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The classical reconstruction problem

Let us consider finite words u = u1 · · · un ∈ A∗.

A subword of u is a subsequence of the sequence of letters (ui )ni=1, non
necessarily contiguous.

aca is a subword of abcbaba

The binomial coefficient
(u
v

)
denotes the number of times that v occurs as

a subword in u.

We have (
abcbaba

aca

)
= 2.
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Reconstruction of a word: an example

Let A = {a, b}. Let u ∈ A6 be an unknown word of length 6 such that(u
a

)
= 3( u

ab

)
= 7

Can you uniquely determine u?

|

u =
|
a
|

|

a a

Answer: NO. u1 = and u2 = abaabbaabbab are two words satisfying the
conditions.
Add the following condition:

( u
aab

)
= 5. Can you uniquely determine u?

YES, u = aabbab.
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The classical reconstruction problem

Let u be a finite word and k ∈ N. The k-deck of u is the multiset of
subwords of u of length k . It is always of cardinality

(|u|
k

)
.

The 3-deck of aabbab is

{aaa, aab5, aba4, abb6, bab2, bba, bbb}.

Reconstruction problem
Let A be an alphabet, and n an integer. What is the minimal k such that
any word from An can be uniquely determined from its k-deck?
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Our adaptation

Let A be an alphabet, u and v two words. We denote by Q(u, v) the
following question:

What is the value of the binomial coefficient
(u
v

)
?

Our variant
LetA be an alphabet and n ∈ N. What is the minimal number k such that
any word u from An can be uniquely determined by asking k questions
Q(u, v1), . . . ,Q(u, vk), sequentially?

By sequentially, we mean that, for all i , the answers to Q(u, v1), . . . ,
Q(u, vi ) can influe the choice of vi+1.

Marie Lejeune (Liège University) December 7, 2020 5 / 34



Our adaptation

Let A be an alphabet, u and v two words. We denote by Q(u, v) the
following question:

What is the value of the binomial coefficient
(u
v

)
?

Our variant
LetA be an alphabet and n ∈ N. What is the minimal number k such that
any word u from An can be uniquely determined by asking k questions
Q(u, v1), . . . ,Q(u, vk), sequentially?

By sequentially, we mean that, for all i , the answers to Q(u, v1), . . . ,
Q(u, vi ) can influe the choice of vi+1.

Marie Lejeune (Liège University) December 7, 2020 5 / 34



Our adaptation

Let A be an alphabet, u and v two words. We denote by Q(u, v) the
following question:

What is the value of the binomial coefficient
(u
v

)
?

Our variant
LetA be an alphabet and n ∈ N. What is the minimal number k such that
any word u from An can be uniquely determined by asking k questions
Q(u, v1), . . . ,Q(u, vk), sequentially?

By sequentially, we mean that, for all i , the answers to Q(u, v1), . . . ,
Q(u, vi ) can influe the choice of vi+1.

Marie Lejeune (Liège University) December 7, 2020 5 / 34



Reconstructing words from right-bounded-block words

1 Classical reconstruction problem: survey of the results

2 Binary case: the results

3 Extending to an arbitrary finite alphabet



A more general concept

General reconstruction problem: Given a sufficient amount of information
about substructures of a hidden discrete structure, can one uniquely
determine this structure?

Square matrices from some of their minors [Manvel, Stockmeyer, 1971]
Graphs from some of their subgraphs? [Kelly and Ulam’s conjecture,
1957; Harary’s conjecture, 1963]
Words from some of their subwords? [Kalashnik, 1973]

Marie Lejeune (Liège University) December 7, 2020 6 / 34



A more general concept

General reconstruction problem: Given a sufficient amount of information
about substructures of a hidden discrete structure, can one uniquely
determine this structure?

Square matrices from some of their minors [Manvel, Stockmeyer, 1971]

Graphs from some of their subgraphs? [Kelly and Ulam’s conjecture,
1957; Harary’s conjecture, 1963]
Words from some of their subwords? [Kalashnik, 1973]

Marie Lejeune (Liège University) December 7, 2020 6 / 34



A more general concept

General reconstruction problem: Given a sufficient amount of information
about substructures of a hidden discrete structure, can one uniquely
determine this structure?

