Reconstructing words from right-bounded-block words

LA LIBERTÉ DE CHERCHER

December 7, 2020
Marie Lejeune (FNRS grantee)
joint work with P. Fleischmann, F. Manea, D. Nowotka, M. Rigo

The classical reconstruction problem

Let us consider finite words $u=u_{1} \cdots u_{n} \in \mathcal{A}^{*}$.

A subword of u is a subsequence of the sequence of letters $\left(u_{i}\right)_{i=1}^{n}$, non necessarily contiguous.
aca is a subword of abcbaba

The classical reconstruction problem

Let us consider finite words $u=u_{1} \cdots u_{n} \in \mathcal{A}^{*}$.

A subword of u is a subsequence of the sequence of letters $\left(u_{i}\right)_{i=1}^{n}$, non necessarily contiguous.
aca is a subword of $a b c b a b a$

The binomial coefficient $\binom{u}{v}$ denotes the number of times that v occurs as a subword in u.

We have

$$
\binom{a b c b a b a}{a c a}=2 .
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=a \quad a \quad a
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=b b b \begin{gathered}
a \\
a
\end{gathered} \quad a \quad a \quad\binom{u}{a b}=0
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=a b b b \underset{a}{\mid} \quad a \quad\binom{u}{a b} \leq 3
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=a \quad a b b b \underset{a}{\mid} \quad\binom{u}{a b} \leq 6
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\left.a \quad a\right|_{a} ^{a} b \quad\binom{u}{a b}=3
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\begin{array}{lllll}
a & a & a b & \binom{u}{a b}=3
\end{array}
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=b a \quad a \quad a b \quad\binom{u}{a b} \leq 6
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=a b \quad a \quad a b \quad\binom{u}{a b}=4
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\begin{array}{lllll}
a b & a & a b b & \binom{u}{a b}=7
\end{array}
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=a \quad a b \quad \text { a } b \quad\binom{u}{a b}=5
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\begin{array}{llll}
a & a b b & a b & \binom{u}{a b}=7
\end{array}
$$

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\begin{array}{llll}
a & a b b & a b & \binom{u}{a b}=7
\end{array}
$$

Answer: NO. $u_{1}=a b a a b b$ and $u_{2}=a a b b a b$ are two words satisfying the conditions.

Reconstruction of a word: an example

Let $\mathcal{A}=\{a, b\}$. Let $u \in \mathcal{A}^{6}$ be an unknown word of length 6 such that

- $\binom{u}{a}=3$
- $\binom{u}{a b}=7$

Can you uniquely determine u ?

$$
u=\begin{array}{llll}
a b b & a b & \binom{u}{a b}=7
\end{array}
$$

Answer: NO. $u_{1}=a b a a b b$ and $u_{2}=a a b b a b$ are two words satisfying the conditions.
Add the following condition: $\binom{u}{a a b}=5$. Can you uniquely determine u ? YES, $u=a a b b a b$.

The classical reconstruction problem

Let u be a finite word and $k \in \mathbb{N}$. The k-deck of u is the multiset of subwords of u of length k. It is always of cardinality $\binom{|u|}{k}$.

The classical reconstruction problem

Let u be a finite word and $k \in \mathbb{N}$. The k-deck of u is the multiset of subwords of u of length k. It is always of cardinality $\binom{|u|}{k}$.
The 3-deck of $a a b b a b$ is

$$
\left\{a a a, a a b_{5}, a b a_{4}, a b b_{6}, b a b_{2}, b b a, b b b\right\} .
$$

The classical reconstruction problem

Let u be a finite word and $k \in \mathbb{N}$. The k-deck of u is the multiset of subwords of u of length k. It is always of cardinality $\binom{|u|}{k}$.
The 3-deck of $a a b b a b$ is

$$
\left\{a a a, a a b_{5}, a b a_{4}, a b b_{6}, b a b_{2}, b b a, b b b\right\} .
$$

Reconstruction problem

Let \mathcal{A} be an alphabet, and n an integer. What is the minimal k such that any word from \mathcal{A}^{n} can be uniquely determined from its k-deck?

Our adaptation

Let \mathcal{A} be an alphabet, u and v two words. We denote by $Q(u, v)$ the following question:

What is the value of the binomial coefficient $\binom{u}{v}$?

Our adaptation

Let \mathcal{A} be an alphabet, u and v two words. We denote by $Q(u, v)$ the following question:

What is the value of the binomial coefficient $\binom{u}{v}$?

Our variant

Let \mathcal{A} be an alphabet and $n \in \mathbb{N}$. What is the minimal number k such that any word u from \mathcal{A}^{n} can be uniquely determined by asking k questions $Q\left(u, v_{1}\right), \ldots, Q\left(u, v_{k}\right)$, sequentially?

Our adaptation

Let \mathcal{A} be an alphabet, u and v two words. We denote by $Q(u, v)$ the following question:

What is the value of the binomial coefficient $\binom{u}{v}$?

Our variant

Let \mathcal{A} be an alphabet and $n \in \mathbb{N}$. What is the minimal number k such that any word u from \mathcal{A}^{n} can be uniquely determined by asking k questions $Q\left(u, v_{1}\right), \ldots, Q\left(u, v_{k}\right)$, sequentially?

By sequentially, we mean that, for all i, the answers to $Q\left(u, v_{1}\right), \ldots$, $Q\left(u, v_{i}\right)$ can influe the choice of v_{i+1}.

Reconstructing words from right-bounded-block words

(1) Classical reconstruction problem: survey of the results
(2) Binary case: the results
(3) Extending to an arbitrary finite alphabet

A more general concept

General reconstruction problem: Given a sufficient amount of information about substructures of a hidden discrete structure, can one uniquely determine this structure?

A more general concept

General reconstruction problem: Given a sufficient amount of information about substructures of a hidden discrete structure, can one uniquely determine this structure?

- Square matrices from some of their minors [Manvel, Stockmeyer, 1971]

A more general concept

General reconstruction problem: Given a sufficient amount of information about substructures of a hidden discrete structure, can one uniquely determine this structure?

- Square matrices from some of their minors [Manvel, Stockmeyer, 1971]
- Graphs from some of their subgraphs? [Kelly and Ulam's conjecture, 1957; Harary's conjecture, 1963]

A more general concept

General reconstruction problem: Given a sufficient amount of information about substructures of a hidden discrete structure, can one uniquely determine this structure?

- Square matrices from some of their minors [Manvel, Stockmeyer, 1971]
- Graphs from some of their subgraphs? [Kelly and Ulam's conjecture, 1957; Harary's conjecture, 1963]
- Words from some of their subwords? [Kalashnik, 1973]

Recontruction problem for words

Let us define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the minimal k such that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f.

