 women). We assessed whole-brain [18F]THK5351 positron emission tomography 

(PET) uptake as a proxy measure of tau/neuroinflammation, and whole-brain Aβ burden with  

[18F]Flutemetamol or [18F]Florbetapir radiotracers.  

Results. We find that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment 

is associated with increased cortical excitability (r = .29, p = .02). By contrast, [18F]THK5351 

PET signal  in the hippocampal formation, although strongly correlated with brainstem signal 

in whole-brain voxel-based quantification analyses (pFWE-corrected < .001), was not significantly 

associated with cortical excitability (r = .14, p = .25). Importantly, no significant association 

was found between early Aβ cortical deposits and cortical excitability (r = -.20, p = .11).  

Conclusion. These findings reveal potential brain substrates for increased cortical excitability 

in preclinical AD and may constitute functional in vivo correlates of early brainstem tau 

accumulation and neuroinflammation in humans. 

Trial registration. EudraCT 2016-001436-35. 
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Introduction 

Alzheimer’s disease (AD) is characterized by a pathogenesis that spreads over decades prior to 

the onset of cognitive symptoms (1). Tau neurofibrillary tangles (NFT) and amyloid-beta (Aβ) 

senile plaques play a central role in this process (2). Post-mortem studies showed that the 

accumulation of misfolded hyperphosphorylated tau protein, which eventually assembles into 

NFT, appears prior to any detectable Aβ lesion (3). By the age of 30, a vast majority of the 

population presents hyperphosphorylated tau aggregates in the brainstem locus coeruleus (LC), 

sometimes concomitantly to other brainstem nuclei such as the dorsal raphe (3–5). Tau 

aggregates and NFT then spread to the entorhinal and hippocampal regions, before following 

its stereotypical outward progression pattern in the cortex, with about half of the post-mortem 

samples showing some NFT by the sixth decade of life (3). By contrast, Aβ senile plaques are 

not found before the fifth decade of life while about 20% of the population present Aβ senile 

plaques between 50 and 60 years (6). Aβ senile plaques also follow a stereotyped progression 

pattern but it is distinct from tau NFT expansion. They are first found in the frontomedial and 

temporobasal areas, before reaching the rest of the neocortex, allocortical brain regions (e.g. 

entorhinal cortex and hippocampus) as well as nuclei from the basal forebrain, and ultimately 

encompass brainstem nuclei and the cerebellum (6, 7).  

Growing evidence supports the idea that AD pathogenesis affects neuronal function 

well before producing neuronal loss and brain atrophy. Increase in neuronal excitability, which 

reflects neuron responsiveness and response selectivity, has been reported to temporarily take 

place before AD symptom onset (8, 9). Motor cortex hyper-excitability was reported in 

prodromal AD (Mild Cognitive Impairment - MCI) (10, 11), while cortical excitability 

decreases markedly in more advanced AD (12). Moreover, acetylcholinesterase inhibitor 

therapy was suggested to restore normal cortical excitability in AD patients (13). This 

temporary increase in cortical excitability has been proposed to represent a compensatory 
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mechanism to face the early brain Aβ or tau deposits (9). Monitoring cortical excitability could 

therefore enhance early/pre-symptomatic risk assessment and diagnosis, and help monitoring 

disease progression.  

The release of both tau and Aβ in the extracellular space are regulated by neuronal 

activity (14, 15). Elevated interstitial and cerebrospinal (CSF) fluid tau and Aβ levels have 

been observed during periods of extended neuronal activity such as sleep deprivation (16, 17). 

In AD animal models, tau pretangles and their surrounding soluble hyperphosphorylated form, 

tau NFTs, Aβ oligomers as well as Aβ senile plaques are known to have a deleterious impact 

on neuronal function (8, 18). In addition, tau presence is associated with inflammatory reaction 

through increased microglial and astrocytic activation (19, 20), which further contribute to 

synaptic dysfunction (21–23). Interestingly though, several studies reported a direct 

relationship between early tau protein accumulation and increased neuronal excitability in 

rodents and drosophila models in distant areas (24–26). Likewise, transgenic AD rodent models 

overexpressing mutant human amyloid precursor protein (APP) revealed that Aβ pathology 

promotes hyperexcitation and hyperactivity of hippocampus and neocortex neurons (27).  

Regional quantification of tau pretangles and soluble hyperphosphorylated forms as 

well as Aβ oligomers remain impossible in vivo in humans, so their direct impact on brain 

function is unknown. In vivo positron emission tomography (PET) imaging of Aβ senile 

plaques has been reliably available in humans for almost 2 decades so their correlates in 

cognitively normal individual and patients are relatively well established (28). In contrast, tau 

NFT in vivo imaging has only been possible over the past 5 years or so (29). In addition, most 

1st and 2nd generation tau PET markers have different degrees of off-binding, including to 

monoamine oxidase-B (MAO-B), which prevents from isolating the specific consequence of 

tau NFT from, for instance, neuroinflammatory processes (30).  