Square matrices from some of their minors [Manvel, Stockmeyer, 1971]
Graphs from some of their subgraphs? [Kelly and Ulam’s conjecture,
1957; Harary’s conjecture, 1963]

Words from some of their subwords? [Kalashnik, 1973]

Marie Lejeune (Liège University) December 7, 2020 6 / 34



A more general concept

General reconstruction problem: Given a sufficient amount of information
about substructures of a hidden discrete structure, can one uniquely
determine this structure?

Square matrices from some of their minors [Manvel, Stockmeyer, 1971]
Graphs from some of their subgraphs? [Kelly and Ulam’s conjecture,
1957; Harary’s conjecture, 1963]
Words from some of their subwords? [Kalashnik, 1973]

Marie Lejeune (Liège University) December 7, 2020 6 / 34



Recontruction problem for words

Let us define the function f : N→ N such that f (n) is the minimal k such
that any word of length n is uniquely reconstructed from its k-deck.

Reconstruction problem consists in determining the function f .

Schützenberger, Simon (1975) showed that f (n) ≤ bn/2c+ 1.

Krasikov, Roditty (1997) improved it: f (n) ≤ b16
√
n/7c+ 5.

Dudik, Schulmann (2003) gave a lower bound:

f (n) ≥ 3(
√

2/3−o(1)) log1/2
3 n.

...
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Properties of the k-deck

Let u ∈ A∗ and k ∈ N such that the k-deck of u is known.

Therefore,
(u
v

)
is known for every v ∈ Ak .

But in fact,
(u
v

)
is known for every v ∈ A≤k .

Proposition: The 1-deck of u is known from its k-deck.

Proof: We obviously have
( u
ak

)
=
((ua)

k

)
, for any a ∈ A.
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Properties of the k-deck

Proposition: The (k − 1)-deck of u is known from its k-deck.

Proof: Let x ∈ Ak−1. For any a ∈ A, we have(
u

x

)(
u

a

)
=

k∑
j=0

(
u

x1 · · · xj−1axj · · · xk−1

)
+

(
u

x

)(
x

a

)
,

( u
abac

)(u
a

)
=
( u
aabac

)
+
( u
aabac

)
+
( u
abaac

)
+
( u
abaac

)
+
( u
abaca

)
+
( u
abac

)
+
( u
abac

)
and thus (

u

x

)
=

1(u
a

)
−
(x
a

)
 k∑

j=0

(
u

x1 · · · xj−1axj · · · xk−1

)
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Is the whole k-deck needed?

Knowing the entire k-deck of u requires to ask (#A)k questions Q(u, v)
with v ∈ Ak .

Some binomial coefficients can be deducted from other ones. In fact, it
suffices to have the answer to questions Q(u, v) with v ∈ A≤k a Lyndon
word.

Recall: Let < be a total order on A. A word u is Lyndon if for any
factorization u = x · y ∈ A+×A+, we have xy <lex yx .
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Why Lyndon words are enough

Let x ∈ Anx , y ∈ Any , n = nx + ny and [n] = {1, . . . , n}.

The shuffle x � y is the multiset

{w = w1 · · ·wn :∃Ix = {i1 < . . . < inx}, Iy = {j1 < . . . < jny } a partition
of [n] s.t. wi1 · · ·winx = x and wj1 · · ·wjny = y}.

Example:
ab� aab = {abaab, aabab3, aaabb6}.
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Why Lyndon words are enough

Proposition (Reutenauer): If v is non-Lyndon, ∃x , y ∈ A+ such that
v = xy and every word in the multiset x � y is <lex less than or equal to
v .

For any multiset S , denote by Sv the multiplicity of v in S .