Recontruction problem for words

Let us define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the minimal k such that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f.

- Schützenberger, Simon (1975) showed that $f(n) \leq\lfloor n / 2\rfloor+1$.

Recontruction problem for words

Let us define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the minimal k such that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f.

- Schützenberger, Simon (1975) showed that $f(n) \leq\lfloor n / 2\rfloor+1$.
- Krasikov, Roditty (1997) improved it: $f(n) \leq\lfloor 16 \sqrt{n} / 7\rfloor+5$.

Recontruction problem for words

Let us define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the minimal k such that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f.

- Schützenberger, Simon (1975) showed that $f(n) \leq\lfloor n / 2\rfloor+1$.
- Krasikov, Roditty (1997) improved it: $f(n) \leq\lfloor 16 \sqrt{n} / 7\rfloor+5$.
- Dudik, Schulmann (2003) gave a lower bound:

$$
f(n) \geq 3(\sqrt{2 / 3}-o(1)) \log _{3}^{1 / 2} n .
$$

Recontruction problem for words

Let us define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the minimal k such that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f.

- Schützenberger, Simon (1975) showed that $f(n) \leq\lfloor n / 2\rfloor+1$.
- Krasikov, Roditty (1997) improved it: $f(n) \leq\lfloor 16 \sqrt{n} / 7\rfloor+5$.
- Dudik, Schulmann (2003) gave a lower bound: $f(n) \geq 3^{(\sqrt{2 / 3}-o(1)) \log _{3}^{1 / 2} n}$.

Properties of the k-deck

Let $u \in \mathcal{A}^{*}$ and $k \in \mathbb{N}$ such that the k-deck of u is known.
Therefore, $\binom{u}{v}$ is known for every $v \in \mathcal{A}^{k}$.

Properties of the k-deck

Let $u \in \mathcal{A}^{*}$ and $k \in \mathbb{N}$ such that the k-deck of u is known.
Therefore, $\binom{u}{v}$ is known for every $v \in \mathcal{A}^{k}$.
But in fact, $\binom{u}{v}$ is known for every $v \in \mathcal{A}^{\leq k}$.

Properties of the k-deck

Let $u \in \mathcal{A}^{*}$ and $k \in \mathbb{N}$ such that the k-deck of u is known.
Therefore, $\binom{u}{v}$ is known for every $v \in \mathcal{A}^{k}$.
But in fact, $\binom{u}{v}$ is known for every $v \in \mathcal{A}^{\leq k}$.
Proposition: The 1-deck of u is known from its k-deck.
Proof: We obviously have $\binom{u}{a^{k}}=\left(\begin{array}{c}\left(\begin{array}{c}u \\ a \\ k\end{array}\right)\end{array}\right)$, for any $a \in \mathcal{A}$.

Properties of the k-deck

Proposition: The $(k-1)$-deck of u is known from its k-deck.
Proof: Let $x \in \mathcal{A}^{k-1}$. For any $a \in \mathcal{A}$, we have

$$
\binom{u}{x}\binom{u}{a}=\sum_{j=0}^{k}\binom{u}{x_{1} \cdots x_{j-1} a x_{j} \cdots x_{k-1}}+\binom{u}{x}\binom{x}{a},
$$

Properties of the k-deck

Proposition: The $(k-1)$-deck of u is known from its k-deck.
Proof: Let $x \in \mathcal{A}^{k-1}$. For any $a \in \mathcal{A}$, we have

$$
\binom{u}{x}\binom{u}{a}=\sum_{j=0}^{k}\binom{u}{x_{1} \cdots x_{j-1} a x_{j} \cdots x_{k-1}}+\binom{u}{x}\binom{x}{a},
$$

$$
\binom{u}{a b a c}\binom{u}{a}=\binom{u}{a a b a c}+\binom{u}{a a b a c}+\binom{u}{a b a a c}+\binom{u}{a b a a c}+\binom{u}{a b a c a}+\binom{u}{a b a c}+\binom{u}{a b a c}
$$

Properties of the k-deck

Proposition: The $(k-1)$-deck of u is known from its k-deck.
Proof: Let $x \in \mathcal{A}^{k-1}$. For any $a \in \mathcal{A}$, we have

$$
\binom{u}{x}\binom{u}{a}=\sum_{j=0}^{k}\binom{u}{x_{1} \cdots x_{j-1} a x_{j} \cdots x_{k-1}}+\binom{u}{x}\binom{x}{a},
$$

$\binom{u}{a b a c}\binom{u}{a}=\binom{u}{a a b a c}+\binom{u}{a a b a c}+\binom{u}{a b a a c}+\binom{u}{a b a a c}+\binom{u}{a b a c a}+\binom{u}{a b a c}+\binom{u}{a b a c}$
and thus

$$
\binom{u}{x}=\frac{1}{\binom{u}{a}-\binom{x}{a}}\left[\sum_{j=0}^{k}\binom{u}{x_{1} \cdots x_{j-1} a x_{j} \cdots x_{k-1}}\right]
$$

Is the whole k-deck needed?

Knowing the entire k-deck of u requires to ask $(\# \mathcal{A})^{k}$ questions $Q(u, v)$ with $v \in \mathcal{A}^{k}$.

Is the whole k-deck needed?

Knowing the entire k-deck of u requires to ask $(\# \mathcal{A})^{k}$ questions $Q(u, v)$ with $v \in \mathcal{A}^{k}$.

Some binomial coefficients can be deducted from other ones. In fact, it suffices to have the answer to questions $Q(u, v)$ with $v \in \mathcal{A}^{\leq k}$ a Lyndon word.

Is the whole k-deck needed?

Knowing the entire k-deck of u requires to ask $(\# \mathcal{A})^{k}$ questions $Q(u, v)$ with $v \in \mathcal{A}^{k}$.

Some binomial coefficients can be deducted from other ones. In fact, it suffices to have the answer to questions $Q(u, v)$ with $v \in \mathcal{A}^{\leq k}$ a Lyndon word.

Recall: Let $<$ be a total order on \mathcal{A}. A word u is Lyndon if for any factorization $u=x \cdot y \in \mathcal{A}^{+} \times \mathcal{A}^{+}$, we have $x y<_{\text {lex }} y x$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The shuffle $x \amalg y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}\right. \text { a partition } \\
\\
\text { of } \left.[n] \text { s.t. } w_{i_{1}} \cdots w_{i_{n_{x}}}=x \text { and } w_{j_{1}} \cdots w_{j_{n_{y}}}=y\right\} .
\end{gathered}
$$

Example:

$$
a b Ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$$
a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$$
a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$$
a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$$
a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\} .
$$

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x ш y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Let $x \in \mathcal{A}^{n_{x}}, y \in \mathcal{A}^{n_{y}}, n=n_{x}+n_{y}$ and $[n]=\{1, \ldots, n\}$.