6 

 

Here, our main goal was to assess whether, among late middle-aged cognitively normal 

individuals (50 to 69 y), cortical excitability was associated with early tau NFT and 

neuroinflammation burden and with early Aβ senile plaques. We directly measured cortical 

excitability using electroencephalogram (EEG) recordings of brain responses to transcranial 

magnetic stimulation (TMS), which mimics the active brain processing of external stimulation. 

We assessed whole-brain [18F]THK5351 PET uptake as a proxy of tau NFT/neuroinflammation 

burden as well as whole-brain Aβ burden using [18F]Flutemetamol and [18F]Florbetapir PET 

imaging. Based on quantitative magnetic resonance imaging (MRI) data, we then extracted 

[18F]THK5351 and Aβ radiotracer uptake values within their respective first sites of 

accumulation, i.e. in a compartment of the brainstem including monoaminergic neurons for 

[18F]THK5351 uptake, and in the medial prefrontal cortex and inferior temporal lobe for Aβ-

PET (Figure 1, Table 1). We hypothesized that both brainstem [18F]THK5351 and neocortical 

Aβ-PET uptake values would be associated with increased cortical excitability.  
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Results 

Our analysis first focused on the link between cortical excitability, as assessed with TMS-EEG 

over the frontal cortex (TMS-evoked EEG potential – TEP), and [18F]THK5351 PET signal  in 

the brainstem monoaminergic grey matter (bmGM). We found a significant and positive 

association between TEP slope and bmGM mean [18F]THK5351 standardized uptake value ratio 

(SUVR), both in a simple correlation and after adjusting for TMS-EEG stimulation parameters 

and demographic variables (Pearson’s correlation: r = .29, p = .02; GLMM: F1,57 = 4.76, p = 

.03, R²β* = .08; Figure 2A, Table 2).  

To address the specificity of the highlighted relationship, we then investigated the link 

between cortical excitability and average Aβ centiloid values in stage 1 regions of interest 

(ROI), i.e. in the earliest sites of senile plaques aggregation. We found no significant 

relationship between TEP slope and stage 1 ROI Aβ burden (Pearson’s correlation: r = -.20, p 

= .11; GLMM: F1,57 = 1.41, p = .24; Figure 2B, Table 2). Interestingly, including both bmGM 

[18F]THK5351 SUVR and stage 1 Aβ burden together in the same statistical model, i.e. taking 

into account the variance they respectively explain, still revealed a significant main effect of 

bmGM [18F]THK5351 values (GLMM: F1,56 = 5.78, p = .02, R²β* = .09) but not of stage 1 Aβ 

burden (Table 2). 

Our next step was to further address the regional specificity of the association between 

[18F]THK5351 PET signal and cortical excitability. To do so, we first performed voxel-based 

quantification (VBQ) analyses on standardized [18F]THK5351 SUVR maps to reveal brain 

regions for which [18F]THK5351 radiotracer uptake correlated with bmGM uptake. In line with 

our expectation based on the literature, we found a highly significant correlation with 

[18F]THK5351 values within most of the medial temporal lobe (MTL, pFWE-corrected < .001, 

Figure 3A; Table 3). Interestingly, VBQ outputs in the white matter comprised tracts 
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connecting the brainstem to the MTL, but also widespread projections towards the whole cortex 

(pFWE-corrected < .001; Figure 3B).  

Therefore, we finally extracted mean [18F]THK5351 SUVR over the MTL to test 

whether the positive association between cortical excitability and [18F]THK5351 PET signal  

was dependent on the affected region. Paired t-test analysis showed that mean [18F]THK5351 

SUVR was significantly higher in the MTL compared to the bmGM region (t = 10.14, p < 

.0001; Figure 3C). Yet, we found no significant relationship between cortical excitability and 

mean [18F]THK5351 SUVR in the MTL (Pearson’s correlation: r = .14, p = .25; GLMM: F1,57 

= 1.89, p = .17; Figure 3D, Table 4). Importantly, the correlation value between mean bmGM 

[18F]THK5351 SUVR and cortical excitability was significantly higher than the correlation 

value between mean MTL [18F]THK5351 SUVR and cortical excitability (Fisher’s z = 2.20, p 

= .01). 
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Discussion 

With this cross-sectional study, we show that [18F]THK5351 uptake in a compartment of the 

brainstem including monoaminergic neurons is associated with increased cortical excitability 

in cognitively normal individuals aged 50 to 69 years. We interpret this result with respect to 

tau NFT accumulation and neuroinflammation. By contrast, cortical excitability levels are not 

significantly linked to the presence of Aβ senile plaques measured in their typical earliest 

aggregation sites. We further find that brainstem [18F]THK5351 PET signal co-localizes with 

its uptake in the MTL, in line with human post-mortem studies on tau NFT progression (3). 

However, the association between cortical excitability and [18F]THK5351 uptake in the latter 

region is not significant. Altogether, these findings support that increased cortical excitability 

is specifically related to the presence of tau aggregates and neuroinflammation, potentially in 

a region-specific manner, with the most evident association observed among brainstem 

monoaminergic nuclei.  

