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Abstract

For highly structured subsurface, the use of strong prior information in geophysical
inversion produces realistic models. Machine learning methods allow to encode or
parameterize such models with a low dimensional representation. These methods
require a large number of examples to learn such latent or intrinsic parameterization.
By using deep generative models, inversion is performed in a latent space and result-
ing models display the desired patterns. However, the degree of nonlinearity for the
generative mapping (which goes from latent to original representation) dictates how
useful the parameterization is for tasks other than mere compression. After recogniz-
ing that changes in curvature and topology are the main cause of such nonlinearity, an
adequate training for a variational autoencoder (VAE) is shown to allow the applica-
tion of gradient-based inversion. Data obtained in highly structured subsurface may
also be represented by low-dimensional parameterizations. Compressed versions of
the data are useful for prior falsification because they allowmodelingmarginal proba-
bility distributions of structural parameters in a latent space. An objective way based
on cross-validation is proposed to choose which compression technique retains infor-
mation relevant to high-level structural parameters. Inversion and prior falsification
using dimensionality reduction provide a computationally efficient framework to pro-
duce realistic models of the subsurface. This framework is successfully applied to a
field dataset using a prior distribution assembled from distinct patterns resemble a
realistic geological environment including deformation and intrafacies variability.
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Sammenvating

Voor sterk gestructureerde ondergrond levert het gebruik van prior informatie bij
geofysische inversie realistische modellen op. Machine learning-methoden maken
het mogelijk om modellen te parametriseren met een lage dimensionale represen-
tatie. Deze methoden vereisen veel voorbeelden om de latente parametrisatie te leren.
Door diepe generatieve modellen te gebruiken, wordt inversie uitgevoerd in een la-
tente ruimte en modellen tonen de gewenste structurele patronen. De mate van niet-
lineariteit van de generatieve mapping (die van de latente ruimte naar de originele
representatie gaat) bepaalt echter hoe nuttig de parametrisatie is voor andere taken
dan compressie. Na erkenning dat veranderingen in kromming en topologie de hoof-
doorzaak zijn van dergelijke niet-lineariteit, wordt er aangetoond dat een adequate
training voor een Variationele Autoencoder de gradiënt gebaseerde inversie mogelijk
maakt. Gegevens die in een gestructureerde ondergrond verkregen zijn, kunnen ook
worden weergegeven door laag-dimensionale parametrisatie. Gecomprimeerde ver-
sies van de gegevens zijn nuttig voor vervalsing procedures omdat ze het mogelijk
makenmarginale kansverdelingen van structurele parameters temodelleren. Erwordt
een objectieve manier voorgesteld om te kiezen welke compressietechniek informatie
vasthoudt voor bepaalde structurele parameters. Inversie en vervalsing met behulp
van dimensionaliteitsreductie technieken bieden een rekenkundige efficiënte meth-
ode aan om realistische modellen van de ondergrond te produceren. Deze meth-
ode is met succes toegepast op een velddataset met behulp van een prior distributie
samengesteld uit verschillende patronen die lijken op een realistische geologische
omgeving, inclusief vervorming en variabiliteit binnen geologische facies.
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Résumé

Pour des sous-sols hautement structurés, l’utilisation d’information a priori en inver-
sion géophysique produit des modèles réalistes. Les méthodes de machine learning
permettent de paramétrer ces modèles avec une représentation de faible dimension.
Ces méthodes nécessitent cependant un grand nombre d’exemples pour apprendre
une telle paramétrisation, appelée latente ou intrinsèque. En utilisant des modèles
génératifs profonds (deep generative models), l’inversion est effectuée dans un es-
pace latent et les modèles obtenus affichent les structures souhaitées. Cependant, le
degré de non-linéarité de la fonction générative (qui va de la représentation latente
à la représentation originale) dicte l’utilité du paramétrage pour des tâches autres
que la simple compression. Après avoir reconnu que les changements de courbure
et de topologie sont la cause principale de la non-linéarité, un entraînement adéquat
pour un autoencodeur variationnel (VAE) est proposé pour permettre l’application de
l’inversion basée sur le gradient. Les données obtenues dans un sous-sol hautement
structuré peuvent également être représentées par des paramétrisations de faible di-
mension. Les versions compressées des données sont utiles pour la falsification de la
distribution a priori car elles permettent de modéliser les distributions de probabilité
marginales des paramètres structurels dans un espace latent. Une méthode objective
basée sur la validation croisée est proposée pour choisir la technique de compression
qui retient le maximum d’information relative aux paramètres structurels étudiés.
L’inversion et la falsification préalable à l’aide de la réduction de dimensionnalité
fournissent un cadre de calcul efficace pour produire des modèles réalistes du sous-
sol. Ce cadre est appliqué avec succès à un ensemble de données de terrain en util-
isant une distribution a priori assemblée à partir de modèles distincts, ressemblant
à un environnement géologique réaliste, y compris la déformation et la variabilité
intrafacies.
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Chapter 1

Introduction

1.1
::::::::::::::::::
Background

1.1.1
:::::::::::::::
Geophysical

:::::::::::
inversion

Geophysical methods aim to provide a model of the subsurface (represented by a set
of parameters) based on a set of sparse measurements sensing the spatial domain of
interest. Obtaining a model from the measured data may be framed quantitatively
as the solution of an inverse problem. Consider a survey or experiment for which
a vector of noisy measurements d = (d1, . . . , dQ)T ∈ RQ of a physical process is
available. A simplified description of the process may be expressed by a mathemat-
ical forward operator f : RN → RQ that takes as input a subsurface model vector
m = (m1, . . . ,mD)T ∈ RN obtained by discretizing the spatial distribution of phys-
ical properties and outputs a simulated response f(m). Commonly, this operator is
in the form of a set of partial differential equations (PDE) describing the process un-
der study and is an approximation of the real process. These PDEs may be solved in
different ways e.g. with analytical or numerical methods, some of which may imply
additional approximations. As a result of these approximations and the use of noisy
data, a noise

:::
an

:::::
error

:
term η is added to the simulation to represent total uncertainty

(in a probabilistic approach, the relation may be alternatively described by a condi-
tional probability distribution as detailed in Appendix A). Then, the relation between
the operator and the measurements may be written as (see e.g. Aster et al., 2013):

1



Chapter 1

d = f(m) + η (1.1)

The corresponding inverse problem or inversion of Eq. (1.1), aims to obtain an esti-
mation of the vector m from the (noisy) data d. Deterministic inversion does so by
optimizing a misfit or objective function γ(m) that is usually given in the form of a
distance function between simulated response f(m) and data d, e.g. by the l2 norm:

γ(m) = ‖f(m)− d‖22 =
∑
i

(fi(m)− di)2 (1.2)

Using a probabilistic approach, under certain assumptions (see Appendix A), the
estimation of maximum a posteriori values is described by the same optimization.

If the forward operator is linear and the original parameterization of m is used,
the objective function in Eq. 1.2 is convex and efficient gradient-based optimization
methods may be used

::::::::
methods

:::
for

:::::::
solving

::::::
linear

::::::::
systems

:::
of

:::::::::
equations

::::
are

:::::
used

::::::
(either

:::::
direct

:::
or

::::::::
iterative

:::::::::
methods). In this case, the inverse problemmay still be ill-conditioned

and require stabilization for its solution, e.g. through regularization (Aster et al.,
2013). On the other hand, when either the forward operator is nonlinear or the model
m is reparameterized nonlinearly, such gradient-based methods may face some dif-
ficulties in finding the optimal values for m, i.e. they tend to get caught in local
minima if the starting model is far from the optimum. Alternative global optimiza-
tion methods such as simulated annealing or genetic algorithms may be used in this
case. When applicable, however, gradient-based methods are generally more com-
putationally efficient. In practice, gradient-based methods are useful when both the
forward operator and the reparameterization are moderately nonlinear (as is detailed
in Chapters 3 and 5). Gradient-based inversion requires the gradient∇mγ(m) whose
elements are:

[∇mγ(m)]i =
∂γ(m)

∂mi

(1.3)

and are computed by considering Eq. (1.1) together with the chosen misfit.
When inversion is used to obtain a subsurface model some limitations must be

identified: (1) locations of sensors are restricted to on/above the surface of the ground
and in boreholes, (2) measurements are often contaminated with noise and (3) in most

2



Introduction

cases one can only rely on an imperfect forward operator to mathematically simulate
the measurements. On the one hand, from a deterministic point of view these lim-
itations cause the inverse problem to be ill-posed and its solution to be non-unique
(Aster et al., 2013). On the other hand, if a probabilistic approach is adopted the
limitations increase the uncertainty in the solution, which is represented then by a
probability distribution (Tarantola and Valette, 1982; Tarantola, 2005). Regardless of
the point of view adopted, inversion results are more realistic when additional infor-
mation regarding the structures in the subsurface is considered (Linde et al., 2015).
Prior information may be either enforced by adding regularization or penalization
terms in deterministic inversion or by considering a prior probability distribution in
probabilistic inversion. When this prior information is limited, inversion is often
done relying on relatively strong assumptions such as smoothness, sparsity or a co-
variance model for a Gaussian random field (Backus and Gilbert, 1967; Tikhonov
and Arsenin, 1977; Franklin, 1970; Maurer et al., 1998). However, these assump-
tions strictly apply only when the subsurface structure is relatively simple and might
thus lead to geologically unrealistic solutions when it is complex. When geophysical
data is acquired for a highly structured subsurface (e.g. with high connectivity), an
appropriate complex prior may be found that produces consistent structures but in
general it is harder to use it for inversion since more specialized sampling is needed
(Hu et al., 2001; Caers and Hoffman, 2006; Zahner et al., 2016). Figure 1.1 shows
examples of models obtained with smooth regularization and a complex prior that
imposes a structure consistent with given training patterns.

1.1.2
::::::
Prior

:::::::::::::::
information

::::
for

::::::::
highly

::::::::::::::
structured

::::::::::::::
subsurface

:::::::::::::::::
environments

In order to accurately represent such highly structured subsurface, one may discretize
the sensed domain using a high number of cells (or pixels), then a model m may be
seen as a point in a high-dimensional model space RN where N is the number of
cells. However, given that only certain structures or patterns are expected in the
subsurface (according to the prior assumptions), the intrinsic dimensionality of the
model space is usually lower. In other words, the possible models lie on a subsetM
of RN . This assumption is known as the manifold hypothesis in machine learning
literature (Fefferman et al., 2016). From a probabilistic point of view, this means

3
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Figure 1.1: Inversion with prior information: (a) pattern samples for a highly struc-
tured subsurface in the form of a training image where the red rectangle shows the
size of the domain of interest, (b) truth subsurface model, (c) inverted model with
smooth regularization, and (d) inverted model with prior obtained from the training
image.

that our prior distribution is defined only overM. Although the sampling of mod-
els from the prior distribution onM may be done by using regularization (Lange
et al., 2012), multiple-point statistics (Caers and Hoffman, 2006) and example tex-
ture synthesis (Zahner et al., 2016), recent advances in machine learning methods
such as deep generative models (DGMs) represent an alternative to the former meth-
ods (Laloy et al., 2017; Mosser et al., 2018; Richardson, 2018). Note that the four
above-mentioned strategies may be considered data-driven since they require a large
number of training samples or patterns to approximate the prior onM.

In the case of subsurface models, such training patterns may take the form of
two- or three-dimensional training images (TIs). These TIs are representative of the
structures formed by the different materials present in the subsurface. The TIs may
be: (1) designed or drawn by geologists who use their knowledge about the local ge-
ological environment (Park et al., 2013; Hermans et al., 2015), (2) directly digitized
from photos of outcrops near the surveyed domain (Kessler et al., 2013), and/or (3)
obtained from analogous or similar structures formed in other physical environments
(Mariethoz and Kelly, 2011). When several patterns are possible for inversion, one
may perform a first step where the probability of each pattern given the measured
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data is computed and then some of the patterns are potentially falsified if the prob-
ability is too low. This step is called prior falsification (Scheidt et al., 2018) and is
done before any complex and costly inversion. In general, prior falsification helps to
correctly represent uncertainty for field cases where two or more geological scenar-
ios are deemed possible, even if they are not based on training images (e.g. when a
geological scenario is modeled with a Gaussian field).

Since geophysical data d is obtained from a subsurface domain in the field which
is conceptualized as a model, it may be approximated by a forward operator that is a
function f : RN → RQ withQ denoting the size of the data vectors. If one considers
only certain subsurface patterns, all the possible (noiseless) data points will be con-
strained to the map f :M→ D. Given the limited number of sensor locations and
the spatial averaging of the measurement process, this data manifold D is a subset of
RQ and is generally of lower dimensionality than bothM andRQ. Samples ofDmay
be mainly obtained in two different ways. First, one may simply obtain a sample m

ofM and then use the forward operator to obtain a data sample d = f(m). Note that
when the forward operator is computationally expensive, one may use a replacement
or surrogate model instead of the forward operator. The second way is to directly
learn the data manifold and then simply generate data samples from it without hav-
ing to use the forward model (or a surrogate). Similar to the case ofM, data-driven
strategies may be used to approximate D. In this work, principal component anal-
ysis (PCA) or multidimensional scaling (MDS) are used to approximate D (Scheidt
et al., 2018). While learning the data manifoldD alone may not be directly useful for
inversion, it is helpful in the previous step of prior consistency or prior falsification
(Park et al., 2013; Hermans et al., 2015; Scheidt et al., 2015b).

The use of the term "data" in "data-driven" is not to be confused with the geo-
physical data or measurements and simply refers to models that require large amounts
of training samples whatever they might be, e.g. training patterns or images to learn
the model prior distribution or data samples to learn the approximation of the data
manifold. In fact, one of the main drivers of recent widespread use of machine learn-
ing is the development and availability of both hardware and software that is capable
of processing such large amounts of training samples, e.g. algorithms specifically
designed to take advantage of highly parallel computations on graphical processing
units (GPUs) (Krizhevsky et al., 2017).

5
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1.1.3
::::::::::::::::::
Dimensionality

:::::::::::::
reduction

:::::
and

:::::
the

:::::::
latent

::::::::
space

Both DGMs forM and PCA orMDS forD approximate the correspondingmanifolds
in a low-dimensional space which is usually referred to as latent space (Bishop, 2006;
Kingma and Welling, 2014). Formally, this is assumed an Euclidian space where the
manifold is embedded (or immersed) (Shao et al., 2017; Arvanitidis et al., 2018;
Chen et al., 2018). This space may be denoted as Rn forM and as Rq for D, where
n << N and q << Q. Prior probability distributions may then be defined in such
space. DGMs directly produce this prior distribution while for PCA and MDS one
may use the training samples mapped in the latent space to estimate the probability
density function by means of e.g. kernel density estimation (Park et al., 2013; Scheidt
et al., 2018). Compared to other methods used to sample the prior distributions, the
use of a latent space is advantageous because it provides an explicit representation of
these prior distributions. However, the mapping to the latent space must be chosen
in such a way that the low-dimensional representations of models and data are still
useful for other purposes than merely compression. For instance, the mapping to
the latent space obtained by DGMs may be chosen so that efficient gradient-based
inversion is still possible (Laloy et al., 2019) or pre-processing may be done previous
to PCA in order to selectively retain information related to certain aspects of the data
or models for prior falsification (see Chapter 4).

The mapping to the latent space may be viewed as a dimensionality reduction
operation or as obtaining a reparameterization with a data-driven sparse basis (Bora
et al., 2017). In general, to achieve a lower dimensionality (or higher compression)
nonlinear mappings are required (Kramer, 1991). For instance, the mapping to the la-
tent space resulting from application of PCA is linear, then compression without loss
of accuracy is only possible if the manifold to be approximated is linear. However, if
the manifold only slightly deviates from being linear, compression is still possible and
the impact on the approximation of the manifold is minor. In contrast, the mapping to
the latent space with DGMs is nonlinear (typically defined by a neural network) and
therefore usually causes higher compression without significantly degrading the ap-
proximation of the manifold (Shao et al., 2017; Arvanitidis et al., 2018). In general,
however, the more nonlinear the mapping the more samples are needed for learning
such mapping. In summary, one must choose a dimensionality reduction strategy
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that is optimal for the application at hand, depending on (1) the number of available
training samples for learning the mapping to the latent space, (2) the complexity or
nonlinearity of the samples, and (3) the required accuracy in the approximation of
the prior distribution which in turn depends on the objective of the dimensionality
reduction, i.e. whether it is to be used for inversion or prior falsification.

Another useful interpretation of the setting described above comes from a adopt-
ing a probabilistic point of view. Inversion may be viewed as jointly considering all
information available for the problem and then solve for the geophysical model vec-
tor. This may be explicitly represented by a probabilistic graphical model (see e.g.
Bishop, 2006) which states the joint probability distribution of all variables with un-
certainty and for which inference is done for the model m. In this setting, using a
latent space or reducing dimensions means replacing the original model vector m in
the graphical model for another (denoted by z in this work) whose solution provides
an approximation to that of the original model vector. The same may be applied to
make inference for other variables in the graphical model (e.g. a variable representing
different possible geological scenarios), which means obtaining marginals that may
be useful for e.g. prior falsification. This substitution is either done to reduce compu-
tational cost (since evaluating integrals for the high-dimensional joint distribution is
usually too expensive) or simply because there is no analytical form to express some
prior distributions of the variables involved.

1.2 Objectives

The main objective of this thesis is to explore the use of dimensionality reduction
methods for improving both inversion and prior falsification when geophysical data is
acquired in a highly structured subsurface. In these conditions, standard deterministic
inversions are failing to produce geologically realistic solutions, while probabilistic
approaches are computationally too expensive to be applied in practice. To test the
newly developed methodologies, both field and synthetic cross-borehole ground pen-
etrating radar (GPR) traveltime data are considered but the outcomes of this work are
applicable to other methods. The main objective is divided in three specific objec-
tives:

7
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1. Understanding the factors that limit the usefulness of DGMs to define a prior
distribution for highly structured subsurface and testing if DGMs may be used
successfully with gradient-based inversion (Chapter 3).

2. Proposing an objective way to select dimensionality reduction methods for
prior falsification (Chapter 4).

3. Testing a framework that includes prior falsification using dimensionality re-
duction and a DGM as prior for inversion. This test includes validating the
framework with field data and representing prior information as realistically
as possible using an assembled prior, i.e. a prior including structures from
different geological scenarios (Chapter 5).

1.3 Outline

This thesis is structured as follows. In Chapter 2, cross-borehole ground penetrating
radar theory is given. This is necessary for a thorough understanding of the following
chapters but may be skipped by a geophysicist familiar with the topic. In Chapter 3,
an in-depth analysis on the use of DGMs to define a prior probability distribution for
inversion is presented. Then, the use of a particular DGM called variational autoen-
coder (VAE) with an appropriate choice of training parameters is successfully pro-
posed to define a prior distribution that allows for gradient-based inversion by means
of stochastic-gradient descent (SGD). This new framework is one of the first success-
ful efficient geophysical inversion strategies based on DGM for non-linear problems.
In Chapter 4, an objective way to select data-driven dimension reductionmethods and
some pre-processing techniques aimed at retaining only information relevant for prior
falsification is presented. The proposed methodology is the first to propose a falsifi-
cation procedure using ad-hoc features adapted for geophysical data while proposing
an objective cross-validation procedure allowing to generalize the approach to any di-
mensionality reduction approach. Chapter 5 introduces a framework that combines
both PCA-based prior falsification and a VAE to define an assembled prior distribu-
tion from different geological scenarios for gradient-based inversion. With this new
framework it is possible to include perturbations of base patterns in the assembled
prior obtained by deformation or intrafacies variability and also to estimate absolute
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Figure 1.2: Diagram depicting an overview of the complete framework proposed in
this work and the corresponding one for "traditional" inversion. Highlighted in gray
are the main contributions of this thesis.

velocity values. The framework is validated with a synthetic case and a field dataset.
Finally, a general discussion and conclusions linking all the content in the thesis and
giving some future perspectives are presented in Chapter 6. Figure 1.2 shows an
overview of the proposed framework that highlights contributions of this thesis and
provides a comparison with "traditional" inversion.

This thesis is based on three papers; two of them
:::
one

:::::::::::
published,

::::
one submitted and

one published
::
to

:::
be

::::::::::
submitted

:
in peer-review journals. The content of these papers

is mainly presented in Chapters 3, 4 and 5. This content was edited with respect to
the original versions so that repetition is limited and notation is consistent.
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Chapter 2

Cross-borehole ground penetrating
radar: theory and forward operator

The methods for inversion (Chapters 3 and 5) and prior falsification (Chapters 4 and
5) proposed in this thesis are tested for a particular type of geophysical data: travel-
times of the first arrival of electromagnetic waves from cross-borehole ground pen-
etrating radar (GPR). This results in a specific spatial distribution of the sensitivity
of the measurements which will influence the results as shown and discussed in the
following chapters. In this chapter, an overview of the method and its corresponding
geophysical forward operator f used to simulate the traveltimes of electromagnetic
waves is presented together with the simplifying assumptions used to obtain such op-
erator. For a more detailed review of GPR the reader is referred to Jol (2009) and
Daniels (2004).

2.1 Principles of cross-borehole GPR

GPR uses a transmitter antenna to send an electromagnetic pulse into the subsurface
and then records the signal that arrives at a receiver antenna. Sources and receivers
may be located at the surface and/or in boreholes (Fig. 2.1). The source pulse (also
called wavelet) propagates through the subsurface and is scattered and attenuated
by materials with different electromagnetic properties. The signal arriving at the
receiver carries information both on the subsurface structure and its composition.
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For most subsurface materials, the magnetic permeability is very close to that of
the vaccum (µ0), therefore it is usual to only obtain electrical conductivity (σ) and
permittivity (ε) from GPR data. The center frequency of the source pulse used in
GPR is usually between 100 MHz and 4 GHz and is chosen depending on both the
electromagnetic properties of the subsurface and the desired spatial resolution. For
this frequency range, σ is related to attenuation while ε controls the wave velocity.

Data acquisition may be performed in either reflection or (direct) transmission
modes, depending on the relative position of transmitter, receiver and the sensed re-
gion of the subsurface. Cross-borehole GPR refers to the case when source positions
are located in one borehole and receivers positions are located in another borehole,
i.e. borehole transmission mode (see Fig. 2.1a). When data for one source position
is recorded in many or all receiver positions, the acquired data is referred to as multi-
offset gather (MOG), otherwise, when only data from sources and receivers at the
same depth is recorded, the dataset is referred to as zero-offset profile (ZOP).

The arriving signal is generally recorded only after a certain time since the source
pulse is emitted. Such time lapse is expected to include mainly the signal coming
from the domain of interest, possibly including multiple reflections and/or guided
waves. These complete recorded signals are usually referred to as GPR traces or
full-waveform data (Fig. 2.1b). In some cases, one may decide to work only with
a subset of the full-waveform data for both computational and processing efficiency
or when this subset is sufficient for the purpose of the survey. For instance, using
only the traveltimes of the first arrivals of the waves (which are selected as shown
in Fig. 2.1b and often represented as in Fig. 2.1c) one is able to obtain a model of
the subsurface heterogeneity. However, while full-waveform data carries information
on both electrical conductivity and permittivity, traveltimes only provide an estimate
of the (wave) velocity distribution and also disregard information contained in later
arrivals. Velocity (v) is related to permittivity by

v =
1

εµ0

(2.1)

In this way, the wavewill travel faster inmaterials with lower permittivity (as sketched
by the wavefronts in Fig. 2.1a). In general, a model of permittivity is useful even if
one aims to use the full-waveform data, e.g. the starting model for full-waveform
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Figure 2.1: (a) Sketch of a cross-hole GPR field setup: console connected to trans-
mitter (Tx) and receiver (Rx) antennas located in different boreholes. Antennas are
shown in the position closest to the ground (denoted T1 and R1, respectively) and the
×’s show the all the positions for which data is acquired. Subsurface is composed of
two different materials with different electromagnetic properties. Dashed lines de-
pict the wavefront at two different times after the source pulse is emitted assuming
ε1 > ε2. (b) Full-waveform data collected at all the receivers (subset of a MOG) for
the first transmitter (T1). Triangles mark the first arrivals. (c) Data matrix formed
with the traveltimes for all sources and receivers.
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Material Conductivity, σ (mS/m) Relative permittivity, εr
Air 0 1
Freshwater 0.1–10 78–88
Saltwater 4000 81–88
Clay (dry) 1–100 2–20
Clay (wet) 100–1000 15–40
Sand (dry) 10-4–1 3–6
Sand (wet) 0.1–10 10–30

Table 2.1: Electromagnetic properties of some subsurface materials at 100 MHz.
Values taken from Cassidy (2009).

inversion is usually obtained from a traveltime inversion.

:::
The

:::::::::::::
permittivity

:::
of

:::::::::
materials

:::
is

::::::::
usually

::::::::::
expressed

:::::
with

::::::::
respect

:::
to

:::::
that

:::
of

:::
the

::::::::
vacuum

:::
as:

:

ε = εrε0
:::::::

(2.2)

::::::
where

::::::::::::::::::::::::::::
ε0 = 8.854× 10−12 F ·m−1

::::
and

::
εr::

is
::::
the

:::::::
relative

::::::::::::
permittivity

:::
of

:::
the

:::::::::
material.

Permittivity in the subsurface is mainly related to water content because the relative
permittivity of water for GPR frequencies is much higher than that of sediments or
air (Table 2.1). Therefore permittivity may be approximated with a petrophysical re-
lation by knowing e.g. the permittivity of the rock, the saturation and the porosity
(Day-Lewis, 2005). For saturated or partially saturated subsurface, the main factors
impacting the permittivity are then porosity and water retention capacity. They both
are good indicators to distinguish subsurface media, e.g. in partially saturated sub-
surface, a (poorly sorted) glacial till usually has higher water retention due to clay
content than a (well sorted) sand (as shown in Chapter 5).

2.2 Geophysical forward operator: electromagneticwave
traveltime

The propagation of electromagnetic waves is described byMaxwell’s equations. These
are a set of coupled PDE that describe the behavior of the electromagnetic field in
space and time (Nabighian, 1987; Zhdanov, 2018). Under some assumptions, wave
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traveltimes may be computed with simplified equations (Chap. 3, Born and Wolf,
1980). Taking as starting point the spectral Maxwell’s equations

::
for

::::::::::
harmonic

::::::
fields:

∇× E = −jωµH− Jms (2.3)

∇×H = −jωεE + σE + Jes (2.4)

∇ · εE = ρ (2.5)

where E is the electric field, H is the magnetic field, j is the imaginary unit, ω is the
(angular) frequency, µ is the magnetic permeability, ε is the (dielectric) permittivity,
σ is the electric conductivity, ρ is the electric charge density and Jes and Jms denote
electric and magnetic sources, respectively. Substituting for H in Eq. 2.3 one obtains
(Chap. 5, Solimini, 2016):

∇∇ · E−∇2E = κ2E (2.6)

where κ is the propagation constant defined as κ2 = ω2µ0ε. Considering also that
Eq. 2.5 in a neutral inhomogeneous material (for which ρ = 0), yields:

∇ · (εE) = E · ∇ε+ ε∇ · E = ρ = 0

from which:

∇ · E = −1

ε
E · ∇ε (2.7)

Substituting Eq. 2.7 in 2.6, then the equation for the electric field is:

∇2E + κ2E +∇
(

E · ∇ε
ε

)
= 0 (2.8)

When either the spatial rate of variation of ε or κ2 →∞, Eq. 2.8 is simplified to:

∇2E + κ2(r)
::

E ' 0 (2.9)

::::::
where

:
r
:::
is

:
a
:::::::
spatial

::::::::
position

:::::::
vector

::::
and

:::::::
denotes

::::
that

::::
the

::::::::::::
propagation

::::::::
constant

::::::::
changes

::::
with

:::::::::
position.

:
This approximation is usually referred to as

:::::::::::
geometrical optics or ray
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approximation (Born and Wolf, 1980; Solimini, 2016). This is a Helmholtz equation
, then the

::::
and

:::
its solution for the electric field in the inhomogeneous material has the

general form
::::
may

:::
be

::::::::::::::
approximated

:::::
with

::::
the

::::::::::::::::
Luneburg-Kline

:::::::::::
asymptotic

::::::::::
expansion

(Courant and Hilbert, 1989):

E(r) = e−jκ0φ(r)
∞∑
m=0

Em(r)

(jκ0)m
(2.10)

where κ0 is the propagation constant in vacuumand r is a spatial position vector,
::
φ

::
is

:::
the

::::::
phase

:::
of

::::
the

:::::
field

::::::::::::
(normalized

:::
by

::::
κ0),:::::::

Em(r)
::::
are

:::::::::
functions

::::::::::::
determined

:::
by

:::
the

::::
field

::::::::::
equations

::::
and

:::
m

::
is

:::
an

::::::
index

:::
for

:::
the

::::::
order

:::
of

::::::::::::::
approximation. One can derive the

eikonal equation for the traveltime
::
in

::::::
terms

::
of

::::
the

::::::
phase

::
φ by substituting Eq. 2.10 in

Eq. 2.9 and writing the phase φ
:::::::::::
considering

:::::
only

::::::
zeroth

::::::
order

::::::
terms

:::::::
(m=0):

:

|∇φ(r)|2 =

(
κ(r)

κ0

)−2
::::::::::::::::::::::

(2.11)

::::::
Then,

:::::::
writing

::::
Eq.

:::::
2.11 in terms of the traveltimes

::::::::::
traveltime

::
τ :

|∇τ(r)|2 = v(r)−2 (2.12)

where τ is the traveltime and v is the wave (phase) velocity given by Eq. 2.1. After
discretization, the model vector is then m = v and the data vector is d = τ

:
.
:

The eikonal equation in Eq. 2.12 may be used to compute the traveltimes by defin-
ing the boundary condition τ = 0 for the sources and the distribution of ε. Note that
for GPR frequencies and sharp transitions between different subsurface materials,
the ray approximation is usually not valid and an error is introduced, i.e. scattering
of low-frequency waves is not adequately modeled. However, the error introduced
is often of the same order of magnitude to that of the measurement error (Hansen
et al., 2014), thus using the eikonal equation to compute traveltimes provides gener-
ally sufficient accuracy. Moreover, solving the eikonal equation is computationally
more efficient than solving equations that explicitly consider scattering e.g. a full-
waveform simulation (Zelt and Chen, 2016) which expedites testing and uncertainty
quantification.
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Figure 2.2: Nodes for shortest path method: a velocity cell (dashed line), nodes for
velocity cells (black dots), secondary nodes (white dots), raypaths (solid lines) defin-
ing a template for the arrival node (gray dot) which is itself a secondary node.

2.3 Numerical approximation of forward operator and
computation of derivatives

Different numerical algorithms have been used to approximate the solution of the
eikonal equation in Eq. 2.12. In this work, two different algorithms are applied: a
shortest path method and a fast-marching method. Both rely on spatially discretizing
the domain of interest in velocity (or permittivity) cells and both are more physically
realistic compared to a linear straight-ray approach which neglects that the travel path
depends on velocity heterogeneities. However, the two have different ways to control
accuracy and also different ways to compute the derivatives needed for gradient-based
inversion.

The shortest path (graph) method is based on Dijkstra’s algorithm to compute
the fastest path in a network of nodes. One may define the possible connections (or
routes) between the nodes by different templates. In general, the higher the order of
the template (more possible connections) the more accurate the traveltime compu-
tations but also the higher the computational demand. In this work, the algorithm
proposed by Giroux and Larouche (2013) and implemented in PyGIMLi (Rücker
et al., 2017) is used. This algorithm puts secondary nodes in the faces of velocity
cells to define the template 2.2.

Gradient-based inversion may be done by linearizing the forward operator and
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Figure 2.3: Sensitivity of forward operators: Velocity subsurface model (a), sum of
sensitivity considering all combinations of sources and receivers for the shortest path
method (b) and the fast marching method (c), sensitivity for a source at 1.5 m and a
receiver at 3.0 m depth for the shortest path method (c) and the fast marching method
(e).

obtaining the gradient of the l2-norm objective function (1.3) as:

∇mγ(m) = −J(m)T (d− f(m)) (2.13)

where J is the Q×D Jacobian matrix:

[J(m)]i,j =
∂fi(m)

∂mj

(2.14)

For the shortest path method, the elements of the Jacobian (which are derivatives)
are computed by taking the length of the rays that are traced with the shortest path
between each combination of source and receiver. As a result, only the cells traversed
by at least one ray have a sensitivity different than zero. In Fig. 2.3b,d the sensitivity
for all rays (with source-receiver offset less than 30 degrees) and for an individual
ray is shown for a synthetic subsurface model (Fig. 2.3a). Notice that sensitivities
are effectively focused only in rays whose paths are clearly controlled by the velocity
heterogeneities.

The Fast-Marching method used in this work relies on a factorized version of
the eikonal equation and the implementation of Treister and Haber (2016). The fac-
torized equation helps to reduce the error induced by spatial discretization in the
proximity of the sources. Fast-Marching methods use a heap sort algorithm and a
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finite-difference scheme to propagate a wave (or interface) front from the sources to
the receivers. The same implementation allows one to efficiently compute the prod-
uct J(m)T (d − f(m)) which is a measure of sensitivity of traveltimes with respect
to the velocity cells. This product is given by the solution of a triangular system
exploiting the Fast-Marching sort order of the forward operator (Treister and Haber,
2016). This means that one avoids computing individually each derivative of the Ja-
cobian, as done in the shortest path method. The spatial sensitivity for the model in
Fig. 2.3a for all sources and receivers and for an individual ray path is shown in Fig.
2.3c,e. Notice that due to the finite difference approximation and the size of the grid
cells, the rays are not entirely focused in rays. This resembles the Fresnel zone that
results when explicitly considering the finite-frequency of the waves: the traveltime
is computed for a frequency whose wavelength is on the order of the node spacing
(Zelt and Chen, 2016). Though this effect generally does not affect the accuracy of
the forward operator, it is generally not possible to tune it to the center frequency of
source wavelets.