Let u ∈ A∗, v be non-Lyndon and x , y as in the previous proposition. We
have (

u

v

)
=

1
(x � y)v

(u
x

)(
u

y

)
−

∑
w∈A+ \{v}

(x ↓ y)w
(
u

w

) .
Note that in the previous formula, x , y ,w ≺ v .
x ≺ v ⇔ |x | < |v | or |x | = |v | and x <lex v

We can apply the formula recursively on all non-Lyndon words.
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Why Lyndon words are enough: an example

Let u ∈ A∗ and v = abaab. Words x = ab and y = aab are such that
xy = v and w ∈ x � y ⇒ w � v .

ab� aab = {abaab, aabab3, aaabb6}
ab ↓ aab = {abaab, aabab3, aaabb6, aabb4, aaab3, abab, aab2}

(
u

v

)
=

1

(x � y)v

(u
x

)(
u

y

)
−

∑
w∈A+ \{v}

(x ↓ y)w

(
u

w

)

(
u

abaab

)
=

1
1

[(
u

ab

)(
u

aab

)
−
[
3
(

u

aabab

)
+ 6
(

u

aaabb

)
+ 4
(

u

aabb

)
+3
(

u

aaab

)
+

(
u

abab

)
+ 2
(

u

aab

)]]

Marie Lejeune (Liège University) December 7, 2020 14 / 34



Why Lyndon words are enough: an example

Let u ∈ A∗ and v = abaab. Words x = ab and y = aab are such that
xy = v and w ∈ x � y ⇒ w � v .

ab� aab = {abaab, aabab3, aaabb6}
ab ↓ aab = {abaab, aabab3, aaabb6, aabb4, aaab3, abab, aab2}

(
u

v

)
=

1

(x � y)v

(u
x

)(
u

y

)
−

∑
w∈A+ \{v}

(x ↓ y)w

(
u

w

)

(
u

abaab

)
=

1
1

[(
u

ab

)(
u

aab

)
−
[
3
(

u

aabab

)
+ 6
(

u

aaabb

)
+ 4
(

u

aabb

)
+3
(

u

aaab

)
+

(
u

abab

)
+ 2
(

u

aab

)]]

Marie Lejeune (Liège University) December 7, 2020 14 / 34



Why Lyndon words are enough: an example

Let u ∈ A∗ and v = abaab. Words x = ab and y = aab are such that
xy = v and w ∈ x � y ⇒ w � v .

ab� aab = {abaab, aabab3, aaabb6}
ab ↓ aab = {abaab, aabab3, aaabb6, aabb4, aaab3, abab, aab2}

(
u

v

)
=

1

(x � y)v

(u
x

)(
u

y

)
−

∑
w∈A+ \{v}

(x ↓ y)w

(
u

w

)

(
u

abaab

)
=

1
1

[(
u

ab

)(
u

aab

)
−
[
3
(

u

aabab

)
+ 6
(

u

aaabb

)
+ 4
(

u

aabb

)
+3
(

u

aaab

)
+

(
u

abab

)
+ 2
(

u

aab

)]]

Marie Lejeune (Liège University) December 7, 2020 14 / 34



An important remark

Knowing
(u
v

)
for all v ∈ Ak ⇒ knowing

(u
v

)
for all v ∈ A≤k .

There are (#A)k such words.

Knowing
(u
v

)
for all v ∈ A≤k and v Lyndon ⇒ knowing

(u
v

)
for all

v ∈ A≤k .
There are

∑k
i=1

1
i

∑
d |i µ(d)(#A)

i
d such words.

Knowing
(u
v

)
for all v ∈ Ak and v Lyndon 6⇒ knowing

(u
v

)
for all

v ∈ A≤k .

Counterexample: u1 = babaa, u2 = bbaaa.
We have

( u1
aab

)
=
( u2
aab

)
,
( u1
abb

)
=
( u2
abb

)
,
(u1
ab

)
6=
(u2
ab

)
.
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Our variant

We want to reduce the number of computed
(u
v

)
. So, knowing the

whole k-deck of u is too much.

If w is of length < k , then(
u

w

)
= 0⇒

(
u

v

)
= 0 ∀v having w as subword

and a whole part of the k-deck of u is known.