[18F]THK5351 is a first generation PET marker of tau NFT that was reported to bind 

substantially to MAO-B associated with neuroinflammation in addition to binding to tau NFT  

(31). Antemortem PET studies of [18F]THK5351 SUVR and postmortem neuropathologic 

studies in progressive supranuclear palsy (32) and AD (29), including ex vivo autoradiography 

with the selective reversible MAO-B inhibitor lazabemide (32), reported that [18F]THK5351 

binding originates to a large extent (~50%) in reactive astrocytes that express increased levels 

of MAO-B (31). This unintended binding is, however, most pronounced over the basal ganglia, 

and is also found, although to a lesser extent, in second generation tau radiotracers (30). 

Neuroinflammation in astrocytes and microglial dysfunction have been proposed to result from 

tau-mediated neurodegeneration of LC neurons, potentially through norepinephrine depletion 

(20, 33, 34). In the rest of the discussion, we therefore interpret brainstem [18F]THK5351 as a 

marker of tau NFT accumulation and of (potentially tau-induced) neuroinflammation, bearing 



10 

 

in mind uncertainties and non-specificity of the binding. Future studies should employ 

radiotracers that are more specific to tau protein to further disentangle the respective roles of 

tau NFT, neuroinflammation, and their interaction in the relationship with increased cortical 

excitability. Such radiotracers may be available (35, 36) or are still under development (30, 

37).  

Increased cortical excitability was previously reported in MCI and AD patients, i.e. in 

the presence of cognitive symptoms (10, 11, 13). Our results show that increased cortical 

excitability can also be observed in healthy individuals, potentially during preclinical phases 

of AD, i.e. over the asymptomatic period during which AD-related pathophysiological 

processes evolve and may lead to subsequent symptomatic AD in some individuals. A rationale 

often proposed to account for the increased cortical excitability in MCI and first stages AD 

patients postulates that it represents a compensatory mechanisms to counteract synaptic 

dysfunction and tau NFT accumulation within neuronal networks (9). A computational model 

of neuronal dynamics in AD further reported that the most efficient intervention to counter 

AD-related network dysfunction and enhance its functional survivability was a selective 

increase in excitability of excitatory neurons (38). This compensatory phenomenon may in turn 

favor pathological progression as neuronal hyper-activity increases amyloid-beta and tau 

release (14, 15). Within this scenario, a vicious circle would therefore take place up to a point 

where Aβ, tau and neuroinflammation burden and neurodegeneration would be too important 

to sustain increased excitability (24, 39, 40). This would imply an inverted U-shape relationship 

between cortical excitability and network integrity over AD-related pathophysiological 

processes, with progressive increase in cortical excitability compensating tau-driven synaptic 

dysfunction early in the process, followed by decreased excitability in more advanced AD 

neuropathological stages. 
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The fact that cortical excitability was associated with tau/neuroinflammation PET 

measures in a brainstem region including monoaminergic neurons is compatible with the 

assumption that the association may arise, at least in part, from the LC or from nearby 

monoaminergic nuclei (e.g. raphe) that are part of the ascending reticular activating system. 

Tau NFT/neuroinflammation burden in these nuclei could alter their functioning and their 

impact on distant cortical neurons, e.g. in the prefrontal cortex where we assessed cortical 

excitability. Higher resolution PET and MRI data geared towards isolating brainstem nuclei, 

such as methods based on the neuromelanin-dependent signal of the LC (41), are, however, 

required to truly test this assumption.  

Previous animal studies reported that cortical excitability increased as a function of tau 

burden in the hippocampal region or reported reduced cortical excitability following genetic 

manipulation reducing overall endogenous tau levels (24, 25, 42, 43). However, those studies 

did not specifically assess tau presence in the brainstem, even if the literature would suggest 

that tau accumulation within the LC/brainstem and hippocampal structure should be at least 

partially concomitant (4). Cortical excitability across the different steps of the stereotypical 

outward progression of tau NFTs will have to be monitored to resolve this issue. We 

nevertheless provide original in vivo functional correlates of tau-related PET measures in the 

brainstem in healthy individuals with tau spread limited to its earliest stages.  

The absence of significant link between medial prefrontal cortex excitability and Aβ-

PET marker uptake in the medial prefrontal cortex and inferior temporal lobe is somewhat 

unexpected given the previous links reported in rodents models (27, 44). Yet, Aβ oligomers 

and Aβ senile plaques have also been repeatedly associated with lower synaptic spine density, 

reduced long-term potentiation and increased long-term depression, as well as reduced 

neuronal excitability (45, 46). In addition, hyper-excitability was detected in young AD mutant 

mice suggesting that increased neuronal excitability was independent of Aβ plaque formation 
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(44). Likewise, efficient Aβ immunotherapy in mice failed to restore normal neuronal function 

(44). The relationship between AD pathophysiology and neuronal function is therefore 

complex. Overall, our results suggest that the link between frontal cortical excitability and 

brainstem tau NFT/neuroinflammation burden is more evident than a putative link with medial 

prefrontal and inferior temporal cortex Aβ senile plaques burden.  