Using the corresponding implementations, the computational time for both the
forward simulation and the computation of the Jacobian product is about 10 times
lower for the fast marching method compared to the shortest path method. The short-
est path method is

:::
was

::::::::
initially

:::::::::::
considered

::::
and

:
used in Chapters 4 and 3. For Chapter

5 , the fast marching method is used since
::::::
Since

::::::::
Chapter

::
5

::::::::
required

:
more extensive

testing was necessary and the computational gain is advantageous
::::
(i.e.

:::::
more

::::::::
forward

::::::
model

:::::::::::::
simulations),

::::
the

:::::::
choice

::::
was

::::::
made

:::
to

:::::::
switch

::
to

::::
the

::::
fast

::::::::::
marching

::::::::
method

::
in

:::::
order

:::
to

:::::::
reduce

::::::::::::::
computational

:::::
time.

2.4 Deterministic cross-borehole GPR tomography

For a nonlinear forward operator, the traditional deterministic inversion also referred
to as tomography is usually done by adding a regularization term to the objective
function in Eq. 1.2 which is then rewritten as:

γ(m) = ‖f(m)− d‖22 + α‖Lm‖22 (2.15)

where α is a regularization factor and L is a regularization (or roughening) operator.
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For instance, Lmay be chosen to be the finite-difference approximation of the second
order spatial derivatives (Laplacian), then the regularization term penalizes solutions
that are rough in terms of the second order derivatives, i.e. it favors smooth models.
The gradient for Eq. 2.15 is then computed by:

∇mγ(m) = −J(m)T (d− f(m)) + αLTLm (2.16)

which then might be directly optimized by using the gradient-descent method. How-
ever, for this objective function there are optimization methods with faster conver-
gence such as the Gauss-Newton method. This method requires solving iteratively
for ∆m in (see e.g. Aster et al., 2013; Rücker et al., 2017):

(J(m)TJ(m) + αLTL)∆m = J(m)T (d− f(m))− αLTLm (2.17)

The inverted models obtained this way
:::::
Such

:::::::
simple

::::::::::::::
regularization

:::::::
terms

::::
may

:::::
result

:::
in

:::::::::::::::
high-resolution

:::::
and

::::::::
realistic

::::::::
models

:::::
when

::::
the

:::::::::::
subsurface

:::::::::
structure

:::
is

::::
well

:::::::::::
constrained

:::
by

::::
the

:::::
data

:::::
(i.e.

:::::
high

::::::::
angular

::::::::::
coverage

::::::::
between

::::
the

:::::::::::
boreholes,

::::::
small

:::::::::::::::::::
transmitter/receiver

:::::::
spacing

::::::
down

:::::
each

:::::::::
borehole,

::::::::::::
high-quality

::::::::::
traveltime

:::::::
picks).

::::::::::
However,

:::::
when

::::
this

:::
is

:::
not

::::
the

:::::
case

::::
(i.e.

::::
the

:::::::
dataset

::
is

::::
not

:::::::::::
sufficiently

::::::::::::
informative)

::::
the

::::::::
inverted

:::::::
models

:
tend to show structures that are not penalized by the chosen regularization.

An example of a model obtained with regularization that favors smooth models is
shown in Fig. 1.1c. In this case, however, the used regularization factor is relatively
low (10-5) and therefore some artifacts resulting from noise fitting are still visible
(compare to the truth model in Fig. 1.1b). A higher regularization factor would have
resulted, however, in more blurry limits between the materials which is neither the
case. This is a typical problem with prior information that is expressed by standard
regularization choices which in most cases is not realistic enough to adequately rep-
resent highly structured subsurface.
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Chapter 3

Reducing model dimension for
inversion: deep generative models to
represent highly structured spatial
patterns1

When solving inverse problems in geophysical imaging, deep generativemodels (DGMs)
may be used to enforce the solution to display highly structured spatial patterns which
are supported by independent information (e.g. the geological setting) of the sub-
surface. In such case, inversion may be formulated in a latent space where a low-
dimensional parameterization of the patterns is defined and where Markov chain
Monte Carlo or gradient-based methods may be applied. However, the generative
mapping between the latent and the original (pixel) representations is usually highly
nonlinear which may cause some difficulties for inversion, especially for gradient-
based methods. In this contribution we review the conceptual framework of inver-
sion with DGMs and study the principal causes of the nonlinearity of the generative
mapping

::::::::
propose

::::
that

::::
this

:::::::::::::
nonlinearity

::
is

:::::::
caused

:::::::
mainly

:::
by

:::::::::
changes

::
in

:::::::::
topology

::::
and

:::::::::
curvature

::::::::
induced

:::
by

::::
the

::::::::::
generative

:::::::::
function. As a result, we identify a conflict be-

1Note: The research presented in this chapter is based on: Lopez-Alvis, J., Laloy, E.,
Nguyen, F., and Hermans, T. (2020). Deep generative models in inversion: A review and de-
velopment of a new approach based on a variational autoencoder. ArXiv:2008.12056 [Physics].
http://arxiv.org/abs/2008.12056. Submitted to Computers and Geosciences.
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tween two goals: the accuracy of the generated patterns and the feasibility of gradient-
based inversion. In addition, we show how some of the training parameters of a vari-
ational autoencoder, which is a particular instance of a DGM, may be chosen so that
a tradeoff between these two goals is achieved and acceptable inversion results are
obtained with a stochastic gradient-descent scheme. A test case using truth

::::::
series

::
of

:::
test

::::::
cases

::::::
using

:::::::::
synthetic

:
models with channel patterns of different complexity and

cross-borehole traveltime tomographic data involving both a linear and a nonlinear
forward operator is used to assess the performance of the proposed approach

:::::
show

::::
that

:::
the

::::::::::
proposed

::::::::
method

:::::::::
provides

:::::::
useful

:::::::
results

::::
and

:::::::::
performs

:::::::
better

::::::::::
compared

::
to

::::::::
previous

::::::::::::
approaches

:::::
using

:::::::
DGMs

:::::
with

:::::::::::::::
gradient-based

:::::::::
inversion.

3.1 Introduction

A common task in the geosciences is to solve an inverse problem in order to obtain
a model (or image) from a set of measurements sensing a heterogeneous spatial do-
main. When measurements are sparse, the

:::::::::::::
characterizing

:::::::::::
subsurface

::::::::::::::
environments,

:::
the

::::::::::::::
corresponding

:
inverse problem is usually ill-posed and its solution

:::::::
yielding

:
non-

unique
::::
and

::::::::::
potentially

:::::::::
unstable

::::::::::
solutions.

:::::
This

::
is

:::::::
mainly

:::::::::
because

:::
the

::::::::::::::
measurements

::
do

::::
not

::::::::
provide

:::::::::::
sufficiently

::::::::::::
independent

::::::::::::
information

:::
on

:::
the

::::::::::::
distribution

:::
of

::::::::::
subsurface

::::::::::
properties. In such cases it is possible to constrain the solution to be found only
among models with

:::::
allow

:::::
only

:
certain spatial patterns. As detailed in Chapter 1

::
In

::::::::
practice, such patterns are

::::
may

:::
be

:
supported by independent (prior) information of

the sensed domain (e.g. knowledge of the geological setting) and used with the aim of
appropriately reconstructing heterogeneity. Classical regularization may be used to
impose certain structures to the solution (Tikhonov and Arsenin, 1977) but these are
generally too simple to be realistic

:::
the

::::::
model

::
to

:::
be

::::::::
smooth

::
or

:::
of

::::::::::
minimum

::::::::::
magnitude

::::::::::::::::::::::::::::::
(Tikhonov and Arsenin, 1977)

:::
but

::
in

::::::
many

:::::
cases

::::
this

:::::
does

:::
not

:::::
yield

::::::::::::
satisfactory

:::::::
results

::
in

:::::
areas

:::::::
poorly

::::::::::::
constrained

:::
by

:::
the

:::::
data

:::::::::::::::::::::::::::::::::::::::::::
(Hermans et al., 2012; Caterina et al., 2014).

Recently, the use of deep generative models (DGMs) to constrain the solution space
of inverse problems has been proposed so that resulting models have specific spatial
patterns (Bora et al., 2017; Laloy et al., 2017; Hand and Voroninski, 2018; Seo et al.,
2019). DGMs can deal with realistic (natural) patterns which are not captured by
classical regularization or random processes defined by second-order statistics (Linde
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et al., 2015). In this way, inversion with DGMs provides an alternative to inversion
with eithermultiple-point geostatistics (MPS) (González et al., 2008; Hansen et al., 2012; Linde et al., 2015)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Caers and Hoffman, 2006; González et al., 2008; Hansen et al., 2012; Linde et al., 2015; Rezaee and Marcotte, 2018)
or example-based texture synthesis (ETS) (Zahner et al., 2016).

:::::
While

::::::
other

::::::::
methods

::::
exist

::::
that

::::
are

::::
also

::::
able

:::
to

::::::::
produce

::::::::
realistic

:::::::
models

:::::
with

:::::::::
inversion

::::
e.g.

:::::
using

::::::::::::::
plurigaussian

:::::
fields

:::::::::::::::::::::::::::::::::::::::::::::
(Armstrong et al., 2011; Liu and Oliver, 2005)

:
,
:::::
they

:::
are

::::::::
usually

:::
not

:::
as

:::::::
flexible

::
as

::::::::
DGMs,

:::::
MPS

:::
or

:::::
ETS

::
in

::::::
terms

:::
of

:::
the

::::::::
patterns

:::::
they

::::
can

:::::::::
generate.

:

All the previously mentioned methods generally rely on gridded representations
for the models (i.e. by dividing the spatial domain in cells or pixels). However, a key
difference between them is that MPS and ETS directly extract spatial patterns from a
training image (or exemplar) (Strebelle, 2002; Mariethoz et al., 2010) whereasDGMs
require an initial learning phase in which samples of the patterns are used as a training
set—such samples may be obtained by different means, e.g. cropped from a training
image or taken directly from a large set of images. While any of the methods (DGMs,
MPS or ETS) may be used with inversion

:::::
They

:::
all

:::::::
require

::
a

:::::
large

::::::::
number

::
of

::::::::
training

:::::::::
examples

::
of

::::
the

:::::::
desired

::::::::
patterns

::
to

::::::
work,

::::::
which

::::
are

:::::::
usually

:::::::::
provided

::
as

::
a

:::::
large

::::::::
training

::::::
image

:::
(or

:::::::::::
exemplar).

::::::::::
However,

::::
the

::::::::::
procedure

::::
for

:::::::::::
generating

:
a
:::::::
model

:::::
with

::::::
MPS

::
or

::::
ETS

:::::::
differs

:::::
from

:::::
that

::
of

::::::::
DGMs.

::::::
Both

:::::
MPS

::::
and

:::::
ETS

::::::
build

::::
the

:::::::
models

::::::::::::
sequentially

::::
(i.e.

::::::
pixel

:::
by

:::::
pixel

:::
or

::::::
patch

:::
by

::::::
patch)

:::::::
either

:::
by

::::::::
directly

:::::::::
sampling

::::::
from

:::
the

::::::::
training

::::::
image

::::::::::::::::::::::::
(Mariethoz et al., 2010)

::
or

::
by

::::::::::
sampling

:::::
from

::
an

::::::::::
empirical

:::::::::::
probability

:::::::::::
distribution

::::
that

::::
was

:::::::::::
previously

:::::::::
obtained

:::::
from

::::
the

::::::::
training

::::::
image

:::::::::::::::::
(Strebelle, 2002)

:
.
:::
In

::::::::
contrast,

DGMs rely on a so called latent spacewhere
::::::::::
generative

::::::::
function

::::
and a low-dimensional

parametric representation (
::::::::::::::::::
reparameterization

::::
that

:::::::
follows

:
a
:::::::
known

:::::::::::
probability

::::::::::::
distribution.

::::
The

::::::
DGM

:::
is

::::
first

::::::::
trained

:::::
with

::::::
many

::::::::::
examples

:::
of

::::
the

::::::::
desired

::::::::
patterns

:::::
(e.g.

::::::
many

:::::::::
croppings

:::
of

::::
the

::::::::
training

:::::::
image)

:::
to

::::::
obtain

::::
the

:::::::::::
generative

:::::::::
function.

:::
A

::::::
model

:::
is

::::
then

:::::::::
generated

:::
by

:::::::
taking

:::::
one

:::::::
sample

::::::
from

:::
the

:::::::::::::::::
low-dimensional

::::::::::::
probability

:::::::::::
distribution

:::
and

::::::::
passing

::
it

::::::::
through

:::
the

::::::::::
generative

:::::::::
function.

:::::
This

:::::::::::::::::
low-dimensional

::::::::::::::::::
reparameterization

::
is

:::::
often referred to as latent vector or code) is defined andwhereMarkov ChainMonte

Carlo (MCMC) or gradient-based methods may be applied
:::
and

::::
the

::::::
space

::::::
where

::
it
::
is

:::::::::::
represented

::
is

:::::::
called

:::
the

::::::
latent

::::::
space. Note that when using gridded representations

each
:::::::
finding

:
a
::::::::::::::::
low-dimensional

::::::::::::::
representation

::
is
::::::::::
generally

:::::::
feasible

::::
for

::::::
highly

::::::::::
structured

::::::
spatial

:::::::::
patterns.

:::::
The

::::::
usual

::::::::::
geometric

::::::::::
argument

:::
for

::::
this

::::::::::
statement

::
is

:::
as

::::::::
follows:

::::
any

:::::::
gridded

:
model may be seen

:::::::::::
represented

:
as a vector in "pixel" space (a space where
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each pixel is one dimension) . Since only highly structured spatial patternsare allowed,
vectors will only occupy

:::
and

::::::
when

::::
the

::::::::
models

::::
are

:::::::::
restricted

:::
to

::::::
those

:::::
with

:::::::
certain

::::::
spatial

:::::::::
patterns,

:::::
their

::::::::
vectors

::::
will

:::::
take

:::
up

:::::
only a subset of the

:::
this

:
pixel space. This

subset
:::::::
usually defines a manifold of lower dimensionality than the pixel space (Fef-

ferman et al., 2016) and the latent space is simply a low-dimensional space where
such manifold is mapped.

::::::::::::
represented.

:

Most inversionmethods require a perturbation step to search for models that fit the
data but such a step is not straightforward to compute for highly structured patterns
(Linde et al., 2015; Hansen et al., 2012). The latent space of DGMs provides a useful
frame to compute a perturbation step (Laloy et al., 2017) or even a local gradient-
descent direction (Laloy et al., 2019) which generally results in better exploration of
the posterior distribution and/or faster convergence compared to inversion with MPS
or ETS.

So far, inversion with DGMs has been done successfully with regular MCMC
sampling methods (Laloy et al., 2017, 2018). However, when applicable, gradient-
based methods may be preferred given their lower computational demand. Gradient-
based deterministic inversion with DGMs has been pursued with encouraging results
(Richardson, 2018, Laloy et al., 2019), however, convergence to the true model was
shown to be dependent on the initial model. In the framework of probabilistic in-
version, MCMC methods that use the gradient to guide the sampling in the latent
space have shown to be less prone to get trapped in local minima than gradient-based
deterministic methods while they are also expected to reach convergence faster than
regular MCMC (Mosser et al., 2018). A different inversion strategy that has also
been applied successfully with DGMs and has a relatively low computational cost is
the Ensemble Smoother (Canchumuni et al., 2019; Mo et al., 2020).

Recently, Laloy et al. (2019) studied the difficulties of performing gradient-based
deterministic inversion with a specific DGM. They concluded that the non-linearity

::::::::::::
nonlinearity of their generative function or "generator" (i.e. the mapping from the la-
tent space to the pixel space) was high enough to hinder gradient-based optimization,
causing the latter to often fail in finding the global minimum even when the objective
function was known to be convex (in pixel space). Such high non-linearity is expected
since DGMs approximate highly complex patterns by using low-dimensional inputs
usually generated by simple probability distributions (e.g. normal or uniform distributions).
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The complexity of realistic patternsmeans that the correspondingmanifoldwill generally
have both a curvature and a topology that is radically different from the region (or
subset) defined indirectly in the latent space by the chosen probability distribution.
Then, the generative function has to deform this region (when mapping it to the
pixel space) in such a way as to approximate (or cover) the manifold as close as
possible. The combined deformation needed to curve the region and to approximate
its topology causes the generative function to be highly nonlinear. In order to ap-
proximate manifolds of realistic patterns, most common DGMs involve (artificial)
neural networks with several layers and non-linear

::::::::::
nonlinear (activation) functions.

Recently, it has been shown that deep neural networkswith a ReLU activation function
are able to change topology of the input (Naitzat et al., 2020) so, besides nonlinearity,
the generator of DGMs may also induce changes in topology when mapping from the
latent space. When the sole purpose of the DGM is for generating new samples, high
nonlinearity and induced changes in topology are not important but they might be an
issue when the DGM is used for additional tasks, such as inversion.

For a specific subsurface pattern, the degree of non-linearity and the changes
induced in topology by

:::::::::::
nonlinearity

:::
of

:
the generative function may be controlled

mainly by its architecture and the way it is trained (Goodfellow et al., 2016). Re-
garding difference in training, two common types of DGMs can be distinguished:
generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAEs) (Kingma and Welling, 2014)—in

:
.
:::::::
VAEs

::::::::
training

::::::
relies

:::
on

:
a
:::::::::::
variational

::::::::::
inference

::::::::
strategy

:::::::
where

::
a

::::::
DNN

::
is

:::::
used

:::
to

:::::::::::::
approximate

::::
the

::::::::
required

::::::::::
variational

:::::::::::::
distribution.

::::::
Such

::::::::::::
distribution

:::
is

::::::::::
equivalent

:::
to

::
a
:::::::::::::
probabilistic

::::::::
encoder

::::
(see

:::::::
details

:::
in

:::::::
Section

:::::::
3.2.3).

::::::::
GANs

::::::::
training

::
is
:::::::
based

:::
on

:::::::::::
adversarial

:::::::::
learning:

::::
the

:::::::::
generator

:::
is

:::::::
trained

:::::::::
together

:::::
with

::
a
::::::::::::::
discriminator

:::
in

:::::
such

::
a
:::::
way

:::::
that

::::
the

:::::::
models

:::::::::
generated

:::
by

::::
the

:::::::
former

::::
are

:::::::
aimed

:::
to

::::
fool

::::
the

::::::
latter.

:::
In

:
both cases training gener-

ally takes the form of optimizing a loss function
:
,
:::
but

:::
in

:::
the

:::::
case

::
of

:::::::
GANs

::::
one

::::
has

::
to

::::::::
alternate

:::::::::
between

:::::::::::
optimizing

::::
the

:::::::::
generator

::::
and

::::
the

:::::::::::::
discriminator. GANs and VAEs

require specification of a probability distribution in the latent space and an architec-
ture for the discriminator or encoder (respectively) in addition to the one for their
generators. They might also require other parameters to be specified such as the
weights on the different terms of the loss function. Frequently, some of these choices
use default values, but generally all of them may affect the degree of non-linearity
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::::::::::::
nonlinearity of the generator (Rolinek et al., 2019).

Given all these possible controls for learning
:::
the

::::::::
possible

::::::::
choices

::
to

:::::
train

:
the gen-

erator it is interesting to investigate whether there exist some combinations of such
controls

::::
one

::::
can

:::::
find

:::::
those

:
that allow both for a good reproduction of the patterns

and a good performance of less computationally demanding gradient-based inver-
sion. In this Chapter

:::::::
chapter, we review some of the difficulties of performing inver-

sion with DGMs and show how to obtain a well-balanced tradeoff between accuracy
in patterns and applicability of gradient-based methods. In particular, we propose
to use the training choice of a VAE as DGM and to select some of its parameters
in order to achieve good results with gradient-based inversion. Then, we compare
this to the training choice of a GAN that has been tested with gradient-based inver-
sion in prior studies (Laloy et al., 2019; Richardson, 2018). Furthermore, we show
that since the resulting VAE inversion is only mildly nonlinear, modified stochastic
gradient-descent (SGD) methods are generally sufficient to avoid getting trapped in
local minima and provide a better alternative than regular gradient-based methods
while also retaining a low computational cost.

The remainder of this chapter is structured as follows. Section 3.2.1 explains
DGMs and their conceptualization as approximating the real (pattern) manifold. In
Section 3.2.2 the use of DGMs to represent prior information in inversion and the
difficulties of performing gradient-based inversion are reviewed. Sections 3.2.3 and
3.2.4 show how to use a VAE and SGD to cope with some of the mentioned diffi-
culties. Then, Section 3.3 shows some results of the proposed approach. Section
3.4 discusses the obtained results and points to some remaining challenges. Finally,
Section 3.5

:::
5.4

:
presents the conclusions of this Chapter

:::::::
chapter.

3.2 Methods

3.2.1 Deep generative models (DGM) to represent realistic pat-
terns.

The term "deep learning" generally refers to machine learning methods that involve
several layers of multidimensional functions. This general "deep" setting has been
shown to allow for complex mappings to be accurately approximated by building a
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succession of intermediate (simpler) representations or concepts (Goodfellow et al.,
2016). Consider, for instance, deep neural networks (DNNs) which are mappings
defined by a composition of a set of (multidimensional) functions φk as:

g(mx
:
) = (φL ◦ · · · ◦ φ2 ◦ φ1)(mx

:
) (3.1)

wherem
:
x
:
is a multidimensional (vector) input, k = {1, . . . , L} denotes the function

(layer) index and composition follows the order from right to left. Furthermore, each
φk is defined as:

φk(ξ) = ψk(Akξ + bk) (3.2)

in which ψk is a (nonlinear) activation function, Ak and ::
is

::
a

:::::::
matrix

::
of

:::::::::
weights,

:
bk

are vectors of weightsand biases, respectively,
::
is

::
a

::::::
vector

:::
of

:::::::
biases

:
and ξ denotes

the output of the previous function (layer) φk−1 for k > 1 or the initial input m
:
x

for k = 1. Then, training the DNN involves estimating the values for the all the
parameters θ = {Ak,bk | 1 ≤ k ≤ L}

:::::::::::::::::::::::::::
θ = {Ak,bk | 1 ≤ k ≤ K}

:
where each Ak

or bk may be of different dimensionality depending on the layer. In practice, the
number of parameters θ for such models may reach the order of 106, therefore train-
ing is achieved by relying on autodifferentiation (see e.g. Paszke et al., 2017) and
fast optimization techniques based on stochastic gradient descent (SGD )

:::::
SGD

:
(see

e.g. Kingma and Ba, 2017), both usually implemented for and run in highly parallel
(GPU) computing architectures.

A deep generative model (DGM) is a particular application of such deep methods
(Salakhutdinov, 2015). In aDGMa set of training examplesM = {m(i) | 1 ≤ i ≤ N}

::::::::::::::::::::::::
M = {m(i) | 1 ≤ i ≤ T}

:
and a simple low-dimensional probability distribution p(z)

are used to learn a model g(z) that is capable of generating new samples of m (which
are consistent with the training set) by using as input samples from p(z). This can be
written as:

m = g(z), z ∼ p(z) (3.3)

where g(z) is referred to as the "generator" and z denotes a vector of latent variables
or "code". While the training (and generated) samples m are usually represented in
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Figure 3.1: Sketch of low-dimensional
:::
the

:::::::::
different

:::::
parts

:::::::::
involved

:::
in

:::::::
DGMs

:::::
with

:::::::::
inversion:

::::::::::::::::
approximation

:::
of

::::
the

::::
real

:
manifold setting

:::::
(a–c)

::::
and

::::
the

::::::::
impact

:::
of

:::
the

:::::::::::::
approximated

:::::::::
manifold

:::
in

:::::::::
inversion

:::::
(d–f). (a) Real manifoldM and

:::::::::::
inversion’s mis-

fit function γ(m) in ambient space RN . (b) Approximate manifoldM′ overlaying
the real manifold. (c) Region of latent space Rn where the approximate manifold is
implicitly defined by the probability distribution p(z). (d) Misfit function contours
intersected by the real manifold. (e) Misfit function contours intersected by approx-
imate manifold. (f) Misfit function contours back-mapped onto the latent space and
the related gradient∇zζ(z) computed at one iteration.

a high-dimensional space RN , the probability distribution p(z) is defined in a low-
dimensional spaceRn. The spaceRN is often referred to as "ambient space" while the
space Rn is called the "latent space". Fig. 3.1 a,c shows a schematic representation
where the dimensionality of the ambient space is

::
of

::::
the

::::::::
general

:::::::
setting

:::
of

:::::::
DGMs

::::
with

::::::::::
inversion

::::::
where

::::
(a)

::::
and

:::
(c)

::::::
show

::
an

:::::::::
ambient

::::::
space

:::::
with N = 3 and the one of

the latent space is
:
a
::::::
latent

::::::
space

:::::
with

:
n = 2. A typical application of DGMs is the

generation of images (see e.g. Kingma andWelling, 2014; Goodfellow et al., 2014) for
which the ambient space is just the pixel space. Gridded representations of subsurface
models may be seen as two- or three-dimensional images of the subsurface.

The underlying assumption in DGMs is that real-world data are generally struc-
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tured in their high-dimensional ambient space RN and therefore have an intrinsic
lower dimensionality—such assumption is known in machine learning literature as
themanifold hypothesis (Fefferman et al., 2016) because it states that high-dimensional
data usually lie on (or lie close to) a lower-dimensional manifoldM ⊂ RN . For in-
stance, when studying a subsurface region it is usually assumed that geological pro-
cesses gave it certain degree of structure then, to allow for a flexible base on which to
represent the distribution of the different subsurface materials, the region is usually
divided in

:::::::::::::
homogeneous

:
pixels (or cells)within each of which the material is assumed

to be homogeneous. Such gridded representation "lives" in the high-dimensional
pixel space (the ambient space) but since it has some structure there should be a
lower dimensional space (the latent space) where the same distribution of subsurface
materials might be represented. Technically, while both the latent space Rn and the
manifoldM are usually low-dimensional, they may differ in dimensionality and/or
the manifold may only occupy a certain portion of the latent space (e.g. the shaded
region in Fig. 3.1c).

:::::::::
Manifolds

::::
are

::::::::::::
geometrical

::::::::
objects

::::
that

::::::
have

::
a

:::::::::
topology

::::
and

:
a
:::::::::::
curvature.

:::
A

:::::::::
topology

:::
is

:::
the

::::::::::
structure

:::
of

::
a

::::::::::::
geometrical

::::::
object

:::::
that

::
is

::::::::::
preserved

:::::
under

::::::::::::
continuous

:::::::::::::
deformations

:::::
(e.g.

::::::::::
stretching

:::
or

:::::::::
bending).

:::
In

::::::
other

:::::::
words,

::::::
when

:
a

:::::::::::::::
non-continuous

::::::::::
operation

::::
such

:::
as

:::::::
gluing

::
or

::::::::
tearing

::::::
occurs

::::
the

:::::::::
topology

:::
of

:::
the

::::::
object

::::::::
changes.

:::::::
These

::::::::
changes

::::
may

:::
be

::::::::::
described

::
in

::::::
terms

::
of

:::::::::
different

:::::::::::
topological

::::::::::
properties

::::
such

:::
as

::::::::::::::
compactness,

:::::::::::::::
connectedness

::::
and

::::::::::::::::::::::
simple-connectedness.

::::
In

::::
this

:::::::
work,

:::
the

:::::::
concept

:::
of

::::::::::
curvature

::
is

:::::
used

::
to

:::::
state

::::
that

:::
in

:::::::
general

::::
one

::::::
starts

:::::
with

::
a

:::::
"flat"

::::::::
domain

::
in

:::
the

::::::
latent

::::::
space

::::
and

:::::
then

::::
one

::::
has

::
to

::::::
curve

::
it

:::
to

::
fit

::::
the

::::
real

::::::::::
manifold.

:::
In

::::
this

:::::
way,

:::
the

:::::::
concept

::::::
helps

::
to

::::::::::::
understand

::::::
where

::::
part

:::
of

:::
the

::::::::::::
nonlinearity

:::
of

::::
the

::::::::::
generative

::::::::
function

::::::
comes

::::::
from.

:::::::
While

:::::::
formal

::::::::::
definitions

:::
of

::::::::::
curvature

:::::
exist

:::::
(e.g.

::::::::::::
Riemannian

:::::::::
curvature

::
as

::::::::
applied

::
to

::::::::
smooth

:::::::::::
manifolds)

::::
they

::::
are

::::
not

:::::
used

::
in

::::
this

::::::
work.

:

Considering the manifold assumption described above, a DGM may be regarded
as a model to implicitly approximate the "real" manifoldM by generating samples
that closely follow such manifold, i.e. that lie on an approximate manifoldM′ (Fig.
3.1b). Samples of this approximate manifold are generated by sampling first from
a simple probability distribution p(z) in latent space (e.g. a normal or uniform dis-
tribution) and then passing them through the generator g(z). Since the probability
distribution p(z) defines indirectly a region (or subset) in latent space that generally
has a different curvature and topology than the real manifold, the generator g(z) must
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be able to approximate both curvature and topology when mapping the samples of
p(z) to ambient space. This generally requires the generator to be a highly nonlin-
ear function. As an instance, consider the case of certain spatial patterns whose real
manifold is a highly curved surface with "holes" in ambient space and the (input)
region defined by a uniform p(z) is a (flat) plane in a two-dimensional latent space.
Regarding their topological properties, one technically says that this plane is simply
connected while the real manifold is not (see e.g. Kim and Zhang, 2019). Then, the
generative function has to deform this plane in such away as to approximate (or cover)
the real manifold as close as possible. An important property of DGMs is that since
a probability distribution in latent space is used, the sample "density" of such plane
(and its mapping) also plays an important role. For instance, the generative function
may approximate the "holes" of the real manifold by creating regions of very low
density of samples when mapping to ambient space (to picture this one can imagine
locally stretching a flexible material without changing its curvature). The combined
deformation needed to curve the plane and to "make" the holes causes the generative
function to be highly nonlinear. Note that when considering a DGM that uses a DNN
with ReLU

::::::::
rectified

:::::::
linear

::::
unit

::::::::
(ReLU)

:
activation functions as generator g(z), it is

also possible for g(z) to change topology of the input by "folding" transformations
(Naitzat et al., 2020).

While one should always strive to accurately approximate the real manifold, since
a finite set of training samples is used a tradeoff between accuracy and diversity in the
generated samples may be a better objective. Indeed, the use of the prescribed prob-
ability distributions is done to continuously "fill" the space between the samples and
therefore generate samples of a continuous manifold. Recent success—in terms of
accuracy and diversity of generated samples—has been achieved with twoDGMs that
are based on deep neural networks (DNNs): generative adversarial networks (GANs)
(Goodfellow et al., 2014) and variational autoencoders (VAEs) (Kingma andWelling,
2014). The generator g(z) on both strategies is a mapping from low-dimensional in-
put z ∈ Rn to high-dimensional output m ∈ RN . In contrast, the mappings corre-
sponding to the discriminator and the encoder take high-dimensional inputs m and
return low-dimensional outputs.
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3.2.2 Gradient-based inversion with DGMs

DGMs may be used with inversion of subsurface data d to obtain geologically re-
alistic spatial distributions of physical properties m (Laloy et al., 2017). While this
is also possible with traditional deterministic inversion where a regularization term
is added directly in Eq. (1.2) (i.e. in ambient space) to obtain models with the im-
posed structures that minimize the misfit (Lange et al., 2012; Caterina et al., 2014),
DGMs are more flexible because they can enforce different structures

::::::::::::::
simultaneously

:::::::
enforce

:::::::::
different

::::
kind

:::
of

::::::::
patterns

:
provided they are appropriately trained

:::::::
trained

::::
with

::::::::
samples

::
of

::::
all

:::::
such

::::::::
patterns

:::::::::::::::::::::::
(Bergmann et al., 2017). In the DGM setting, the low-

dimensional samples z that input to the generator g(z) may be seen as defining a
low-dimensional parameterization (or encoding) of realistic patterns m and there-
fore exploration of the set of feasible models may be done in the latent space Rn, as
long as the search is done within the region where the approximated manifoldM′ is
defined (depicted by shading in Fig. 3.1c).

Since the misfit γ(m) is typically defined in ambient spaceRN (e.g. in Fig. 3.1a),
gradient-based inversion with DGMs may be seen as optimizing the intersection
of γ(m) with the approximate manifoldM′ (Fig. 3.1e). Such intersected misfit is
mapped into the latent space (Fig. 3.1f) and may be expressed as γ(g(z)). Also note
that when probability distributions p(z) with infinite support are used (e.g. a normal
distribution), one can guide the search in the latent space by adding controlling (reg-
ularization) terms to the mapped misfit (see e.g. Bora et al., 2017) and the resulting
objective function may be written as:

ζ(z) = γ(g(z)) + λR(z)

= ‖f(g(z))− d‖2 + λR(z) (3.4)

where R(z) is a regularization term defined in the latent space and λ is the corre-
sponding regularization factor. A derivation of this objective function from aBayesian
point of view is presented in Appendix

:::
A.

::::
The

:::::
goal

:::
of

:::
the

:::::::::::::::
regularization

:::::
term

::
is

::
to

:::::
make

::::
the

::::::
search

::::::::::
consistent

:::::
with

:::
the

::::::::
selected

:::::::::::
probability

::::::::::::
distribution,

::::
i.e.

