AQUATIC ECOSYSTEMS ARE THE MOST UNCERTAIN BUT POTENTIALLY LARGEST SOURCE OF METHANE ON EARTH

Judith A. Rosentreter^{1*}, Alberto V. Borges², Peter A. Raymond³, Bridget R. Deemer⁴, Meredith A. Holgerson⁵, Carlos M. Duarte⁶, Shaoda Liu³, Chunlin Song⁷, George H. Allen⁸, John Melack⁹, Benjamin Poulter¹⁰, David Olefeldt¹¹, Tom I. Battin¹², Bradley D. Eyre¹

¹Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia

²University of Liège, Chemical Oceanography Unit, Liège, Belgium

³Yale School of Forestry and Environmental Studies, 195 Prospect Street, New Haven, CT, USA

⁴U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA

⁵Departments of Biology and Environmental Studies, St. Olaf College, Northfield, Minnesota, USA

⁶King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and

Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia

⁷Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China ⁸Department of Geography, Texas A&M University, College Station, TX, USA

⁹Bren School of Environmental Science and Management, University of California, Santa Barbara, California, 93106, USA

¹⁰NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD 20816

¹¹Department of Renewable Resources, University of Alberta, Edmonton, Canada

¹²École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Atmospheric methane is a potent greenhouse gas that has tripled in concentration since preindustrial times. The causes of rising methane concentrations are poorly understood given its multiple sources and complex biogeochemistry. Natural and human-made aquatic ecosystems, including wetlands, are potentially the largest single source of methane, but their total emissions relative to other sources have not been assessed. Based on a new synthesis of inventory, remote sensing and modeling efforts, we present a bottom-up estimate of methane emissions from streams and rivers, freshwater lakes and reservoirs, estuaries, coastal wetlands (mangroves, seagrasses, salt-marshes), intertidal flats, aquaculture ponds, continental shelves, along with recently published estimates of global methane emissions from freshwater wetlands, rice paddies, the continental slope and open ocean. Our findings emphasize the high variability of aquatic methane fluxes and a possibly skewed distribution of currently available data, making global estimates sensitive to statistical assumptions. Mean emissions make aquatic ecosystems the largest source of methane globally (53% of total global methane emissions). Median emissions are 42% of the total global methane emissions. We argue that these emissions will likely increase due to urbanization, eutrophication and climate change.