The infiltration $x \downarrow y$ is the multiset

$$
\begin{gathered}
\left\{w=w_{1} \cdots w_{n^{\prime}}: \exists I_{x}=\left\{i_{1}<\ldots<i_{n_{x}}\right\}, I_{y}=\left\{j_{1}<\ldots<j_{n_{y}}\right\}, n^{\prime} \leq n\right. \\
\text { s.t. } I_{x} \cup I_{y}=\left[n^{\prime}\right] \text { and } \\
\\
\left.w_{i_{1}} \cdots w_{i_{n_{x}}}=x, w_{j_{1}} \cdots w_{j_{n_{y}}}=y, \text { if well defined }\right\} .
\end{gathered}
$$

Note that $x \amalg y \subseteq x \downarrow y$.

Example:

$a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$.

Why Lyndon words are enough

Proposition (Reutenauer): If v is non-Lyndon, $\exists x, y \in \mathcal{A}^{+}$such that $v=x y$ and every word in the multiset $x \amalg y$ is $<_{\text {lex }}$ less than or equal to v.

Why Lyndon words are enough

Proposition (Reutenauer): If v is non-Lyndon, $\exists x, y \in \mathcal{A}^{+}$such that $v=x y$ and every word in the multiset $x \omega y$ is <lex less than or equal to v.

For any multiset S, denote by S_{v} the multiplicity of v in S.
Let $u \in \mathcal{A}^{*}, v$ be non-Lyndon and x, y as in the previous proposition. We have

$$
\binom{u}{v}=\frac{1}{(x Ш y)_{v}}\left[\binom{u}{x}\binom{u}{y}-\sum_{w \in \mathcal{A}^{+} \backslash\{v\}}(x \downarrow y)_{w}\binom{u}{w}\right] .
$$

Note that in the previous formula, $x, y, w \prec v$. $x \prec v \Leftrightarrow|x|<|v|$ or $|x|=|v|$ and $x<{ }_{\text {lex }} v$

Why Lyndon words are enough

Proposition (Reutenauer): If v is non-Lyndon, $\exists x, y \in \mathcal{A}^{+}$such that $v=x y$ and every word in the multiset $x \amalg y$ is $<_{\text {lex }}$ less than or equal to v.

For any multiset S, denote by S_{v} the multiplicity of v in S.
Let $u \in \mathcal{A}^{*}, v$ be non-Lyndon and x, y as in the previous proposition. We have

$$
\binom{u}{v}=\frac{1}{(x Ш y)_{v}}\left[\binom{u}{x}\binom{u}{y}-\sum_{w \in \mathcal{A}^{+} \backslash\{v\}}(x \downarrow y)_{w}\binom{u}{w}\right] .
$$

Note that in the previous formula, $x, y, w \prec v$. $x \prec v \Leftrightarrow|x|<|v|$ or $|x|=|v|$ and $x<_{\text {lex }} v$

We can apply the formula recursively on all non-Lyndon words.

Why Lyndon words are enough: an example

Let $u \in \mathcal{A}^{*}$ and $v=a b a a b$. Words $x=a b$ and $y=a a b$ are such that $x y=v$ and $w \in x ш y \Rightarrow w \preceq v$.

```
abш aab = {abaab, aaba\mp@subsup{b}{3}{},aaab\mp@subsup{b}{6}{}}
    ab\downarrow aab = {abaab, aaba\mp@subsup{b}{3}{},aaab\mp@subsup{b}{6}{},aab\mp@subsup{b}{4}{},aaa\mp@subsup{b}{3}{},abab,aa\mp@subsup{b}{2}{}}
```


Why Lyndon words are enough: an example

Let $u \in \mathcal{A}^{*}$ and $v=a b a a b$. Words $x=a b$ and $y=a a b$ are such that $x y=v$ and $w \in x ш y \Rightarrow w \preceq v$.
$a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\}$ $a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$

$$
\binom{u}{v}=\frac{1}{(x 山 y)_{v}}\left[\binom{u}{x}\binom{u}{y}-\sum_{w \in \mathcal{A}^{+} \backslash\{v\}}(x \downarrow y)_{w}\binom{u}{w}\right]
$$

$$
\begin{aligned}
\binom{u}{a b a a b}=\frac{1}{1}\left[\binom{u}{a b}\binom{u}{a a b}-\right. & {\left[3\binom{u}{a a b a b}+6\binom{u}{a a a b b}+4\binom{u}{a a b b}\right.} \\
& \left.\left.+3\binom{u}{a a a b}+\binom{u}{a b a b}+2\binom{u}{a a b}\right]\right]
\end{aligned}
$$

Why Lyndon words are enough: an example

Let $u \in \mathcal{A}^{*}$ and $v=a b a a b$. Words $x=a b$ and $y=a a b$ are such that $x y=v$ and $w \in x ш y \Rightarrow w \preceq v$.
$a b ш a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}\right\}$ $a b \downarrow a a b=\left\{a b a a b, a a b a b_{3}, a a a b b_{6}, a a b b_{4}, a a a b_{3}, a b a b, a a b_{2}\right\}$

$$
\binom{u}{v}=\frac{1}{(x ш y)_{v}}\left[\binom{u}{x}\binom{u}{y}-\sum_{w \in \mathcal{A}^{+} \backslash\{v\}}(x \downarrow y)_{w}\binom{u}{w}\right]
$$

$$
\begin{aligned}
\binom{u}{a b a a b}=\frac{1}{1}\left[\binom{u}{a b}\binom{u}{a a b}-\right. & {\left[3\binom{u}{a a b a b}+6\binom{u}{a a a b b}+4\binom{u}{a a b b}\right.} \\
& \left.\left.+3\binom{u}{a a a b}+\binom{u}{a b a b}+2\binom{u}{a a b}\right]\right]
\end{aligned}
$$

An important remark

- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k} \Rightarrow$ knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$. There are $(\# \mathcal{A})^{k}$ such words.

An important remark

- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k} \Rightarrow$ knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$. There are $(\# \mathcal{A})^{k}$ such words.
- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$ and v Lyndon \Rightarrow knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$.
There are $\sum_{i=1}^{k} \frac{1}{i} \sum_{d \mid i} \mu(d)(\# \mathcal{A})^{\frac{i}{d}}$ such words.

An important remark

- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k} \Rightarrow$ knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$. There are $(\# \mathcal{A})^{k}$ such words.
- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$ and v Lyndon \Rightarrow knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$.
There are $\sum_{i=1}^{k} \frac{1}{i} \sum_{d \mid i} \mu(d)(\# \mathcal{A})^{\frac{i}{d}}$ such words.
- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k}$ and v Lyndon \nRightarrow knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$.