We don’t want to restrict to words v having all the same length.
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Reconstructing words from right-bounded-block words

1 Classical reconstruction problem: survey of the results

2 Binary case: the results

3 Extending to an arbitrary finite alphabet



An introductory example: u ∈ {a, b}10

Q(u, b)?= 6. →
(u
a

)
= 4.

∃s1, . . . , s5 ∈ N0 s.t. u = bs1abs2abs3abs4abs5

and s1 + s2 + s3 + s4 + s5 = 6

Q(u, ab)? = 4.
s2 + 2s3 + 3s4 + 4s5 = 4.

(s1, s2, s3, s4, s5) ∈
{(5, 0, 0, 0, 1), (4, 1, 0, 1, 0), (4, 0, 2, 0, 0), (3, 2, 1, 0, 0), (2, 4, 0, 0, 0)}.

Q(u, a2b)? = 2.

s3 + 3s4 + 6s5 = 2.

The unique solution is: (4, 0, 2, 0, 0) and u = bbbbaabbaa.
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Binary case: using right-bounded-block words

First question: Q(u, b)? Assume
(u
b

)
≥ |u|2 .

u = bs1abs2a · · · abs|u|a+1

Ask Q(u, ab),Q(u, a2b), . . . ,Q(u, amb) until u is determined.
In all cases: m ≤ |u|a.



s1 +s2 + . . . +s|u|a+1 =
(u
b

)
s2 +2s3 + . . . +|u|as|u|a+1 =

( u
ab

)
s3 +3s4 + . . . +

(|u|a−1
2

)
s|u|a+1 =

( u
a2b

)
...

s|u|a+1 =
( u
a|u|ab

)
.

Coefficients of the i-th equation are the first coefficients of the i-th column
of the Pascal triangle.
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Binary case: using right-bounded-block words

First question: Q(u, b)? Assume
(u
b

)
≤ |u|2 .

u = as1bas2b · · · bas|u|b+1

Ask Q(u, ba),Q(u, b2a), . . . ,Q(u, bma) until u is determined.
In all cases: m ≤ |u|b.



s1 +s2 + . . . +s|u|b+1 =
(u
a

)
s2 +2s3 + . . . +|u|bs|u|b+1 =

( u
ba

)
s3 +3s4 + . . . +

(|u|b−1
2

)
s|u|b+1 =

( u
b2a

)
...

s|u|b+1 =
( u
b|u|ba

)
.

Coefficients of the i-th equation are the first coefficients of the i-th column
of the Pascal triangle.
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Maximal number of asked questions

The number of questions is at most{
|u|a + 1 if |u|a ≤ |u|2
|u|b + 1 if |u|b ≤ |u|2

Hence ⌊
|u|
2

⌋
+ 1

questions are enough.
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Reconstructing words from right-bounded-block words

1 Classical reconstruction problem: survey of the results

2 Binary case: the results

3 Extending to an arbitrary finite alphabet



The idea: projections on binary alphabets

Let A = {a1, . . . , aq} and u ∈ A∗.
Idea: use the algorithm on binary alphabets.

Let {a, b} ⊂ A. Denote by πa,b(u) the projection of u on the binary
alphabet {a, b}:

πa,b :


a 7→ a
b 7→ b
c 7→ ε if c ∈ A\{a, b}

1 Try to reconstruct πa,b(u) for every subalphabet {a, b} ⊂ A of size 2.
2 Combine all projections {πa,b(u)} to reconstruct u.
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An example with u ∈ {a, b, n}6

Determine the 1-deck: Q(u, a)? = 3, Q(u, b)? = 1. → |u|n = 2.

1 Consider {b, n}. Take b < n. Q(u, bn)? = 2

πb,n(u) = ns1bns2 and s1 + s2 = 2, s2 = 2

Therefore πb,n(u) = bnn.

2 Consider the subalphabet {b, a}. Take b < a. Q(u, ba)? = 3

πa,b(u) = at1bat2 and t1 + t2 = 3, t2 = 3

Therefore πa,b(u) = baaa.