Given the cross-sectional nature of our study, we cannot infer about causality, and 

mechanisms underlying our findings remain elusive. In a first scenario, we propose that the 

progressive accumulation of misfolded tau protein in the brainstem, particularly over the LC 

and dorsal raphe nuclei (3), trigger increased cortical excitability as a compensatory mean to 

face tau NFT accumulation and its associated neuroinflammation. Whole-cell patch-clamp 

recordings in a mouse model of progressive tauopathy found that frontal cortical neurons 

exhibit electrophysiological alterations including a more depolarized resting membrane 

potential (47), which would result in increased cortical excitability. In addition, altered 

excitation/inhibition balance and subsequent hyper-excitability may be a consequence of tau 

accumulation through tau-dependent inhibitory interneurons depletion (48). Although these 

observations lend support to our first scenario, they were never focused on brainstem tau 

burden. One cannot exclude therefore a second scenario, where increased cortical excitability, 

which could constitute an endogenous response to environmental factors such as anxiety or 

lack of sleep, would favor tau production, release, and aggregation and neuroinflammation in 

the brainstem.  

Aside from [18F]THK5351 unspecific binding to MAO, our experiment bears additional 

limitations. First, we measured cortical excitability exclusively over the frontal cortex. While 

this area allows for minimally artefacted data and covers the area of earliest Aβ deposit, probing 

cortical excitability over different parts of the cortex may reveal a broader relationship between 

early tau/neuroinflammation and alterations of neuronal function. Another limitation of our 
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study is that it only included healthy individuals with relatively limited tau NFT spread. 

Individuals with more advanced tau pathology, MCI, and early AD patients would have 

provided further characterization of the link between cortical excitability and AD 

pathophysiological progression, and especially tau pathology. Yet, individuals included in our 

study sample were thoroughly screened for their health and cognitive status, reducing the 

probability of biases arising from health conditions or AD-related comorbidities. In addition, 

individuals’ sleep-wake history was carefully controlled prior to TMS-EEG data acquisition, 

and cortical excitability measures were acquired in the morning under strictly controlled 

conditions, after a fixed duration of wakefulness to account for the known changes in cortical 

excitability with prior wakefulness duration and time-of-day (49–52). Furthermore, TMS-EEG 

allows to assess cortical excitability directly and reliably, while bypassing any potential age-

related sensory biases. Finally, we used state-of-the-art brainstem segmentation methods based 

on quantitative multiparametric imaging to automatically and systematically isolate brainstem 

monoaminergic tissue.  

In conclusion, the present results point to brainstem tau NFT and neuroinflammation as 

correlates of the increased excitability observed in the earliest stages of AD neuropathology. 

These findings bring new insights into the interplay between cortical function and the first signs 

of tau aggregation and its associated neuroinflammation in the brainstem. Furthermore, they 

suggest that cortical excitability could constitute a specific biomarker of early misfolded tau 

protein aggregates and neuroinflammation in the brainstem and potentially of increased risk 

for AD in cognitively normal healthy individuals. 
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Methods 

Experimental design 

Healthy older individuals aged 50-70 years were enrolled in a multi-modal cross-sectional 

study investigating the relationships between AD neuropathology, wake-dependent cortical 

excitability dynamics, and cognitive aging. In that context, we measured cortical excitability 

over the frontal cortex using TMS-EEG, and we performed whole-brain 

tau/neuroinflammation-PET and Aβ-PET imaging. All participants also underwent quantitative 

multiparametric MRI acquisitions for subsequent brainstem segmentation.  

Participants 

One hundred and one healthy older individuals (mean age = 59.4 ± 5.3 years; 68 women) took 

part in this research. Exclusion criteria for the study were: clinical symptoms of cognitive 

impairment (Dementia rating scale < 130 (53); Mini mental state examination < 27); Body 

Mass Index (BMI) ≤ 18 and ≥ 29; recent psychiatric history or severe brain trauma; addiction, 

chronic medication affecting the central nervous system; smoking, excessive alcohol (> 14 

units/week) or caffeine (> 5 cups/day) consumption; shift work in the past 6 months; 

transmeridian travel in the past two months; high levels of anxiety, as measured by the 21-item 

self-rated Beck Anxiety Inventory (BAI ≥ 17) (54); high levels of depression, as assessed by 

the 21-item self-rated Beck Depression Inventory (BDI ≥ 17) (55). Participants with sleep 

apnea (apnea-hypopnea index ≥ 15/hour) were excluded based on an in-lab screening night of 

standard polysomnography.  

A subsample of 65 participants who had data for both tau/neuroinflammation- and Aβ-PET 

assessments was considered for the present paper. One participant was further excluded from 

the study sample because of extreme outlier values on whole-brain [18F]THK5351 PET 

assessment (> 5 standard deviations from the mean). Demographic characteristics of the final 

sample (N = 64) are described in Table 1. 
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Experimental protocol 

For 7 days prior to TMS-EEG protocol, participants followed a regular sleep-wake schedule (± 

30 min), in agreement with their preferred bed and wake-up times. Compliance was verified 

using sleep diaries and wrist actigraphy (Actiwatch©, Cambridge Neurotechnology, UK). 