An important remark

- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k} \Rightarrow$ knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$. There are $(\# \mathcal{A})^{k}$ such words.
- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$ and v Lyndon \Rightarrow knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$.
There are $\sum_{i=1}^{k} \frac{1}{i} \sum_{d \mid i} \mu(d)(\# \mathcal{A})^{\frac{i}{d}}$ such words.
- Knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{k}$ and v Lyndon \nRightarrow knowing $\binom{u}{v}$ for all $v \in \mathcal{A}^{\leq k}$.

Counterexample: $u_{1}=$ babaa, $u_{2}=b b a a a$.
We have $\binom{u_{1}}{a a b}=\binom{u_{2}}{a a b},\binom{u_{1}}{a b b}=\binom{u_{2}}{a b b},\binom{u_{1}}{a b} \neq\binom{ u_{2}}{a b}$.

Our variant

- We want to reduce the number of computed $\binom{u}{v}$. So, knowing the whole k-deck of u is too much.

Our variant

- We want to reduce the number of computed $\binom{u}{v}$. So, knowing the whole k-deck of u is too much.

If w is of length $<k$, then

$$
\binom{u}{w}=0 \Rightarrow\binom{u}{v}=0 \quad \forall v \text { having } w \text { as subword }
$$

and a whole part of the k-deck of u is known.

Our variant

- We want to reduce the number of computed $\binom{u}{v}$. So, knowing the whole k-deck of u is too much.

If w is of length $<k$, then

$$
\binom{u}{w}=0 \Rightarrow\binom{u}{v}=0 \quad \forall v \text { having } w \text { as subword }
$$

and a whole part of the k-deck of u is known.

- We don't want to restrict to words v having all the same length.

Reconstructing words from right-bounded-block words

(1) Classical reconstruction problem: survey of the results
(2) Binary case: the results

An introductory example: $u \in\{a, b\}^{10}$

An introductory example: $u \in\{a, b\}^{10}$

- $Q(u, b) ?=6 . \rightarrow\binom{u}{a}=4$.

$$
\begin{array}{r}
\exists s_{1}, \ldots, s_{5} \in \mathbb{N}_{0} \text { s.t. } u=b^{s_{1}} a b^{s_{2}} a b^{s_{3}} a b^{s_{4}} a b^{s_{5}} \\
\text { and } s_{1}+s_{2}+s_{3}+s_{4}+s_{5}=6
\end{array}
$$

An introductory example: $u \in\{a, b\}^{10}$

- $Q(u, b) ?=6 . \rightarrow\binom{u}{a}=4$.

$$
\begin{array}{r}
\exists s_{1}, \ldots, s_{5} \in \mathbb{N}_{0} \text { s.t. } u=b^{s_{1}} a b^{s_{2}} a b^{s_{3}} a b^{s_{4}} a b^{s_{5}} \\
\text { and } s_{1}+s_{2}+s_{3}+s_{4}+s_{5}=6
\end{array}
$$

- $Q(u, a b) ?=4$.

$$
s_{2}+2 s_{3}+3 s_{4}+4 s_{5}=4
$$

$\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \in$ $\{(5,0,0,0,1),(4,1,0,1,0),(4,0,2,0,0),(3,2,1,0,0),(2,4,0,0,0)\}$.

An introductory example: $u \in\{a, b\}^{10}$

- $Q(u, b) ?=6 . \rightarrow\binom{u}{a}=4$.

$$
\begin{array}{r}
\exists s_{1}, \ldots, s_{5} \in \mathbb{N}_{0} \text { s.t. } u=b^{s_{1}} a b^{s_{2}} a b^{s_{3}} a b^{s_{4}} a b^{s_{5}} \\
\text { and } s_{1}+s_{2}+s_{3}+s_{4}+s_{5}=6
\end{array}
$$

- $Q(u, a b) ?=4$.

$$
s_{2}+2 s_{3}+3 s_{4}+4 s_{5}=4
$$

$$
\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \in
$$

$$
\{(5,0,0,0,1),(4,1,0,1,0),(4,0,2,0,0),(3,2,1,0,0),(2,4,0,0,0)\}
$$

- $Q\left(u, a^{2} b\right) ?=2$.

$$
s_{3}+3 s_{4}+6 s_{5}=2
$$

The unique solution is: $(4,0,2,0,0)$ and $u=b b b b a a b b a a$.

Binary case: using right-bounded-block words

First question: $Q(u, b)$? Assume $\binom{u}{b} \geq \frac{|u|}{2}$.

$$
u=b^{s_{1}} a b^{s_{2}} a \cdots a b^{s_{|u|_{a}+1}}
$$

Binary case: using right-bounded-block words

First question: $Q(u, b)$? Assume $\binom{u}{b} \geq \frac{|u|}{2}$.

$$
u=b^{s_{1}} a b^{s_{2}} a \cdots a b^{s_{|u|_{a}+1}}
$$

Ask $Q(u, a b), Q\left(u, a^{2} b\right), \ldots, Q\left(u, a^{m} b\right)$ until u is determined. In all cases: $m \leq|u|_{a}$.

Binary case: using right-bounded-block words

First question: $Q(u, b)$? Assume $\binom{u}{b} \geq \frac{|u|}{2}$.

$$
u=b^{s_{1}} a b^{s_{2}} a \cdots a b^{s_{\mid u_{a}+1}}
$$

Ask $Q(u, a b), Q\left(u, a^{2} b\right), \ldots, Q\left(u, a^{m} b\right)$ until u is determined. In all cases: $m \leq|u|_{a}$.

$$
\left\{\begin{array}{ccccll}
s_{1}+s_{2}+\ldots & & +s_{|u|_{a}+1} & =\binom{u}{b} \\
& s_{2}+2 s_{3}+\ldots & +|u|_{a} s_{|u|_{a}+1} & =\binom{u}{a b} \\
& & s_{3}+3 s_{4}+\ldots & +\binom{|u|_{a}-1}{2} s_{|u|_{a}+1} & =\binom{u}{a^{2} b} \\
\vdots & & & & & \\
& & & & s_{|u|_{a}+1} & =\binom{u}{a|u|_{a b}} .
\end{array}\right.
$$

Coefficients of the i-th equation are the first coefficients of the i-th column of the Pascal triangle.