::::::::::::
optimization

:::::
stays

:::::::::::::
preferentially

:::::::
within

:::
the

:::::::::::::
high-density

::::::::
regions

::
in

::::
the

:::::
latent

::::::
space.
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In practice, no exhaustive mapping has to be done and the gradient∇zζ(z) is only
computed for the points in latent space where optimization lands in each iteration (in
Fig. 3.1f the gradient is represented for one iteration). The gradient ∇zζ(z) is com-
puted by adding a derivative layer corresponding to ∇mγ(m) to the autodifferenta-
tion that was set up for g(z) while training the DGM (see e.g. Laloy et al., 2019).
Such autodifferentiation setup may be seen as implicitly obtaining the jacobian S(z)

::::::::
Jacobian

:::::
J(z)

:
of size N × n whose elements are:

[SJ
:
(z)]i,j =

∂gi(z)

∂zj
(3.5)

Then, the gradient ∇zζ(z) is obtained from Eq. (3.4) by using the chain rule given
by the product of Eqs. (1.3) and (3.5):

∇zζ(z) = ∇zγ(g(z)) + λ∇zR(z)

= SJ
:
(z)T∇mγ(m) + λ∇zR(z) (3.6)

The latter may also be done implicitly by incorporating directly in the autodifferenti-
ation framework, e.g. putting it on top of the so called computational graph (Richard-
son, 2018; Mosser et al., 2018).

Assuming
:::::
Even

::::::
when the considered misfit function γ(m) is convex in ambient

space RN (as depicted by concentric contours in Fig. 3.1a), difficulties to perform
gradient-based deterministic inversion may arise due to the generator g(z) (Laloy
et al., 2019). We propose that such difficulties arise because the generator (1) is
highly nonlinear and (2) changes the topology of the input region defined by p(z).
Both of these properties often cause distances (between samples) in latent space to
be significantly different than distances in ambient space. Consider again the exam-
ple of a real manifold that is a highly curved surface with "holes" in it and a uniform
distribution p(z) is used as input to the generator, then the latter might be able to
approximate both the curvature and the holes at the cost of increasing nonlinearity
and/or changing topology. When considering this backwards—e.g. when mapping
the misfit function γ(m) in the latent space—the approximation of both high curva-
ture and differences in topology often translate in discontinuities or high nonlinear-
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ities because a continuous mapping onto the uniform distribution is enforced. This
results in high curvature being effectively "flattened" and holes effectively "glued",
both of which cause distances to be highly distorted. In this work, we will call a
generator "well-behaved" when it is only mildly nonlinear and preserves topology.

Both the generator’s nonlinearity and its ability to change topology, may be con-
trolled by two factors: (1) the generator architecture (type and size of each layer and
total number of layers) and (2) the way it is trained (including training parameters).
If the goal is to perform gradient-based inversion with DGMs, one should try to pre-
serve convexity of γ(m) as much as possible when mapping it to the latent space as
γ(g(z)) while not degrading the generator’s ability to reproduce the desired patterns.
To aid in preserving such convexity, we propose to enforce the generator g(z) to be
well-behaved. This means that the generator will approximate the real manifoldM
with a manifoldM′ with a moderate curvature and whose topology is the same as the
region defined in latent space by p(z). By enforcing a moderate curvature manifold,
local oscillations that may give rise to local minima (as those shown in Fig. 3.1d)
but only have minimum impact in pattern accuracy are avoided in the approximate
manifoldM′ (the local minima are no longer present in Fig. 3.1e). In turn, when the
generator is encouraged to preserve topology no more local minima should arise in
Rn than the ones resulting from intersecting γ(x)

:::::
γ(m)

:
with the approximate mani-

foldM′ in RN (note e.g. there is one local minima in both Fig. 3.1e,f). The latter is
in line with the proposal of Falorsi et al. (2018), where they argue that for the purpose
of representation learning (which basically means learning encodings that are useful
for other tasks than just generative modeling) the mapping should preserve topology.

GANs often produce highly nonlinear generators that do not preserve topology,
which may result in challenging inversion in the latent space. Laloy et al. (2018)
provide an example of how architecture of a GAN is set to obtain a relatively well-
behaved generator g(z). They propose to use a model called spatial generative adver-
sarial network (SGAN) (Jetchev et al., 2017) that enforces different latent variables
to affect different local regions in the ambient space. Their architecture results in
a high compression (lower dimensionality of the latent space) and controls nonlin-
earity which allowed them to successfully perform MCMC-based inversion in the
latent space. However, gradient-based deterministic inversion performed with the
same DGM was shown to be highly dependent on the initial model (Laloy et al.,
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2019) pointing towards the existence of local minima. In this Chapter,
::::::::
addition,

:::::
since

::::::::
training

::::::
GANs

::
is

::
a

::::::
rather

::::::::::::
complicated

::::::::::
procedure

::::::
where

::::
one

::::
has

::
to

::::
find

::
a

:::::::
balance

::::::::
between

:::
the

:::::::::::::
performance

::
of

::::
the

:::::::::
generator

::::
and

:::
the

::::::::::::::
discriminator,

:::::
there

::
is

:::
no

:::::::::::::::
straightforward

::::
way

::
in

:::::::
which

:::
to

:::::::
modify

:::::
such

:::::::::
training

::
to

::::::::
control

:::::::::::::
nonlinearity.

:::
In

::::
this

::::::
work we aim

for robust gradient-based inversion in latent space by considering a VAE, the other
predominant type of DGM, and its ability

:::::
since

:::
its

::::::::
training

:::::
may

:::
be

::::::
tuned to produce

a well-behaved generator.

3.2.3 Variational autoencoder (VAE ) as DGM for inversion

A variational autoencoder (VAE )
::::
VAE

:
is the model resulting from using a reparam-

eterized gradient estimator for the evidence lower bound while applying (amortized)
variational inference to an autoencoder, i.e. an architecture involving an encoder and a
decoder which are both (possibly deep) neural networks (Kingma andWelling, 2014;
Zhang et al., 2018). To train a VAE one uses a dataset M = {m(i) | 1 ≤ i ≤ P}

::::::::::::::::::::::::
M = {m(i) | 1 ≤ i ≤ T}

:
where each m(i) is a sample (e.g. an image) with the de-

sired patterns and then maximizes the sum of the evidence (or marginal likelihood)
lower bound of each individual sample. The evidence lower bound for each sample
can be written as (Kingma and Welling, 2014)

L(θ, ϑ; m(i)) = Lm + Lz (3.7)

with

Lm = Eqϑ(z|m(i))[log(pθ(m
(i)|z)] (3.8)

and

Lz = −DKL(qϑ(z|m(i))||p(z)) (3.9)

where z refers to the codes or latent vectors, pθ(m|z) is the (probabilistic) decoder,
qϑ(z|m) is the (probabilistic) encoder, E denotes the expectation operator, DKL de-
notes the Kullback-Leibler distance and, θ and ϑ are the parameters (weights and
biases) of the DNNs for the decoder and encoder, respectively.

In order to maximize the evidence lower bound in Eq. (3.7), its gradient with
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respect to both θ and ϑ is required, however, this is generally intractable and therefore
an estimator is used. This estimator is based on a so called reparameterization trick
of the random variable z̃ ∼ qϑ(z|m) which uses an auxiliary noise ε. In the case of
a VAE, the encoder is defined as a multivariate Gaussian with diagonal covariance:

qϑ(z|m) = N (hϑ(m),uϑ(m) · In) (3.10)

where hϑ(m) and log uϑ(m) are modeled with DNNs and In is a n × n diagonal

:::::::
identity

:
matrix. Then, the encoder and the auxiliary noise ε are used in the following

way during training (Kingma and Welling, 2014)

z̃ = hϑ(m) + uϑ(m)� ε, ε ∼ p(ε) (3.11)

where� denotes an element-wise product. Often Eq. (3.9) has an analytical solution,
then only Eq. (3.8) is approximated with the estimator as (Kingma andWelling, 2014)

L̃m =
1

M

M∑
j=1

log(pθ(m
(i)|z̃(i,j))) (3.12)

where z̃(i,j) = hϑ(m(i)) + uϑ(m(i))� ε(j), ε(j) ∼ p(ε) andM is the number of sam-
ples used for the estimator. Further, if we set the decoder pθ(m|z) as a multivariate
Gaussian with diagonal covariance structure, then

pθ(m|z) = N (gθ(z),vθ(z) · IN) (3.13)

where gθ(z) and log vθ(z) are modeled with DNNs and IN is a N × N diagonal

:::::::
identity

:
matrix. In this work, we consider only the mean of the decoder pθ(m|z)

which is just the (deterministic) generatorgθ(z). Then, the corresponding (mean-square
error) loss function may be written as

L̃m =
1

M

M∑
j=1

‖gθ(z̃(i,j))−m(i)‖2 (3.14)

The described setting allows for the gradient to be computed with respect to both θ
and ϑ and then stochastic gradient descent is used to maximize the lower bound in
Eq. (3.7). In the rest of this Chapter

:::::
work, we drop the subindex θ in g(z) to simplify
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Figure 3.2: A diagram for a VAE:
:::
(a)

:
steps needed for training are shown in frames

with continuous line and
:::
(b)

:
steps needed for generationare in frames with dashed

lines.

notation and also because once the DGM is trained, the parameters θ do not change,
i.e. they are fixed for the subsequent inversion.

As previouslymentioned, it is often possible to analytically integrate theKullback-
Leibler distance in Eq. (3.9). In this work, we consider that p(z) and qϑ(z|m) are both
Gaussian therefore Eq. (3.9) may be rewritten as (Kingma and Welling, 2014):

Lz =
1

2

∑
i=1

nd(1 + log((ui)
2)− (hi)

2 − (ui)
2) (3.15)

where the sum is done for the n output dimensions of the encoder.
Note that the term in Eqs. (3.8), (3.12) and (3.14) may be interpreted as a re-

construction term that causes the outputs of the encode-decode operation to look
similar to the training samples, while the term in Eqs. (3.9) and (3.15) may be con-
sidered a regularization term that enforces the encoder qϑ(z|m) to be close to a
prescribed distribution p(z). In practice, one may add a weight to the second term
(Higgins et al., 2017)

::::
(?) of the lower bound as:

L̃(θ, ϑ; m(i)) = L̃m + βLz (3.16)

to prevent samples to be encoded far from each other in the latent space, which may
cause overfitting of the reconstruction term and degrade the VAE’s generative perfor-
mance. The overall process of training and generation for a VAE is depicted in Fig.
3.2.
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Note that in setting up the VAE one has to choose: (1) the architectures of the
encoder and decoder, (2) the probability distribution p(z), (3) the noise distribu-
tion p(ε) and (4) the regularization weight β. As mentioned in Section 3.2.2, these
choices may impact the nonlinearity of the generator and its ability to preserve topol-
ogy, which in turn affect the mapping of the data misfit function γ(m) in latent
space and possibly diminish the performance of inversion methods. In this work,
we assume that an architecture for the generator (decoder) g(z) is chosen so that
it performs sufficiently good in terms of reproducing the patterns. For instance,
when gridded spatial distributions (images) are considered, a typical choice is a
deep-convolutional neural network (Radford et al., 2016). While the choice of the

::::::
While

:::::::::
different

:::::::
choices

:::
in

:::
the

::::::::::::
architecture

::::
and

:
probability distribution p(z) may aid

in obtaining a well-behaved generator, e.g. by selecting a probability distribution with
the same (or similar) topology as the real manifold (Falorsi et al., 2018), we expect
such a choice to be highly problem (pattern)

::::
they

::::
are

:::::::::
generally

::::
not

:::::::::::::::
straightforward

:::
and

:::::::
highly

:::::::::
problem

:
dependent. Therefore herein

:
in

:::::
this

:::::
work

:
we focus on the other

two possible controls: the noise
:
,
:::
the

:
distribution p(ε) and the regularization weight

β
:
,
::::::
since

::::
they

::::::::
provide

::::
the

::::::::
simplest

:::::::
means

:::
of

::::::::::
improving

::::::::::::
nonlinearity

:::::::
issues.

The effect of the regularization weight β is such that when increased the en-
coded training samples tend to lie closer to the prescribed probability distribution
p(z). Then, one may picture the transformation of the encoder as taking the low-
dimensional approximate manifold in the ambient space and charting it (e.g. by
bending, stretching and even folding) into the region defined by p(z) in the latent
space and the generator as the transformation undoing such charting.

While the effect of β in a VAE is relatively easy to understand, the effect of the
noise distribution p(ε) is not so straightforward. First, note that the typical choice of a
diagonal noise as p(ε) = N (0, α·In)whereα denotes a constant variance (frequently
set to α = 1.0) and In is a n× n diagonal matrix is usually done for tractability or
computational convenience (Kingma and Welling, 2014; Rolinek et al., 2019). How-
ever, it has been proposed recently that the choice of a diagonal noise has an impact
on a property called disentanglement (Rolinek et al., 2019). Such disentanglement
basically means that different latent directions control different independent charac-
teristics of the training (or generated) samples. They explain that a diagonal p(ε)

might induce an encoding that preserves local orthogonality of the ambient space. In
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this Chapter
::::
work, we argue that the choice of a diagonal p(ε) (which is usually done

only for computational convenience) might be useful in producing a well-behaved
generator.

In order to visualize the joint effect of α and β, Fig. 3.3 shows a synthetic exam-
ple where samples in a two-dimensional ambient space lie close to a rotated "eight-
shaped" manifold (Fig. 3.3a). In addition, to study the impact on inversion, a convex
data misfit function γ(m) in the same space (created synthetically with a negative
isotropic Gaussian function) is shown in Fig. 3.3b. The latent space is also chosen
two-dimensional for visualization purposes but recall that for a real case the dimen-
sionality of the latent space is usually much lower than the one of the ambient space.
Then, Fig. 3.4 considers nine different combinations for the values of α and β to
show how the (nonlinear) generator g(z) maps a region of the latent space (denoted
by the z-axes in the first three rows) into the ambient space (denoted by the x-axes
in the last three rows) in order to approximate the manifold in Fig. 3.3a. To visual-
ize the deformation caused by the generator, an orthogonal grid in the z-axes and its
mapping into the x-axes (a deformed grid) are shown (both on the left of each inset).
The corresponding encoded training samples are shown in red in the z-axes (left of
each inset) and their reconstruction (resulting from the operation of encode-decode)
is shown also in red in the the x-axes (right of each inset), where also the original
training samples are shown (in blue) to assess the accuracy of reconstruction. Sam-
ples obtained from a Gaussian distribution with a unitary diagonal covariance p(z)

are shown in the z-axes in orange (left of each inset), while their generator-mapped
values are shown also in orange in the x-axes (right of each inset). Finally, the map-
ping of the data misfit function in Fig. 3.3b into the latent space is shown in the z-axes
(right of each inset).

It is worth mentioning a few effects visible in the illustrative example of Figs. 3.3
and 3.4. First, note that increasing the variance of α seems to cause the grid to be
more "rigid" locally (grid lines tend to intersect more at right angles) while going
through the generator which may in turn help in preserving topology and controlling
non-linearity

::::::::::::
nonlinearity

:
(e.g. compare the deformation of the grids for different

values of α for β = 0.01), and more importantly, in preserving the convexity of the
data misfit function in the latent space (the mapped misfit function using α = 0.1

and β = 0.01 has a single global minimum, while the misfit function for α = 0.01
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Figure 3.3: Synthetic example of two-dimensional "eight-shaped" manifold: (a)
training samples lying close

::
to

:
the manifold, and (b) synthetic misfit function γ(m).

and β = 0.01 has two minima in latent space). Also note that both α and β should
be set in order to not cause a significant degradation in: (1) the reconstruction of
the patterns, e.g. the cases of α = 1.0 with both β = 0.1 and β = 0.01 show
that the "eight-shape" is not completely reconstructed (seen in red samples not fully
overlaying the blue samples in x-axes), or (2) the similarity of the encoded samples
to the prescribed distribution p(z), e.g. the case of α = 0.01 and β = 0.1 shows
that encoded samples (in red

::::
red

::::
dots

::
in

:::::::
z-axes) are too concentrated (lower variance)

and therefore far from the prescribed normal distribution with unit variance
:::::::
(orange

::::
dots

::
in

::::::::
z-axes). In this case, the intermediate values (α = 0.1 and β = 0.01) seem to

provide the best choice in terms of reconstruction of the patterns, generative accuracy
and convexity of the misfit function in latent space.

::::::
Cases

:::::
with

::::::::::::::::::::
(α = 1.0, β = 0.001)

:::
and

:::::::::::::::::::::
(α = 0.1, β = 0.001)

:::::
also

:::::
have

::::::
good

::::::::::::
performance

::::
but

::::::
show

::::
two

::::::
minor

::::::::
defects:

:::
(1)

:
a
:::
bit

:::::::
higher

::::::::
number

:::
of

:::::::::
generated

:::::::::
samples

::::
over

::::
the

:::::::
"holes"

::::::::
(orange

:::::
dots

::
in

:::::::
x-axes)

::::::
which

:::::::
would

:::::::::
translate

::::
into

:::::::
higher

::::::::
number

:::
of

:::::::::::
inaccurate

:::::::::
patterns,

::::
and

::::
(2)

::
a

::::::
higher

:::::::
number

:::
of

::::::::
encoded

:::::::::
samples

::::
(red

:::::
dots

::
in

::::::::
z-axes)

::
in

::::::::::::
low-density

:::::::
regions

:::::::
which

::::::
means

:::
the

::::::::::
misplaced

::::::::
training

:::::::::
patterns

::::
will

:::
be

:::::::
harder

::
to

:::::::::
generate.

:

In summary, a generator g(z) that preserves topology and contains nonlinearity
is the best choice for gradient-based inversion in the latent space because it preserves
convexity of the objective function. Note, however, that if the topology of the prob-
ability distribution p(z) is different to the one of the real manifoldM, this strat-
egy may result in approximate manifoldsM′ that do not account for all topological
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Figure 3.4: Mapping a region of the latent space by the generator g(z) and mapping
of the misfit function γ(m) to the latent space with different values for α and β. The
first three rows (z-axes) depict the latent space where each case shows: (left frame)
orthogonal grid (black), encoded training samples (red) and generated samples (or-
ange); (right frame) misfit function mapped in latent space (blue). The last three rows
(x-axes) depict the ambient space where each case shows: (left frame) the same grid
but mapped by the generator; (right frame) training (blue), reconstructed (red) and
generated samples (orange).
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differences—e.g. that partially cover holes of the real one (see e.g. Fig. 3.1b)—and
therefore might produce models that have non-accurate patterns when sampling from
p(z). We argue that the two training parameters α and β of a VAE may be chosen
in order for the latter issue to not be severe, i.e. the generated patterns do not deviate
too much from the training patterns, while still approximately preserving convexity
of the objective function in the latent space.

To test our proposedmethodwe implement a VAE in PyTorch (Paszke et al., 2017)
and use training samples cropped from a "training image" which is large enough to
have many repetitions of the patterns at the cropping size—a requirement similar in
MPS. For our synthetic case, we use the training image of 2500 × 2500 pixels from
Laloy et al. (2018) and the cropping size is chosen to fit the setting of our synthetic
experiment (explained in detail in Sec. 3.2.5). Fig. 3.5a shows a patch of the train-
ing image and the position of the three (cropped) training samples shown Fig. 3.5b.
Three generated samples from our proposed VAE trained with such croppings are
shown Fig. 3.5c.

::::::
Notice

:::::
that

:::
the

:::::::
output

:::
of

::::
the

:::::::::
generator

:::
is

:::::::::::
continuous

:::
(to

::::::
allow

:::
for

::::::::::::
computation

:::
of

:::::::::
gradients

::::
for

::::::::
training

::::
and

:::::::::::
inversion)

:::::
with

:::::::
values

:::::::::
between

::
0

::::
and

::
1,

:::
and

:::
is

:::::
later

::::::::::::
transformed

::
to

::::::::
velocity

:::::::
values

:::
by

::
a

::::::
linear

::::::::
relation.

:
For comparison, Fig.

3.5d shows three samples generated with the SGAN proposed by Laloy et al. (2019).
Patterns of generated samples in Fig. 3.5c are not completely accurate comparing to
those of the training image or the SGAN—they might display e.g. some breaking
channels and smoothed edges

::::::
(notice

:::::
their

:::::::
output

::
is

::::
also

:::::::::::
continuous

::::
but

::::::
looks

::::::
almost

:::::::::::
categorical). As mentioned above, this is expected for our proposed VAE because the
approximate manifold fills some holes of the real manifold and may have less curva-
ture.

:::::
Also,

::::
the

::::::::
average

::::::::::
proportion

:::
of

:::::::::
channels

:::::
from

::::::::
models

:::::::::
generated

::::::
from

:::
the

:::::
VAE

::
is

:
a
::::
bit

::::::
higher

:::::::
(0.36)

:::::
than

::::
that

:::
of

:::
the

::::::::
training

:::::::
image

:::::::
(0.27).

:
However, we argue that

such inaccuracies may not cause significant error or bias while performing inversion
in practice because an informative dataset will generally make the inversion land in
appropriate models (given the prescribed patterns were selected correctly). More im-
portantly, in contrast to the SGAN, a modified gradient-based inversion (such as that
presented in Sec. 3.2.4) will generally find a consistent minimum when applied with
our proposed VAE regardless of the initial model.
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Figure 3.5: (a) A 1000× 1000 patch of the training image of Laloy et al. (2018), (b)
cropped training samples whose location in (a) is shown red, (c) generated samples
from our proposed VAE, and (d) generated samples from the SGAN proposed by
Laloy et al. (2018).

3.2.4 Stochastic gradient descent with decreasing step size

Note that even when topology is preserved and nonlinearity is contained, the data
misfit function in the latent space might still present some local minima. Using
our proposed VAE approach in the synthetic case study, the resulting misfit func-
tion seems to have the shape of a global basin of attraction with some local minima
of less amplitude. To deal with such remaining local minima we propose to use a
stochastic gradient descent (SGD )

:::::
SGD method instead of regular gradient-based

optimization.
SGD methods are commonly used in training machine learning models to cope

with large datasets (e.g. Kingma and Ba, 2017) and it has also been shown they are
able to find minima that are useful in terms of generalization (Smith and Le, 2018).
They essentially use an estimator for the gradient of the objective function computed
only with a batch of the data. Such estimator is used in each gradient descent iteration
and may be written for the case of inversion in the latent space as:

zk+1 = zk − ` · ∇zζ(z)k (3.17)
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where k denotes the iteration index, ` is the step size (or learning rate) and the gra-
dient estimator∇zζ(z)k is computed by using Eq. (3.6) for a data batch (i.e. a subset
of d) which is different for each k-th iteration but of constant size b. Relying on
such estimator makes SGD methods less likely to get trapped in local minima if a
sufficiently large step is chosen. However, if such a step is too large the optimization
will have issues when it is close to the global minimum, usually seen in the form of
high misfit and oscillations in the value of

:::::
when

:
the objective function . Note that

similar to other stochastic optimization methods, SGD only guarantees convergence
to the global minimumwith a certain probability, however if modified in the right way
for the type of problems to be solved and its parameters chosen appropriately such
probability could be very close to one

::::
has

:::
the

:::::::
shape

::
of

::
a
:::::::
global

::::::
basin

:::
of

:::::::::
attraction

::::::::::
mentioned

::::::
above

:::::::::::::::::::::::
(Kleinberg et al., 2018).

Recently, it has been proposed that using SGD may be seen as optimizing a
smoothed version of the objective function obtained by convolving it with the gradi-
ent "noise" resulting from batching (Kleinberg et al., 2018). The degree of noise (and
therefore the degree of smoothness) is controlled by the ratio of the learning rate to
the batch size `/b (Chaudhari and Soatto, 2018; Smith and Le, 2018). Therefore if
we choose to decrease the value of ` (while keeping b constant) as the optimization
progresses we might be able to achieve lower misfit values i.e. get sufficiently close

::
to the global minimum. This may be implemented by using:

`k+1 = c` · `k (3.18)

where a constant value of c` < 1.0 and a starting value `0 must be chosen. In practice,
the method may be further improved by also decreasing the controlling (regulariza-
tion) term in Eqs. (3.4) and (3.6) in order to prevent that large initial steps diverge
from the region of the latent space where the manifold is defined (Bora et al., 2017)

::::::::::::::::::::::::::::::::::
(Bora et al., 2017; Luo et al., 2015). Then, similarly to ` this may be done as:

λk+1 = cλ · λk (3.19)

again a constant cλ < 1.0 and a starting value λ0 must be selected.
The combined effect of simultaneously decreasing ` and λ is illustrated in Fig.

(3.6) for a simple synthetic problem in a two-dimensional (n = 2) latent space Rn.
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The misfit term (i.e. first term of Eq. (3.4)) of the synthetic problem is shown in
Fig. 3.6a. Assuming that p(z) is a normal distribution N (0, In)where In is a n× n
identity matrix, we propose a specific regularization term R(z) that will preferen-
tially stay in the regions of higher mass (where most samples are located). This is
done by radially constraining the search space by means of a χ-distribution, i.e. the
regularization term is written as:

R(z) = (‖z‖ − µχ)2 (3.20)

where µχ is the mean for a χ-distribution with n degrees of freedom.
:::
We

:::::
refer

::
to

::::
this

::::::::
strategy

::
as

:::::::
"ring"

::::::::::::::
regularization

:::::
since

::::
for

:
a
:::::::::::::::::
two-dimensional

::::::
latent

::::::
space

::
it

::::::::
enforces

:::::::::
inversion

:::
to

:::::::::::::
preferentially

:::::
stay

:::::::
within

::
a
:::::::
region

:::::
with

::::
the

::::::
shape

:::
of

::
a
::::::
ring.

:
Dashed

lines in Fig. 3.6a denote this mean together with the 16- and 84-th percentiles. In
general, this is especially useful for higher dimensionalities where most of the mass
of a normal distribution is far from its center (Domingos, 2012). Then, Eq. (3.4) may
be rewritten as:

ζ(z) = ‖f(g(z))− d‖2 + λ(‖z‖ − µχ)2 (3.21)

and correspondingly Eq. (3.6) may be expressed as:

∇zζ(z) = SJ
:
(z)T∇mγ(xm

::
) + 2λz

(
1− µχ
‖z‖

)
(3.22)

As mentioned above, this gradient is often computed simply by adding a layer to the
autodifferentiation of the generator. One optimization instance for a random initial
model is shown in Fig. 3.6b, while the behavior of the misfit and ‖z‖ is shown in Fig.
3.6c,d. Notice the rather "noisy" inversion trajectory, but also its ability to escape
local minima. The effect of decreasing ` is seen in Fig. 3.6c by the decreasing of the
oscillations amplitude as the optimization progresses, while the effect of decreasing
λ is noticeable in Fig. 3.6d by the progressive shifting of ‖z‖ away from µχ.

The strategy described above and stated by Eq. (3.21) is generally applicable to
DGMs that use an independent normal distribution as its probability distribution p(z)

and whose generator is well-behaved. In this Chapter
:::::::
chapter, we consider a VAE

whose training parameters β and p(ε) are chosen so that it results in amildly nonlinear
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Figure 3.6: Regularized gradient-based inversion in a synthetic two-dimensional la-
tent space: (a) misfit (blue) and mean of χ-distribution (black dashed) together with
16- and 84-th percentiles (gray dashed), (b) the same setting of (a) with an overlay of
an instance of optimization (trajectory in orange) for a random initial model (black
’?’), showing also final model (red ’×’) and true model (black ’+’), (c) misfit vs. iter-
ation number, and (d) norm of z vs. iteration number.

:::::::
Dashed

:::::
line

::
in

:::
(d)

::::::::::::
corresponds

::
to

:::
the

::::::
norm

:::
of

:::
the

:::::::
radius

:::::::
defined

:::
by

::::
the

::::::
mean

::
of

::::
the

::::::::::::::
χ-distribution.

inversion for which such SGD strategy is generally useful.

3.2.5 Inverse problem: traveltime tomography

To test our proposedmethod and compare it with a previous instance of inversion with
a DGM, we consider an identical setting to that used in Laloy et al. (2019). Such set-
ting considers a dataset of borehole

:::::::::
crosshole

:
ground penetrating radar (GPR) trav-

eltime tomography. To obtain a subsurface model m ∈ RN this method relies in
contrasts of electromagnetic wave velocity which is related to moisture content and
therefore to porosity for saturated media. The tomographic array considers a trans-
mitter antenna in one borehole and a receiver antenna in the other, each of which
is moved to different positions and a vector of measurements d ∈ RQ is obtained
by taking the traveltime of the wave’s first arrival for each transmitter-receiver com-
bination. We assume that the sensed physical domain is a 6.5 × 12.9 m plane (i.e.
the two-dimensional region between the boreholes) and is discretized in 0.1 × 0.1
m cells of constant velocity to represent spatial heterogeneity (i.e. a representation
of N = 65 × 129 = 8385 cells is obtained). We consider a binary subsurface (e.g.

44



Reducing model dimension for inversion

composed of two materials with different porosity) with respective wave velocities of
0.06 and 0.08 m ns-1. Measurements are taken every 0.5 m in depth (the first being at
0.5 m and the last at 12.5 m) resulting in a dataset of Q = 625 traveltimes.

::::
Note

::::
that

:::::::
though

::::
this

:::::::
model

::::::::
provides

::
a
::::::
good

::::::::
learning

:::::
tool

::::
and

::
a

::::::
rather

::::::::::::
challenging

::::
test

:::::
case,

:
it
:::
is

:::::::::::
unrealistic,

::::
e.g.

:::::::::::
subsurface

::::::::::::::
environments

:::::::
usually

::::::::
contain

::::::
many

::::::
more

:::::::::
materials

:::
and

::::::::
further

::::::::::
variability

:::::::
within

:::::
each

::::::
them.

:
For one instance of our synthetic case, we

add normal independent noise η ∼ N (0, σ2 · IQ) where σ2 is the noise variance
and IQ is a 625 × 625 diagonal matrix

:::::::
identity

::::::::
matrix.

:::
In

::::
the

::::
case

::
a
:::::::::
different

:::::
noise

:::::::::::
distribution

::
is

::::::
used,

::::
one

::::::
needs

:::
to

::::
add

:
a
::::::::
weight

:::::::
matrix

::
to

::::
the

::::::
misfit

:::::
term

::
in

::::
Eq.

:::::
(3.4)

::
so

::::
that

::::::::::
inversion

:::::
takes

:::::
such

::::::::::::
distribution

::::
into

:::::::::
account,

::::
e.g.

::::::
when

::::::::
different

:::::
data

::::::
points

::::
have

:::::::::
different

::::::::::::
magnitudes

:::
for

::::
the

::::::
noise,

::::::::::
inversion

:::::::
should

::::
put

:::::
more

::::::::
weight

:::
on

:::::
those

::::
that

:::
are

::::
less

:::::::::
affected

::
by

::::::
noise.

Similarly to Laloy et al. (2019), we first consider a fully linear forward opera-
tor f for which raypaths are always straight, i.e. independent of the velocity spatial
distribution. For this case Eq. (1.1) may be rewritten as:

yd
:

= Fm + η (3.23)

whereF is a matrix of dimensionQ×N in which a certain row contains the length of
the raypath in each cell of the model for a certain transmitter-receiver combination.
The corresponding gradient of the misfit ∇mγ(m) to be used in Eq. (3.22) for the
solution of the inversion is:

∇mγ(m) = −2FT (d− Fm) (3.24)

We also consider the case of a more physically realistic nonlinear forward oper-
ator f (see Eq. (1.1)) for which raypaths are not straight. In particular, we consider
a shortest path (graph) method which uses secondary nodes to improve the accu-
racy of the simulated traveltimes as proposed by Giroux and Larouche (2013) and
implemented in PyGIMLi (Rücker et al., 2017). For this case, when inversion with
Eq. (3.22) is pursued, we linearize the forward operator f in order to compute the
gradient:

∇mγ(m) = −S(m)T (d− f(m)) (3.25)
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where is S(m) is theQ×N jacobian
::::::::
Jacobian

:
matrix of the forward operator whose

elements are:

[JS
:
(m)]i,j =

∂fi(m)

∂mj

(3.26)

The elements of the jacobian J(m)
::::::::
Jacobian

::::::
S(m)

:
are computed by the shortest path

method and also represent lengths of raypaths. In contrast to the linear case, these
have to be recomputed in every iteration. Both the nonlinear forward operator and
the need for recomputing the jacobian

::::::::
Jacobian

:
result in higher computational cost

compared to the linear operator.
The method proposed in Sec. 3.2.4 to perform gradient-based inversion with a

VAE should work for the linear forward operator because the nonlinearity in the
inverse problem arises only due to the

::::::::::::
nonlinearity

:::
of

:::
the

:
generator g(z) which is

moderate when the latter is well-behaved. However, since the considered nonlinear
forward operator in Eq. (3.25) is only mildly nonlinear (when contrast in velocities
is not extreme), the same method may also provide good inversion results for this
operator.

3.3 Results

3.3.1 Training of the VAE

As previously mentioned, our proposed method relies on a VAE whose training pa-
rameters are selected in order to improve gradient-based inversion. The training sam-
ples are the croppings detailed in Sec. 3.2.3 whose dimensionality is N = 8325 and
we consider a latent code of dimensionality n = 20.

::::::::
Different

:::::::
values

::::
for

::
n

:::::
were

::::::
tested

::::
and

::::
n =

:::
20

::::
was

:::::::
chosen

::::::::
because

:::::::
higher

::::::
values

::::
did

:::
not

:::::::::::::
significantly

::::::::
improve

:::
the

::::::::::::::
reconstruction

::
of

::::
the

::::::::
training

::::::::
samples

:::
but

::::
did

:::::
have

::
a

::::::::
negative

:::::::
impact

:::
on

:::
the

:::::::::
accuracy

::
of

::::
the

::::::::::
generated

::::::::
patterns

::::
(for

:::::
this,

::::::::::
generated

::::::::
patterns

:::::
were

:::::::::
assessed

::::::::
visually

::::::
from

:
a

:::
set

::
of

::::::::::
generated

::::::::
models

::::
such

:::
as

::::::
those

::::::
shown

:::
in

::::
Fig.

::::::
3.5c).

:::::::::::
Moreover,

:::::
since

::::
the

:::::
value

::
of

::
n

:::::
also

::::::::
impacts

:::
the

:::::::::
diversity

:::
of

::::
the

::::::::::
generated

::::::::
patterns

::::
(i.e.