Aside from the fixed sleep-wake schedule, participants were also instructed to abstain from 

unusual physical exercise as well as caffeine and alcohol consumption for the last 3 days of 

fixed sleep-wake schedule. The day before the experiment, participants arrived to the 

laboratory 8 hours before their habitual bedtime and were kept in dim light (< 5 lux) for 6.5 

hours preceding bedtime. Participants then slept a full night of sleep recorded with EEG.  

TMS-EEG assessments were performed on the next day in the context of a 20h protocol 

of wakefulness extension in strictly controlled constant routine conditions, i.e. in-bed semi-

recumbent position (except for scheduled bathroom opportunities), dim light < 5 lux, 

temperature ~19°C, regular isocaloric food intake, no time-of-day information, and sound-

proofed rooms. The protocol schedule was adapted to individual sleep-wake time, and lasted 

up to the theoretical mid-sleep time (e.g. for an individual waking up at ca. 07:00 AM, the 

protocol ended at ca. 03:00 AM in the following night). Cortical excitability over the frontal 

cortex was measured 5 times throughout the protocol. For the present paper, we only 

considered the first assessment of cortical excitability recorded 3 hours after wake-up time (± 

0.21 hours) to avoid any wake-dependent modulation of cortical excitability (51, 52). Other 

considerations related to repeated TMS-EEG sessions are reported elsewhere (51). 

TMS-EEG signal acquisition and processing 

Optimal stimulation parameters (i.e. location, orientation, and intensity) were determined 

during a separate TMS-EEG session carried out prior to the experimental protocol, and allowed 

for EEG recordings free of muscular and magnetic artefacts. As in previous experiments (49, 

50, 52), the target location was in the superior frontal gyrus. For all TMS-EEG recordings, 
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pulses were generated by a Focal Bipulse 8-Coil (Nexstim, Helsinki, Finland). Interstimulus 

intervals were randomized between 1900 and 2200 ms. TMS-evoked responses were recorded 

with a 60-channel TMS-compatible EEG amplifier (Eximia, Helsinki, Finland), equipped with 

a proprietary sample-and-hold circuit which provides TMS artefact-free data from 5 ms post 

stimulation (56). Electrooculogram (EOG) was recorded with two additional bipolar 

electrodes. EEG signal was band-pass filtered between 0.1 and 500 Hz and sampled at 1450 

Hz. Before each recording session, electrodes impedance was set below 5 kΩ. Each TMS-EEG 

session included ~250 trials. Auditory EEG potentials evoked by the TMS clicks and bone 

conductance were minimized by diffusing a continuous white noise through earphones and 

applying a thin foam layer between the EEG cap and the TMS coil. 

TMS-EEG data were pre-processed as previously described (50, 52) in Statistical 

Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) implemented in 

MATLAB2013a (The Mathworks Inc., Natick, MA, USA). In brief, TMS-EEG data underwent 

semi-automatic artefacts rejection, low-pass filtering at 80 Hz, downsampling to 1000 Hz, 

high-pass filtering at 1 Hz, splitting into epochs spanning -101 and 300 ms around TMS pulses, 

baseline correcting (from -101 to -1 ms pre-TMS), and robust averaging. Cortical excitability 

was defined as the slope at the inflexion point of the first component (0-35 ms) of the TMS-

evoked EEG potential (TEP) measured on the artefact-free electrode closest to the target 

stimulation location. Median position of the closest artefact-free recording electrode was [X: -

34; Y: -3.7; Z: 85.9, mm, Montreal Neurological Institute (MNI) space].  

Quantitative multi-parametric acquisition and processing 

All MRI acquisitions were performed on a 3-T scanner (MAGNETOM Prisma, Siemens). 

Structural and quantitative maps of T1, T2*, proton density (PD) and magnetization transfer 

(MT) with 1 mm isotropic resolution were computed based on a multi-parameter protocol 

including 3D multi-echo fast low angle shot (FLASH) sequence (57). Three co-localized 3D 
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multi-echo FLASH data sets were acquired with predominantly proton density weighting 

(PDw: TR/FA=23.7 ms/6°), T1 weighting (T1w: TR/FA=18.7 ms/20°), and MT weighting 

(MTw: TR/FA=23.7 ms/6°; excitation preceded by an off-resonance Gaussian MT pulse of 5 

ms duration, 220° nominal flip angle, 2 kHz frequency offset) in a total acquisition time of 

approx. 19 min, with a voxel size of 1 mm³ isotropic. Two calibration sequences were acquired 

to correct for inhomogeneities in the radio frequency transmit field. 