Binary case: using right-bounded-block words

First question: $Q(u, b)$? Assume $\binom{u}{b} \leq \frac{|u|}{2}$.

$$
u=a^{s_{1}} b a^{s_{2}} b \cdots b a^{s_{\mid u_{b}+1}}
$$

Ask $Q(u, b a), Q\left(u, b^{2} a\right), \ldots, Q\left(u, b^{m} a\right)$ until u is determined. In all cases: $m \leq|u|_{b}$.

$$
\left\{\begin{array}{ccccl}
s_{1}+s_{2}+\ldots & & +s_{|u|_{b}+1} & =\binom{u}{a} \\
& s_{2}+2 s_{3}+\ldots & +|u|_{b} s_{|u|_{b}+1} & =\binom{u}{b a} \\
& s_{3}+3 s_{4}+\ldots & +\binom{|u|_{b}-1}{2} s_{|u|_{b}+1} & =\binom{u}{b^{2} a} \\
\vdots & & & & \\
& & s_{|u|_{b}+1} & =\binom{u}{b^{|u|_{b a}}}
\end{array}\right.
$$

Coefficients of the i-th equation are the first coefficients of the i-th column of the Pascal triangle.

Maximal number of asked questions

The number of questions is at most

$$
\begin{cases}|u|_{a}+1 & \text { if }|u|_{a} \leq \frac{|u|}{2} \\ |u|_{b}+1 & \text { if }|u|_{b} \leq \frac{|u|}{2}\end{cases}
$$

Hence

$$
\left\lfloor\frac{|u|}{2}\right\rfloor+1
$$

questions are enough.

Reconstructing words from right-bounded-block words

(1) Classical reconstruction problem: survey of the results
(2) Binary case: the results
(3) Extending to an arbitrary finite alphabet

The idea: projections on binary alphabets

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$ and $u \in \mathcal{A}^{*}$. Idea: use the algorithm on binary alphabets.

The idea: projections on binary alphabets

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$ and $u \in \mathcal{A}^{*}$. Idea: use the algorithm on binary alphabets.

Let $\{a, b\} \subset \mathcal{A}$. Denote by $\pi_{a, b}(u)$ the projection of u on the binary alphabet $\{a, b\}$:

$$
\pi_{a, b}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b \\
c \mapsto \varepsilon \text { if } c \in \mathcal{A} \backslash\{a, b\}
\end{array}\right.
$$

The idea: projections on binary alphabets

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$ and $u \in \mathcal{A}^{*}$.
Idea: use the algorithm on binary alphabets.
Let $\{a, b\} \subset \mathcal{A}$. Denote by $\pi_{a, b}(u)$ the projection of u on the binary alphabet $\{a, b\}$:

$$
\pi_{a, b}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b \\
c \mapsto \varepsilon \text { if } c \in \mathcal{A} \backslash\{a, b\}
\end{array}\right.
$$

(1) Try to reconstruct $\pi_{a, b}(u)$ for every subalphabet $\{a, b\} \subset \mathcal{A}$ of size 2 .

The idea: projections on binary alphabets

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$ and $u \in \mathcal{A}^{*}$.
Idea: use the algorithm on binary alphabets.
Let $\{a, b\} \subset \mathcal{A}$. Denote by $\pi_{a, b}(u)$ the projection of u on the binary alphabet $\{a, b\}$:

$$
\pi_{a, b}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b \\
c \mapsto \varepsilon \text { if } c \in \mathcal{A} \backslash\{a, b\}
\end{array}\right.
$$

(1) Try to reconstruct $\pi_{a, b}(u)$ for every subalphabet $\{a, b\} \subset \mathcal{A}$ of size 2 .
(2) Combine all projections $\left\{\pi_{a, b}(u)\right\}$ to reconstruct u.

An example with $u \in\{a, b, n\}^{6}$

Determine the 1-deck: $Q(u, a) ?=3, Q(u, b) ?=1 . \rightarrow|u|_{n}=2$.

An example with $u \in\{a, b, n\}^{6}$

Determine the 1-deck: $Q(u, a) ?=3, Q(u, b) ?=1 . \rightarrow|u|_{n}=2$.
(1) Consider $\{b, n\}$. Take $b<n . Q(u, b n)$? $=2$

$$
\pi_{b, n}(u)=n^{s_{1}} b n^{s_{2}} \text { and } s_{1}+s_{2}=2, s_{2}=2
$$

Therefore $\pi_{b, n}(u)=b n n$.

An example with $u \in\{a, b, n\}^{6}$

Determine the 1-deck: $Q(u, a) ?=3, Q(u, b) ?=1 . \rightarrow|u|_{n}=2$.
(1) Consider $\{b, n\}$. Take $b<n . Q(u, b n)$? $=2$

$$
\pi_{b, n}(u)=n^{s_{1}} b n^{s_{2}} \text { and } s_{1}+s_{2}=2, s_{2}=2
$$

Therefore $\pi_{b, n}(u)=b n n$.
(2) Consider the subalphabet $\{b, a\}$. Take $b<a . Q(u, b a) ?=3$

$$
\pi_{a, b}(u)=a^{t_{1}} b a^{t_{2}} \text { and } t_{1}+t_{2}=3, t_{2}=3
$$

Therefore $\pi_{a, b}(u)=b a a a$.

An example with $u \in\{a, b, n\}^{6}$

Determine the 1-deck: $Q(u, a) ?=3, Q(u, b) ?=1 . \rightarrow|u|_{n}=2$.
(1) Consider $\{b, n\}$. Take $b<n . Q(u, b n)$? $=2$

$$
\pi_{b, n}(u)=n^{s_{1}} b n^{s_{2}} \text { and } s_{1}+s_{2}=2, s_{2}=2
$$

Therefore $\pi_{b, n}(u)=b n n$.
(2) Consider the subalphabet $\{b, a\}$. Take $b<a . Q(u, b a)$? $=3$

$$
\pi_{a, b}(u)=a^{t_{1}} b a^{t_{2}} \text { and } t_{1}+t_{2}=3, t_{2}=3
$$

Therefore $\pi_{a, b}(u)=$ baaa.
(3) Consider $\{n, a\}$. Take $n<a . Q(u, n a) ?=3, Q(u, n n a) ?=1$.

$$
\pi_{n, a}(u)=a^{p_{1}} n a^{p_{2}} n a^{p_{3}} \text { and } p_{1}+p_{2}+p_{3}=3, p_{2}+2 p_{3}=3, p_{3}=1
$$

Therefore $\pi_{n, a}(u)=$ anana.