:::::
how

::::::
much

:::::
they

::::::
depart

:::::
from

::::::::
training

:::::::::
patterns),

:::::
n =

:::
20

:::::::::
provided

:
a
:::::::::
trade-off

:::::::
where

::::::::
patterns

:::::::
display

:::::::::
sufficient

::::::::
diversity

::::
but

::::
still

::::::::::
resemble

:::::
those

:::
of

::::
the

::::::::
training

:::::::
image.

:
The probability distribution
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p(z) is an independent multinormal distribution N (0, In) with In an identity matrix
of size 20 × 20. The architecture of the encoder and the decoder includes 4 convo-
lutional layers, 2 fully-connected layers and instance normalization is used between
each layer(

:
.
::::
The

:::::
VAE

::::
has

:::::::
around

::::
4.5

:::::::
million

:::::::::::
parameters

::
in

:::::
total

:::::::::
(weights

::::
and

:::::::
biases),

::::::
which

::
is

::
a

:::::::
typical

::::::::
number

:::
for

::::::::::::::
convolutional

:::::::
neural

:::::::::
networks

::::::::
(further

:
details may be

consulted in the associated code). The training parameters relevant to
::
In

::::::
order

::
to

:::::
show

:::::
their

:::::::
impact

:::
on

:
our proposed methodare chosen in the following way: (1) ,

::
α

:::
and

:
β in Eq. (3.16) is given a value of 1000, chosen by visually assessing the generated

samples which also coincided with a moderate visual deviation from the prescribed
p(z); (2) the distribution p(ε) in Eq. (3.11) is given the typical value of a diagonal
unit variance (α = 1.0), which enforces local orthogonality while passing through
the generator and therefore aids in preserving topology and controlling non-linearity.
The value of

::
are

::::
set

::
to

:::::
span

:::::
three

:::::::
orders

::
of

::::::::::::
magnitude.

::::::
Table

:::
3.1

:::::::
shows

:::
the

:::::::
values

::
of

::
α

::::
and β is rather high compared to previous studies, e.g. Laloy et al. (2017) used a

value of 20 for similar two-dimensional patterns, but seems to cause slightly higher
compression ratios (in our work the compression ratio is 420 compared to 200 in the
mentioned study). The

::::
that

:::::
were

:::::
used

::::
and

::::
their

:::::::
impact

:::
in

:::
the

:::::
data

:::::::
RMSE

::
of

::::
the

:::::
linear

::::
case

::::::::::
explained

:::::::
below.

:::::
This

:::::::
means

::::
that

:::::
nine

:::::::::
different

::::::
VAEs

::::
are

:::::::
trained

::::
for

::::
this

::::
test.

:::::
Each VAE is trained by maximizing the lower bound in Eq. (3.16) using 105 iterations
and batches of 100 random croppings in each iteration (a

::::::::
GeForce

::::::
RTX

:::::
2060

:
GPU

was used in order to reduce training time
::::::
which

::::::::
training

:::::
took

:::
∼2

::::::
hours). In the fol-

lowing, we test the performance of this VAE when used for our proposed SGD-based

::::
first

:::
test

::::
the

:::::::
impact

::
of

::
α

::::
and

::
β

:::
on inversion with a linear and

::::::::
forward

:::::::
model.

::::::
Then,

:::
we

:::::
select

::::
the

:::::
VAE

:::::
with

::::
the

::::
best

::::::::
training

:::::::::::
parameters

:::
to

::::::
study

:::
the

::::::::
impact

::
of

::::
the

::::::::
different

::::::
factors

:::::::
added

::
in

::::
our

:::::::::
approach

::::::
(such

:::
as

::::::::::::::
regularization

::::
and

::::
data

::::::::::
batching)

::::
and

::::::
make

:
a

:::::::::::
comparison

:::::
with

:::::::::
methods

:::::
from

:::::::::
previous

::::::::
studies.

::::::::
Finally,

:::
we

:::::::
present

::::::
some

:::::::
results

::
of

:::
our

::::::::::
approach

:::::
using

:
a mildly nonlinear forward operator.

3.3.2 Case with a linear forward model

In this section, we consider the linear operator in Eq. (3.23) and assess the perfor-
mance of our proposed DGM inversion approach: using a VAE trained as above
(to have a well-behaved generator)

:::::
VAEs

::::::::
trained

:::
as

::::::::
detailed

::::::
above

:
and SGD with
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::::::::
β = 104

: ::::::::
β = 103

: ::::::::
β = 102

:

::::::::
α = 1.0

::::::
2.551

::::::
1.765

::::::
2.940

::::::::
α = 0.1

::::::
3.116

::::::
1.763

::::::
3.756

:::::::::
α = 0.01

: ::::::
2.747

::::::
1.937

::::::
2.701

Table 3.1:
:::::
Sum

::
of

::::::::
average

:::::
data

:::::::
RMSE

:::
for

::::
the

:::::
cases

::::::
mc1, ::::

mc2::::
and

:::::
mc3.:::::

The
:::::::
average

::
is

::::::::::
computed

:::
for

::::
100

::::::
initial

::::::::
models

:::
for

:::::
each

:::::
case.

both decreasing step size and regularization to optimize Eq. (3.21). We aim to show
thatsuch ,

::::::
when

:::::::::::
appropriate

:::::::
values

:::
of

::
α

::::
and

::
β

:::
are

::::::::
chosen,

::::
this

:
approach is robust re-

garding its convergence to the global minimum and therefore assess its performance
by using 100 different initial models. Compared to

::
To

::::
test

:::::
this,

:::
we

:::::::::::
considered

:::::
three

::::::::
different

:::::
true

:::::::
models

::::::
(with

:::::::::
different

::::::::
degrees

::
of

::::::::::::
complexity)

:::::
that

:::::
were

::::::::
cropped

:::::
from

:::
the

::::::::
training

:::::::
image

::::
and

::::
not

:::::::::::
considered

:::::::
during

:::
the

:::::::
VAE’s

::::::::
training

:::::::::
(models

:::::
mc1,::::

mc2

:::
and

:::::
mc3::

in
:::::
first

::::
row

::
of

:::::
Fig.

:::::
3.7).

::::::
Table

::::
3.1

::::::
shows

::::
the

:::::::::
inversion

::::
data

::::::::
RMSE

::::::::
obtained

:::
for

:::
all

:::::::::::::
combinations

:::
of

::
α

::::
and

::
β

::::
that

::::::
were

::::::
tested

:::
for

::::
this

::::::
linear

::::::::
forward

:::::::::
operator

::::
(the

:::::::
average

:::::
data

:::::::
RMSE

:::::::
values

::::
are

:::::::
simply

:::::::::
summed

::::
for

::::
the

:::::
three

:::::
true

:::::::::
models).

:::::::
These

::::::
results

::::
are

::::::::::
consistent

::::::
with

::::
our

::::::::::::
explanation

::
in

:::::
Fig.

::::
3.4,

::::::
since

:::::
both

:::
α

::::
and

::
β
::::::
have

:
a

::::::::::
noticeable

:::::::
impact

:::
on

::::::::::
inversion

:::::::::::::
performance.

::
It
:::
is

:::::::::::
interesting

::
to

:::::
note

::::
that

::::
the

::::::
values

::::::::
yielding

::::
the

:::::::
lowest

:::::
data

:::::::
RMSE

::::::::
(α=0.1

::::
and

:::::::::
β=1000)

::::
are

::::
not

::::::
those

:::::::::
typically

:::::
used

::
in

:::::::::
previous

:::::::
studies

::::::::
(α=1.0

::::
and

::::::::::
β < 100).

::::::
Also,

::::
the

:::::::
impact

:::
of

::
α

:::::::
seems

::
to

:::
be

::::::
lower

:::::::::
compared

:::
to

:::
β.

::
To

:::::::
further

:::::::
assess

::::
our

::::::::::
approach

::::
and

:::
to

:::::::::
compare

:::::
with previous studies,

::::
only

:::
the

:::::
VAE

:::::
with

:::
the

:::::::
values

::::::::
yielding

::::
the

:::::::
lowest

::::
data

::::::::
RMSE

::
is

:::::::::::
considered

::
in

::::
the

::::::::::
remainder

::
of

::::
this

::::::::
section.

:::::
The

:::::
main

::::::::::::
differences

::
of

:
our proposed approach involves changes in

both the
::::
with

:::
the

::::::::
method

:::
of

:::::::::::::::::::
Laloy et al. (2019)

:::
are

::
in

::::
the

:::::
type

:::
of DGM and the op-

timization , therefore we compare with the
::::::::
strategy.

::::
We

::::::
make

::
a
::::::::::::
comparison

:::::
with

::::
their

::::::::
method

:::::
and

::::
also

:::
to

:::::
other

:
base cases listed in Table 3.2 to show the impact of

each change proposed
::::::
factor

::::::::
involved

:::
in

:::
our

::::::::::
approach. As denoted by the columns of

this table, the different cases consider: (1) VAE and SGAN as DGMs, (2) SGD and
Adam (Kingma and Ba, 2017) as stochastic optimizers, (3) data batching for com-
puting the gradient ∇zζ(z), which basically means using SGD when batching and
using (regular) gradient-descent when not batching, (4) regularization in the latent
space, with "origin" being the one proposed in Bora et al. (2017) and "ring" the one
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Figure 3.7:
:::::
Truth

::::::::
models

:::::
(first

::::::
row):

::::::::::
cropped

:::::
from

:::::::::
training

:::::::
image

:::::::::
(denoted

:::
by

::::::
"mc")

::::
and

::::::::::
generated

:::::
from

::::::::
trained

:::::
VAE

:::::::::
(denoted

:::
by

:::::::
"mv").

::::::::::::::::
Corresponding

:::::::
models

::::::::
resulting

::::::
from

::::::::::::::
encode-decode

:::
of

:::::
truth

:::::::
models

::::::::
(second

::::::
row).

:::::::::
Subindex

:::::::::
indicates

:::::
level

::
of

::::::::::::
complexity,

:::::
with

:::
"1"

::::::
being

::::
the

:::::
least

:::::::::
complex.

proposed herein, and (5) decreasing of the step size (or learning rate). Our proposed
approach is then labeled as "VSbrd". We also show the chosen values for the step
size ` and its decreasing factor c` when applicable—for these cases the values of λ =
10.0 and cλ = 0.999 are used. The number of iterations for inversion is set to 3000
for all cases. When data batching is used, the batch size b is 25 (of a total of 625)
and is sampled with no replacement, then the whole dataset is used every 25 itera-
tions (i.e. the number of epochs is

::::
with

:
120 for a total of

:::::::
epochs,

:::
the

:::::
total

:::
is 120 ×

25 = 3000 iterations).
::::
The

::::::::
number

::
of

::::::::::
iterations

:::
for

::::
the

::::::
cases

:::::
with

:::
no

:::::
data

::::::::
batching

::
is

::::
also

:::
set

:::
to

::::::
3000.

::::
For

::::
our

::::::::::
synthetic

::::::
cases,

:::::
once

::::
the

:::::::
DGMs

::::
are

::::::::
trained,

:::::
there

::
is

:::
no

:::::
need

:::
for

:::::
GPU

::::::::::::
acceleration

:::
to

::::::::
perform

::::::::::
inversion,

:::
so

:::
all

::::::::::
inversions

:::::
were

:::::
done

:::
in

:::::
CPU.

::::::::::
Compared

::
to

::::::::
MCMC

:::::::::
methods

:::::
used

::
in

:::::::::
previous

:::::::
studies

:::::::
where

:::
the

::::::::
number

::
of

::::::::
forward

::::::
model

::::::::::::
evaluations

::::
was

:::::::::
between

::::::::
96,000

::::
and

:::::::::
200,000

::::::::::::::::::::::::::
(Laloy et al., 2017, 2018)

::
the

::::::::::::::
computational

::::
cost

::
is

:::::::
herein

::::::::::::
significantly

:::::::::
reduced. Note that we

::::
also compare against

the approach in Laloy et al. (2019), where SGAN is used asDGMandAdam (gradient-
descent with adaptivemoments) are used to optimize the resulting objective function—
this case is labeled "SAnnn" in Table 3.2.

::::
The

::::::::::
difference

:::
in

::::::::::::::
computational

:::::
time

:::
for
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Case DGM GD Data batching Regularization Decreasing ` c`
VSnnn VAE SGD no none no 1e-4 -
VSbnn VAE SGD yes none no 1e-4 -
VSbod VAE SGD yes origin yes 1e-2 0.95
VSbrd VAE SGD yes ring yes 1e-2 0.95
SAnnn

::::::::
SAnnn*

:
SGAN Adam no none no 1e-2 -

SSbnd SGAN SGD yes none yes 1e-3 0.95

Table 3.2: Configuration of our proposed approach (VSbrd) and the base cases
for comparison.

::::
The

:::::
case

::::::::
marked

::::::
with

::
*

:::::::::::::
corresponds

::
to

::::
the

:::::
one

:::::::::::
considered

:::
by

::::::::::::::::::
(Laloy et al., 2019)

:
.

:::
this

:::::
case

::::::
(17.3

::
s)

::::
and

::::
our

::::::::::
proposed

::::::::
method

::::
(7.3

::
s)

:::::
was

:::::::
minor. We also consider the

case where we apply our proposed SGD to the same SGAN (labeled as "SSbnd"). For
both of these cases instead of regularization we use stochastic clipping in the latent
space (Laloy et al. 2018, 2019) because a uniform p(z) with finite support is used.

We consider 6 different truth
:::
true

:
subsurface models to assess our method and

compare with the base cases: (1) a
:::
the set of three models cropped directly from the

training image
:::::::::
described

::::::
above

:
and (2) a set of three models obtained by generating

from the trained VAE. Both sets include models with three different degrees of com-
plexity. These truth models are shown in the first row of Fig. 3.7 where "mc" refers
to the first set, "mv" refers to the second set and the degree of complexity is denoted
by a subscript, where "1" denotes least complex and "3" most complex. For the first
set (mc), to avoid "memorizing" the croppings we exclude them (and any overlapping
cropping) from the samples used to trained the VAE. The second set (mv) is similar
to the one used by Laloy et al. (2019) to test the performance of their setup, only in
their case the models were generated from a SGAN instead of a VAE. For each one
of these truths, we generate synthetic data applying the forward operator F and use
these data to perform gradient-based inversion for each case in Table 3.2.

Truth models (first row): cropped from training image (denoted by "mc") and
generated from trained VAE (denoted by "mv"). Corresponding models resulting
from encode-decode of truthmodels (second row). Subindex indicates level of complexity,
with "1" being the least complex.

We first consider no added noise to the synthetic dataset, hence after inversion
the data misfit should be close to zero for inverted models that are sufficiently close
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data RMSE (ns) model RMSE (-)
mc1 0.606

:::::
0.724

:
0.104

::::::
0.112

mc2 0.998
:::::
0.854

:
0.147

::::::
0.133

mc3 1.096
:::::
1.395

:
0.173

::::::
0.176

mv1 0.524
:::::
0.749

:
0.057

::::::
0.097

mv2 0.958
:::::
1.380

:
0.098

::::::
0.146

mv3 0.734
:::::
1.436

:
0.085

::::::
0.145

Table 3.3: Data RMSE (ns) of encode-decode operation used to define thresholds
(for the linear forward operator) and corresponding model RMSE.

to the global minimum. To define a threshold for this data misfit beyond which in-
verted models are "accepted", we use the RMSE between these synthetic data and
data obtained by applying the forward operator on models resulting from passing the
truth models through a VAE’s encoding-decoding (these models are shown in the
second row of Fig. 3.7 and the corresponding values for the threshold are shown in
Table 3.3). This is done because we found the encode-decode reconstructed models
to be visually very similar to the truth models (compare first and second rows of Fig.
3.7) and also show a low model RMSE when compared to them(computed just

:
.
::::
The

::::::
model

:::::::
RMSE

::
is

::::::::::
computed

:
as the difference of pixel values

:::::::::
(previous

:::
to

::::::::::::
transforming

::
to

::::::::
velocity

:::::::
values,

:::
so

:::::
they

::::
have

:::::::
values

:::::::::
between

:
0
::::
and

:::
1) between truth model and the

encode-decode model and shown Table 3.3). Once such
:
a
:
threshold is defined for

each truth model, gradient-based inversion is run for the same 100 initial models for
all cases in Table 3.2. Note that no convergence criteria were set in order to compare
to all base cases (some cases such as "SAnnn" do not allow for easily defining such
criteria) but in practice it is possible to set them for our proposed approach (VSbrd)
in terms of a minimal change in either step size and/or data misfit. This also means
that for some cases (including our proposed VSbrd) the 3000 iterations may not be
necessary for all truths and all initial models. Results for the number of accepted
inverted models are shown in Table 3.4 while the corresponding mean of the misfit
(expressed as RMSE) for the 100 inversions is shown in Table 3.5.

As seen in Table 3.4, given our defined threshold: (1) the cases where VAE and
SGD with decreasing step were used (VSbod and VSbrd) resulted in all inverted
models being accepted, (2) the cases where SGAN was used (SAnnn and SSbnd)
resulted in almost all models being rejected(only two models accepted for SAnnn
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VSnnn VSbnn VSbod VSbrd SAnnn SSbnd VSbrd (noise)
mc1 88

::
91

:
35

:::
33 100 100 0 0 100

mc2 96
::
86

:
50

:::
59 100 100 0 0 100

mc3 92
::
91

:
58

:::
35 100 100 0 0 100

mv1 100
:::
91 75

:::
30 100 100 2

::
0 0 100

mv2 64
::
95

:
54

:::
71 100 100 0 0 100

mv3 91
::
98

:
71

:::
77 100 100 0 0 100

Table 3.4: Number of accepted inversions (using 100 different initial models) accord-
ing to the defined threshold.

VSnnn VSbnn VSbod VSbrd SAnnn SSbnd threshold VSbrd (noise)
mc1 0.493

::::::
0.536 1.242

::::::
1.169 0.544

::::::
0.551 0.405

::::::
0.434 4.538 3.988 0.606

::::::
0.724 0.480

:::::
0.501

mc2 0.620
::::::
0.832 1.525

::::::
1.518 0.690

::::::
0.626 0.546

::::::
0.541 5.266 4.495 0.998

::::::
0.854 0.593

:::::
0.583

mc3 1.066
::::::
0.908 1.507

::::::
1.543 0.885

::::::
0.853 0.833

::::::
0.788 3.298 3.775 1.096

::::::
1.395 0.880

:::::
0.827

mv1 0.456
::::::
0.296 0.963

::::::
1.418 0.121

::::::
0.353 0.062

::::::
0.055 4.777

::::::
3.952 4.703

::::::
4.226 0.524

::::::
0.749 0.273

:::::
0.259

mv2 1.061
::::::
0.568 1.308

::::::
1.286 0.289

::::::
0.618 0.080

::::::
0.078 5.236

::::::
4.161 4.717

::::::
5.251 0.958

::::::
1.380 0.268

mv3 1.282
::::::
0.557 1.233

::::::
0.854 0.224

::::::
0.232 0.033

::::::
0.036 4.770

::::::
4.591 4.774

::::::
5.537 0.734

::::::
1.436 0.256

Table 3.5: Mean RMSE (ns) of inversions using 100 different initial models and
defined threshold for accepting models.

with truth mv1), and (3) the cases where VAE and non-decreasing step size SGD was
used (VSnnn and VSbnn) resulted in some inverted models being accepted. Note
also that using SGD (data batching) without a decreasing step size (VSbnn) results
in less accepted models compared to GD (VSnnn), highlighting the importance of
our proposed decreasing step size and regularization. As shown in Table 3.5 a higher
mean RMSE is related to a lower number of accepted models. Furthermore, two
things worth highlighting in Table 3.5 are (1) the general improvement for inversion
with SGAN caused by our proposed SGD compared to Adam for most truth models
(compare SSbnd and SAnnn), which means that our proposed SGD is advantageous
regardless of the DGM, and (2) the slight

:::::
Table

::::
3.5

::::::
shows

:::::
that

:::::
there

::
is

::
a
::::::::
general im-

provement caused by our proposed regularization compared to the one from Bora
et al. (2017).

Examples of inverted models obtained for the different cases in Table 3.2 using
the cropped truth with moderate complexity (mc2) are shown in Fig. 3.8. Here, truth
models are shown in Fig. 3.8a while Fig. 3.8b shows one example of an accepted
model for cases that have at least one (VSnnn, VSbnn, VSbod and VSbrd). Similarly,
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Fig. 3.8c shows one example of a rejected model for applicable cases (VSnnn, VS-
bnn, SAnnn and SSbnd). Finally, the corresponding data RMSE vs. iteration number
plots are shown in Fig. 3.8d (in blue for accepted models and red for rejected ones)
and corresponding model RMSE plots are shown in Fig. 3.8e. Note both the higher
similarity with the truth model (i.e. note the low model RMSE and compare models
in Fig. 3.8b,c with those in Fig. 3.8a) and the lower RMSE for accepted models. Also,
examples of inverted models for our proposed approach (VSbrd) using all the truths
are shown in Fig. 3.9b, together with plots of RMSE vs. iteration number (Fig. 3.9d)
and norm of z vs. iteration number (Fig. 3.9e). For cropped truths (mc) it seems that
visual similarity decreases and final data RMSE of inverted models increases as com-
plexity increases, whereas for generated truths they seem independent of complexity.
Notice the overshoot in ‖z‖ in the initial iterations and its eventual convergence close
to µχ as defined in Eq. (3.20).

To study the effect of noise for our proposed approach (VSbrd), we added noise
with a standard deviation σ = 0.25 ns to the synthetic traveltime data. Corresponding
results are shown in the rightmost column of Tables 3.4 and 3.5 and in Fig. 3.9c (with
corresponding data RMSE and z norm plots in Fig. 3.9d,e). The threshold in this case
is set equal to the one for the noise-free case plus σ and when using it all inverted
models with our proposed approach are accepted. It is also worth noticing the relative
robustness of the method to noise, as shown by the corresponding mean misfit values
in Table 3.5 that indicate no significant overfitting, i.e.

:
themeanmisfit values are close

to the noise-free threshold plus σ even if no traditional regularization was used. The
latter means that optimizing in the latent space of the DGM is effectively constraining
the inverted models to display the prescribed patterns.

::
A

:::::::
higher

:::::
value

:::
of

::
σ

::
=

::::
1.0

::
ns

::::
was

::::
also

::::::
tested

:::::::
which

:::::::::
produced

::::::::
similar

::::::
results

:::::
(not

::::::::
shown).

:

3.3.3 Case with a nonlinear forward model

After showing that our proposed method works with the linear forward operator for
the synthetic case considered, we now test its performance with a nonlinear forward
operator. For inversion, the general form of Eq. (1.1) is used and the gradient in the
latent space given in Eq. (3.22) is computed using Eq. (3.25). As mentioned in Sec.
3.2.5, we consider a shortest path method to solve for the traveltime for which we
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Figure 3.8: Examples of inverted models for mc2 truth for all cases in Table 3.2:
(a)

:::::
truth

:::::::
model,

::::
(b)

:
accepted models according to defined threshold, (b

:
c) rejected

models, (c
:
d) data RMSE vs. iterations plots (blue for accepted models and red for

rejected models and dashed line indicates defined threshold) and (d
:
e) model RMSE

vs. iterations plots (dashed line indicates model RMSE for encode-decode operation).
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Figure 3.9: Examples of gradient-based inversion using our proposed approach (VS-
brd) for all truth models and the linear forward operator: (a) truth models, (b) inverted
models with no added noise, (c) inverted models with added noise, (d) RMSE vs. iter-
ations plots (no noise case in dark blue and noise case in light blue; lower dashed line
indicates the defined threshold while upper dashed line is threshold plus σ = 0.25),
and (c

:
e) norm of z vs. iterations plots (no noise case in dark green and noise case in

light green).
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use 3 secondary nodes added to the edges of the velocity grid. Note that the jacobian

::::::::
Jacobian

:
S(m) in Eq. (3.25) has to be recomputed at every iteration. Given the higher

computational demand for inversion with the nonlinear forward operator and since it
was already shown to be the best performing approach for the linear forward operator,
we only test our proposed approach VSbrd with all the truths and for a single initial
model (Fig. 3.10). This was done both without noise and with noise added using the
same standard deviation σ = 0.25 as in the linear operator scenario. We select the
following values for the required inversion parameters: ` = 0.1, c` = 0.8, λ = 1.0
and cλ = 0.99. The total number of iterations is 750 with data batching of size 25
similar to the linear case. Note that to further reduce the number of iterations required
for inversion we use a lower c` compared to the linear case, but the decreasing in Eq.
(3.18) is only done every 5 iterations. This may cause the method to converge to the
global minimumwith lower probability, however it seems to still be high enough since
all of the inversions with no added noise are very similar to the truth models. Also,
using the threshold obtained by encoding-decoding the truth models (now computed
with the nonlinear forward operator) all inverted models are accepted (these models
are shown in Fig. 3.10b). When considering added noise, results are similar but
inversion seems to converge to the global minimum with slightly lower probability
(6 out of 8 inversions are accepted) and accepted models are shown in in Fig. 3.10c.
The behavior of the misfit during optimization (Fig. 3.10d) is similar to the linear
case, although oscillations of a slightly higher amplitude are still visible in the last
iterations (mainly due to the lower number of iterations). To partially solve the latter
issue, we take as inverted model the model with lowest misfit and not the one for the
final iteration (these are the models shown in Fig. 3.10b,c). The plot of the norm of z

vs. iterations in Fig. 3.10e shows a similar behavior to the linear case, although there
seems to be more oscillations in ‖z‖ during initial iterations.

3.4 Discussion

When training the VAE for our considered synthetic case
:::
For

:::::
both

::::
our

::::
toy

::::::::
example

::
in

::::
Fig.

::::
3.4

::::
and

::::
our

:::::::::
synthetic

:::::
case

:::
for

::::
the

::::::
linear

::::::::
forward

:::::::::
operator

::::::
(Table

::::::
3.1),

::::::
results

:::::
show

::::
that

::
α

::::
and

::
β

:::::
have

::
an

:::::::
impact

:::
on

::::::::::
inversion.

:::::::
While

::
in

:::::
both

:::::
cases

::::
the

:::::
value

::::::::
yielding

:::
the

::::::
lowest

:::::
data

:::::::
RMSE

:::
for

::
α

::
is

:::
0.1, only the selection of β was done while the variance
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Figure 3.10: Examples of gradient-based inversion using our proposed approach (VS-
brd) for all truth models and the nonlinear forward operator: (a) truth models, (b) in-
verted models with no added noise, (c) inverted models with added noise, (d) RMSE
vs. iterations plots (no noise case in dark blue and noise case in light blue; lower
dashed line indicates the defined threshold while upper dashed line is threshold plus
σ = 0.25), and (c) norm of z vs. iterations plots (no noise case in dark green and
noise case in light green).
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of p(ε) was not changed (a unity variance α = 1.0 was used). However, as noted in
Sec. 3.2.3 and in Fig

:::::
spans

::
a
::::::
larger

::::::
range

:::
of

:::::::
values.

:::::
This

:::::::
occurs

:::::::
mainly

::::::::
because

::
α

::
is

::::::::
coupled

::
to

::::
the

:::::::::
imposed

::::
unit

:::::::::
variance

::
of

::::::
p(z),

::::::
since

::::::
larger

::::::
values

:::
of

::
α
:::::
tend

:::
to

:::::
place

::::::::
samples

:::::::
further

:::::
apart

:::
in

:::
the

::::::
latent

::::::
space

::::
and

:::::::::
therefore

::::::
make

:
it
::::::::::::
inconsistent

:::::
with

:::::
p(z).

::
In

:::::::::
contrast,

::::
due

::
to

:::
the

:::::::
nature

::
of

::::
the

:::::
VAE

::::::::
training

::::
loss

::::::::
function

:::
in

:::
Eq. 3.4, the variance

α also has an impact on (gradient-based) inversion as it might be used to control the
generator’s nonlinearity and its induced changes in topology

::::::
(3.16),

::
β
:::::::::
depends

:::
on

:::
the

:::::::::::::::
dimensionality

:::
of

:::::
both

::::
the

::::::::
training

::::::::
samples

:::::
(N )

::::
and

::::
the

::::::
latent

::::::::
vectors

::::
(n).

:::
In

:::::
order

:::
to

:::::
have

::::::
more

::::::::::::
comparable

::::::
values

:::::::::
between

::::::::
studies,

:::
?

:::::::::
proposed

::::::::::::
normalizing

::
β

::
as

::::::::::::::::
β′ = β × n/N .

:::
In

::::
our

:::::::::
synthetic

::::::
case,

:::
the

::::::
value

:::
of

::::::::
β=1000

:::::::
yields

:::::::
β′=2.4

::::::
which

::
is

::::
still

:::::
high

::::::::::
compared

:::
to

::::::
what

::
?

::::::
found

:::
for

::::
an

::::::::
optimal

::::::::::::::
disentangling

::::
(for

:::::::
n=20)

::
or

::
to

:::::
what

::::::::::::::::::::
Laloy et al. (2017)

::::
used

:::
in

:::::
their

::::::
study

::::::
(both

:::::::
around

:::::::::
β′=0.1).

::::::
This

::::
may

:::
be

:::::::
related

::
to

::::
the

::::
fact

::::
that

:::::
these

::::::::
studies

::::::::
focused

::::::
either

:::
on

:::::::::::::
disentangling

:::
or

:::
on

::::::::::
generative

:::::::::
accuracy

:::
for

:::::::::
selecting

:::
β,

::::::::
instead

:::
of

::::::::::
inversion

:::::::::::::
performance

::
as

::::::
done

:::
in

:::::
here.

::::::
Note

::::
that

:::::::::::
normalized

:::::::
values

::
of

::
β
::::
are

:::
the

::::::
most

:::::::::::
appropriate

:::
to

:::::::
provide

:::::::::::
guidelines

:::
for

::::::
future

:::::::
studies.

:::::
Our

::::::
results

::::::::
suggest

::::
that

:::::::
setting

:::::::
β′>1.0

::::
may

:::
be

::::::
useful

:::
for

::::::::::
inversion,

:::
but

:::::::
further

::::::
testing

:::::
with

:::::::::
different

::::::
kinds

::
of

:::::::::
patterns

::
is

::::
still

:::::::::
required

::
to

::::::::
support

::::
this.

In order to select SGD parameters in our proposed approach, we suggest looking
jointly at the behavior of the misfit and norm of z. For instance, if a certain number
of iterations is desired for computational reasons, we suggest choosing first ` and c`
that produce a behavior of the misfit similar to that in Fig. 3.9d, i.e. oscillations of
high amplitude at the beginning and then progressive attenuation of the oscillations in
such a way that at the end they are negligible. Note, however, that inversion may have
to be run a few times because divergence may occur during initial iterations (this is
easily seen in the value of ‖z‖ taking values far from µχ). Once ` and c` are chosen,
the selection of λ and cλ is done only to prevent divergence, this may be achieved
by looking for a behavior similar to that in Fig. 3.9e. An initial overshoot in ‖z‖ is
normal (and even necessary) since the method is exploring more rapidly the latent
space, however, it should eventually converge to a value close to µχ.

The results for gradient-based inversion using our proposed approach point to a
(possible) conflict between the accuracy of the reproduced patterns and the feasibil-
ity of gradient-based inversion with DGMs. As mentioned above, this is due to a
non-convex objective function in latent space resulting from the generator’s nonlin-
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earity and its induced changes in topology. In this work, we argue that nonlinearity
and changes in topology might be safely controlled by selecting certain values of α
and β while training a VAE in order to improve performance of gradient-based in-
version. We empirically prove

:::::
show the validity of this statement for our case study

with specific values
::
by

::::::::::::
considering

:::::::::
different

:::::::
values

:::
of

:
α and β

::
for

::::
our

:::::::
linear

::::
case

:::::
study. In general (for inversion with DGMs), this implies that a tradeoff between
generative accuracy and a well-behaved generator may be found. The latter state-
ment also supports our assumption regarding the "holes" of the real manifold for the
case of channel patterns (as mentioned in Section 3.2.3): when approximating the
real manifold using a VAE with a well-behaved generator, the approximate manifold
will tend to fill the holes and therefore produce breaking channels. While the gener-
ator’s nonlinearity was already identified by Laloy et al. (2019) as a potential factor
for hindering gradient-based inversion, its causes (curvature and topology of the real
manifold) and the possible induced changes in topology have not been previously
explained as factors in degrading the performance of gradient-based inversion in the
latent space (to the authors’ knowledge).

In general, good performance of DNNs for some tasks is usually associated with
their ability to change topology (Naitzat et al., 2020). However, when one wants to
use the latent variables or codes of DGMs for further tasks and not just for generation,
these changes in topologymight become an issue. For instance, we interpret themisfit
"jumps" seen in gradient-based inversion with SGAN (as seen in Fig. 3.8c for case
SAnnn) as resulting from the "gluing" or "collapsing" in latent space of holes in the
real manifold—either caused by an induced change in topology or a high nonlinearity
in the SGAN generator. Some studies have even suggested that if one wants to obtain
useful geometric interpretations in the latent space (e.g. to perform interpolation), the
activation functions should be restricted to ones that are smooth (Shao et al., 2017;
Arvanitidis et al., 2018), that means e.g. not using the ReLU activation function that
is generally recognized to result in faster learning. In contrast, in this work we do
consider ReLU activation functions but control the changes in topology by means
of a combination of α and β, whether this might nullify the advantages of ReLU is
still an open question. Note however that, in general, control of induced changes in
topology and high nonlinearities (as in our proposed approach) might be useful for
any inversion method that relies in the concept of a neighborhood (e.g. MCMC and
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ensemble smoothers).
Besides its good performance for gradient-based inversion, a further advantage of

our approach when compared to the previous approaches is that when the data used
for inversion is not sufficiently informative, regularization in the latent space might
be used to constrain to the most common patterns with our regularization term in Eq.
(3.20). This statement provides an interesting paradigmwhere regularization in latent
space might be seen as a flexible way to incorporate complex regularization. In con-
trast, a disadvantage of our proposed approach is that GANs in general result in higher
generative accuracy (all generated patterns look more similar to those in the training
image), however

:
.
::::::::::
However, as previously mentioned this may be in conflict with

performance of certain inversion
::::::::::
negatively

:::::
affect

::::::::::
inversion

:::::::::::::
performance,

::
at

:::::
least

:::
for

::::::::::::::
gradient-based

:
methods. Also, as may be noticed in the relation between the data

misfit and the degree of complexity for cropped truths, a limiting factor in using our
VAE is its inability to produce new highly complex patterns. However

::::::::::::
Nevertheless,

this lack of innovation (or sample diversity) is generally present in other methods
and may be even more severe for regular GANs, where the phenomenon is known as
mode collapse. Recently, different ways to control such mode collapse in VAEs and
GANs have been proposed (Metz et al., 2017; Salimans et al., 2016).