Quantitative multi-parametric maps (MT, PD, R1, R2*) were generated with the hMRI 

toolbox (58) (http://hmri.info) implemented in MATLAB2013a. First, MT and PD maps were 

segmented into grey, white, and CSF tissue class maps using Unified Segmentation (US) within 

SPM12 (59). Whole-brain segmentation outputs were diffeomorphically registered to a study-

specific template, compatible with the MNI space, created using Shoot toolbox in SPM12 (60) 

in order to generate deformation fields that were used to warp MT and PD maps into the Shoot 

common-average space. Brainstem segmentation was then performed using US with brainstem 

sub-regions tissue probability maps that were generated according to previously described 

methods based on a modified multivariate mixture of Gaussians (61). Out of the four brainstem 

tissue classes produced, we considered only tissue class 1 which encompassed monoaminergic 

grey matter, including LC and raphe nuclei. Brainstem monoaminergic grey matter (bmGM) 

tissue was then warped back to individual space, using inverse deformation fields. Finally, 

bmGM tissue was binarized and applied as a mask on coregistered PET [18F]THK5351 for signal 

extraction, as described below.  

PET acquisition and pre-processing 

Tau/neuroinflammation and Aβ PET imaging were performed on an ECAT EXACT+ HR 

scanner (Siemens, Erlangen, Germany), with a 2 mm isotropic resolution. 

Tau/neuroinflammation PET imaging was performed with radiotracer [18F]THK5351 for all 

subjects. Aβ-PET imaging was achieved with radiotracer [18F]Flutemetamol for 61 subjects and 
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with [18F]Florbetapir for 3 subjects.  For all PET imaging, participants received a single dose of 

the respective radiotracer in an antecubital vein (target dose ~185 MBq). For 

tau/neuroinflammation-PET, a 10-minute transmission scan was first acquired, and dynamic 

image acquisitions started immediately after injection, consisting in 32 frames with increasing 

time duration (total time spent in scanner ~100 min.). For Aβ-PET, image acquisitions started 

85 minutes after injection, and 4 frames of 5 minutes were obtained. All PET images were 

reconstructed using filtered back-projection algorithm including corrections for measured 

attenuation, dead time, random events, and scatter using standard software (ECAT 7.1, 

Siemens/CTI, Knoxville, TN, USA). For each individual, an average PET image was created 

using all frames for Aβ-PET, and the 4 frames corresponding to the time window between 40 

and 60 min for tau/neuroinflammation-PET (62). Averaged PET images were manually 

reoriented and automatically coregistered to the structural MT map.  

Standardized uptake value ratio (SUVR) was calculated using the cerebellum grey 

matter as the reference region for tau/neuroinflammation-PET (32), and the whole cerebellum 

for Aβ-PET (63). Given that we used 2 different radiotracers for Aβ-PET imaging, Aβ SUVR 

values were further scaled to centiloid units ((63–65). Subject-space bmGM mask was applied 

on [18F]THK5351 SUVR maps to retrieve mean tau/neuroinflammation burden. A region of 

interest comprising the earliest Aβ accumulation sites (stage 1 ROI) (7) was built based on 

bilateral regions from the automated anatomical labelling 2 (AAL2) atlas (66), including 

superior medial frontal, fusiform, and inferior temporal cortices, and was applied on the 

standardized Aβ maps. 

Mean [18F]THK5351 SUVR was 1.43 ± 0.11 over the whole brain, and 1.97 ± 0.20 in 

the brainstem monoaminergic grey matter. Mean whole-brain Aβ centiloid value was 2.47 ± 

9.92, and -5.31± 8.20 in the stage 1 ROI. The negative centiloid values in these earliest Aβ 
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accumulation sites were expected, as our sample comprises only healthy participants in late 

middle-age who were thoroughly screened for absence of many comorbidity factors. 

 While first generation tau protein radiotracers, including [18F]THK5351, have been 

widely studied and proved to have high affinity and selectivity in vitro (31), criticisms were 

raised about their off-binding to MAO-B in vivo, particularly over the basal ganglia (67). 

However, as investigated in a recent comparative analysis of first and second generation 

radiotracers, this off-target binding may be common to all first generation radiotracers and, to 

a lesser extent, also to second generation radiotracers (30). We therefore consider that 

[18F]THK5351 uptake arises from about equal proportion of binding to both tau NFT and MAO-

B (31), and constitutes a marker of both tau and neuroinflammation burden. 

Tau co-localization analysis 

Spatial processing of PET images for voxel-based quantification (VBQ) analyses was achieved 

with the ‘standard pipeline’ module in hMRI toolbox. Whole-brain [18F]THK5351 SUVR maps 

were diffeomorphically registered to the study-specific template using individual deformation 

fields, warped into the MNI space and tissue-specific smoothing (full width at half-maximum 

of 6 mm isotropic, separately for grey and white matter) was applied. VBQ analyses were 

carried out on these images in SPM12 in order to highlight brain regions which correlate with 

tau/neuroinflammation burden in the bmGM tissue. Statistical modelling consisted in a 

multiple linear regression model including four regressors (i.e. demographic variables of age, 

sex, education, and bmGM mean [18F]THK5351 SUVR). One-tailed t tests were used to identify 

voxels displaying increased [18F]THK5351 SUVR associated with higher values in the bmGM 

compartment. Statistical threshold was set at p < 0.05 after family-wise error (FWE) correction 

for multiple comparisons (pFWE-corrected) voxel-wise for the whole-brain. Grey matter and white 

matter tissue classes were analyzed separately using explicit masks defining voxels belonging 

to each tissue class. These masks were generated using the across-subjects average of smoothed 
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Jacobian-modulated tissue probability maps in MNI space, with a minimum probability 

threshold of 20%, and voxels were assigned to the tissue class for which the probability was 

maximal. For both VBQ analyses, bmGM area was further masked to avoid redundancy.  