3 Consider {n, a}. Take n < a. Q(u, na)?= 3, Q(u, nna)?= 1.

πn,a(u) = ap1nap2nap3 and p1 + p2 + p3 = 3, p2 + 2p3 = 3, p3 = 1

Therefore πn,a(u) = anana.

We get u = banana.
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Remaining questions

Let A = {a1, . . . , aq}.

1 Is u always uniquely determined from
{πai ,aj (u) : {ai , aj} ⊂ {a1, . . . , aq}}? How to reconstruct it?

2 Compare the maximal number of questions with the bound of the
classical reconstruction problem.
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K -markings

Let K = (ka)a∈A be a sequence of natural numbers. Let u(1), . . . , u(`) be
words of A∗.
A K -marking of u(1), . . . , u(`) is a mapping

ψ : {(j , i) : j ∈ [`], i ∈ [|u(j)|]} → N

such that, ∀j ∈ [`],∀i ,m ∈ [|u(j)|], a ∈ A, there holds

if u(j)i = a then ψ(j , i) ≤ ka,

if i < m and u
(j)
i = u

(j)
m then ψ(j , i) < ψ(j ,m).

Example:

A = {a, b, c}, K = (2, 3, 2)
and u(1) = bcab, u(2) = aba

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 2 1 3 1 1 2
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Topological sorting of a directed graph

Let G = (V ,E ) be a directed graph. A topological sorting of G is a linear
ordering v1 < . . . < vn of V such that every edge in G is of the type
(vi , vj) with i < j .

v1

v3 v2

v6 v4 v5

Folklore: Any directed graph has a topological sorting if and only if it is
acyclic.

The topological sorting of an acyclic graph is unique if and only if there is a
path going through every vertex.
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Graph Gψ associated to a K -marking ψ

Let ψ be a K -marking of u(1), . . . , u(`). Define the graph Gψ = (Vψ,Eψ)
such that:

Vψ = {(a)i : a ∈ A, 1 ≤ i ≤ ka}

Eψ = {((a)i , (a)i+1)} ∪ {((u
(j)
i )ψ(j ,i), (u

(j)
i+1)ψ(j ,i+1))}

Example:

A = {a, b, c},K = (2, 3, 2)

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 2 1 3 1 1 2

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

ψ is a K -marking 6⇒ Gψ admits a topological sorting
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A = {a, b, c},K = (2, 3, 2)

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 2 1 3 1 1 2

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

ψ is a K -marking 6⇒ Gψ admits a topological sorting
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Reconstructing a word from subwords

Theorem: Let u(1), . . . , u(`) ∈ A∗. Let K = (ka)a∈A.
There exists a word u ∈ A∗ such that u(j) is a subword of u for all j ∈ [`]
and |u|a = ka for all a ∈ A
⇔

there exists a K -marking ψ of the words u(1), . . . , u(`) and a topological
sorting of Gψ.

Moreover, if the values of K are minimal, if there is a unique K -marking
ψ such that Gψ admits a topological sorting and if this topological sorting
is unique, then u is unique.

Values of K are minimal means that

∀a ∈ A, ka = max
j∈[`]
|u(j)|a
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Illustrating the theorem

A = {a, b, c},K = (2, 3, 2)

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 2 1 3 1 1 2

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

No valid topological sorting Gψ for this K -marking ψ of u(1), u(2).

There exists u ∈ {a, b, c}∗ having u(1) and u(2) as subwords, and such that
|u|a = 2, |u|b = 3, |u|c = 2.

u ∈ {bcababc , bcabacb, bcbcaba, cbbcaba, . . .}
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Illustrating the theorem

A = {a, b, c},K = (2, 3, 2)

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ′(j , i) 1 2 1 3 1 2 2

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

Another K -marking ψ′ of u(1), u(2). Gψ′ admits a topological sorting.