Finally, regarding our proposed SGD
::::::::::
Regarding

::::
the

::::::
SGD

:::::::::::::
optimization

:::::::
method

:::::::::
proposed,

:
we must note that similar results might be obtained with a MCMCmethod

where information about the gradient is taken into account. For example, Mosser
et al. (2018) use a Metropolis-adjusted Langevin method which basically follows a
gradient-descent and adds some noise to the step. However, the noise added to the
gradient step in our approach is different—SGD noise has been shown to be approx-
imately constant but anisotropic (Chaudhari and Soatto, 2018). Another possible
alternative to our method is to use Riemannian optimization, which is possible when
the DGM approximate manifold is smooth. Although it is possible to compute the
direction of the gradient by using the pullback Riemannian metric, which may be
obtained as suggested by e.g. Shao et al. (2017); Chen et al. (2018); Arvanitidis et al.
(2018), it is not straightforward to compute the step because it would have to be along
a geodesic curve instead of a straight path and such geodesics are computationally de-
manding to compute

::::::
obtain.

:

:::::::
Finally,

:::
we

:::::::::::::
acknowledge

::::
that

::
in

:::::
order

:::
to

::
be

::::::::
applied

:::
for

:
a
:::::::
variety

:::
of

::::
field

:::::::::::
conditions,
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:::
our

::::::::::
proposed

::::::::
method

::::::
needs

:::
to

:::
be

::::::::::
extended

:::
to:

::::
(1)

:::::::
handle

:::::::::
multiple

::::::::::
materials

::::
(i.e.

:::
not

::
a
:::::::
binary

:::::::::::::
subsurface),

:::
(2)

:::::::::
consider

::::::::
further

:::::::::::
variability

::::::
inside

:::::
each

::::::::::
material,

:::
(3)

::::::::
estimate

::::
the

::::::::
velocity

:::::::
values

::::::::
directly

:::::
(i.e.

::::
not

::::::::
assume

:::::
they

:::
are

::::::::
known

::
as

:::::
was

:::::
done

:::::::
above),

:::
(4)

:::::::::
consider

::::::
larger

:::::::::
domains,

::::
and

:::
(5)

::::::::::
condition

::
to

:::::::::
observed

:::::::
values

::
of

:::::::::
materials

::::
(e.g.

:::
in

:::::::
wells).

:::
To

::::::::
address

::::
the

::::
first

::::
two

:::::::
points

::::
and

::::::
since

:::::::
DGMs

::::
are

:::
not

::::::::::
restricted

::
to

:::::::::::
categorical

::::::::
outputs,

:::
the

::::::
VAE

:::::
could

:::::::
simply

:::
be

:::::::
trained

::::::
using

:::::::::
samples

::::
with

:::::::::::
continuous

::::::::
outputs,

:::::::::
however,

::::
the

:::::::::
accuracy

:::
of

:::
the

:::::::::
patterns

::::
may

::::
not

:::
be

:::
as

::::::
good

::
as

:::
in

::::
the

::::::
binary

::::
case

::::
for

::
a

::::::::
training

:::::::
image

:::
of

:::
the

::::::
same

:::::
size

:::::::::::::::::::
(Laloy et al., 2018)

:
.
:::
If

::::
one

:::::::::
chooses

::
to

::::::::::::
approximate

::::
the

:::::::::::
subsurface

:::::
with

::
a
:::::::::::::::::
multi-categorical

::::::::
output,

::
a
:::::::::
different

:::::
and

:::::
more

::::::::::
consistent

::::
loss

::::::::
function

:::
for

::::
the

::::::::
training

:::::
such

::
as

::::
the

:::::::::::::
cross-entropy

::::
loss

:::::
may

:::::
give

:::::
better

:::::::
results.

:::::::::::
Regarding

:::
the

:::::::::::
estimation

::
of

::::::::
velocity

::::::::
values,

:
a
:::::::
simple

:::::
way

::
to

::::::::
achieve

::::
this

:::
for

::::::
binary

::::::::
models

::::::
would

:::
be

:::
to

:::::::
include

:::::
two

:::::
extra

:::::::::::
parameters

:::
in

:::::::::
inversion

:::
by

::::::::::
assuming

:
a

:::::
linear

::::::::::::
relationship

:::
to

:::::
shift

::::
and

:::::
scale

::::
the

:::::::
output

::
of

::::
the

::::::
VAE.

::
A

:::::::
similar

::::::::::
approach

::::
may

::
be

:::::
used

::::
for

:::::::::::::::::
multi-categorical

:::
or

:::::::::::
continuous

::::::::
outputs,

:::::::::
although

:::
its

:::::::::::
usefulness

:::::
may

::
be

:::::
more

:::::::
limited

::::::
since

:::
the

::::::::
scaling

::::
and

:::::::
shifting

:::::::::::
operations

:::
do

:::
not

:::::::::::::
significantly

:::::::
change

:::
the

::::::::
contrasts

:::::::::
between

::::
the

:::::::::
materials

::::::
from

::::::
those

::
of

::::
the

::::::
DGM

:::::::::
outputs.

:::::::
When

:::
the

:::::::
spatial

:::::::
domain

::::::
being

::::::::
studied

::
is

:::::
large

::::
or,

:::::
more

::::::::::::
specifically,

::::::
when

::
it
::::
has

::::::
many

:::::::::::
repetitions

::
of

:::
the

:::::::::
patterns,

:::
our

::::::::
method

:::::::
would

:::::::
require

:
a
:::::
very

:::::
large

::::::::
training

:::::::
image

::::::
which

::
is

:::::::::
generally

:::::::
difficult

:::
to

:::::::
obtain.

:::
A

:::::::::
possible

::::::::
solution

:::
for

:::::
this

::
is

::
to

::::
use

:::
an

::::::::::::
architecture

:::::
that

::
is

:::::
more

::::::::
efficient

:::
for

:::::::::
repetitive

:::::::::
patterns.

::::
For

:::::::::
instance,

::::
one

:::::
may

::::::::
propose

::
a

::::::
spatial

:::::
VAE

::::::::
(similar

::
to

::::
the

:::::::
spatial

::::::
GAN)

:::::::
which

::::::
relies

:::
on

::::
2D

:::
or

::::
3D

:::::::
tensors

::::::::
instead

:::
of

:::::::
vectors

:::
as

::::::
latent

:::::::::
variables.

::::
Of

::::::
course

::::
one

:::::
then

::::::
would

:::::
need

::
to

::::
test

::::
that

::::::::
efficient

:::::::::
inversion

:::::
(e.g.

:::::::::::::::
gradient-based)

::
is

::::
still

:::::::::
possible

:::::
with

:::::
such

:::
an

:::::::::::::
architecture.

:::::::::
Finally,

:::::::::::::
conditioning

::
to

:::::::
direct

::::::::
material

::::::::::::
observations

:::::
may

:::
be

::::::::
achieved

:::
by

:::::::
adding

::
a
:::::
term

::
to

::::
the

:::::::::
inversion

::::::::::
objective

::::::::
function

::
in

:::
Eq.

::::::
(3.4),

:::::::::
although

::
it

:::
has

:::::
been

:::::::
shown

::::
that

::::
this

:::::
does

::::
not

::::::::
produce

:::::::
perfect

::::::
fitting

:::
to

::::
such

::::::::::::
observations

::::::::::::::::::::::::::
(Laloy et al., 2017, 2018)

::
so

:::::::
further

::::::
study

::
in

::::
this

::::::
topic

::
is

::::::::
required.

3.5 Conclusions

In this Chapter, the principal difficulties of performing inversion with deep generative
models (DGMs ) are reviewed

:::::::
chapter

:::::
both

:::
the

::::::::
impact

::::
and

:::
the

:::::::
causes

::
of

::::::::::::
nonlinearity

::
on

::::::::::
inversion

:::::
with

:::::::
DGMs

::::
are

:::::::
studied

:
and a conflict between generated pattern accu-

racy and feasibility of gradient-based inversion is identified. Also, an approach based
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on a variational autoencoder (VAE )
::::
VAE

:
as DGM and a modified stochastic gradient

descent method for optimization is proposed to address such conflict. We show that
two training parameters of the VAE (the weight factor β and the variance α of the
encoder’s noise distribution p(ε)) may be chosen in order to obtain a well-behaved
generator g(z), i.e. one that is mildly nonlinear and approximately preserves topol-
ogy when mapping from latent space to ambient space. This helps in maintaining
the convexity of the misfit function in the latent space and therefore improves the
behavior of gradient-based inversion. We highlight changes in topology which have
not been previously identified as impacting the convexity of the inversion objective
function. In contrast to prior studies where gradient-based inversion was used, our
approach converges to the neighborhood of the global minimumwith very high prob-
ability for both a linear forward operator and a mildly nonlinear forward operator with
and without noise. We argue that when using DGMs in inversion, a tradeoff may be
found where inverted models are close enough to the prescribed patterns while low
cost gradient-based inversion is still applicable—our proposed approach relies on

::::::::::
applicable.

::::::::
Indeed,

::::
our

:::::::::
proposed

::::::::::
approach

:::::
finds

:
such tradeoff and produces inverted

models with significant similarity to the training patterns and a
:::::::::::
sufficiently low data

misfit.
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Reducing data dimension for prior
falsification: feature extraction from
data acquired in a highly structured
subsurface1

Spatial heterogeneity is a critical issue in the management of water resources. How-
ever, most studies do not consider uncertainty at different levels in the conceptual-
ization of the subsurface patterns, for example using one single geological scenario
to generate an ensemble of realizations. In this paper, we represent the spatial uncer-
tainty by the use of hierarchical models in which higher-level parameters control the
structure. Reduction of uncertainty in such higher-level structural parameters with
observation data may be done by updating the complete hierarchical model, but this
is, in general, computationally challenging. To address this, methods have been pro-
posed that directly update these structural parameters by means of extracting lower
dimensional representations of data called data features that are informative and ap-
plying a statistical estimation technique using these features. The difficulty of such
methods, however, lies in the choice and design of data features, i.e. their extrac-

1Note: The research presented in this chapter is based on: Lopez-Alvis, J., Hermans, T.,
and Nguyen, F. (2019). A cross-validation framework to extract data features for reducing
structural uncertainty in subsurface heterogeneity. Advances in Water Resources, 133, 103427.
https://doi.org/10.1016/j.advwatres.2019.103427
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tion function and their dimensionality, which have been shown to be case-dependent.
Therefore, we propose a cross-validation framework to properly assess the robustness
of each designed feature and make the choice of the best feature more objective. Such
framework aids also in choosing the values for the parameters of the statistical estima-
tion technique, such as the bandwidth for kernel density estimation. We demonstrate
the approach on a synthetic case with cross-hole ground penetrating radar traveltime
data and two higher-level structural parameters: discrete geological scenarios and the
continuous preferential orientation of channels. With the best performing features se-
lected according to the cross-validation score, we successfully reduce the uncertainty
for these structural parameters in a computationally efficient way. While doing so,
we also provide guidelines to design features accounting for the level of knowledge
of the studied system.

4.1 Introduction

Modeling subsurface systems requires accounting for uncertainty in many tasks such
as reserve estimation, process understanding, decision making or water resources
forecasting (Scheidt et al., 2018). To consider explicitly different sources of uncer-
tainty, probabilistic approaches are often used (Tarantola and Valette, 1982; Taran-
tola, 2005) and allow to easily integrate any types

:::::
type of data or prior knowledge. In

the Earth sciences, spatial heterogeneity is of utmost importance but its uncertainty is
often not properly represented leading to over-simplifications of subsurface systems
(Xu and Valocchi, 2015) and biased predictions made from such systems (Hermans
et al., 2018).

Hydrogeological modelling is often hierarchical (Feyen and Caers, 2006; Tsai
and Elshall, 2013; Comunian et al., 2016), in the sense that, based on available data,
hydrogeologists first speculate on the nature of the depositional system (e.g., ma-
rine, deltaic or fluvial) and on global characteristics of the deposits (orientation or
size of the structures) leading to the definition of different scenarios that serve as
the basis for further modeling. Within each scenario, more specific spatial uncer-
tainty rules can be defined. Each geological scenario might be expressed by its own
training image or variogram model depicting the spatial uncertainty. Despite grow-
ing efforts made to model realistic prior geological information (see Linde et al.,
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2015, for a review), a single main structure is often considered which may underes-
timate the uncertainty or bias models if the structure is wrong (Linde et al., 2006).
As an example, Hermans et al. (2015) demonstrated that the posterior distribution of
hydrofacies constrained to electrical resistivity tomography and pumping data was
dependent on the training image used and that ignoring the uncertainty on the depo-
sitional systems led to a biased solution. A possible strategy to avoid these problems
is to consider hyperparameters—i.e., higher level parameters having their own prior
probability distributions—leading to a so-called Bayesian hierarchical model (Gel-
man et al., 2014). Such hyperparameters may include the range of a variogram, the
choice of training image or even the width of channels in a specific training image.
These hierarchical problems have been addressed outside a Bayesian framework (see
e.g. Khaninezhad and Jafarpour, 2014; Golmohammadi and Jafarpour, 2016, in the
context of geological scenario identification), but in doing so, the uncertainty in the
results is generally not quantified.

Within a Bayesian framework such
::
an

:
hierarchical model is then represented by

a joint probability distribution involving hyperparameters, parameters and data, in-
creasing the dimensionality of the joint space and making exploration more com-
putationally demanding. Two different general approaches can be used to perform
inference (i.e. updating uncertainty given some data) in such hierarchical models:
(1) one-step methods where inference on the complete model (i.e., on both hyperpa-
rameters and parameters) is done in a single step, and (2) two-step methods where
inference is done first for the hyperparameters and then the results are used to obtain
the uncertainty on the parameters.

One-step approaches can be formulated by directly applyingMarkov chainMonte
Carlo (MCMC) (e.g. Vrugt et al., 2009) to the complete hierarchical model. MCMC
are sampling techniques that can cope with high-dimensional parameters. However,
they must be modified to account for the hierarchical structure by changing the equa-
tions for the probability of acceptance of the proposal distribution (e.g. Malinverno,
2002) which may not be straightforward for all types of hyperparameters. Modifying
one hyperparameter such as the training image, for example, impacts the model in
its whole, potentially leading to completely different likelihood, which is not desir-
able for convergence in MCMC. Only very recent advances have made possible the
exploration of such complex joint spaces. In this regard, Arnold et al. (2019) and De-
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myanov et al. (2019) presented a framework based on the definition of a metric space
for the geological scenario and a combination of global optimization and resampling,
to approximate a thorough MCMC.

Two-step approaches are based on the factorization of the joint posterior distribu-
tion in the product of the posterior of the parameters given the hyperparameter and
the (marginal) posterior of the hyperparameter, and perform inference separately for
each factor (Neuman, 2003; Khodabakhshi and Jafarpour, 2013; Park et al., 2013).
However, the factor corresponding to the (marginal) posterior of the hyperparame-
ter involves a multidimensional integral which may be computationally demanding
(Neuman, 2003). The focus of this Chapter is in the computation of the (marginal)
posterior of the hyperparameter, i.e. only the first step in a two-step approach while
solving the complete inverse problem for the hierarchical model.

Regarding computational demand, it has been argued that two-step may be more
efficient than one-step approaches because of their ability to discard or falsify certain
values with a relatively cheap method (that does not require inference of the param-
eters) in the first step (e.g. Park et al., 2013; Hermans et al., 2015). This may be
specially advantageous when considering a high number of discrete values or a con-
tinuous range of the hyperparameter. However, it is also possible that one-step meth-
ods, when designed to be efficient (e.g. Demyanov et al., 2019), could quickly discard
values of the hyperparameter that are not consistent with data. Park et al. (2013) make
a comparison of their method, a two-step approach, with rejection sampling (which
is used as a one-step method) and show that their method provides similar results
with less computations of the forward model. However, rejection sampling is a very
expensive method and, to the authors’ knowledge, a comparison against more favor-
able one-step approaches has not been done yet. Such a comparison is, nevertheless,
outside of the scope of the paper.

Different ways to handle the hyperparameter factor in a two-step approach have
been proposed, especially within the context of Bayesian model averaging (BMA)
(Hoeting et al., 1999). When the hyperparameter is discrete, the factorization strat-
egy mentioned above is equivalent to applying BMA for the parameters. In BMA, the
aforementioned multidimensional integral is usually approximated by using a Gaus-
sian distribution for the parameter dimensions in the likelihood. This Gaussian dis-
tribution is centered on the maximum-likelihood parameters and computed for each
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value of the hyperparameter (the so-called Laplace approximation), and it is a com-
mon approach when using BMA in hydrogeology (Neuman, 2003; Ye et al., 2004; Li
and Tsai, 2009). Therefore, the Laplace approximation requires the classical inverse
problem to be solved once for each value of the hyperparameter (and would require
more involved sampling in the case of continuous hyperparameters). Moreover, to
be a higher-order approximation, it requires the evaluation of the Hessian with re-
spect to the parameters. Both the maximum-likelihood estimation and the Hessian
may require a significant number of simulations using a computationally expensive
numerical model. For this reason, some studies (Li and Tsai, 2009; Tsai and Elshall,
2013) have relied on the fact that, when the number of data becomes large relative
to the number of parameters, the Laplace approximation can be simplified and com-
puted using the Bayesian information criterion (BIC) (Raftery, 1995), which does
not require evaluation of the Hessian. However, this may not be the case for most
problems in Earth sciences, where parameters are usually high-dimensional and data
is sparse. Khodabakhshi and Jafarpour (2013) used the same factorization within a
sequential Monte Carlo approach, where the hyperparameter factor is first computed
with a mixture model and then used for adaptive sampling in an Ensemble Kalman
Filter to update the parameters. However, since their method is embedded in the
sequential approach, the hyperparameter factor cannot be computed separately, i.e.
the hyperparameter factor at the final time cannot be computed without updating the
parameters at each time step.

Considering the same factorization of the joint distribution, an alternative method
to obtain the (marginal) posterior of the hyperparameter was proposed by Park et al.
(2013) that copes with the disadvantages of the Laplace approximation but also com-
putes the hyperparameter factor separately. In other words, their method works for
low numbers of data (where BIC does not apply), retains a low computational de-
mand and does not require previous inference on the parameters. Instead of aiming
for a point-by-point match of data, a feature match would result in a similar (marginal)
posterior distribution for the hyperparameter according to the authors. This is equiv-
alent to approximating the data manifold described in Chapter 1. Therefore, feature
extraction techniques are needed to reduce the dimensions of data low enough so that
statistical techniques (e.g. kernel density estimation) may be applied to a low num-
ber of Monte Carlo samples to approximate the (marginal) joint distribution of the
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hyperparameter and the features. This distribution is then evaluated at the features
of the observed data to obtain the (marginal) posterior of the hyperparameter. No
maximum-likelihood estimation of the parameters for each value of the hyperparam-
eter or Hessian evaluation is needed, as opposed to the Laplace approximation. Fea-
ture extraction techniques may incur in some computational time depending on their
complexity, but this is generally negligible compared to evaluations of the numeri-
cal model. Park et al. (2013) presented an example where they generate Monte Carlo
samples of the joint distribution by numerical simulations of reservoir flow data, then
disregard parameter dimensions and apply data dimension reduction together with
kernel density estimation to approximate the (marginal) posterior distribution of the
geological scenario (which is the hyperparameter in their case). As mentioned above,
they showed that the method yields results similar to rejection sampling. Hermans
et al. (2015) applied it for one discrete hyperparameter but with two different types
of data: hydraulic heads and electrical resistivity tomography. Scheidt et al. (2015b)
extended the approach to estimate the posterior distribution of a continuous hyper-
parameter. Scheidt et al. (2015a) follow the same approach but deal with seismic
data and a wavelet-based method to reduce dimensions of this data. A major diffi-
culty of this approach is that choosing between the different ways to extract features
is not straightforward, and an objective assessment of all the possible choices of fea-
tures is lacking. Moreover, applying the techniques involves some additional specific
parameters whose values are not straightforward to optimize.

In this paper, we define and systematically compare the efficiency of a new range
of features for the application of the Park et al. (2013) framework with geophysical
data. As part of the features definition, we propose a cross-validation method to
select the best feature and the parameters required by the framework that is based on
performance scores of the newly designed data features.

We illustrate the proposed approach using near-surface geophysical data to derive
posterior probability distributions of one discrete and one continuous hyperparame-
ter.
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Figure 4.1: Graphical model for the proposed Bayesian hierarchical model. s stands
for the structural parameter, t is the field of geological facies, φ is the field of a
physical property, m is the field of a geophysical property, d is the geophysical data.
The q’s are the fixed variables required at each step. On the right side, examples of
each variable.

4.2 Methodology

4.2.1 Hierarchical probabilistic model sampling

To deal with multi-level uncertainty problems typically present in Earth sciences we
propose to build a Bayesian hierarchical model to explicitly consider the relations
between all parameters and data. The probabilistic model considered in this study
can be represented as the directed acyclic graph (DAG; Bishop, 2006) shown in Fig.
4.1, where each random variable is represented by an open node and relations of
conditional dependency are represented by directed arrows.

In this graphical model, the hyperparameter s at the top controls the structure of
spatial parameters in lower levels, therefore we will refer to it as structural parame-
ter. Geophysical data or observations are in the lowest level of this model. Indeed, as
implied by the conditional relations of the graph and given its spatially-distributed na-
ture, geophysical data provide a means to reduce uncertainty in spatial heterogeneity.
Our objective is to compute the posterior distribution of structural parameters given
the geophysical data p(s|d), which can be obtained by considering the correspond-
ing marginal distribution p(s,d) of the joint probability distribution p(s, t,φ,m,d).
The DAG implies that the joint probability distribution can be factorized as
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p(s, t,φ,m,d) = p(s)p(t|s)p(φ|t)p(m|φ)p(d|m) (4.1)

where s stands for the structural parameter, t is the field of geological facies, φ
is the field of a physical property, m is the field of a geophysical property, d is the
geophysical data and p(·|·) expresses a conditional probability distribution.

To approximate the joint distribution from Eq. (4.1) we use Monte Carlo sam-
pling. Since our probabilistic model is represented by a DAG we can obtain samples
of the joint distribution by ancestral sampling, i.e., sampling following an order de-
termined by the arrows in Fig. 4.1. Hence, when sampling a certain node, all nodes
pointing to it (termed parent nodes) must be already sampled. Fixed variables that
may be required in each sampling step are usually represented as black dots, e.g. the
specified noise level in the data used in the last step is included in qd (Fig. 4.1). Once
the samples of the joint distribution are obtained we disregard parameters (or dimen-
sions) other than the ones in the marginal of interest, p(s,d). In our implementation,
each step is given by (for numbering, refer to Fig. 4.1):

1. The structural parameter, s, is sampled from either a uniform distribution or a
discrete uniform distribution.

2. The geological heterogeneity is represented by a spatially discretized facies
field, t. In our case, we consider this field as generated by a stochastic process,
such that sampling from p(t|s) gives a categorical random field defined either
by multiple-point statistics or truncated sequential gaussian simulation.

3. The physical property field φ requires a probability distribution p(φ|T = t).
If no uncertainty is assumed at this step, then only a relation that assigns a value
of the physical property to each facies is used.

4. The geophysical property field m is obtained by using a petrophysical relation
which may also be formulated as a probability distribution p(m|Φ = φ).

5. Finally, the geophysical data d is the result of a geophysical forward operator
g(m) and formulated as p(d|M = m). Note that this is just the likelihood
function defined in the non-hierarchical inverse problem of geophysical data.
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Performing ancestral sampling N times according to the DAG of this model (Fig.
4.1)—i.e., sampling sequentially each conditional probability of the factorized joint
distribution in Eq. (4.1)—will outputN samples of the joint probability distribution.

4.2.2 Designing data features to inform on structural parameters

Given the described process to sample the hierarchical probabilistic model, we no-
tice the data d are dependent not only on the higher-level structural parameters s
but also on intermediate-level parameters. Here, we design features h(d) from the
data d to retain information related only to the structural parameters s and to reduce
the dimensionality of the problem. As mentioned in the Introduction, this reduced
dimensionality is required to make the use of statistical techniques—such as kernel
density estimation (KDE)—computationally tractable. This implies we will approx-
imate the marginal distribution as p(s|d) ≈ p(s|h(d)). We will consider feature
extraction as any function h(d) that maps d from a space of dimensionNd (the num-
ber of data points) to a lower dimensional space of dimension Nh—this would also
entail function compositions, e.g. h(d) = ψ ◦ ξ = ψ(ξ(d)) where ψ and ξ are
functions. The vector of features will be denoted as h = h(d) and is of dimension
Nh. Ideally, feature extraction of data should (1) retain all information regarding the
structural parameter (be informative), and (2) disregard information not related to it
(dimension reduction).

A first approach for feature extraction consists in using dimension reduction tech-
niques, or so-called data-driven approaches also referred to as continuous latent vari-
ables (Bishop, 2006), which aim to retain as much variability of the original data as
possible but with a low dimensional representation of the data. In our study, we con-
sider principal component analysis (PCA) andmultidimensional scaling (MDS). PCA
is based on the eigendecomposition of the data covariance matrix—the eigenvectors
represent orthogonal directions following an order of maximum variability and the
corresponding eigenvalues state the magnitude of this variability. By disregarding
eigenvectors, PCA can be used as a linear dimension reduction method (it is only
based on rotation and scaling operations). MDS takes dissimilarities (or distances)
between data samples as input and then maps these samples in a lower-dimensional
space by approximating the original distances. This may be achieved by optimizing
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a so-called stress function—a method which is referred to as Scaling by MAjorizing
of a COmplicated Function (SMACOF) (De Leeuw and Heiser, 1980). In this way,
MDS works as a non-linear dimension reduction method. When using MDS, one
can also choose distance functions that are more suited to state the dissimilarity of
interest (Scheidt and Caers, 2009). Note that in practice, mapping back to the orig-
inal distribution is not exact because we disregard some information by considering
only the first components of a decomposition for PCA or by retaining only relative
distance between samples for MDS.

A second approach consists in designing h(d) to extract specifically information
linked to the structural parameters s using domain knowledge, leading to the so-called
insight-driven features (Morzfeld et al., 2018). For instance, Hermans et al. (2015)
applied an insight-driven approach favoring a combination of inversion and multi-
dimensional scaling (MDS) to extract relevant features for the geological scenario,
while Scheidt et al. (2015a) used a wavelet transform on seismic reflection data in
combination with an L2-norm distance as insight-driven feature to update different
uncertain geological parameters. Since these functions depend on the specific com-
bination of structural parameter s and data d, they will be detailed in the following
sections. As previously mentioned, in our case d are ground-penetrating radar (GPR)
traveltime data collected in cross-borehole tomographic mode. Note that this could
also apply to seismic traveltime.

In this Chapter, when using insight-driven features we always consider their com-
bination with data-driven approaches, i.e. we apply first an insight-driven approach
and then use data-driven techniques to further reduce dimensionality while retaining
most information (this further reduction in dimensions is to enable the application of
kernel density estimation as will be explained below). As a result, all of our features
may be considered within the so-called metric space modelling (Park et al., 2013;
Scheidt and Caers, 2009). Whether using a data-driven approach or a composition of
insight-driven and data-driven approaches, we will refer to the number of dimensions
after feature extraction as Nh.
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Case Insight-driven Data-driven distance
PCAt - PCA -
MDSt - MDS euclidian
PCAh histogram PCA -
MDSh histogram MDS Jensen-Shannon
MDSv smooth inversion MDS euclidian
MDSc smooth inversion

and connectivity
MDS euclidian

Table 4.1: Different feature extraction cases proposed for geological scenario from
top to bottom: PCA on data (PCAt); MDS with euclidian distance on data (MDSt);
PCA on histograms of traveltime data (PCAh); MDSwith a Jensen-Shannon distance
function on histograms of traveltime data (MDSh); MDS with euclidian distance on
geophysical images obtained by regularized inversion of traveltime data (MDSv);
MDS with euclidian distance on connectivity curves obtained from geophysical im-
ages (MDSc).

Extracting data features for discrete geological scenario

While considering the uncertainty of different geological scenarios formulated as
a discrete structural parameter s, we propose extracting features from tomographic
data in six different ways summarized in Table 4.1. The first two approaches use
dimension reduction techniques (PCA and MDS) on the traveltime directly, and the
remaining use dimension reduction techniques but only after an initial insight-driven
transformation. The third and fourth approaches transform the data using a histogram
and the last two rely on an inverse transform of the data (tomogram).

The targeted discrete structural parameter s is implicitly linked to the connec-
tivity of the medium, i.e. each scenario implies the use of a geostatistical algorithm
with defined inputs that is expected to produce different degrees of connectivity (Figs.
4.2 and 4.3a). The histogram transformation for cases PCAh andMDSh was cho-
sen because differences in connectivity are expected to cause different distributions
of traveltimes. For example, if the system is well-connected, the histogram of the
traveltimes will show high values for the bins in faster traveltimes and also a multi-
modal distribution. This can be observed on Fig. 4.3c (top and bottom). Indeed,
the ray paths follow complex patterns for different source-receiver offsets which may
be described as the ray "jumping" from one high velocity to another high velocity
object, if a high number of jumps occurs the histogram of traveltimes will tend to
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(a) (b) (c)

Figure 4.2: Three different geological scenarios considered: (a) and (b) are training
images used for multiple-point geostatistics simulations, and (c) is a realization of
a truncated Gaussian simulation with its anisotropic variogram fitted to the training
image in (a).

be smooth, on the other hand if a low number of jumps occurs the histogram will
display multi-modality. To estimate the distance between two histograms or proba-
bility distributions, we used the Jensen-Shannon distance. As suggested by (Scheidt
et al., 2015b), the Jensen-Shannon distance (or the square root of the Jensen-Shannon
divergence) is an appropriate metric to measure the distance between two probabil-
ity distributions or, as in our case, their approximations in the form of histograms.
We note that the choice of metric must be made in order to better discriminate the
parameter of interest by means of the features so far extracted from the data.

Connectivity may also be quantified if one has access to the knowledge of the
spatial distribution of the facies which, in the case of geophysical traveltime data,
can be easily approximated using a deterministic inversion (Fig. 4.3d). To quantify
the connectivity, we used the Euler characteristic curve in caseMDSc (Renard and
Allard, 2013) by thresholding the inverted velocities in 100 steps (see Fig. 4.3e). In
other words, we obtain the range of velocity values on each inverted "image" and
divide it in 100 intervals, then use the upper bound of each interval to get a binary
"image" (i.e. all values lower than the upper bound are set to 1 and the remaining to
0) and compute the Euler characteristic for each of these binary images. The result
is then a 100-dimensional vector that is a discrete version of the Euler characteristic
curve. The Euler characteristic is a topological characteristic and for binary images is
equal to the number of objects (or clusters) minus the number of holes in such objects
(Renard andAllard, 2013). For comparison, we also used directly the inverted images
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Figure 4.3: Realizations of geological facies with proposed features for the discrete
structural parameter: (a) facies samples, (b) simulated traveltimes (reciprocal data
not shown), (c) histogram of simulated traveltimes, (d) deterministic inversion of
simulated traveltimes, and (e) Euler characteristic curves.

in caseMDSν .

Extracting data features for continuous channel orientation

The targeted continuous structural parameter s is again linked to the connectivity of
the system but here quantified by the orientation of the connectivity rather than the
degree of connectivity. In this case, we propose four feature extraction cases (Table
4.2) in addition to the dimension reduction techniques: two based on what we call
"oriented averages" of traveltime and two based on tomograms (inverted velocities).

The oriented averages in cases PCAa and MDSa were proposed to inform on
the orientation of the channel by computing the average of traveltime data in all pos-
sible orientations of source-receiver combinations. For the oriented averages in our
synthetic setup (described below) we get 37 orientations, hence a vector of 37 insight-
driven features.

The Radon transform in theMDSR case is a line integral transform that is equiv-
alent to a linear tomography taken at constant offsets and in a series of directions
(Durrani and Bisset, 1984). It has been used to extract orientation information of im-
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Case Insight-driven Data-driven distance
PCAt - PCA -
MDSt - MDS euclidian
PCAa oriented averages PCA -
MDSa oriented averages MDS euclidian
MDSv smooth inversion MDS euclidian
MDSR smooth inversion

and Radon transform
MDS euclidian

Table 4.2: Different feature extraction cases proposed for preferential orientation.
From top to bottom: PCA on data (PCAt); MDS with euclidian distance on data
(MDSt); PCA on oriented averages of traveltime data (PCAa); MDS with euclidian
distance on oriented averages of traveltime data (MDSa); MDS with euclidian dis-
tance on geophysical images obtained by regularized inversion (MDSv); MDS with
euclidian distance on a Radon transform of geophysical images (MDSR).

ages (see e.g. Aydin and Caers, 2013) and we compute it considering eight different
directions {0, π/6, π/4, π/3, π/2, 2π/3, 3π/2, 4π/3} in radians. For comparison, we
also used directly the inverted images in caseMDSν .