Statistics 

Statistical analyses were performed using Pearson’s correlations and Generalized Linear Mixed 

Models (GLMMs) in SAS 9.4 (SAS Institute, Cary, NC, USA). Pearson’s correlations were 

used as an assessment of potential association before computing GLMM which accounted for 

possible biases and covariate influences. Dependent variable distribution was first determined 

using ‘allfitdist’ function (developped by Mike Sheppard) in MATLAB2013a and GLMMs 

were adjusted accordingly. TMS-EEG stimulation parameters of applied electric field and 

distance between hotspot and recording electrode were included as covariates in GLMM 

statistical models with cortical excitability measures as dependent variables. All GLMMs were 

adjusted for demographic variables of age, sex and education. Subject (intercept) was included 

as a random factor. Degrees of freedom were estimated using Kenward-Roger’s correction. 

Statistical significance was set at p < .05. Semi-partial R² (R²β*) values were computed to 

estimate the effect sizes of significant fixed effects and statistical trends in all GLMMs (68). 

Study approval 

This study was approved by the Ethics Committee of the Faculty of Medicine at the University 

of Liège, Belgium. Participants gave their written informed consent prior to inclusion in the 

study and received a financial compensation. 
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Figures and figure legends 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cortical excitability assessment and PET values extraction in early deposition 

sites. (A) Cortical excitability over the frontal cortex was assessed using neuronavigation-

based TMS coupled to EEG. TMS-EEG target area was located in the superior frontal gyrus. 

Darker and brighter yellow areas represent the range of stimulation targets across participants 

projected onto the averaged normalized T1 structural volume and the median TMS-EEG 

stimulation hotspot over the sample, respectively. (B) Butterfly plot of TMS-evoked EEG 

response over the 60 electrodes (-100 ms pre-TMS to 300 ms post-TMS; average of ~250 

trials). Cortical excitability was computed as the slope (µV/ms, dotted line on inset) of the first 

component of the TEP response at the electrode closest to the stimulation hotspot. (C) 

Automatic brainstem segmentation methods were used to extract  [18F]THK5351 SUVR in the 

brainstem monoaminergic grey matter (bmGM; top row). Aβ burden ([18F]Flutemetamol or 

[18F]Florbetapir centiloid units) was extracted in the earliest aggregation sites (7) using bilateral 

medial superior frontal, inferior temporal, and fusiform regions, bottom row).  
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Figure 2. Associations between cortical excitability and early [18F]THK5351 PET signal as 

well as Aβ burden. (A) Significant and positive association between cortical excitability 

values and mean [18F]THK5351 standardized uptake value ratio (SUVR) in the brainstem 

monoaminergic grey matter (bmGM; Pearson’s correlation: r = .29, p = .02; GLMM: F1,57 = 

4.76, p = .03, R²β* = 0.08). (B) No significant association between cortical excitability and mean 

[18F]Flutemetamol/[18F]Florbetapir (centiloid units) in a region-of-interest covering the earliest 

Aβ aggregation sites (Pearson’s correlation: r = -.20; p = .11; GLMM: F1,57 = 1.41, p = .24). 

Simple regressions are displayed and full GLMMs outputs are reported in Table 2. Dotted lines 

represent 95% confidence interval for these simple regressions.  
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Figure 3. [18F]THK5351 regional correlates of brainstem [18F]THK5351 uptake,  and 

association between cortical excitability and mean MTL [18F]THK5351 SUVR. (A) VBQ 

analyses revealed that mean [18F]THK5351 SUVR in the brainstem monoaminergic grey matter 

(bmGM) region was positively correlated to grey matter [18F]THK5351 PET signal within most 

of the medial temporal lobe (MTL, pFWE-corrected < .001). (B) VBQ analyses further showed that 

mean [18F]THK5351 SUVR in the bmGM region was positively associated with [18F]THK5351 

SUVR in the white matter tracts connecting the brainstem to the MTL, but also in widespread 

projections towards the whole cortex (pFWE-corrected < .001). (C) Paired t-test analysis showed 

that mean [18F]THK5351 SUVR in the bmGM was significantly lower than in the MTL (t = 

10.14, p < .0001). (D) Average [18F]THK5351 SUVR in the MTL was, however, not 

significantly associated with cortical excitability values (Pearson’s correlation: r = .14, p = .25; 

GLMM: F1,57 = 1.89, p = .17). Simple regression is displayed and full GLMM outputs are 

reported in Table 4. Dotted lines represent 95% confidence interval for this simple regression. 
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Tables 

 

Table 1. Sample characteristics (mean ± SD). 