An example with $u \in\{a, b, n\}^{6}$

Determine the 1-deck: $Q(u, a) ?=3, Q(u, b) ?=1 . \rightarrow|u|_{n}=2$.
(1) Consider $\{b, n\}$. Take $b<n . Q(u, b n)$? $=2$

$$
\pi_{b, n}(u)=n^{s_{1}} b n^{s_{2}} \text { and } s_{1}+s_{2}=2, s_{2}=2
$$

Therefore $\pi_{b, n}(u)=b n n$.
(2) Consider the subalphabet $\{b, a\}$. Take $b<a . Q(u, b a)$? $=3$

$$
\pi_{a, b}(u)=a^{t_{1}} b a^{t_{2}} \text { and } t_{1}+t_{2}=3, t_{2}=3
$$

Therefore $\pi_{a, b}(u)=$ baaa.
(3) Consider $\{n, a\}$. Take $n<a . Q(u, n a) ?=3, Q(u, n n a) ?=1$.

$$
\pi_{n, a}(u)=a^{p_{1}} n a^{p_{2}} n a^{p_{3}} \text { and } p_{1}+p_{2}+p_{3}=3, p_{2}+2 p_{3}=3, p_{3}=1
$$

Therefore $\pi_{n, a}(u)=$ anana.
We get $u=$ banana.

Remaining questions

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$.
(1) Is u always uniquely determined from
$\left\{\pi_{a_{i}, a_{j}}(u):\left\{a_{i}, a_{j}\right\} \subset\left\{a_{1}, \ldots, a_{q}\right\}\right\}$? How to reconstruct it?
(2) Compare the maximal number of questions with the bound of the classical reconstruction problem.

K-markings

Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ be a sequence of natural numbers. Let $u^{(1)}, \ldots, u^{(\ell)}$ be words of \mathcal{A}^{*}.
A K-marking of $u^{(1)}, \ldots, u^{(\ell)}$ is a mapping

$$
\psi:\left\{(j, i): j \in[\ell], i \in\left[\left|u^{(j)}\right|\right]\right\} \rightarrow \mathbb{N}
$$

such that, $\forall j \in[\ell], \forall i, m \in\left[\left|u^{(j)}\right|\right], a \in \mathcal{A}$, there holds

- if $u_{i}^{(j)}=a$ then $\psi(j, i) \leq k_{a}$,
- if $i<m$ and $u_{i}^{(j)}=u_{m}^{(j)}$ then $\psi(j, i)<\psi(j, m)$.

K-markings

Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ be a sequence of natural numbers. Let $u^{(1)}, \ldots, u^{(\ell)}$ be words of \mathcal{A}^{*}.
A K-marking of $u^{(1)}, \ldots, u^{(\ell)}$ is a mapping

$$
\psi:\left\{(j, i): j \in[\ell], i \in\left[\left|u^{(j)}\right|\right]\right\} \rightarrow \mathbb{N}
$$

such that, $\forall j \in[\ell], \forall i, m \in\left[\left|u^{(j)}\right|\right], a \in \mathcal{A}$, there holds

- if $u_{i}^{(j)}=a$ then $\psi(j, i) \leq k_{a}$,
- if $i<m$ and $u_{i}^{(j)}=u_{m}^{(j)}$ then $\psi(j, i)<\psi(j, m)$.

Example:

$$
\begin{aligned}
& \mathcal{A}=\{a, b, c\}, K=(2,3,2) \\
& \text { and } u^{(1)}=b c a b, u^{(2)}=a b a
\end{aligned}
$$

j	1				2		
i	1	2	3	4	1	2	3
$u_{i}^{(j)}$	b	c	a	b	a	b	a
$\psi(j, i)$	1	2	1	3	1	1	2

Topological sorting of a directed graph

Let $G=(V, E)$ be a directed graph. A topological sorting of G is a linear ordering $v_{1}<\ldots<v_{n}$ of V such that every edge in G is of the type $\left(v_{i}, v_{j}\right)$ with $i<j$.

Topological sorting of a directed graph

Let $G=(V, E)$ be a directed graph. A topological sorting of G is a linear ordering $v_{1}<\ldots<v_{n}$ of V such that every edge in G is of the type $\left(v_{i}, v_{j}\right)$ with $i<j$.

Folklore: Any directed graph has a topological sorting if and only if it is acyclic.

Topological sorting of a directed graph

Let $G=(V, E)$ be a directed graph. A topological sorting of G is a linear ordering $v_{1}<\ldots<v_{n}$ of V such that every edge in G is of the type $\left(v_{i}, v_{j}\right)$ with $i<j$.

Folklore: Any directed graph has a topological sorting if and only if it is acyclic.

The topological sorting of an acyclic graph is unique if and only if there is a path going through every vertex.

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Example:

$$
\mathcal{A}=\{a, b, c\}, K=(2,3,2)
$$

j	1				2		
i	1	2	3	4	1	2	3
$u_{i}^{(j)}$	b	c	a	b	a	b	a
$\psi(j, i)$	1	2	1	3	1	1	2

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Example:

$$
\mathcal{A}=\{a, b, c\}, K=(2,3,2)
$$

j	1				2		
i	1	2	3	4	1	2	3
$u_{i}^{(j)}$	b	c	a	b	a	b	a
$\psi(j, i)$	1	2	1	3	1	1	2

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Example:

$\mathcal{A}=\{a, b, c\}, K=(2,3,2)$

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi(j, i)$ | 1 | 2 | 1 | 3 | 1 | 1 | 2 |

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \mathcal{A}=\{a, b, c\}, K=(2,3,2) \\
& \begin{array}{|c|ccccc|ccc|}
\hline j & 1 & & & & 2 & & \\
\hline i & 1 & 2 & 3 & 4 & 1 & 2 & 3 \\
\hline u_{i}^{(j)} & b & c & a & b & a & b & a \\
\hline \psi(j, i) & 1 & 2 & 1 & 3 & 1 & 1 & 2 \\
\hline
\end{array}
\end{aligned}
$$

Graph G_{ψ} associated to a K-marking ψ

Let ψ be a K-marking of $u^{(1)}, \ldots, u^{(\ell)}$. Define the graph $G_{\psi}=\left(V_{\psi}, E_{\psi}\right)$ such that:

$$
\begin{gathered}
V_{\psi}=\left\{(a)_{i}: a \in \mathcal{A}, 1 \leq i \leq k_{a}\right\} \\
E_{\psi}=\left\{\left((a)_{i},(a)_{i+1}\right)\right\} \cup\left\{\left(\left(u_{i}^{(j)}\right)_{\psi(j, i)},\left(u_{i+1}^{(j)}\right)_{\psi(j, i+1)}\right)\right\}
\end{gathered}
$$

Example:

$\mathcal{A}=\{a, b, c\}, K=(2,3,2)$

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi(j, i)$ | 1 | 2 | 1 | 3 | 1 | 1 | 2 |

ψ is a K-marking $\nRightarrow G_{\psi}$ admits a topological sorting

Reconstructing a word from subwords

Theorem: Let $u^{(1)}, \ldots, u^{(\ell)} \in \mathcal{A}^{*}$. Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$.
There exists a word $u \in \mathcal{A}^{*}$ such that $u^{(j)}$ is a subword of u for all $j \in[\ell]$ and $|u|_{a}=k_{a}$ for all $a \in \mathcal{A}$
\Leftrightarrow

Reconstructing a word from subwords

Theorem: Let $u^{(1)}, \ldots, u^{(\ell)} \in \mathcal{A}^{*}$. Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$.
There exists a word $u \in \mathcal{A}^{*}$ such that $u^{(j)}$ is a subword of u for all $j \in[\ell]$ and $|u|_{a}=k_{a}$ for all $a \in \mathcal{A}$
\Leftrightarrow
there exists a K-marking ψ of the words $u^{(1)}, \ldots, u^{(\ell)}$ and a topological sorting of G_{ψ}.