4.2.3 KDE and cross-validation approach

We chose to apply kernel density estimation (KDE) to approximate the marginal dis-
tributions p(s, h(dobs)) and p(dobs) using the features samples (obtained by applying
the transformations of the previous sections to theMonte Carlo data samples) to com-
pute the posterior p(s|h(dobs)). Heteroscedasticity may arise due to the nature of the
structural parameter or be induced by the transformations of the feature extraction.
To handle such heteroscedasticity, we use an adaptive version of KDE that is based
on clustering of the samples similar to the ones proposed by Park et al. (2013) and
Scheidt et al. (2015b). As a result, our implementation takes the following form

p(s|h(dobs)) =
p(s, h(dobs))

p(dobs)
(4.2)

=

∑Nc

i=1

∑
sj ,dj∈C(i) K

(i)
Hs

(s− sj)K(i)
Hh

(h(dobs)− h(dj))∑Nc

i=1

∑
sj ,dj∈C(i) K

(i)
Hh

(h(dobs)− h(dj))
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whereNc is the number of clusters used in the clustering algorithm, C(i) refers to
the i-th cluster from the set {C(i)|i = 1, ..., Nc}, sj and dj are the values for the struc-
tural parameter and the data for the j-th sample, therefore the index j = {1, ..., N},
K

(i)
H (·) refers to a scaled kernel function with corresponding bandwidths Hs for the

structural parameter and Hh for the data whose values depend on which cluster C(i)

they belong to, and dobs is the observed data. Further details on adaptive kernel
density estimation and our particular implementation are presented in the Appendix.
What is important to note here is that the bandwidthsHs andHh are parameters con-
trolling the shape or "smoothing" of the distribution in the joint space p(s, h(d)) and
they are implicitly given by Nc.

As previously mentioned regarding the possible heteroscedastic character of the
posterior distribution of the structural parameter, adaptive KDE was chosen because
it (1) accounts for the degree of uncertainty as a function of the structural parameter
s and (2) adjusts the error model in the feature space (i.e. non Gaussian). In the
latter case, the noise model for the data is no longer valid for the features. Instead of
handling this using "perturbed" observations (Hermans et al., 2016; Morzfeld et al.,
2018), adaptive KDE can deal with this directly because it works for heteroscedastic
and multimodal distributions.

At this point we should note that our methodology results in three main degrees
of freedom, namely the number of Monte Carlo samples N (section 4.2.1), the num-
ber of dimensionsNh after feature extraction and dimension reduction (section 4.2.2)
and the number of clusters Nc (this section and the Appendix) used in the adaptive
KDE. Because the evaluation of the numerical model is usually the most compu-
tationally demanding step, a low value of samples N should be chosen. Then, Nh

andNc should be chosen so that the method performs optimally. To choose this opti-
mum, we propose a leave-one-out cross-validation approach with two different scores
depending on the type of structural parameter being estimated. For discrete parame-
ters, Nh and Nc can be fixed by using the number of correct classifications obtained
by assigning the scenario with the highest (marginal) posterior probability at the data
sample. In case of equal number of correct classifications, we take the mean of all the
(marginal) posterior probabilities of the correctly classified scenarios, termed here as
`d, and pick the one with the highest value (Hermans et al., 2015). For continuous
parameters, the proposed cross-validation approach is based on a likelihood score
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defined by (Habbema et al., 1974) as

`c =
1

n

n∑
j=1

ln p−i(Nh, Nc) (4.3)

where p−i stands for the leave-one-out estimate of the conditional distribution
p(s|h(di)), i.e., the probability value computed at the i-th point without considering
the same point in the adaptive KDE.

We compare our cross-validation approach to the silhouette index proposed by
Scheidt et al. (2015b), in a simple one-dimensional example (Fig. 4.4) of applying
adaptive KDE when the data error model is Gaussian and we aim to estimate its
probability density but we can only work with features (e.g. a non-linear feature,
like the exponential h(x) = ex in Fig. 4.4) as in our approach. Since it is not easy
to visually discern which curve gives a better approximation, we used the Jensen-
Shannon distance 4.2.2

::::
(see

::::::::
Section

:::::::
4.2.2) to measure the distance with respect to

the true distribution. Results show that the adaptive KDE would better approximate
the original error model in this feature space when the number of clusters, Nc =

4, is estimated through cross-validation, which generally produces an optimal bias-
variance tradeoff, instead of the resultNc = 2 obtained with the silhouette index (Fig.
4.4). In our case, the probability distribution to be approximated is p(s, h(d)) instead
of p(ex) and p(s, d) would be in place p(x). Another advantage of cross-validation
is that it can always be applied since we can always generate the necessary Monte
Carlo samples. Given high-dimensional and more complex distributions, we expect
the use of cross-validation will be more beneficial.

4.3 Reducing structural uncertainty using features of
GPR traveltime on a synthetic model

4.3.1 Model set-up

A synthetic case is presented in this section to demonstrate the proposedmethodology
using GPR traveltime as data d. The spatial domain is a vertical section between
two boreholes separated 5 m from each other and whose depth is 20 m (4.3). As
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Figure 4.4: Comparison of the adaptive KDE for a non-linearly transformed space
when the number of clusters is chosen by silhouette index (Nc=2) and by cross-
validation (Nc=4). Vertical markers in the lower part denote the samples used to
approximate the probability distribution. Both plots show the same samples, with
the upper one representing an exponential transformation of the values in the lower
one.
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Figure 4.5: Sketch of the hierarchical sampling process for the geological scenario
where s is the geological scenario index, t is the facies index, φ is the porosity, m
is the relative dielectric permittivity and d are electromagnetic wave traveltimes in
nanoseconds plus added Gaussian noise with σ = 1.4 ns. Steps 1 through 5 are
described in the text.

in the usual tomographic survey, data is generated by considering the sources are in
one borehole while receivers are located in the other. Afterwards, reciprocal data
is simulated by placing sources in the borehole where receivers were firstly placed
and vice-versa. Vertical separation of both the receivers and sources is constant and
equal to 0.5 m. We consider 19 sources and 19 receivers (and the same number for
reciprocal data) where the first position of the receivers/sources is 0.5 m from surface
and last is 19.5 m.

In our specific synthetic demonstration we study two cases, one including a dis-
crete structural parameter and the other a continuous one, for which we describe steps
1 to 5 in Fig. 4.1. An outline of the hierarchical sampling for the discrete structural
parameter is presented in Fig. 4.5. Note that steps 3 to 5 are common for both types
of structural parameters.

Step 1. The discrete structural parameter s ∈ {s1, s2, s3} denotes three differ-
ent geological scenarios, represented by three different geostatistical models: two
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multiple-point geostatistics models with different training images and one truncated
gaussian field model (Fig. 4.2). Each row in Fig. 4.5 corresponds to a value of s. The
prior p(s) is a discrete uniform distribution and we consider this implicitly by using
50 samples of each value {s1, s2, s3} for a total of 150 samples. These 150 samples
are used in the following steps.

The continuous structural parameter is the preferential orientation of the geolog-
ical patterns (channels in our case) and its range is s ∈ (0, π). 200 samples were
obtained from a uniform distribution with range (0, π). This range was chosen be-
cause the training image used (see realizations in Fig. 4.9a) has a rotational symmetry
of order two, i.e. data realizations from s and s + π can be considered coming both
from s only.

Step 2. In the discrete case, we obtain facies samples t from s1 and s2 by means
of multiple-point geostatistics sequential simulations (two first rows for the t column
in Fig. 4.5), considering training images ti1 and ti2 (Fig. 4.2), respectively. The t

samples from s3 are generated by truncated sequential gaussian simulation, whose
anisotropic spherical variogram was obtained by fitting to the training image ti1 (last
row for the t column in Fig. 4.5). The samples of the continuous s, are used as input
to generate samples of h by multiple-point geostatistics simulations using training
image ti1.

Step 3. The porosity φ is given by a constant mapping q(t) of the facies and the
probability distribution can be expressed as

p(φ|T = t) = δ(φ− q(t)) (4.4)

where δ is the delta function and

q(t) =

q1 t = 1

q2 t = 2
(4.5)

where q1 = 0.18 and q2 = 0.29 are porosity values for two different geological
facies. This amounts to assigning a porosity value for each facies (the φ column in
Fig. 4.5), but we choose to express it as a conditional probability to be consistent
with the Bayesian hierarchical model, where uncertainty may be included at this step
to consider e.g. intrafacies variability.
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Step 4. We choose a mixing model named CRIM (Birchak et al., 1974) to trans-
form the porosity field into a dielectric permittivity field (the m column in Fig 4.5).
Such transformation is denoted by r(φ) and the corresponding probability distribu-
tion is

p(m|Φ = φ) = δ(m− r(φ)) (4.6)

again δ is the delta function and

r(φ) = ((1− φ)
√
εs + φ

√
εw)2 (4.7)

where εs = 3 is the permittivity of the solid grains and εw = 81 is the permittivity
of water. In this way, the facies t = 1 will have lower permittivity (therefore, higher
electromagnetic wave velocity) than the facies t = 2.

Step 5. Numerical modeling of the electromagnetic wave traveltime is done by
a ray-path approximation model, as implemented in PyGIMLi’s Refraction module
(Rücker et al., 2017). Note this approximation reduces computational demand com-
pared to full-waveform simulation. Interestingly, within a feature-based framework,
traveltime data can be seen as a first feature extraction step from the full-waveform
data. The corresponding probability distribution is

p(d|M = m) ∼ N (f(m), Iσ2) (4.8)

where N stands for a multivariate normal distribution, I is an identity matrix
of size Nd, f(·) is the geophysical forward operator given by the numerical model
mentioned above, and σ = 1.4 ns states the magnitude of independent normally-
distributed noise in the geophysical data. Simulated traveltimes data are shown in
data arrays (where columns represent the receiver index and rows the source index)
in the d column of Fig. 4.5. Note that uncertainty was not considered in steps 4 and
5 here but could easily be included.

We generate samples of the (marginal) joint distribution p(s,d) by following steps
1 to 5 and disregarding the parameter dimensions.
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4.3.2 Results for a discrete structural parameter

We extract features of traveltime data to approximate the posterior distribution of
the structural parameters p(s|d) ≈ p(s|h(d)) according to the six different cases
mentioned in Section 4.2.2. Fig. 4.3 shows one realization for each value of the
discrete structural parameter, the simulated traveltime data and the corresponding
insight-driven features.

Cross-validation was used to select the number of dimensions, Nh, and the num-
ber of clusters, Nc, for each one of these cases. We restricted to values Nh ≤ 10

and Nc ≤ 15 since the number of samples needed to obtain a good estimate with
KDE beyond this bound would be too high. The cross-validation score used was the
number of correctly classified realizations, i.e. an integer between 0 and 150, recall-
ing we generated 50 samples for each value of the discrete structural parameter. Fig.
4.6 shows the cross-validation matrix obtained for the caseMDSh where we can see
there is an optimum choice of Nh and Nc that is within our chosen search limits for
both parameters. In the cross-validation matrix, we see a counterbalancing ofNh and
Nc: within the bound Nh ≤ 8, the classification maxima for increasing Nh generally
correspond to lower values of Nc. Since the same number of samples is considered,
this may be explained because lower values of Nc mean the adaptive KDE is using
wider bandwidths when going into higher dimensional spaces, effectively covering
more space in the density estimation than with a higherNc. However, the effect ofNh

is stronger and leads to better classification, which is also an indication of a properly
chosen feature extraction to reduce dimensions. For this reason, in case of the same
performance, we rather choose the combination whereNh is lower. Note also that an
arbitrary chosen combination of Nc and Nh could easily lead to a significantly lower
performance of the approach, highlighting the need to optimize the choice of those
degrees of freedom.

Fig. 4.7 shows the MDS mapping applied to the histograms of traveltime data
in the low dimensional feature space for Nh = 2 (the optimum selected by our ap-
proach). Points are approximately separated according to the three values of the dis-
crete structural parameter s which means the features are informative on this struc-
tural parameter. The joint probability distribution p(s, h(d)) = p(s,h) obtained
through adaptive KDE is shown also for this case MDSh (Fig. 4.8a). The estima-
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Figure 4.6: Cross-validation matrix for the case MDSh of the discrete structural
parameter (geological scenario).

Figure 4.7: MDS applied on histograms of traveltime data. Examples of realizations
for each value of the discrete structural parameter s are shown.
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Figure 4.8: (a) Joint probability distribution p(s,h) for the case of MDS on his-
tograms of traveltime data. The ’+’ denotes one realization d0 when the discrete
parameter s = s1 and is the same shown in Fig. 4.7. (b) The posterior probability of
the structural parameter s obtained by cross-validation when d = d0.
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tion of the posterior probability of the structural parameter for one data sample d0
with known true value of s = s1, equivalent to one computation of the leave-one-
out cross-validation is shown in Fig. 4.8b, where we see the method correctly gets
the value s1 as the most likely for d0. We also note here that the probability of s3
is very close to zero. If d0 were measured geophysical data, this geological scenario
would be falsified and could be left out of further analysis (e.g. inversion for spatial
parameters).

For the other cases, a complete visualization is difficult due to the higher dimen-
sionality of Nh but a summary of the results are shown in Table 4.3. Some cases
show a higher number of correctly classified samples (66% correctly classified for the
worst case and 80% for the best one) but with different values for Nh and Nc. Also,
the values of mean updated probability `d are higher for certain cases but to a lesser
degree than for the number of correct classifications. The best performing strategy is
the composition of MDS on histograms of traveltime (MDSh). This means our pro-
posed insight-driven feature has indeed aided to some extent in retaining information
only on the structural parameter s. The connectivity-based approach (MDSc) does
not perform better than the data-driven approach. However, it is more discriminat-
ing than the tomograms (MDSv). Those approaches are less effective in terms of
computational demand, since they require both a deterministic inversion and compu-
tation of the Euler characteristic curves for each realization. This result might appear
counter-intuitive as imaging is generally appealing for the human eyes and a common
result of geophysical exploration. However, inversion can be considered as a feature
extraction of data leading to loss of information related to the regularization opera-
tor. We note, however, that these results are related to the type of data (cross-hole
GPR traveltime, in our case) and might differ for other data or even other acquisition
setups. For instance, surface ERT data has been shown to be extremely sensitive to
shallow resistivity structure hence a possible strategy is to extract features from the
geophysical image rather than directly from the data or to develop more appropriate
insight-driven features (Hermans et al., 2015).

We note a small improvement on the classification scores between PCA, a linear
dimension reduction method, and MDS, a non-linear dimension reduction method.
This may be explained as MDS being able to account for some non-linearity in the
relation of the structural parameter with the data. Also, we see that a higher di-
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Nh Nc class `c
PCAt 8 3 99 0.61
MDSt 6 14 100 0.66
PCAh 3 3 108 0.61
MDSh 2 6 119 0.69
MDSv 2 7 102 0.62
MDSc 6 4 109 0.65

Table 4.3: Cross-validation results for discrete structural parameter s where class
refers to the number of correct classifications.

mensionality is chosen (through cross-validation) for PCA in comparison with MDS,
which may be because both methods are able to retain similar information but with
different Nh.

4.3.3 Results for a continuous structural parameter

As previously mentioned six different cases are considered in which both data-driven
and a composition of insight-driven with data-driven features are used (section 4.2.2).

The number of clusters Nc and the number of dimensions Nh was selected ac-
cording to cross-validation using the minimum value for the score of Eq. (4.3) (third
column in Table 4.4). Again, we restricted to Nh ≤ 10 and Nc ≤ 15. The chosen
number of dimensions for the case PCAt is Nh = 3 so, in order to represent the
complete space where the method is applied, we would have to use three dimensions.
However, for visualization purposes, we use the first two and show the distribution of
realizations of features of the data (Fig. 4.9a). Here, the insets display four samples
of the corresponding geological facies for which the simulated data and the PCA fea-
tures were obtained. We clearly see that points are arranged according to the value of
the structural parameter s which means that they are informative of it. Moreover, the
distribution of samples reveals that the obtained features are probably linearly related
to the structural parameter since they plot close to a circle and orientation is circular
(i.e. periodic). Indeed, if we take this into account and plot the orientation versus the
angle formed by the two features we see a linear trend (Fig. 4.9b). The scatter plot
reveals a small degree of heteroscedasticity for this specific dataset (higher variance
around 0.25π and 0.75π and lower variance around 0.5π and 0) which is also present
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Figure 4.9: (a) PCA applied on traveltime data for continuous structural parameter
s. (b) Same samples as (a) but computing the angle formed by the two features and
plotting versus true orientation. Colors are true values for the structural parameter
s (preferential orientation). d0 denotes a particular sample taken out during cross-
validation and the dashed line denotes the position in the feature axis for this sample.

for the other cases (MDSt, PCAa andMDSa). However, due the small number of
samples (200), this may not be statistically significant, therefore the process was re-
peated with 500 samples where the change in spread as a function of the orientation
is clearer (not shown). This means cross-borehole GPR data is more discriminative
in angles close to 0◦/180◦ and 90◦ and is less discriminative for angles close to 45◦

and 135◦. This could be physically explained by the fact that changes in the length
of the wave path through low velocity zones are greater when the angles are close to
0◦/180◦ or 90◦. Further analysis is required to validate this conclusion, e.g. prove
that the chosen dimension reduction techniques did not affect the results.

For the case PCAt, Fig. 4.10a shows the distribution of features of the data to-
gether with the continuous structural parameter s and Fig. 4.10b shows the marginal
distributions of the corresponding three-dimensional joint probability distribution
p(s, h1, h2). In order to apply the adaptive KDE to this circular parameter the band-
width for the structural parameter dimension was computed in a transformed space
(i.e. a two-dimensional space with x = sin(s) and y = cos(s)) and the periodicity
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was accounted for by means of replication of samples in the boundaries (Silverman,
1986). For the other three cases, the method works similarly but its application is
harder to visualize given the high number of dimensions Nh selected.

Since we are dealing with a continuous parameter, the posterior probability distri-
bution is also continuous. The process of building this distribution is depicted in Fig.
4.10 and the resulting posterior probability distribution for a certain valued0—taking
its value out in the adaptive KDE while performing leave-one-out cross-validation—
is shown in Fig. 4.11. We clearly see that the posterior contains the true value and
it is sharply peaked around it which means the method is correctly estimating the
structural parameter s. Given that the prior distribution was uniform, the achieved
reduction of uncertainty is on the order of 75%.

A summary of the obtained results is shown in Table 4.4 which indicates the best
performing case isMDSt, but it is not far from PCAt. The similar results of these
two cases mean there is no clear advantage in using a non-linear dimension reduction
method and may be explained by the mostly linear relation between the structural pa-
rameter and the data (as shown by Fig. 4.9b). We also see that data-driven approaches
applied alone perform better than their compositions with insight-driven features,
which are used in the last four cases. This means that our chosen insight-driven fea-
tures provide no better strategy to retain information on the structural parameters s
than the data-driven approaches by themselves. This may be explained to some extent
by the fact that both PCA and MDS were designed to explicitly search for continuous
parameters (also termed continuous latent variables) that explain variability in the
data (Bishop, 2006), and not discrete parameters as the ones in the last section. Also,
in this case working with the geophysical images gives the worst results and this was
not improved by the chosen insight-driven feature (Radon transform).

We must note that our data is highly sensitive to the preferential orientation there-
fore the dimensions explaining most data variability are indeed related to the chosen
structural parameter. When this is not the case, insight-driven features may prove
more useful. Finally, it is worth mentioning that insight-driven features are easier to
propose when the parameter of interest is discrete, since the expected effect on data
can be investigated in a finite number of scenarios.
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Figure 4.10: PCA applied on traveltime data showing structural parameter s as third
dimension (a) colors are the same as in Fig. 4.9. Marginal distribution resulting
from the application of adaptive KDE (b). The ’+’ denotes the sample d0 taken out
during cross-validation and is the same as the one referenced in Figs. 4.9 and 4.11.
The dashed line shows the conditioning to d0 in p(s|d0), therefore highlights the
direction along which the adaptive KDE is applied.
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Figure 4.11: Posterior probability for one sampled0 taken out during cross-validation
computed using features h(d) obtained with PCA directly applied to traveltime data.
The vertical dashed line denotes the true value of the sample.

Nh Nc `c
PCAt 3 5 -0.270
MDSt 4 6 -0.257
PCAa 3 7 -0.364
MDSa 5 5 -0.328
MDSv 2 5 -0.614
MDSR 4 5 -0.675

Table 4.4: Cross-validation results for continuous structural parameter s.
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4.4 Conclusions

In this Chapter we provide a novel framework to design and assess data features in
the approach proposed by Park et al. (2013)—an approach to reduce the structural
parameter uncertainty—making it more objective and readily applicable. Our results
show that the design and relative success of data features on which the approach is
based is case-dependent, which may therefore challenge the robustness of the ap-
proach. Since cross-validation can always be applied, our proposed framework relies
on its use to make an objective assessment of the features and the additional degrees
of freedom brought by the method.

To illustrate the different choices of feature extraction methods, these were ana-
lyzed according to whether they are data-driven only or based on insight about the
relation between the data and the structural parameter. In the presented synthetic
cases, cross-validation identified the defined insight-driven features as more success-
ful to retrieve the posterior (marginal) probability distribution of a discrete struc-
tural parameter (the geological scenario) than for a continuous one (the preferential
orientation). Similarly, data-driven approaches performed better for the orientation
according to the cross-validation scores and we argue that this is mainly because a
significant part of data variability is explained by this structural parameter. We also
found that, for the synthetic cases considered in this Chapter, there is not much dif-
ference in using a data-driven linear dimension reduction method (such as principal
component analysis), in comparison to a nonlinear one (such as multidimensional
scaling), other than the former will generally require more dimensions to achieve
a similar performance. As an additional result, some useful ways to extract features
were proposed when reducing the uncertainty of the geological scenario and the pref-
erential orientation using geophysical tomographic data. All these outcomes may
prove useful in the general context of multi-level uncertainty in the Earth sciences.
An interesting result of our investigations is that, although geophysical data are often
used to produce images of the subsurface through inversion, using the inversion as
an insight-driven feature is not necessarily a good approach to reduce the uncertainty
on structural parameters. The data themselves can be more informative.

When using data-driven feature extraction techniques, we considered mainly the
dimensions that explainmost of the variability in the data. It may be interesting for fu-
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ture studies to consider also combinations of different dimensions (maybe excluding
the ones explaining most variability) to see if they are more informative on structural
parameters, hence provide a better estimation for the structural uncertainty. This may
prove especially useful when the structural parameter does not have a major impact
on data variability. In the same regard, this suggests using supervised dimension
reduction techniques could be beneficial.
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Reducing data and model dimension:
prior falsification followed by
inversion with an assembled prior1

Prior information regarding subsurface patterns may be used in geophysical inversion
to obtain realistic subsurface models. Field experiments require sufficiently diverse
patterns to accurately estimate the spatial distribution of geophysical properties in
the sensed subsurface domain. A variational autoencoder (VAE) provides a way to
assemble all patterns deemed possible in a single prior distribution. Such patterns
may include those defined by different base training images and also their perturbed
versions, e.g. those resulting from operations such as erosion/dilation, local deforma-
tion and intrafacies variability. Once the VAE is trained, inversion may be done in
the latent space which ensures that inverted models have the patterns defined by the
assembled prior. Inversion with both a synthetic and a field case of cross-borehole
GPR traveltime data shows that using the VAE assembled prior performs as good
as using the VAE trained on the pattern with the best fit, but it has the advantage of
lower computation cost and more realistic prior uncertainty. Moreover, the synthetic
case shows an adequate estimation of most small scale structures. Estimation of ab-
solute values of wave velocity is also possible by assuming a linear velocity model

1Note: The research presented in this chapter is based on: Lopez-Alvis, J., Nguyen, F., Hermans, T.
and Looms, M. (2021). Geophysical inversion using a variational autoencoder to model an assembled
spatial prior uncertainty. To be submitted.
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and including two additional parameters in the inversion.

5.1 Introduction

As detailed in Chapter 1, geophysical inversion estimates the values of the spatial
model parameters by combining information regarding the model itself, the mea-
sured data and a forward operator, which gives a relation between model parame-
ters and data by describing approximately the physical process by which the data
arose. When only sparse data are used in the inversion, the spatial model is usually
obtained by using

::::
data

:::::
does

::::
not

::::::::
provide

:::::::::::
sufficiently

::::::::::::
independent

::::::::::::
information

::::::
about

:::
the

:::::::::::
distribution

:::
of

:::::::::::
subsurface

::::::::::
properties,

:::::::::
inversion

::::::
relies

:::
on regularization to stabilize

the solution (Backus and Gilbert, 1967; Tikhonov and Arsenin, 1977) but this inher-
ently biases the solution towards an a priori constraint which may not be realistic
and therefore may hinder the use of the model for certain applications. If informa-
tion regarding spatial patterns of the subsurface is available it may be used together
with measured data in order to improve model realism (Tarantola and Valette, 1982).
This information is typically obtained from independent knowledge about the sub-
surface structure, e.g. outcrops which are representative of the local geology (Linde
et al., 2015). To integrate this information with measured data, the patterns must
be described by techniques that account for their spatial nature. This has been gen-
erally achieved by using traditional geostatistical techniques, which usually provide
more realistic models than classical regularization bymeans of imposing a covariance
structure (Franklin, 1970; Maurer et al., 1998). The choice of geostatistical technique
depends on both the complexity of the spatial patterns and the information content of
the measured data (Mariethoz, 2018). In general, it is recognized that multiple-point
geostatistics (MPS) is more suited to reproduce highly-connected spatial structures
than covariance-based (or Gaussian random field) methods (Strebelle, 2002; Journel
and Zhang, 2007). Recently, deep generative models (DGMs) have been proposed as
an alternative to MPS to reproduce such complex spatial patterns (Laloy et al., 2017;
Chan and Elsheikh, 2019).

MPS and DGMs rely on a gridded (pixel) representation for generating high-
resolution spatial realizations. An Euclidian space RN may be assumed for this rep-
resentation where N is the number of pixels, then models may be seen as points in
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a high-dimensional model space. Since the spatial patterns are restricted, however,
the set of possible models will not cover the whole model space. This subset may be
stated by a prior probability distribution (Tarantola and Valette, 1982). While both
MPS and DGMs are able to approximate such prior distribution and generate new
samples with patterns similar to those contained in a training dataset (e.g. a large
training image, TI), DGMs present some advantages for inversion. First, contrary
to MPS which either saves the number of occurrences of patterns (Strebelle, 2002;
Straubhaar et al., 2011) or queries them directly from the TI (Mariethoz et al., 2010),
DGMs build a continuous prior probability distribution from which spatial realiza-
tions of the patterns are generated. This continuous probability distribution means
that DGMs may provide (1) more diverse patterns,

:::
i.e.

::::
they

:::::::::
generate

::::::::
models

::::::
whose

::::::::
patterns

:::
are

::::
not

:::::::::::
necessarily

::::::::::
contained

::
in

::::
the

::::::::
training

:::::::
image,

:::::::::::
effectively

::::::::::::
interpolating

::::::::
between

::::::::
training

:::::::::
samples,

:
(2) a direct continuous perturbation step while exploring

the model space (Laloy et al., 2017) and (3) the possibility of assembling different
kinds of patterns in a single prior probability distribution (Bergmann et al., 2017).
Second, given certain conditions, DGMs may also allow for gradient information (of
the objective function) to be used in inversion which may substantially reduce the
computational cost (Laloy et al., 2019; Mosser et al., 2018; Lopez-Alvis et al., 2020).
This is typically not available for inversion with MPS, for which other ways of ex-
ploring the model space have been used (Hu et al., 2001; Caers and Hoffman, 2006;
Hansen et al., 2012; Linde et al., 2015).

There were two main advances that allowed for DGMs to be applicable to high-
resolution images: (1) neural networks that preserve complex spatial information,
and (2) inference algorithms that are able to train instances of these networks that
specifically include a continuous probability distribution within their layers. A com-
mon type of neural network that fulfills the first point are (deep) convolutional neu-
ral networks (CNNs) (Fukushima, 1980; LeCun et al., 1989). CNNs are widely
used in image processing and computer vision and have shown to be able to process
highly complex spatial patterns (Krizhevsky et al., 2017). DGMs may use CNNs as
their generative mapping and therefore produce new high-resolution samples with
the training spatial patterns (Radford et al., 2016). Given the high-dimensionality of
the model space, the training of such models was only possible with the introduction
of inference algorithms that were able to cope with such high-dimensionality. Two
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main algorithms are currently used to train DGMs: amortized variational inference
(Kingma and Welling, 2014; Zhang et al., 2018) and adversarial learning (Goodfel-
low et al., 2014). The former gives rise to variational autoencoders (VAEs) while the
latter produces generative adversarial networks (GANs).

Both VAEs and GANs may be used to generate samples that display the training
patterns by sampling from a n-dimensional probability distribution (where typically
n << N ). However, when used for inversion, the concern is not only on pattern
accuracy but also on the feasibility of efficiently exploring the possible models that
fit the data, or in Bayesian terms, efficiently integrating model prior information with
the measured data by means of the forward operator (Mosser et al., 2018; Laloy et al.,
2019; Canchumuni et al., 2019). It was recently argued that with certain choice of
parameters VAEs may control both the degree of nonlinearity and the topological
changes of their generative mapping, which in turn allows the gradient to be used in a
computationally efficient inversion (Lopez-Alvis et al., 2020). Such choice of param-
eters is also useful in controlling the diversity of samples: instead of only generating
samples very close to the training samples, the probability distribution expands or
covers larger regions between the samples what can counterbalance the lack of diver-
sity or finite nature of the training imageor training samples.

This improved diversity may be useful when the goal is to generate a prior prob-
ability distribution which is assembled from different types of patterns (e.g. different
TIs), including the case when base patterns are perturbed by operations such as de-
formation, erosion-dilation and intrafacies variability. This may be advantageous for
field data because it increases the number of possible patterns in the subsurface which
leads to a better representation of model prior information or uncertainty. However,
an important step before considering the different transformed patterns is to check
their consistency with the observed data, i.e. if they are likely to have generated the
measurements. This may be framed as a prior consistency check or falsification step
(Park et al., 2013; Hermans et al., 2015; Scheidt et al., 2018).

In this Chapter, DGMs are used to impose spatial patterns during geophysical in-
version. In particular, the ability of VAEs to build an assembled prior from different
base TIs and their perturbed versions is tested. The impact of such assembled prior
for modeling the subsurface is assessed by making use of gradient-based inversion
for both synthetic and field cases of cross-borehole ground penetrating radar (GPR)
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traveltime data. The corresponding prior consistency check is done in both cases for
all TIs considered. It is worth noticing that the current study constitutes one of the
first efforts to apply DGM-based inversion to a field dataset. Also, in contrast to pre-
vious studies (Laloy et al., 2017, 2018; Mosser et al., 2018; Lopez-Alvis et al., 2020)
the values of the geophysical parameter (wave velocity) are assumed unknown and
included in inversion by means of a linear model. The remaining of this Chapter is
structured as follows. In section 5.2, an outline of the proposed framework includ-
ing the underlying theory of VAEs and their use within gradient-based inversion is
presented. In this section, the prior consistency step and the field data used to test
the framework are also described. Section 5.3 presents and discusses results of the
proposed approach: first, a synthetic case that mimics the field case is introduced and
then results of the field case are presented. In this section, the relation of the proposed
framework with previous studies is also highlighted and suggestions for future work
are given. Finally, concluding remarks of this Chapter are presented in Section 5.4.

5.2 Methods

The framework proposed in this Chapter may be summarized as follows:

1. Define a realistic generative model for the subsurface spatial patterns as prior
distribution. The generative model may include operations that transform some
base patterns such as erosion/dilation, local deformation and intrafacies vari-
ability.

2. Check consistency of the defined prior, this may include falsifying some of the
patterns.

3. If the prior is consistent, train the VAEwith samples from the generativemodel.
Once trained, the VAE works as an assembled prior, i.e. it is able to generate
patterns similar to the training patterns including those transformed by the de-
fined operations.

4. Perform gradient-based inversion in the latent space of the VAE.

All of the methods and concepts required in each of the previous steps are detailed
in the following sections.
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5.2.1 Variational autoencoder: approximating a complex proba-
bility distribution

Avariational autoencoder (VAE)may be classified as a deep generativemodel (DGM).
A DGM is a type of probabilistic model that relies on a relatively simple probability
distribution p(z) to approximate a more complex one p(m) by passing the samples
from the former through a (usually nonlinear) mapping, e.g. a neural network (Dayan
et al., 1995; Uria et al., 2014). This mapping is referred to as the generative mapping
gθ(z) and may be represented more generally by a conditional distribution pθ(m|z)

where θ denotes the parameters of the mapping, e.g. the weights of the neural net-
work. Here, m is defined in the original model spaceRN while z is defined in a space
Rn. The space Rn is usually referred to as the latent space and z is called the code
or latent vector. In general, samples m exhibit some order or structure which means
they are confined to a subsetM ⊂ RN . This assumption is known as the "manifold
hypothesis" (Fefferman et al., 2016) and means that in general it should be possible
to define Rn with n < N , for which n is at minimum the dimension of the subset (or
manifold)M. This also means that the probability distribution p(m) only needs to
be defined overM.

Assuming a large dataset M = {m(i)}Pi=1 containing P samples from the com-
plex probability distribution p(m) is available, DGMs are trained by estimating the
parameters θ of the generative mapping given a fixed p(z). In this way, one is able
to generate new samples similar to those of the training dataset M by sampling
from p(z) and passing through the generative mapping, i.e. sampling according to
p(z)pθ(m|z). However, when the training samples m(i) are high-dimensional, non-
standard inference methods are required to efficiently estimate the parameters θ of
the generative mapping. VAEs use a neural network as generative mapping and rely
on amortized variational inference to estimate its parameters (Kingma and Welling,
2014; Rezende et al., 2014). This inference technique requires another mapping to
approximate a recognition (or variational) probability distribution qϑ(z|m). In this
way the generative mapping may take the output of the recognition mapping as input
and vice-versa, which resembles a neural network architecture known as autoencoder
(Kramer, 1991), with the generative mapping as decoder and the recognition map-
ping as encoder. In this Chapter the choices proposed by Kingma andWelling (2014)
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Figure 5.1: Probabilistic graphical models for: (a) the original variables which is
used to train the VAE and (b) the latent variables (i.e. including the VAE) which is
used for inversion. m, d and z refer to the model, data and latent vectors, respectively.

regarding the probability distributions involved in a VAE are followed. The resulting
framework for the VAE is detailed in Section 3.2.3. In the rest of this work, we drop
the subindex θ in g(z) to simplify notation and also because once the DGM is trained,
the parameters θ do not change, i.e. they are fixed for the subsequent inversion.