 N = 64 

Sex 45F/19M 

Age (years) 59.7 ± 5.5  

Education (years) 15.3 ± 3.1 

Right-handed (%) 97 

Ethnicity Caucasian 

Dementia Rating Scale 142.3 ± 2 

Body mass index (Kg/m²) 24.5 ± 2.8 

Whole-brain [18F]THK5351 (SUVR) 1.31 ± 0.09 

Brainstem monoaminergic grey matter [18F]THK5351 (SUVR) 1.98 ± 0.20 

Hippocampal/entorhinal cortex [18F]THK5351 (SUVR) 2.11 ± 0.18  

Whole-brain [18F]Flutemetamol/[18F]Florbetapir (Centiloid value) 2.47 ± 9.92 

Stage 1 region-of-interest [18F]Flutemetamol/[18F]Florbetapir (Centiloid value) -5.31± 8.20  

TMS-evoked cortical excitability (µV/ms) 1.09 ± 0.48 

TMS applied electric field (V/m²) 114.7 ± 15 

Recording electrode distance from TMS hotspot (mm) 45.4 ± 10.5 

F = female; M = male; SUVR= standardized uptake value ratio. Stage 1 refers to the earliest 

Aβ aggregation sites (7) (see methods). 
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Table 2. GLMM outputs of the associations between cortical excitability values and mean 

[18F]THK5351 SUVR  in the brainstem monoaminergic grey matter (bmGM, model 1), 

mean Aβ in the stage 1 ROI (model 2), and both considered together (model 3). 

In all models, TEP slope was used as the dependent variable as a measure of cortical 

excitability. R²β* values correspond to semi-partial R² in GLMMs, and are reported for all 

significant associations. 

  

 Model 1  Model 2 Model 3 

Mean bmGM [18F]THK5351 SUVR  
F1,57 = 4.76  

p = 0.03 

R²β* = 0.08 

 

 

F1,56 = 5.78  

p = 0.02 

R²β* = 0.09 

Mean stage 1 Aβ burden  
F1,57 = 1.41  

p = 0.24 

F1,56 = 2.43  

p = 0.12 

Age 
F1,57 = 2.59  

p = 0.11 

F1,58 = 1.62  

p = 0.21 

F1,56 = 1.27  

p = 0.26 

Sex 
F1,57 = 0.02 

p = 0.88 

F1,57 = 0.37  

p = 0.54 

F1,56 = 0.01  

p = 0.94 

Education 
F1,57 = 3.04 

p = 0.09 

F1,57 = 1.38  

p = 0.25 

F1,56 = 2.56  

p = 0.11 

Electric field 
F1,57 = 1.50 

p = 0.23 

F1,57 = 0.74  

p = 0.39 

F1,56 = 1.36  

p = 0.25 

Recording electrode distance 
F1,57 = 3.62 

p = 0.06 

F1,57 = 3.30  

p = 0.07 

F1,56 = 3.35  

p = 0.07 
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Table 3. Statistical outputs of VBQ grey matter analysis seeking for correlation between 

brainstem monoaminergic grey matter region [18F]THK5351 uptake and [18F]THK5351 

SUVR in the rest of the brain grey matter, after adjusting for age, sex, and education.  

 

Voxel size = 2 mm³; Degrees of freedom = [1,59]. % Cluster refers to the proportion of cluster 

voxels that are assigned to the corresponding anatomical localization label. Given the extent of 

the first significant cluster, only the major localization labels are reported. 

  

Cluster extent  

(voxels) 

Peak coordinates 

(XYZ, mm) 

pFWE-corrected 

(cluster level) Localization label 

 

% Cluster 

12743 2 -16 -16 < .001 Left hippocampus 6.27 

   Left thalamus 6.24 

   Right parahippocampus 5.85 

   Right hippocampus 5.75 

   Right thalamus 5.72 

   Right putamen 5.65 

   Left parahippocampus 4.87 

   Left putamen 3.37 

   Right caudate 3.23 

151 2 20 22 < .001 Right anterior cingulum 60.26 

   Left anterior cingulum 39.74 

104 -2 -26 30 < .001 Left posterior cingulum 30.77 

   Right posterior cingulum 16.35 

   Left middle cingulum 15.38 

   Right middle cingulum 13.46 

89 -38 -36 18 < .001 Left Rolandic operculum 40.45 

   Left superior temporal 38.20 
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Table 4. GLMM outputs of the associations between cortical excitability values and mean 

[18F]THK5351 SUVR  in the medial temporal lobe (MTL). 

TEP slope was used as the dependent variable as a measure of cortical excitability. 

 

 

  

Mean MTL [18F]THK5351 SUVR 
F1,57 = 1.89  

p = 0.17 

Age 
F1,57 = 3.59  

p = 0.06 

Sex 
F1,57 = 0.19 

p = 0.66 

Education 
F1,57 = 2.53 

p = 0.12 

Electric field 
F1,57 = 0.96 

p = 0.33 

Recording electrode distance 
F1,57 = 3.59 

p = 0.06 