Reconstructing a word from subwords

Theorem: Let $u^{(1)}, \ldots, u^{(\ell)} \in \mathcal{A}^{*}$. Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$.
There exists a word $u \in \mathcal{A}^{*}$ such that $u^{(j)}$ is a subword of u for all $j \in[\ell]$ and $|u|_{a}=k_{a}$ for all $a \in \mathcal{A}$
\Leftrightarrow
there exists a K-marking ψ of the words $u^{(1)}, \ldots, u^{(\ell)}$ and a topological sorting of G_{ψ}.

Moreover, if the values of K are minimal,

Values of K are minimal means that

$$
\forall a \in \mathcal{A}, k_{a}=\max _{j \in[\ell]}\left|u^{(j)}\right|_{a}
$$

Reconstructing a word from subwords

Theorem: Let $u^{(1)}, \ldots, u^{(\ell)} \in \mathcal{A}^{*}$. Let $K=\left(k_{a}\right)_{a \in \mathcal{A}}$.
There exists a word $u \in \mathcal{A}^{*}$ such that $u^{(j)}$ is a subword of u for all $j \in[\ell]$ and $|u|_{a}=k_{a}$ for all $a \in \mathcal{A}$
\Leftrightarrow
there exists a K-marking ψ of the words $u^{(1)}, \ldots, u^{(\ell)}$ and a topological sorting of G_{ψ}.

Moreover, if the values of K are minimal, if there is a unique K-marking ψ such that G_{ψ} admits a topological sorting and if this topological sorting is unique, then u is unique.

Values of K are minimal means that

$$
\forall a \in \mathcal{A}, k_{a}=\max _{j \in[\ell]}\left|u^{(j)}\right|_{a}
$$

Illustrating the theorem

$$
\mathcal{A}=\{a, b, c\}, K=(2,3,2)
$$

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi(j, i)$ | 1 | 2 | 1 | 3 | 1 | 1 | 2 |

No valid topological sorting G_{ψ} for this K-marking ψ of $u^{(1)}, u^{(2)}$.

Illustrating the theorem

$$
\mathcal{A}=\{a, b, c\}, K=(2,3,2)
$$

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi^{\prime}(j, i)$ | 1 | 2 | 1 | 3 | 1 | 2 | 2 |

Another K-marking ψ^{\prime} of $u^{(1)}, u^{(2)}$. $G_{\psi^{\prime}}$ admits a topological sorting.
There exists $u \in\{a, b, c\}^{*}$ having $u^{(1)}$ and $u^{(2)}$ as subwords, and such that $|u|_{a}=2,|u|_{b}=3,|u|_{c}=2$.
$u \in\{b c a b a b c, b c a b a c b, b c b c a b a, c b b c a b a, \ldots\}$

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

j	1				2		
i	1	2	3	4	1	2	3
$u_{i}^{(j)}$	b	c	a	b	a	b	a
$\psi(j, i)$	1	1	1 or 2	2	1	1 or 2	2

There are 4 possible K-markings.

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi_{1}(j, i)$ | 1 | 1 | 1 | 2 | 1 | 1 | 2 |

There are 4 possible K-markings.

$G_{\psi_{1}}$ does not have a topological sorting.

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi_{2}(j, i)$ | 1 | 1 | 1 | 2 | 1 | 2 | 2 |

There are 4 possible K-markings.

Unique topological sorting of
$G_{\psi_{2}}$. Reconstructing
$u=$ bcaba, having $u^{(1)}$ and
$u^{(2)}$ as subwords.

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi_{3}(j, i)$ | 1 | 1 | 2 | 2 | 1 | 1 | 2 |

There are 4 possible K-markings.

Unique topological sorting of $G_{\psi_{3}}$. Reconstructing
$u=a b c a b$, having $u^{(1)}$ and
$u^{(2)}$ as subwords.

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

| j | 1 | | | | 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| $u_{i}^{(j)}$ | b | c | a | b | a | b | a |
| $\psi_{4}(j, i)$ | 1 | 1 | 2 | 2 | 1 | 2 | 2 |

There are 4 possible K-markings.

$G_{\psi_{4}}$ does not have a topological sorting.

Illustrating the theorem: taking the minimal K

Since $u^{(1)}=b c a b$ and $u^{(2)}=a b a$, the minimal K is $(2,2,1)$.

j	1				2		
i	1	2	3	4	1	2	3
$u_{i}^{(j)}$	b	c	a	b	a	b	a
$\psi(j, i)$	1	1	1 or 2	2	1	1 or 2	2

Since there exist two K-markings ψ_{2} and ψ_{3} admitting a topological sorting of their associated graph, the word u is not unique.

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Take $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ where $k_{a}=\left|u^{(j)}\right|_{a}$ if $u^{(j)}$ is the projection of u over a subalphabet containing a. Then K is minimal.

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Take $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ where $k_{a}=\left|u^{(j)}\right|_{a}$ if $u^{(j)}$ is the projection of u over a subalphabet containing a. Then K is minimal.
(1) The K-marking ψ of $u^{(1)}, \ldots, u^{(\ell)}$ is unique:

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Take $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ where $k_{a}=\left|u^{(j)}\right|_{a}$ if $u^{(j)}$ is the projection of u over a subalphabet containing a. Then K is minimal.
(1) The K-marking ψ of $u^{(1)}, \ldots, u^{(\ell)}$ is unique:

If the m-th occurrence of letter a in $u^{(j)}$ appears in position i, then $\psi(i, j)=m$.

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Take $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ where $k_{a}=\left|u^{(j)}\right|_{a}$ if $u^{(j)}$ is the projection of u over a subalphabet containing a. Then K is minimal.
(1) The K-marking ψ of $u^{(1)}, \ldots, u^{(\ell)}$ is unique: If the m-th occurrence of letter a in $u^{(j)}$ appears in position i, then $\psi(i, j)=m$.
(2) It can be proven that G_{ψ} is acyclic and has a path going through every vertex, hence the topological sorting exists and is unique.

Reconstructing a word from its binary projections

Let \mathcal{A} be an alphabet of size q. Assume that $u^{(1)}, \ldots, u^{(\ell)}$ are all the projections of an unknown word $u \in \mathcal{A}^{*}$ over binary subalphabets.