Note that the training dataset M may contain different kinds of patterns which
allow the VAE to effectively learn what is here termed an assembled prior, i.e. a con-
tinuous prior distribution which generates not only patterns similar to those in the
training set but also those corresponding to the transitions between the training pat-
terns. Bergmann et al. (2017) propose a similar idea for GANs. One may also picture
this process as changing or substituting the original (probabilistic) generative model
by the VAE, i.e. the latent variables now include jointly the effects of the original
variables (Fig. 5.1).

5.2.2 Convolutional neural networks for spatial representation

The VAE described in the last section may be used with any kind of neural network
architecture. In order to be classified as a DGM, however, it must rely on a deep ar-
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chitecture. The term "deep" means that the mapping, in this case a neural network, is
actually composed by many layers of functions, which in turn create as many inter-
mediate representations (also known as hidden layers). In other words, mappings are
built sequentially where the inputs for the current layer come from the outputs of the
previous layer (the first layer being the original input). In general, neural networks
tend to work better if features from the original inputs are first constructed. The in-
termediate mappings of a deep neural network may be seen as progressively building
more high-level features avoiding the need for tailored feature extraction (Bengio,
2009; Goodfellow et al., 2016).

Convolutional neural networks (CNNs) are one of the most widely used deep ar-
chitectures for images (LeCun et al., 2015). They provide a very general template
which is able to preserve spatial information of the inputs. They do so by defin-
ing each layer mapping as a convolution with a set of kernels (or filters), where the
output of the mapping may be seen as a stack whose number of channels (or lev-
els) is equal to the number of filters used. The weights of the filters are actually the
weights of the neural network, and therefore are estimated during training. In this
architecture, while the input may have only one channel (i.e. it is a one level stack)
the intermediate representations have several (depending on the number of filters of
the previous convolutional layer) therefore the kernels that are applied to them have
a corresponding number of channels (i.e. the convolution is applied across all chan-
nels). It has been shown that this architecture allows neurons or units in the first layers
to mostly represent simple features (such as single edges) while units in subsequent
layers may represent more complex features (corners or gridded patterns) (Zeiler and
Fergus, 2013). CNNs usually contain fully-connected layers which serve as a bot-
tleneck in the architecture. A sketch of a CNN with two convolutional layers and a
fully-connected layer (applied after flattening the output of the second convolutional
layer) is shown in Fig. 5.2 where the general architecture and its main components
are highlighted.

In this work we consider a VAE in which both encoder and decoder (see Fig. 3.2)
are based on CNNs. The encoder has an architecture similar to that of Fig. 5.2 (but
with different number of layers, size of kernels, and so on) while the decoder has
a reversed architecture (as would be obtained by flipping from left to right the one
in Fig. 5.2).

:::
An

::::::::::
important

:::::::::::
parameter

::::
that

::::::::
controls

::::
the

:::::::::::
complexity

:::::
(and

::::::::::
diversity)

::
of
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Figure 5.2: A sketch of a CNN depicting the general architecture and its main com-
ponents.

:::
the

::::::::
patterns

:::
is

:::
the

::::::::::::::::
dimensionality

::
n

::
of

::::
the

::::::
latent

:::::::
vector.

::::
In

::::
this

::::::
work,

::::::::
n = 40

::::
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:::::::
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:::
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:::::::
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::
a

:::
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:::
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:::::::::::
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:::::::
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::::::::::::
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::::
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::::
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:::::::
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::::::
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::::
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:::::
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::::
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::::::::
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::::::::
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:::
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:::::::
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:::::::::
Chapter

::
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::::
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::::::::::
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:::
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::::
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::::
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:::::::::
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:::::::::::::::
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::
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::::
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::::::::
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::::::::
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:::::::::
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::::::::::
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:::
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:::::::::
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:::
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:::
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::::::::::
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::::::::
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:::::
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::::
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::::::::
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:::
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:::::::::::
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:
a
:::
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:::
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:::::::::
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:::::::::
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:::::::::
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::::
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:::::::
found,

::::
e.g.

::::
that

:::::::
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:::::::::
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:::::
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a
::::::
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:::::::::::::
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::::::::::::::
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::
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:::
the
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::::::::
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::::
but

:::::::
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:
a
::::::::::
significant

::::::::::::
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:::
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:::::::::
generated

::::::::
patterns.

:

5.2.3 Inversion of traveltime data using a VAE as prior

As mentioned above, a VAE using CNNs provides a powerful tool to represent com-
plex probability distributions. Therefore if one has a large dataset containing exam-
ples of spatial patterns, the VAE allows to approximate complex prior probability
distributions in the context of geophysical inversion. Following the derivation of
Section 3.2.2, inversion is done by minimizing the objective function in Eq. 3.4 with
R(z) = ‖z‖2 (Bora et al., 2017) and whose gradient is computed according to Eqs.
3.6 and 3.25 as:
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∇zζ(z) = −S(z)T ( J(m)T (d− f(m)) ) + 2λz (5.1)

In this Chapter, we illustrate the proposed approach with a cross-borehole GPR
traveltime field dataset. In order to approximate the propagation of waves, a forward
operator that relies on the eikonal equation:

|∇τ |2 = v−2 (5.2)

is used, where τ denotes the traveltime and v is the velocity of the subsurface materi-
als. A numerical solution is typically required, where after discretization one obtains
the forward operator that relates the vector of traveltimes d = τ to the slowness
(which is the reciprocal of velocity) vector m = v−1 in Eq. A.1. The Fast-Marching
method and a factorized version of the eikonal equation are used herein (Treister
and Haber, 2016). The factorized equation helps to reduce the error induced by spa-
tial discretization in the proximity of the sources. It is important to note that this
forward operator may still result in noticeable error when used for field data since ef-
fects related to the finite-frequency or scattering are not considered. When a proper
discretization is chosen and a moderate velocity contrast is assumed, the magnitude
of this error is comparable to the one of measurement error (Hansen et al., 2014)
which should allow for data misfit error only a bit higher than with more realistic
operators. Though, a non-negligible bias remains which must be considered when
analyzing inversion results. The same implementation allows one to efficiently com-
pute the product J(m)T (d − f(m)) which is given by the solution of a triangular
system exploiting the Fast-Marching sort order of the forward operator (Treister and
Haber, 2016). The choice of such forward operator is motivated by the need to keep
computational demand low, as inversions usually require a significant amount of both
forward simulations and the above sensitivity product.

In contrast to previous studies where synthetic cases assumed that the mean ve-
locity values in each facies were known (Laloy et al., 2017, 2018; Mosser et al., 2018;
Canchumuni et al., 2019), here the inversion of these velocity (or slowness) values
is done by assuming a linear model that shifts and scales the spatial models obtained
from the VAE according to v = w1 + w2 m. This is helpful for field cases since
typically there is uncertainty in these values. The inversion will then include two
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extra parameters (w1 and w2). If these parameters are assumed independent of the
latent vector z, one may compute the gradient of the objective function with respect
to them:

∂ζ(w)

∂wi
= ∇vγ(v)

∂v

∂wi
(5.3)

where∇vγ(v) is given by Eq. 3.25 but computed using the values of v instead of x.
For the two wi parameters we have:

∂v

∂w1

= 1,
∂v

∂w2

= m (5.4)

Similarly, the first term on the right of Eq. 3.6 should now be computed using v

instead of m. Strictly, this term should also include a derivative with respect to m,
however, this is a constant and it has no impact since the step size of the optimization
is scaled in every iteration. Since these two parameters cause a stronger impact on
traveltime values than the latent variables, their step is multiplied by a factor equal to
10−4 to make the inversion stable.

In this Chapter, stochastic gradient descent (SGD) and Eq. 5.1 are used for opti-
mization of the objective function (Lopez-Alvis et al., 2020). SGD provides twomain
advantages: (1) it is less prone to get trapped in local minima, especially if the objec-
tive function has the shape of a global basin of attraction, and (2) the computational
cost of each iteration is reduced by only simulating a subset of the data (also called
a data batch). Decreasing of the step size (or learning rate) is also employed as it
has been shown to further help in reaching the neighborhood of the global minimum
(Kleinberg et al., 2018).

5.2.4 Checking the prior consistency

When the inversion described above is applied to a field case, it is important to check
that the chosen prior is consistent with the data (Scheidt et al., 2018). Further, when
considering an assembled prior, this check may allow to falsify some of the patterns
before training the VAE, potentially improving the accuracy of the generated pat-
terns and/or allowing for a lower dimensionality to be used for the latent space. This
prior consistency or falsification step is done using the original generative model
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(Fig. 5.1a). The method applied here relies on approximating the marginal condi-
tional distribution with respect to the TI as p(d|TI) ≈ p(d∗|TI) where d∗ refers to a
lower-dimensional or compressed version of the data d. Here, a number of samples
from each TI and their corresponding simulations (using the forward operator) are
obtained, then principal component analysis (PCA) is used to perform the dimen-
sionality reduction. The conditional p(d∗|TI) is then approximated with adaptive
kernel density estimation (KDE) (Park et al., 2013). Finally, the value of p(d∗|TI)

at the observed data is compared to the probability density value at the 99 percent
confidence region of a multivariate Gaussian distribution with the same dimension
as d∗. If the density value at the observed data is lower than the density value of
the multivariate Gaussian, the TI is falsified or deemed inconsistent with the data.

:::
As

::::::::::::::
recommended

::
in

:::::::::
Chapter

::
4,

::::::
when

::::
you

:::
do

::::
not

::::
have

::::::::
insight

::
in

:::
to

::::
how

::::
the

::::::::
different

:::::::::
structural

:::::::::::
parameters

:::::
will

:::::::
impact

:::
the

::::::
data,

:::
the

:::::
best

::::::::
strategy

::
is

:::
to

::::
rely

:::
on

:::::::::::
data-driven

::::::::::::::
dimensionality

:::::::::::
reduction.

::::::
Since

:::::
here,

:::::::::
different

:::::::
factors

:::::::::::::::::
(erosion/dilation,

:::::::::::
intrafacies,

::::::::::::
deformation)

:::::::::
generate

:::::::::::
variability

:::::::::
between

::::
the

:::::::::
different

::::
TIs,

:::
it

::
is

:::::::::
difficult

::
to

::::::
come

::
up

:::::
with

:::::::::::::::
insight-driven

:::::
ways

:::
to

:::::::
reduce

::::
the

::::
data

::::::::::::::::
dimensionality

:::::::::
therefore

::::::
PCA,

:::
as

:
a

:::::::::::
data-driven

:::::::::
strategy,

::::
was

:::::
used.

:

5.2.5 Field site and data description

The field site is located at the Kallerup gravel pit, Denmark. The local geology is
composed by a glacial till with several elongated sand bodies embedded (Kessler et al., 2012)
. Till is composed by particle sizes from clay to gravel, while sand bodies have a more
narrow grain size distribution. Further, shapes of the sand bodies display varying
degrees of deformation characteristic of basal till. This type of geology results in
highly structured subsurface, as may be seen in Fig. 5.3a. After the data was acquired,
the field site was excavated which allows to compare with inversion results, at least
qualitatively (Larsen et al., 2016; Bording et al., 2019).

The field dataset is
::::
The

::::
use

:::
of

:::
the

::::::::::::
conditional

:::::::::
p(d|TI)

::
in

:::::
this

::::::::
chapter

::
is

:::::
done

::
to

:::::::
define

::
a

::::::::::::
quantitative

::::::::::
threshold

:::
for

:::::::::::::
inconsistent

::::
TIs,

:::::::::
whereas

:::
in

:::::::::
Chapter

::
4

::
it

::
is

::::::::
assumed

:::::
that

::::
data

::
is
:::
in

::::
the

:::::
range

:::
of

::::
the

:::::::::
structural

:::::::::::
parameter

:::::
(e.g.

::
it

::::
was

:::::::::::
necessarily

:::::::::
generated

:::
by

::::
one

:::
of

::::
the

:::::
three

::::
TIs

:::::::::::
considered

::::::
which

:::::::
means

::
a
::::::::
uniform

::::::
prior

::::::
p(TI)

::
is

::::::::::
assumed).

::::
The

:::::
issue

:::::
with

:::
the

::::::
latter

::::
case

:::
for

:::::::::
checking

::::::::::::
consistency

::
is

::::
that

::
it

::::
will

:::::::
provide
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:
a
:::::::::::
conditional

:::::::::::
probability

:::::::::
p(TI|d)

::::
that

:::::::::
integrates

:::
to

::::
one

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::
p(TI1|d) + p(TI2|d) + p(TI3|d) = 1)

::::
even

:::
if

:::
the

::::::::::
measured

:::::
data

::
is
:::
in

::
a
::::
low

:::::::::::
probability

::::::::
density

::::::
zone.

::::
So,

:::
in

::::
the

:::::
case

:::
the

:::::::::
measured

:::::
data

::::::
lands

::
in

::::
low

::::::::
density

::::::
zones

:::
for

:::
all

::::
the

::::
TIs,

:::::
one

::::::
would

:::::
have

:::
no

:::::
way

::
of

::::::::
knowing

::::
that

:::::::::
probably

:::
all

::::
the

:::
TIs

:::::::
should

:::
be

::::::::::
discarded.

:::
In

::::::::
contrast,

:
the cross-borehole

traveltime data presented by Looms et al. (2018). The two boreholes are located
3.25 m apart and are 8 m deep. Data was acquired forming a multi-offset gather
(MOG) with all source positions in one borehole and receiver positions in the other.
Spacing for both sources and receivers was 0.25 m and data was collected from
1.0 m to 7.0 m deep, for a total of 625 traces. First arrivals were picked with a
semi-automatic procedure (Looms et al., 2018). Data for sources and receivers with
depth less than 1.5 m were removed to avoid error from refraction at the air-ground
interface. For similar reasons, since the boreholes are located in the unsaturated
zone, data offsets with angles > 30 degrees were not considered to avoid error from
borehole refraction.Estimated measurement error is 0.47 ns while average traveltime
is 41.5 ns

:::::::::::
conditional

::::::::
p(d|TI)

:::::::::
provides

::
a

::::::::
quantity

::::
that

:::::
will

:::::::
depend

:::
on

:::
the

:::::::::::
probability

:::::::
density

::
in

::::
the

::::::::
position

:::
of

:::
the

:::::::::
observed

:::::
data

:::::
point

::::
and

:::::::::
therefore

::
it
::
is

:::::::::
possible

::
to

::::::
define

:
a
::::::::::
threshold

:::
by

:::::::::::
comparing

:::::
with

::::
e.g.

::::
the

::::::::::::
confidence

::::::
region

:::
of

::
a
::::::::
normal

:::::::::::
distribution

::::
with

::::
the

:::::
same

:::::::::::::::
dimensionality

:::
(as

::::::::::
proposed

:::::::
above).

:::::
The

::::::::::
difference

:::
lies

:::
in

:::
the

::::
fact

::::
that

:::
the

::::::::::
procedure

::
in

::::::::
Chapter

::
4
::
is

::::::
really

::
a

:::::
prior

:::::::::
updating

::::
step

::::::
where

::::
the

::::
one

::
in

::::
this

:::::::
chapter

::
is

:::::::
simply

:
a
::::::
prior

:::::::::::
consistency

:::::::
check.

5.2.5 Training VAE with realistic patterns based on an outcrop

The
::::
size

:::
of

::::
the spatial domain to be modeled was selected according to the region

sensed by the acquisition setup
::::
(see

:::::::
details

:::::::
below). A uniform cell discretization of

5 cm was chosen to model high-resolution details. Although CNNs may be set to the
desired dimensions by selecting the correct size for the filters, stride and padding,
one could also consider a slightly larger size and then crop the cells outside the do-
main since they do not affect the data misfit. In this Chapter, some cells close to the
surface are retained even if they are outside the sensed volume because they allow
a qualitative assessment of the effect of the prior pattern information in the absence
of data. Therefore, the spatial domain was discretized by 65 × 129 = 8385 cells,
corresponding to a 3.25 m × 6.45 m section.
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The training patterns used to train the VAE are constructed by a hierarchical
model that allows for the transformation of an initial set of TIs (Fig. 5.1a). The sensed
subsurface was assumed to be mainly composed by two different materials: till and
sand. Two initial object-based TIs (BTI1 and BTI2) were built according to informa-
tion on local geology and a quantitative analysis of an outcrop close to the investigated
cross-borehole section (Kessler et al., 2013). These two TIs were mainly chosen be-
cause there is uncertainty in the presence of sand sheets (the most elongated sand
bodies) in the sensed region: they were not present in the outcrop used in the anal-
ysis but they were present in other outcrops. All of the sand bodies were assumed
to be approximated with ellipses of different sizes and eccentricity (Fig. 5.3a). For
this, the statistical distribution of the major and minor axes of the sand bodies was
approximated from the outcrop by a two-dimensional histogram (Fig. 5.3b). Then,
BTI1 is directly constructed by sampling ellipses sizes according to the histogram,
placing them randomly in the domain (overlapping is allowed to partially account for
the more complex shapes) while maintaining a facies proportion similar to the one
in the outcrop which is 0.17 (Fig. 5.3c). BTI2 is built similarly but includes the sand
sheets (Fig. 5.3d) for which the size distribution was based on the one reported by
Kessler et al. (2012). The size of these TIs was chosen in order to include many rep-
etitions of the patterns for the target size to be simulated (65 × 129), therefore TIs
with a size of 4762 × 4762 are used.

To account for more diverse and realistic shapes for the sand bodies (as those
seen in the outcrop) two main transformations were applied to the initial TIs: ero-
sion/dilation and local deformation. Erosion/dilation here refers to the image mor-
phological operation for which pixels are removed/added to the limits of objects by
setting a pixel to the minimum/maximum over all pixels in a neighborhood centered
at that pixel (Soille, 2004). Though erosion/dilation may refer to either of the two
facies, here we will refer to the ones of the sand bodies to avoid confusion. One step
for dilation and one for erosion was done using a neighborhood which is 6× 2 pixels.
The local deformation was done by a piecewise affine transformation (van der Walt
et al., 2014) which requires defining a uniform grid of nodes and a corresponding
mesh by Delaunay triangulation. Then, the positions of the nodes were perturbed ac-
cording to two Gaussian random fields (one for the x- and one for the y-coordinates)
and finally a local affine transformation is done to the pixels inside each triangle of
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Figure 5.3: (a) Digitized outcrop from Kessler et al. (2013) showing sand bodies in
black, background till in white, the axes of fitted ellipses for the sand bodies in red
and centers of the ellipses in green. (b) Two-dimensional histogram of the major and
minor axes lengths of the ellipses fitted in the outcrop. 1500 × 1000 pixel croppings
of base TIs: (c) BTI1 and (d) BTI2.All dimensions are shown in meters for easier
comparison.

the original mesh in order to fit the new deformed mesh. Deformation was applied
with two different amplitudes in the perturbation of the grid, resulting in two differ-
ent levels of deformation. Considering all the combinations of erosion-dilation and
deformation (including the ones with no erosion-dilation and zero deformation) a to-
tal of nine different cases or modified TIs for each base TI are built. The patterns of
each of the nine modified TIs obtained from BTI2 are shown in Fig. 5.4. The size of
each of these modified TIs is a bit smaller (4722 × 4722) than for the base TIs since
cropping was needed in the edges after deformation.

Finally
:
,
:
intrafacies variability was considered by means of using Gaussian field

simulations with different means and anisotropy for each facies
:
:
:::::
they

:::::
both

::::
use

::
a

:::::::::
Gaussian

:::::::::::
covariance

::::::::
function

:::::
with

:::::::::::
correlation

::::::
length

:::
of

:::
1.0

:::
m

:::
but

::::
the

::::::::
channels

::::::
facies

::::
uses

:::
an

:::::::::::
anisotropy

::::::
factor

::
of

::::
0.2

::::
and

:
a
::::::
mean

:::
of

::::
0.35

:::::::
(prior

::
to

:::::::::::::
transforming

::
to

::::::::
velocity

:::::::
values)

::::::
while

:::
the

::::::::::::
background

:::::::
facies

::::
uses

::
a
::::::
factor

:::::
0.25

::::
and

::
a
::::::
mean

:::
of

:::
0.7. This was

done following a "cookie cutter" approach where each of the simulations is only set
in pixels with the corresponding facies value. Values were log-transformed in order
to prevent negative values. This step is done after the sample is cropped from the
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Figure 5.4: 1000 × 1000 croppings of each of the nine modified TIs for the base TI
including the sand sheets (BTI2).
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modified TI to train the VAE to allow more variability in the patterns. The overall
hierarchical model from where training samples for the VAE are taken is shown in
Fig. 5.1a.

5.2.6
::::::
Field

:::::
site

:::::
and

::::::
data

:::::::::::::::
description

::::
The

:::::
field

::::
site

::
is

::::::::
located

::
at

::::
the

:::::::::
Kallerup

:::::::
gravel

::::
pit,

::::::::::
Denmark.

:::::
The

::::::
local

::::::::
geology

::
is

::::::::::
composed

::
by

::
a
:::::::
glacial

:::
till

::::
with

::::::::
several

:::::::::
elongated

:::::
sand

:::::::
bodies

::::::::::
embedded

::::::::::::::::::::
(Kessler et al., 2012)

:
.
:::::
Till

::
is

:::::::::::
composed

:::
by

::::::::
particle

::::::
sizes

:::::
from

:::::
clay

:::
to

:::::::
gravel,

:::::::
while

:::::
sand

:::::::
bodies

:::::
have

:
a
::::::
more

:::::::
narrow

::::::
grain

:::::
size

::::::::::::
distribution.

:::::::::
Further,

::::::::
shapes

:::
of

:::
the

::::::
sand

:::::::
bodies

:::::::
display

:::::::
varying

:::::::::
degrees

:::
of

::::::::::::
deformation

::::::::::::::
characteristic

:::
of

::::::
basal

::::
till.

::::::
This

:::::
type

:::
of

::::::::
geology

::::::
results

:::
in

:::::::
highly

:::::::::::
contrasting

:::::::::::
subsurface,

:::
as

:::::
may

:::
be

:::::
seen

::
in

:::::
Fig.

:::::
5.3a.

::::::
After

::::
the

::::
data

::::
was

:::::::::
acquired,

::::
the

:::::
field

::::
site

:::::
was

::::::::::
excavated

::::::
which

:::::::
allows

:::
to

:::::::::
compare

:::::
with

:::::::::
inversion

:::::::
results,

::
at

:::::
least

:::::::::::::
qualitatively

::::::::::::::::::::::::::::::::::::::::
(Larsen et al., 2016; Bording et al., 2019)

:
.

:::
The

:::::
field

:::::::
dataset

::
is

:::
the

:::::::::::::::
cross-borehole

::::::::::
traveltime

::::
data

::::::::::
presented

:::
by

:::::::::::::::::::
Looms et al. (2018)

:
.
::::::::::::::
Measurements

::::::
were

:::::::::
collected

:::::
with

::::
100

:::::
MHz

:::::::::
borehole

:::::::::
antennas

::::
and

::
a
::::::::::::
PulseEKKO

:::::::
system

:::::::::
(Sensors

::
&

::::::::::
Software,

:::::
ON,

:::::::::
Canada).

:::::
The

::::
two

:::::::::::
boreholes

:::
are

::::::::
located

:::::
3.25

::
m

:::::
apart

::::
and

::::
are

::
8

:::
m

::::::
deep.

::::::
Data

::::
was

:::::::::
acquired

:::::::::
forming

::
a

::::::::::::
multi-offset

::::::
gather

::::::::
(MOG)

::::
with

:::
all

:::::::
source

:::::::::
positions

:::
in

::::
one

:::::::::
borehole

::::
and

::::::::
receiver

:::::::::
positions

::
in

::::
the

::::::
other.

::::::::
Spacing

:::
for

:::::
both

:::::::
sources

:::::
and

:::::::::
receivers

::::
was

:::::
0.25

::
m

:::::
and

::::
data

:::::
was

:::::::::
collected

:::::
from

::::
1.0

::
m

:::
to

:::
7.0

::
m

::::::
deep,

:::
for

::
a
:::::
total

:::
of

::::
625

:::::::
traces.

::::::
First

::::::::
arrivals

:::::
were

:::::::
picked

:::::
with

::
a
:::::::::::::::
semi-automatic

::::::::::
procedure

::::::::::::::::::::
(Looms et al., 2018).

::::::
Data

:::
for

::::::::
sources

::::
and

:::::::::
receivers

:::::
with

::::::
depth

:::::
less

::::
than

:::
1.5

:::
m

:::::
were

:::::::::
removed

::
to

::::::
avoid

::::::
error

:::::
from

::::::::::
refraction

:::
at

:::
the

:::::::::::
air-ground

::::::::::
interface.

::::
For

:::::::
similar

::::::::
reasons,

::::::
since

:::
the

::::::::::
boreholes

::::
are

:::::::
located

:::
in

:::
the

::::::::::::
unsaturated

::::::
zone,

:::::
data

::::::
offsets

::::
with

:::::::
angles

::
>

:::
30

:::::::
degrees

:::::
were

::::
not

:::::::::::
considered

::
to

::::::
avoid

:::::
error

:::::
from

:::::::::
borehole

::::::::::
refraction.

::::::::::
Estimated

:::::::::::::
measurement

:::::
error

::
is
:::::
0.47

:::
ns

::::::
while

::::::::
average

::::::::::
traveltime

::
is

:::::
41.5

:::
ns.

:

:::::::::
Although

::
in

::::
this

:::::
work

:::
the

::::
full

::::::::::
waveform

:::::
data

::::
was

:::
not

::::::::::::
considered,

:
it
::
is

::::::::::
important

::
to

::::::::
mention

::::
that

:::::
there

::
is

:::::::
further

::::::::::::
information

::::::::
content

::
in

:::::
such

::::
data

::::
that

:::::
may

:::
be

:::::::::
exploited

::
to

::::
give

::
a

:::::
more

:::::::::::
constrained

::::::::::::::::
characterization

::
of

::::
the

:::::::::::
subsurface.

::::
For

:::::::::
instance,

::::::::::::::::::::
Looms et al. (2018)

:::::::
present

::::::::::
inversion

:::::::
results

:::
of

::::::::::::::
full-waveform

:::::
data

:::::
that

::::::::
provide

:::::
also

::
a

::::::::::::
distribution

::
of

::::::::::
(electrical)

:::::::::::::
conductivity.

:::::
This

:::::::
allows

:::
for

:::::::
certain

::::::::::
structures

::
to

:::
be

:::::::::
identified

:::::
even

::
if

::::
they

::
do

::::
not

:::::
have

:
a
:::::::::::
contrasting

::::::::::::
permittivity,

::::
e.g.

:::::
their

::::::::
inverted

:::::::
model

:::::::::::::::::::::::::::::::
(Figure 2 in Looms et al., 2018)

::::::
shows

:
a
:::::::
region

::
at

::::::
about

:
5
:::
m

:::::
depth

:::::
with

::::::::
slightly

::::::
higher

::::::::::::
conductivity

:::::
than

:::
the

::::::::::::
background
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:::::
while

::::::
there

::
is

:::
no

::::::::::
noticeable

:::::::::
contrast

::
in

::::::::::::
permittivity

:::
for

::::
the

:::::
same

::::::::
region.

:

::
To

:::::::
assess

::::
the

:::::::::::::
performance

:::
of

::::
our

:::::::::
proposed

:::::::::::
inversion,

::
a

:::::::::
synthetic

:::::
case

:::
is

::::
first

::::::::
analyzed

:::::
with

::::
the

::::::
same

:::::::::::
acquisition

::::::::
settings

::::
than

::::::
those

:::
of

:::
the

:::::
field

:::::
data.

:::
A

:::::::::
synthetic

::::::
model

::::
was

:::::
built

:::::
with

:::
the

:::::
same

::::::::::
statistical

:::::::::::
distribution

::
of

::::::
BTI2 :::

but
:::::
with

:
a
:::::::
higher

::::::::::
proportion

::
of

:::::
sand

:::
to

:::
till

:::::::::::
proportion

:::::::
(0.32)

::::
and

:::::::::
different

:::::::
degree

:::
of

::::::::::::
deformation

::::
(an

::::::::::
amplitude

:::
just

:::
in

::::
the

:::::::
middle

:::::::::
between

::
1

::::
and

::
2

::
in

:::::
Fig.

:::::
5.4).

:::::
The

::::::
model

:::::
was

::::::::
cropped

::::::
from

:
a
:::
TI

::
of

::::
the

:::::
same

:::::
size

::
as

::::
the

:::::
ones

:::::
used

:::
for

:::::::::
training

:::
but

:::
its

::::::::
random

:::::::
spatial

:::::::::::
realization

::::
was

:::::::::
different,

:::
i.e.

::::
the

::::::::
ellipses

::::
and

:::
its

::::::::::
positions

:::::
were

::::::::::
randomly

::::
set,

:::::::::
therefore

::::
one

:::::::
should

::::::
expect

:::::::::
different

::::::::
patterns

:::::
may

:::
be

:::::::
present

:::::
than

:::::
those

:::
in

:::
the

:::
TI

:::::
used

:::
for

:::::::::
training.

::::::
Then,

:::::::::
synthetic

::::
data

::::
was

::::::::::
generated

::::::
using

::::
the

::::::::
forward

::::::::
operator

::::
and

::::::::::
Gaussian

:::::
noise

:::::
with

:::
the

:::::
same

:::::::::::
magnitude

::
as

::::
the

::::::
error

:::::::::
estimated

::::
for

:::
the

:::::
field

:::::
data

::::
was

:::::::
added

::::::
(0.47

::::
ns).

:::::
Note

::::
that

::
in

::::
this

:::::
case,

:::::
there

::
is

:::
no

:::::
error

::::
due

::
to

::::
the

::::::::
forward

:::::::::
operator.

::
In

::::
this

:::::
way,

:::
the

:::::::::
synthetic

::::
case

:::::::
should

::::::::
provide

::
an

:::::
idea

::
of

:::::
how

:::::::::::
performant

::
is

::::
the

:::::::::
inversion

::::
with

::::::
VAE

::
in

:::::::::
obtaining

::::::::
patterns

::::
that

:::::::
deviate

::::::
from

:::
the

:::::
ones

:::::
used

:::
for

:::::::::
training.

:

5.3 Results

5.3.1 Training the VAE and prior consistency check

The VAE for the assembled prior is trained by randomly selecting from any of the 18
modified TIs, then randomly sampling a cropped piece (with the appropriate size of
the spatial domain) and adding the intrafacies variability. Examples of the cropped
samples are shown in Fig. 5.5a.

::::
Note

::::
that

::::
the

:::::
color

::::::
scale

::
is

:::::
with

:::::::
respect

::
to

::::
the

::::::
model

::::::::
variable

:::
m

::::
but

:::::
prior

:::
to

:::
its

::::::::::::::
transformation

:::
to

::::::::
velocity

::::::::
values.

:
The VAE was imple-

mented and trained using PyTorch (Paszke et al., 2017). The training used a total of
P = 107 cropped samples and took around ∼ 4.5 hrs on a Nvidia GPU RTX 2060
(∼ 3 hrs without the intrafacies). Note that deformation and erosion-dilation may
have

:::::
been done directly while feeding the samples to train the VAE (similar to the

intrafacies), however, this would have likely resulted in prohibiting computational
time (while erosion-dilation is typically fast, the local deformation is generally much
slower). Once trained, samples are generated according to the graphical model in Fig.
5.1b (following the process defined by Fig. 3.2). A few examples of random samples
generated from the trained VAE are shown in Fig. 5.5b, these are samples from the
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Figure 5.5: Examples of training samples (upper row
:
a) and samples generated from

the trained VAE (lower row
:
b).

::::
The

:::::::::::
colorscale

::
is

:::::
with

:::::::
respect

:::
to

:::
the

:::::::
model

::::::::
variable

::
m

::::::
prior

::
to

:::
its

:::::::::::::::
transformation

::
to

::::::::
velocity

::::::::
values.

assembled prior distribution approximated by the VAE. Also, a VAE is trained for
each individual TI to make a comparison with the assembled prior.

The prior consistency check is performed for both the synthetic and field data. For
this, 300 model samples (generated as in Fig. 5.1a) and their corresponding forward
simulations are obtained for each training image. Then, the first three PCA compo-
nents of these simulations and the data are used to compute the value of p(d∗|TI).
The

::::
first

:::::
three

::::::::::::
components

:::::
were

:::::::::::
considered

::::::::
because

::::
they

::::::::
account

:::
for

::::::
about

:::
84

:::::::
percent

::
of

:::::
data

::::::::::
variability

:::::::::::
(explained

::::::::::
variance).

:::::
The

:
density value at the contour of the 99

percent confidence region of a three-dimensional multivariate Gaussian distribution
is equal to 2.2 × 10−4, so any TI with a conditional density value lower than this is
deemed non-consistent or very unlikely to have generated the data. Fig. 5.6a,c shows
the p(d∗|TI) for each TI. For both the synthetic case and the field case, all TIs show
a conditional probability above the defined threshold, i.e. none of the TIs is falsified.
Note that for the field data, TIs 3 and 5 are very close to the threshold. An additional
visual check for these two TIs is performed by plotting of the data point together with
the simulated data points (not shown), which confirms that the data point is in a low
density region but it is still likely to be produced by each of the two TIs.

The VAE based generated patterns may fail to adequatly represent the patterns of
heterogeneity encountered in the field for three main reasons: (1) sufficiently sim-
ilar patterns are not included during training, (2) patterns are filtered or simplified
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Figure 5.6: Prior falsification results and RMSE boxplots for synthetic (a,b) and field
case (c,d) for individual priors (VAEs trained on each of the 18 TIs) and the assembled
prior (labeled "All"). Dashed line in (a) and (c) is the threshold for falsification.
Shaded areas in (b) and (d) indicate best, median and worst performing individual
prior in terms of mean data RMSE.
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Figure 5.7:
:::::::::
Principal

::::::::::::
components

:::
of

::::::::::
simulated

::::
data

::::
and

:::::
field

:::::
data

:::
for

:::
TI3::::

(a)
::::
and

:::
TI5

:::
(b).

:::::::::::
Simulated

:::::
data

::
is

::
in

::::::::
colored

:::::
dots

::::
and

:::::
field

::::
data

::
is

:::::::::
denoted

::
by

::::
the

::::
’×’

::::::::
symbol.
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by the VAE, and (3) the diversity of the patterns was not sufficient to simulate new
consistent patterns. In general, these three reasons play a role to different degrees.
The first is unavoidably present in any study that aims to use information from nearby
outcrops or local geology to constrain the subsurface patterns in the sensed domain.
However, this may be partially accounted for by considering different base patterns
and their perturbed versions (obtained by morphological operations and local trans-
formations) which may all be attributed to a similar environment. Note, however,
that this strategy will not add new materials (lithologies). The prior consistency step
may indicate if the VAE fails due to the first reason: the ability of the proposed pat-
terns to generate the data may be checked before training the VAE. The effect arising
from the second reason is directly related to generative accuracy and is captured in
Fig. 5.5 for example, in that the generated samples seem to have filtered out patterns
with very high curvature. Finally, the third reason, which is somewhat tied to the
first, is related to how the VAE is able to interpolate between training patterns. This
may be checked by visualizing a set of training images as in Fig. 5.5 and also making
a latent traversal as shown in Fig. 5.8, which makes steps along two of the dimen-
sions of the latent space and fixes the rest. This should also be supplemented by
an assessment of how much the generated patterns depart from the training samples
while retaining consistent patterns. In recent work , Lopez-Alvis et al. (2020) show

::::::::::::::::::::::::::
(Lopez-Alvis et al. (2020)

:::
and

::::::::
Chapter

:::
3)

::
it

::::
was

:::::::
shown

:
that VAEs are able to devi-

ate from training patterns while still preserving realistic patterns through breaking
continuous channels from the original training image. There have been some recent
efforts to quantitatively measure diversity in DGMs (Lucic et al., 2018; Sajjadi et al.,
2018) however, it remains an open question whether useful departures (such as the
breaking channels) would be adequately captured by these measures. In summary,
the proposed approach is not intended to generate perfectly accurate patterns but to
allow the generated patterns to deviate from training patterns in order to both improve
diversity and fit the data without compromising the patterns’ realism.

5.3.2 SGD-based inversion of synthetic data with VAE as prior

Once the VAE is trained, the assembled prior may be used directly in inversion to
impose the diverse patterns. It is worth noticing that the latent parameters z of the
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Figure 5.8: Examples of VAE latent traversals (stepping in two latent dimensions
while keeping the rest fixed) for: latent dimensions z1 and z2 (left) and latent dimen-
sions z9 and z3 (right). :::

The
:::::::::::
colorscale

::
is

:::::
with

:::::::
respect

:::
to

:::
the

:::::::
model

::::::::
variable

:::
m

:::::
prior

::
to

:::
its

::::::::::::::
transformation

:::
to

::::::::
velocity

:::::::
values.
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VAE have effectively substituted the parameters related to the original hierarchical
model (the substitution is denoted by the grey arrow in Fig. 5.1). The latent parame-
ter distribution now includes all the discrete and intractable operations (i.e. different
base TIs, erosion-dilation, deformation and intrafacies variability) in a continuous
and searchable space. This allows for optimization to be performed by continuously
stepping in the latent space. Moreover, such steps can take advantage of the gradient
(as detailed in Sec. 5.2.3) which generally would not be the case if one sought to
directly estimate the original parameters.

To assess the performance
::::
The

:::::::
results

:
of our proposed inversion , a synthetic

case is first analyzed with the same acquisition settings than those of the field data.
A synthetic model was built with the same statistical distribution of BTI2 but with a
higher proportion of sand to till proportion (0.32) and different degree of deformation
(an amplitude just in the middle between 1 and 2 in Fig. 5.4). The model was cropped
from aTI of the same size as the ones used for training but its random spatial realization
was different, i.e. the ellipses and its positions were randomly set, therefore one
should expect different patterns may be present than those in the TI used for training.
Then, synthetic data was generated using the forward operator and Gaussian noise
with the same magnitude as the error estimated for the field data was added (0.47
ns). Note that in this case, there is no error due to the forward operator. In this way,
the synthetic case should provide an idea of how performant is the inversion with
VAE in obtaining patterns that deviate from the ones used for training

:::::::::
approach

:::
are

::::
first

:::::::::
assessed

:::::
using

::::
the

:::::::::
synthetic

:::::
data

::::::::::
presented

::::::
above. Fig. 5.9a,b,c shows the real

synthetic model, an inverted model with traditional smooth regularization and a VAE
inverted model (for one randomly chosen starting model). The smooth inversion is
done with a low regularization factor (10−9), so it mainly represents the information
content of the data and therefore is prone to artefacts due to noise (e.g. ray artefacts
in Fig. 5.9b). In contrast, due to the use of strong prior information, the VAE in-
verted model is artefact-free (note that this is usually also the case for inversion using
MPS). For the model in Fig. 5.9c, the behavior of the data misfit (RMSE), the Eu-
clidian distance between the current model and the real model, the norm of z and the
velocity parameters as the inversion progresses are shown in Fig. 5.9d-g, respectively.
The norm of z is useful to check that the algorithm does not diverge from the prior.
This is because the prior p(z) is multivariate Gaussian N (0, In), then models con-
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sistent with the prior should not be far from the origin and also models with the most
common patterns should be centered according to a χ-distribution with d degrees of
freedom. Since we are using SGD which is a stochastic optimization method, in-
version is done for 10 different starting models. Inversion results for three different
starting models are shown in Fig. 5.9h-j. To assess the impact of the assembled prior
compared to VAEs trained on individual TIs, inversion is done also for each of the
individual cases. Considering 10 different starting models for each case, the mean
and stardard deviation of data RMSE, norm of z, and velocity parameters are com-
puted. These values are shown in Table 5.1 for the best, median and worst individual
TIs in terms of mean RMSE together with those of the assembled prior. Boxplots
of the data RMSE for all individual TIs and the assembled prior are shown in Fig.
5.6b. Notice that the mean data RMSE for the assembled prior (0.655) is only slightly
higher than the magnitude of the added noise.

To analyze the impact of prior information (as represented by the VAE) on inver-
sion results, one must also consider how much information content is provided by
the data, i.e. how much the data constrains the posterior distribution. In this work,
the cross-hole traveltime dataset is considered informative enough to produce rela-
tively similar inverted models, however, since a high resolution model is desired, the
choice of prior information (and the way it is imposed) still causes noticeable vari-
ations in inverted models. The inversion results for the synthetic case in Fig. 5.9c
show that although reconstruction is not perfect, the method is able to identify most
of the structural characteristics of the real model. The inverted model is noticeably
better than traditional smooth inversion (Fig. 5.9b), which shows higher data RMSE
and slightly less connected sand bodies and from which it is not possible to identify
small features (at 5 m depth in the right and close to 7 m depth on the left in Fig.
5.9a). On the other hand, both inversion methods miss a low velocity structure (at 3
m depth on the left of Fig. 5.9) and most of the intrafacies variability. The VAE-SGD
inversion even locally biases the model in order to account for the lack of intrafacies
variability (note a more pronounced bend of the lower part of the sand body at ∼
4 m depth to make up for a low velocity intrafacies zone). Most likely this comes
from the fact that the model is not exactly within the prior. Since, no error in the
forward operator model is introduced for the synthetic case, the RMSE value higher
than the noise level indicates that deviations in the inverted model are mainly due to
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Figure 5.9: Inversion results for the synthetic case: (a) True model, (b) smooth in-
verted model, (c) VAE-SGD inverted model for one random starting model using the
assembled prior. For the model in (c), the values in each iteration for: data RMSE
(d), model RMSE (e), norm of z (f) and linear velocity parameters (g). VAE-SGD
inverted models for three different starting models using the assembled prior (h,i,j).
VAE-SGD inverted models for prior with individual TIs using one random starting
model: best (k), median (l) and worst (m) in terms of RMSE (see Fig. 5.6b). For all
inverted models, model RMSE and data RMSE are shown at the top.
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the prior, whose accuracy slightly degrades due to a joint effect of the three reasons
mentioned in Sec. 5.3.1. The synthetic case shows that our proposed inversion still
provides useful results even when the patterns of the real model differ slightly from
those of the TIs used to train the VAE.

5.3.3 SGD-based inversion of field data with VAE as prior

Inversion for field data is done similarly to the synthetic case. The smooth regular-
ization inverted model and the VAE inverted model are shown in Fig. 5.10a and b,
respectively. The behavior of RMSE, norm of z and velocity parameters during op-
timization is shown in Fig. 5.10c-e. The RMSE follows a behavior consistent with
the chosen SGD scheme: an initial phase with very large oscillations followed by a
more stable decreasing behavior. The behavior of the norm of z indicates that during
the initial phase the search covers very large range of radial distances from the ori-
gin while for the end it is constrained to small radial changes. VAE inverted models
with different initial starting models are shown in Fig. 5.10f-h. Again, to check if
assembling the prior from many different TIs is advantageous, we compare it with
the results of using the individual TIs. The mean and standard deviation values for
the final data RMSE, norm of z, and the velocity parameters are computed from 10
inversions with different initial models (Table 5.1). Boxplots of the data RMSE for
inversions with VAEs trained with each of the TIs and the assembled prior are shown
in Fig. 5.6d. The models inverted for one starting model with the TIs corresponding
to the best, median and worst average data RMSE are shown in Fig. 5.10i-k.

Inversion results for the field data (Fig. 5.10) show a behavior very similar to
the synthetic case. However, the inverted model indicates a simpler structure when
compared to the synthetic case. This is consistent with evidence from the excavation
and even inclination trends of both the upper sand and lower sand bodies seem to
match those observed in excavated profiles close to the GPR sensed domain (Larsen
et al., 2016; Bording et al., 2019). Regarding the performance of the assembled prior
for inversion, Table 5.1 shows that training the VAE with all the TIs at the same time
performs better than the median individual TI and results in approximately equal
values of average RMSE compared to inversion with the best individual TI. This
indicates that it may be better to build an assembled wide prior than to consider many
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Figure 5.10: Inversion results for the field case: (a) smooth inverted model, (b) VAE-
SGD inverted model for one random starting model using the assembled prior. For
the model in (b), the values in each iteration for: data RMSE (c), norm of z (d) and
linear velocity parameters (e). VAE-SGD inverted modes for three different starting
models using the assembled prior (f,g,h). VAE-SGD inverted models for prior with
individual TIs using one random starting model: best (i), median (j) and worst (k) in
terms of RMSE (see Fig. 5.6d). For all inverted models, data RMSE is shown at the
top.
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TI data RMSE ‖z‖ v1 v2
synthetic case

All 0.655 ± 0.050 8.004 ± 0.309 0.017 ± 0.005 0.17 ± 0.007
best 0.632 ± 0.017 7.767 ± 0.124 0.019 ± 0.001 0.166 ± 0.002
median 0.728 ± 0.011 8.325 ± 0.072 0.017 ± 0.001 0.171 ± 0.001
worst 1.058 ± 0.018 10.097 ± 0.326 0.015 ± 0.001 0.175 ± 0.003

field case
All 0.634 ± 0.008 5.342 ± 0.244 0.031 ± 0.001 0.157 ± 0.004
best 0.623 ± 0.013 5.194 ± 0.124 0.029 ± 0.001 0.157 ± 0.004
median 0.674 ± 0.041 5.155 ± 0.294 0.033 ± 0.003 0.148 ± 0.010
worst 0.732 ± 0.035 5.371 ± 0.214 0.031 ± 0.001 0.150 ± 0.004

Table 5.1: Mean and standard deviation values of inversions using 10 different initial
models. The "TI" column indicates best, median and worst in terms of data RMSE
from all 18 TIs.

TIs individually for inversion (Hermans et al., 2015). Note that results of the best
individual TI have slightly lower values of RMSE. This may be partially explained
by the fact that a constant dimensionality n = 40 for the latent vector is used. A
better strategy might be to slightly increase n when more diversity in the patterns is
considered.

:::::
Note

::::
also

:::::
that

:::
the

::::::
prior

::::::::::::
falsification

::::
step

::::::
gives

::
a

::::::
rather

::::
low

:::::::::::
probability

:::::
value

::::
for

:::
the

:::::
best

::::::::::::
performing

:::::::::
inversion

:::::
case

:::::
(see

::::
TI5 ::

in
:::::
Fig.

::::::::
5.6c,d).

::::::
This

::::
may

:::
be

:::::::
caused

:::
by:

:::
(1)

::::
the

::::
low

::::::::
number

::
of

::::::::
samples

:::::
used

:::
for

::::
the

:::::
prior

::::::::::::
falsification

:::::
(300

:::::::
forward

::::
runs

::::
for

:::::
each

:::
TI)

::::
and

::::
(2)

::::
the

:::::::::
enhanced

:::::::::
diversity

::::::::
caused

:::
by

:::
the

::::::
VAE,

::::
i.e.

:::::
even

::
if

:::
the

::::::::
patterns

::
in

::::
TI5 :::

did
::::
not

:::::::::
produced

:::::::::::
sufficiently

:::::::
similar

::::::::
patterns

:::
to

:::::
those

:::::::
giving

::::
rise

::
to

:::
the

::::
field

::::::
data,

:::
the

:::::
VAE

::::::::
trained

:::::
with

::::
this

:::
TI

:::::
does

::::::::
produce

:::::
such

:::::::::
patterns.

:
The assembled

prior also has the advantage of a lower computational demand: one does not have to
train a VAE and do the inversion for each individual TI. In the presented field case,
for instance, the computational demand is 18 times higher if the TIs are considered
individually. Moreover, prior uncertainty tends to be larger in field cases therefore
a wider prior distribution, such as the one modeled by the VAE with all the TIs, is
preferable. This wider prior distribution may indeed help in reducing bias arising
when highly informative prior information is used.

It is interesting to contrast the mechanism by which the VAE generates new sam-
ples of the patterns to equivalent mechanisms in MPS. While the departure of new
patterns from training patterns in a VAE depends mainly in training parameters such
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as regularization weights α and β which in turn impact the approximation of the con-
tinuous prior in model space, MPS may control the diversity of patterns by relaxing
the conditioning, e.g. by changing the number of conditioning pixels or by defining
distances to the conditioning event. Further study of this relation should enlighten
under which circumstances it is better to use either of these strategies to produce more
diverse patterns or even if it is possible to combine them to better represent prior un-
certainty in the most realistic way possible (see e.g. Bai and Tahmasebi, 2020). On
the other hand, the problem of using multiple TIs for MPS seems to have received
little attention (Silva and Deutsch, 2012; Scheidt et al., 2016) perhaps because most
studies focus on discrete aspects (e.g. different depositional environments) rather than
continuous aspects as in this study (i.e. deformation, erosion-dilation and intrafacies
variability). In some cases, however, one should be able to frame inversion problems
for subsurface models in terms of continuous variables (e.g. two depositional envi-
ronments may have transitional environments between them), so further study of this
subject may prove beneficial.

In this Chapter we considered a normal multivariate Gaussian distribution to
model the prior in latent space (i.e. as input to the generative function of the VAE),
however, other types of distributions may also be used, e.g. a Gaussian mixture model
(Makhzani et al., 2015). These other types of distributions may provide two main ad-
vantages: (1) they may produce more accurate patterns, and (2) they are more directly
related to the prior distribution in model space and therefore cause less nonlinearity
and/or topological changes. However, sampling from these distributions in latent
space is not as straightforward as for a multivariate Gaussian. This means that one
would have to rely on either different regularization terms in latent space or more
advanced (but potentially more computationally demanding) ways of sampling.

5.4 Conclusions

When prior information is expressed by a set of TIs and their perturbed versions,
a VAE may be used to approximate a prior distribution that effectively assembles
all the possible spatial patterns. The perturbations may include operations such as
erosion/dilation, local deformation and intrafacies variability which result in a set
of patterns that represent similar geological environments. The VAE is capable of
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producing patterns that deviate from training patterns but remain realistic, there-
fore increasing pattern diversity. The cross-borehole GPR traveltime synthetic case
demonstrates that inversion with SGD in the latent space of the VAE is able to obtain
a realistic model while remaining computationally efficient. Even though the final
misfit is higher than the noise level, most structural features are correctly inverted.
By assuming a linear velocity model (two additional parameters), the absolute values
of velocity may be also estimated in the inversion. This setting allows for inversion
using a VAE as prior to be successfully applied to a field dataset. Results from the
field case show a realistic inverted model with misfit only slightly higher than the
estimated noise. Moreover, a comparison of VAEs trained on individual TIs and the
VAE trained with all the TIs at the same time, shows that the latter performs as good
as the best individual TIs but has the advantage of lower computational demand and a
more adequate (wider) prior uncertainty, which in turn may reduce bias from highly
informative prior information. Finally, future work may include extending the pro-
posed method to handle more general distributions in the latent space or using it in
combination with MPS to improve the accuracy and diversity of patterns.
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General discussion and conclusions

In this thesis it has been shown that a compressed representation of complex geolog-
ical structures and data allows for all relevant information to be preserved in order to
perform either inversion or prior falsification.

In Chapter 3, it was shown that an appropriately chosen DGM may be used to-
gether with efficient inversion: a VAEwith certain values of regularization and SGD-
based optimization. In this chapter the induced changes in both curvature and topol-
ogy of the manifold defined in latent space are identified as the main causes of the
nonlinearity of the generative mapping. Moreover, a way to control such nonlinear-
ity through the VAE training parameters is presented which allows gradient-based
optimization of an objective function in the latent space.

Chapter 4 presented an objective strategy to select data dimension reduction in
order to preserve information related to high-level structural parameters which allows
to falsify or update the marginal distribution of such parameters prior to any inver-
sion. Here it was shown that both data-driven and insight-driven dimension reduction
are useful for prior falsification of structural parameters, the latter being more easily
applied to discrete parameters.

Dimension reduction for both data and model was used in Chapter 5 in order
to perform inversion after prior falsification for a field case in complex geological
deposits. In this chapter, the methodology of Chapter 3 was further developed to
include perturbations of base patterns of the spatial heterogeneity (such as intrafacies
variability) and velocity estimation, a prerequisite for efficient use of the algorithm
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for field data.
One important contribution of this work was to test and demonstrate the applica-

bility of the proposed methods for both prior falsification and inversion in a complete
framework that is validated with field data and benchmarked against traditional in-
version. In Chapter 5 such a framework was presented in which a realistic prior was
built by assembling different base patterns and perturbing them to resemble patterns
in a geological environment described as deformed basal till. The transformations
applied to the base patterns included deformation, erosion/dilation and intrafacies
variability. These are only a few examples of the possible transformations that may
be includedwith DGM-based priors. A prior falsification or consistency step was first
performed in order to check that the defined patterns are consistent with the measured
data. Prior distributions were approximated with VAEs for each individual pattern
and for all patterns taken together (called assembled prior). More diverse patterns
and similar data fit were obtained when comparing SGD-based inversion results of
the assembled prior to those of a prior with the pattern of best data fit. In general, this
indicates that the framework is useful to obtain models for highly structured subsur-
face using geophysical data and has sufficient flexibility to image patterns not learnt
from the prior, what is a desirable feature for deterministic inversion.

Data driven strategies have been shown to be useful given that sufficient training
examples are available. In general, the stronger the assumptions the less training ex-
amples are needed, e.g. PCA assumes linear dimensionality reduction and therefore
requires a relatively low number of training samples, however, if the underlying man-
ifold is nonlinear some information will be lost with such assumption. Recent com-
putational and algorithmic advances in machine learning have resulted in widespread
use of such data driven strategies and placed them as computationally efficient alter-
natives against traditional methods, such as inversion with MPS. Another advantage
of machine learning methods is the explicit representation of the prior probability
distribution in latent space, which allows for a more straightforward way to search
the model or data spaces. This comes, however, with the restriction that the gener-
ative mapping should be moderately nonlinear, otherwise the latent space will be a
very challenging representation of the original spaces and further processing such
as inversion or prior falsification will be considerably hindered. This indicates that
generally there is a compromise between the accuracy of the representation and the
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usefulness of such representation for inversion or prior falsification.
These data driven strategies rely on multi-level representations: in DGMs these

are built directly during training given the defined architecture while for geophysical
data dimension reduction some pre-processing aimed at preserving only the infor-
mation relevant to certain structural parameters was applied. Such insight driven
pre-processing (described in Chapter 4) is necessary since the desired compression
is expected to be useful to update the structural parameter marginal distribution and
not the model posterior distribution which would generally require all data informa-
tion content. Interpreting these multi-level representations as probabilistic graphical
models shows that dimensionality reduction is equivalent to adding a latent repre-
sentation to the graphical model. Then, inference is performed on this new latent
variable and then the result is mapped back to the original variable if needed. This
is a very general procedure and is available to quantify uncertainty at any desired
level: in this thesis it was shown for both prior falsification which is applied at higher
levels (global parameters) and for inversion which is applied at lower levels (local
parameters).

:
It

::
is

:::::::::::
interesting

::
to

:::::
note

::::
that

:::
the

::::::::::::::
understanding

:::::::
gained

:::
by

:::
an

:::::::::
in-depth

::::::
review

:::
of

:::
the

::::::::::
conceptual

:::::::::::
framework

:::
of

:::::::
DGMs

:::::
with

:::::::::
inversion

:::::::::
(Chapter

:::
3)

::::::::
allowed

:::
to

:::::
both

:::::::
support

:::
and

:::::::::
propose

:
a
:::::::::::
framework

:::::
that

::
is

::::::::::
applicable

:::
to

:::::
field

::::
data

:::::::::
(Chapter

::::
5).

::::::::
Indeed,

::::::
results

::::::::
indicate

::::
that

:::::::::
inversion

::::::
based

:::
on

::
a

:::::
VAE

:::::
with

:::::::::::
appropriate

::::::::
training

:::::::::::
parameters

::::::::
allowed

:::
for

:::::
more

::::::::
diverse

::::::::
patterns

:::::::
which

::
in

:::::
turn

:::::::
helped

::
to

:::::::
obtain

::::::::
realistic

::::::::
models

::::
that

:::
fit

:::
the

:::::
data.

:::::::
Failing

:::
to

:::::::::
recognize

:::::
that

::::
this

::::::::
diversity

:::
is

::::::::::
important

:::
for

:::::
field

::::
data

::::
and

::::::::::
proposing

:
a
:::::::::::
framework

::::
that

:::::
does

::::
not

::::::::
account

:::
for

::::
this

::::::
could

:::::
lead

::
to

:::::::
biased

::::::::
models.

:

6.1 Outlook for future work

::
A

::::::
major

::::
aim

:::
of

::::
this

:::::
work

::::
was

:::
to

::::::::
advance

:::
the

:::::::::::::::
state-of-the-art

:::
in

:::
the

::::::
topic

::
of

:::::::::
inversion

::::
with

::::::::
DGMs.

::
It
:::::
was

::::
only

:::
in

::::::
recent

::::::
years

::::::
when

:::::
deep

:::::::::
learning

:::::::
started

::
to

:::
be

::::::::::
applicable

:::::
using

::::::::
modern

:::::::
GPUs

::::
that

::::::::::
inversion

:::::
with

:::::::
DGMS

:::::
was

:::::
seen

:::
as

:
a
:::::::
viable

:::::::::::
alternative

::
to

:::::::::
inversion

:::::
with

:::::
MPS

:::::::::::::::::::
(Laloy et al., 2017)

:
.
::::::::
Indeed,

:::
as

:::::::::::
mentioned

:::
in

:::
the

:::::::::::::
Introduction,

:::::
while

::::::
some

:::::::
studies

::::::
have

:::::::::
presented

::::::::::
synthetic

::::::
cases

::
of

::::::::::
inversion

::::::
using

:::::::
DGMs,

::::::
many

:::::::::
important

::::::::::
concepts

::::
that

:::::::
impact

:::::::::::::
performance

:::
of

:::::::::
inversion

::::
still

::::::
need

::
to

:::
be

::::::::
studied

::
in

:::::
more

:::::::
detail.

:::
As

:::
an

::::::::
attempt

:::
to

::::::::
improve

::::
our

::::::::::::::
understanding

:::
of

::::::::::
inversion

:::::
with

:::::::
DGMs,
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Chapter 6

:::
the

::::
role

:::
of

:::::::::
different

::::::::
training

:::::::::::
parameters

::::
and

::::
the

::::::::
reasons

:::::
why

:::::
these

::::::::::::
parameters

::::
may

::
be

:::::::::::
impacting

:::::::::
inversion

::::
was

::::::::::
discussed

:::
in

::::::
depth

:::
in

::::
this

:::::
work

:::::::::
(Chapter

::::
3).

:::::::
While

:::
the

::::::::
machine

::::::::
learning

::::::::::::
community

::
is

:::::::
already

::::::::
tackling

::::::
some

::
of

:::::
these

:::::::::
concepts

::::::::::::::::::::::::::::::::::::::::::
(e.g. Bora et al., 2017; Naitzat et al., 2020)

:
,
::::
the

::::::::::::
geosciences

::::::::::::
community

:::::::
should

:::::
also

:::::::
engage

:::
in

::::
this

::::::::
process

::::::
since

:::::::::::
subsurface

::::::::
datasets

::::
may

::::::::
involve

:::::
both

::::
new

:::::::::::
challenges

::::
and

::::::::::::::
opportunities.

:

An important extension to the presented work would be the estimation of full the
posterior and not only the maximum likelihood values through probabilistic inver-
sion; notice that controlling the nonlinearity in the generative mapping benefits not
only maximum likelihood estimations but also Monte Carlo methods such as Markov
Chain Monte Carlo (Laloy et al., 2017, 2018; Mosser et al., 2018) because e.g. a
uni-modal distribution is less likely to be represented by a multi-modal distribution
in latent space. However, the more exhaustive exploration of the model space re-
quired for such methods may still represent a major limitation for problems where
the evaluation of the forward operator is computationally expensive.

Recent work in modeling and sampling conditional distributions with DGMsmay
be useful for both prior falsification and inversion (Kingma et al., 2014; Engel et al.,
2018). One may, for instance, fix a certain latent dimension that is related to a desired
feature (e.g. a structure in the center of the domain) and then perform inversion with
this conditional prior distribution.

Future work may also include the use of DGMs together with other geostatistical
methods such as MPS in order to improve conditioning to direct observations of the
subsurface materials (Bai and Tahmasebi, 2020). This may also help to increase the
mechanisms to generate more diverse samples. One may for example, change the
size of the MPS simulation template to allow samples to deviate from the pattern in
the training images.

Finally
::::::::::
Regarding

::::
the

:::::::::::
architecture

:::
of

:::::::
DNNs, while convolutional neural networks

have been remarkably useful for preserving spatial information, some recent work in
neural networks using so called transformer architectures have shown potential for
both natural language processing and images (Parmar et al., 2018). This architec-
ture is based on a mechanism called self-attention and provides a different generative
mapping that may be more useful for inversion.

:

:::::::::
Although

::
in

:::::
this

:::::
work

:::::::::::
cross-hole

::::::
GPR

:::::
data

::::
was

:::::::::::
considered

:::
to

::::::::::::
benchmark

:::
the

:::::::::
proposed

:::::::::
methods,

:::
it

::
is

::::::::::
important

:::
to

:::::::::
highlight

:::::
that

::::::
these

:::::::::
methods

:::
are

::::::::
general

::::
and
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General discussion and conclusions

::::
may

:::
be

::::::::
applied

:::::
with

::::
any

:::::
other

:::::
type

:::
of

::::::::::::
geophysical

:::::
data.

:::
In

::::
this

:::::
way,

::::
e.g.

::::
one

::::::
could

:::::::
exploit

:::
the

:::::::
higher

::::::::::::
information

:::::::
content

:::
in

::::::::::::::
full-waveform

:::::
data

::
to

::::::::
further

:::::::::
constrain

:::
the

::::::::::
subsurface

:::::::
and/or

::::::::
identify

::::::::::
structures

::::
that

:::::
have

:
a
:::::::::::
contrasting

:::::::::::::
conductivity

:::::
even

::
if

::::
they

::::
have

::::::::
similar

::::::::::::
permittivity.

:::::::
Some

:::
of

:::
the

:::::::::
methods

::::::
might

::::::::
require

:::::::
tuning

::::::
when

:::::::
applied

::
to

:::::
other

::::::
types

:::
of

:::::
data

::::
(e.g.

::::
the

:::::::::
selection

:::
of

::::::::::::::
insight-driven

::::::::
features

:::
in

::::::::
Chapter

:::
4)

:::
but

::::::
others

::::
are

:::::::
general

::::::::
enough

::::
that

:::::::
would

:::::
only

:::::::
require

::::::::::
changing

:::
the

:::::::::
forward

::::::
model

::::
and

::::::::
possibly

:::
the

:::::
data

:::::
error

:::::::
model

:::::
(e.g.

:::
the

::::::
SGD

:::::::::
inversion

:::::
with

:::::
VAE

:::
in

::::::::
Chapter

:::
3).
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Appendix A

Bayesian inversion with VAE

Following a Bayesian approach, inversion may be considered as the conjunction of
information regarding the model, the measured data and their relation given by a
forward operator (Tarantola and Valette, 1982). The latter relation may be expressed
as:

d = f(m) (A.1)

where d is a Q-dimensional vector representing the data and f : RN → RQ is the
geophysical forward operator. Since both the measurements and the forward oper-
ator typically have some error, the relation in Eq. A.1 may be represented with a
conditional probability distribution p(d|m). Then, inversion is stated as:

p(m|d) = k p(d|m) p(m) (A.2)

where p(m|d) is the posterior distribution, p(m) is the model prior distribution,
p(d|m) is termed the likelihood function and k is a proportionality constant.

When the prior distribution is approximated with a VAE, inversion may be re-
stated in terms of the latent vector z as:

p(m, z|d) = k p(d|m) p(z) p(m|z)

p(z|d) = k p(z)

∫
p(d|m) p(m|z) dm (A.3)
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Bayesian inversion with VAE

where p(z) is the latent prior distribution and p(m|z) is the generative mapping (or
decoder), as defined in Section 5.2.1. Further, as mentioned above when only con-
sidering the mean of the decoder then p(m|z) = δ(m − g(z)) and Eq. A.3 may be
written as:

p(z|d) = k p(z)

∫
p(d|m) δ(m− g(z)) dm

= k p(z) p( d|g(z) ) (A.4)

Eq. A.4 may be used to solve an inverse problem in which a VAE (or some other
DGM) is used to state the prior model distribution. For instance, one may apply
Markov chain Monte Carlo to Eq. A.4 and get the posterior distribution of the latent
variables (Laloy et al., 2017, 2018). When appropriate values to train the VAE are
used (see Section 5.2.1), g is expected to be only mildly nonlinear. If we further
assume that f is also mildly nonlinear and that errors in the data (with respect to
forward predictions) are independent and Gaussian, the likelihood p( d|g(z) ) will be
approximately independent and Gaussian (Holm-Jensen and Hansen, 2019). Given
these conditions, minimizing the objective function ζ(z) in Eq. 3.4 should provide a
good approximation for maximum likelihood model parameters.
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Appendix B

Adaptive kernel density estimation

The standard (non-adaptive) equation for kernel density estimation that would apply
for our case is (Scheidt et al., 2018)

p(s|h(dobs)) =
p(s, h(dobs))

p(dobs)
=

∑N
j=1KHs(s− sj)KHh

(h(dobs)− h(dj))∑N
j=1KHh

(h(dobs)− h(dj))
(B.1)

where the involved variables are the same as in Eq. (4.2) but here no clustering
is defined, therefore no separate summation for each cluster is needed and the band-
widths Hs and Hh for the scaled kernel functions are the same for all the N Monte
Carlo samples. The expected value of Eq. (B.1) is also referred to as the Nadaraya-
Watson model or kernel regression (Bishop, 2006).

In general, the bandwidth H refers to the width of the kernel that is used to ap-
proximate the distributions and for the multivariate case it is aQ×Qmatrix, whereQ
is the number of dimensions of the variable. Different kernel functions may be used
to do this approximation (Silverman, 1986), in our case we chose the multivariate
independent Gaussian kernel.

KH(x) = (2π)−Q/2|H|−1/2e−
1
2
xTH−1x (B.2)

whereQ is the number of dimensions of x andH is a diagonal matrix. As suggested
by Park et al. (2013) and Scheidt et al. (2015b), we used clustering in order to make
the KDE bandwidthH adaptive. This requires the specification of the number Nc of
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Adaptive kernel density estimation

clusters and results in narrow bandwidths where the density of points is high and wide
bandwidths where density is low. We used k-means clustering on the feature space
and each sample is assigned a bandwidth H for both the features and the structural
parameter according to which cluster it belongs to. The value of the bandwidth H
(a diagonal matrix) within each cluster is computed by means of Silverman’s rule of
thumb (Silverman, 1986) as

(Hii)
1/2 =

4

Q+ 2

1
Q+4

n
−1
Q+4σi (B.3)

where n denotes the number of samples and may be different for each cluster, and σi
is the standard deviation in the i-th dimension in the same cluster. In this way, the
control on the bandwidth is implicit on the number of clusters Nc. Applying KDE
with this adaptive approach is expressed in Eq. (4.2). ThereHs andHh are computed
using the same clusters and have dimensions 1× 1 and Nh ×Nh, respectively.
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