Take $K=\left(k_{a}\right)_{a \in \mathcal{A}}$ where $k_{a}=\left|u^{(j)}\right|_{a}$ if $u^{(j)}$ is the projection of u over a subalphabet containing a. Then K is minimal.
(1) The K-marking ψ of $u^{(1)}, \ldots, u^{(\ell)}$ is unique: If the m-th occurrence of letter a in $u^{(j)}$ appears in position i, then $\psi(i, j)=m$.
(2) It can be proven that G_{ψ} is acyclic and has a path going through every vertex, hence the topological sorting exists and is unique.

Taking the letters of vertices of G_{ψ} following the topological sorting gives the unique word u.

Reconstructing a word from its binary projections

Example: reconstructing "banana" from its binary projections.

$u^{(1)}=$ baaa, $u^{(2)}=b n n, u^{(3)}=$ anana.
Then the minimal K is $\left(k_{a}, k_{b}, k_{n}\right)=(3,1,2)$.

| j | 1 | | | | 2 | | | 3 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 |
| $u_{i}^{(j)}$ | b | a | a | a | b | n | n | a | n | a | n | a |
| $\psi(j, i)$ | 1 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 |

Reconstructing a word from its binary projections

Example: reconstructing "banana" from its binary projections.

$u^{(1)}=$ baaa, $u^{(2)}=b n n, u^{(3)}=$ anana.
Then the minimal K is $\left(k_{a}, k_{b}, k_{n}\right)=(3,1,2)$.

| j | 1 | | | | 2 | | | 3 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 |
| $u_{i}^{(j)}$ | b | a | a | a | b | n | n | a | n | a | n | a |
| $\psi(j, i)$ | 1 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 |

Reconstructing a word from its binary projections can be done in linear time w.r.t. the total length of the projections.

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

- First, ask $q-1$ questions to determine the 1 -deck of u.

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

- First, ask $q-1$ questions to determine the 1 -deck of u.
- Let σ be a permutation of $\{1, \ldots, q\}$ such that $|u|_{a_{\sigma(1)}} \leq|u|_{a_{\sigma(2)}} \leq \ldots \leq|u|_{a_{\sigma(q)}}$

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

- First, ask $q-1$ questions to determine the 1 -deck of u.
- Let σ be a permutation of $\{1, \ldots, q\}$ such that $|u|_{a_{\sigma(1)}} \leq|u|_{a_{\sigma(2)}} \leq \ldots \leq|u|_{a_{\sigma(q)}}$
- Consider all subalphabets $\left\{a_{\sigma(i)}, a_{\sigma(j)}\right\}$. Assume $i<j$.

Ask questions $Q\left(u, a_{\sigma(i)} a_{\sigma(j)}\right), Q\left(u, a_{\sigma(i)}^{2} a_{\sigma(j)}\right), \ldots, Q\left(u, a_{\sigma(i)}^{|u|_{a_{\sigma(i)}}} a_{\sigma(j)}\right)$. There are $|u|_{a_{\sigma(i)}}$ such questions.

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

- First, ask $q-1$ questions to determine the 1 -deck of u.
- Let σ be a permutation of $\{1, \ldots, q\}$ such that $|u|_{a_{\sigma(1)}} \leq|u|_{a_{\sigma(2)}} \leq \ldots \leq|u|_{a_{\sigma(q)}}$
- Consider all subalphabets $\left\{a_{\sigma(i)}, a_{\sigma(j)}\right\}$. Assume $i<j$.

Ask questions $Q\left(u, a_{\sigma(i)} a_{\sigma(j)}\right), Q\left(u, a_{\sigma(i)}^{2} a_{\sigma(j)}\right), \ldots, Q\left(u, a_{\sigma(i)}^{|u|_{\sigma(i)}} a_{\sigma(j)}\right)$.
There are $|u|_{a_{\sigma(i)}}$ such questions.

- All projections $\pi_{a_{\sigma(i)}, a_{\sigma(j)}}(u)$ are uniquely determined; deduce u.

Maximal number of questions

Let $u \in\left\{a_{1}, \ldots, a_{q}\right\}^{n}$.

- First, ask $q-1$ questions to determine the 1 -deck of u.
- Let σ be a permutation of $\{1, \ldots, q\}$ such that $|u|_{a_{\sigma(1)}} \leq|u|_{a_{\sigma(2)}} \leq \ldots \leq|u|_{a_{\sigma(q)}}$
- Consider all subalphabets $\left\{a_{\sigma(i)}, a_{\sigma(j)}\right\}$. Assume $i<j$.

Ask questions $Q\left(u, a_{\sigma(i)} a_{\sigma(j)}\right), Q\left(u, a_{\sigma(i)}^{2} a_{\sigma(j)}\right), \ldots, Q\left(u, a_{\sigma(i)}^{|u|_{a_{\sigma(i)}}} a_{\sigma(j)}\right)$. There are $|u|_{a_{\sigma(i)}}$ such questions.

- All projections $\pi_{a_{\sigma(i)}, a_{\sigma(j)}}(u)$ are uniquely determined; deduce u.

Number of asked questions:

$$
(q-1)+\sum_{i=1}^{q}|u|_{a_{\sigma(i)}}(q-i)
$$

Comparing to the classical reconstruction problem

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$.
Recall: in the classical reconstruction problem, knowing the $\left(\left\lfloor\frac{16}{7} \sqrt{n}\right\rfloor+5\right)$-deck of u suffices.

Comparing to the classical reconstruction problem

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$.
Recall: in the classical reconstruction problem, knowing the $\left(\left\lfloor\frac{16}{7} \sqrt{n}\right\rfloor+5\right)$-deck of u suffices.
Using Lyndon words, that leads to

$$
\sum_{i=1}^{\left\lfloor\frac{16}{7} \sqrt{n}\right\rfloor+5} \frac{1}{i} \sum_{d \mid i} \mu(d) q^{\frac{i}{d}}
$$

questions.

Comparing to the classical reconstruction problem

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$.
Recall: in the classical reconstruction problem, knowing the $\left(\left\lfloor\frac{16}{7} \sqrt{n}\right\rfloor+5\right)$-deck of u suffices.
Using Lyndon words, that leads to

$$
\sum_{i=1}^{\left\lfloor\frac{16}{7} \sqrt{n}\right\rfloor+5} \frac{1}{i} \sum_{d \mid i} \mu(d) q^{\frac{i}{d}}
$$

questions. This bound is strictly greater than

$$
(q-1)+\sum_{i=1}^{q}|u|_{a_{\sigma(i)}}(q-i)
$$

for every q and $n \geq q-1$.

Thank you!