There exists u ∈ {a, b, c}∗ having u(1) and u(2) as subwords, and such that
|u|a = 2, |u|b = 3, |u|c = 2.

u ∈ {bcababc , bcabacb, bcbcaba, cbbcaba, . . .}
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Illustrating the theorem: taking the minimal K

Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 1 1 or 2 2 1 1 or 2 2

There are 4 possible K -markings.

(a)1

(a)2

(c)1

(b)1

(b)2
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Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ1(j , i) 1 1 1 2 1 1 2

There are 4 possible K -markings.

(a)1

(a)2

(c)1

(b)1

(b)2

Gψ1 does not have a
topological sorting.
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Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ2(j , i) 1 1 1 2 1 2 2

There are 4 possible K -markings.

(a)1

(a)2

(c)1

(b)1

(b)2

Unique topological sorting of
Gψ2 . Reconstructing
u = bcaba, having u(1) and
u(2) as subwords.
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Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ3(j , i) 1 1 2 2 1 1 2

There are 4 possible K -markings.

(a)1

(a)2

(c)1

(b)1

(b)2

Unique topological sorting of
Gψ3 . Reconstructing
u = abcab, having u(1) and
u(2) as subwords.

Marie Lejeune (Liège University) December 7, 2020 29 / 34



Illustrating the theorem: taking the minimal K

Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ4(j , i) 1 1 2 2 1 2 2

There are 4 possible K -markings.

(a)1

(a)2

(c)1

(b)1

(b)2

Gψ4 does not have a
topological sorting.
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Illustrating the theorem: taking the minimal K

Since u(1) = bcab and u(2) = aba, the minimal K is (2, 2, 1).

j 1 2
i 1 2 3 4 1 2 3

u
(j)
i b c a b a b a

ψ(j , i) 1 1 1 or 2 2 1 1 or 2 2

Since there exist two K -markings ψ2 and ψ3 admitting a topological
sorting of their associated graph, the word u is not unique.
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Reconstructing a word from its binary projections

Let A be an alphabet of size q. Assume that u(1), . . . , u(`) are all the
projections of an unknown word u ∈ A∗ over binary subalphabets.

Take K = (ka)a∈A where ka = |u(j)|a if u(j) is the projection of u over a
subalphabet containing a. Then K is minimal.

1 The K -marking ψ of u(1), . . . , u(`) is unique:
If the m-th occurrence of letter a in u(j) appears in position i , then
ψ(i , j) = m.

2 It can be proven that Gψ is acyclic and has a path going through every
vertex, hence the topological sorting exists and is unique.

Taking the letters of vertices of Gψ following the topological sorting gives
the unique word u.
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Reconstructing a word from its binary projections

Example: reconstructing "banana" from its binary projections.

u(1) = baaa, u(2) = bnn, u(3) = anana.

Then the minimal K is (ka, kb, kn) = (3, 1, 2).

j 1 2 3
i 1 2 3 4 1 2 3 1 2 3 4 5

u
(j)
i b a a a b n n a n a n a

ψ(j , i) 1 1 2 3 1 1 2 1 1 2 2 3

(a)1

(a)2

(a)3

(b)1

(n)1

(n)2

Reconstructing a word from its binary projections can be done in linear
time w.r.t. the total length of the projections.
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Maximal number of questions

Let u ∈ {a1, . . . , aq}n.

First, ask q − 1 questions to determine the 1-deck of u.

Let σ be a permutation of {1, . . . , q} such that
|u|aσ(1) ≤ |u|aσ(2) ≤ . . . ≤ |u|aσ(q)

Consider all subalphabets {aσ(i), aσ(j)}. Assume i < j .

Ask questions Q(u, aσ(i)aσ(j)),Q(u, a2
σ(i)aσ(j)), . . . ,Q(u, a

|u|aσ(i)
σ(i) aσ(j)).

There are |u|aσ(i) such questions.

All projections πaσ(i),aσ(j)(u) are uniquely determined; deduce u.

Number of asked questions:

(q − 1) +
q∑

i=1

|u|aσ(i)(q − i)
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Comparing to the classical reconstruction problem

Let A = {a1, . . . , aq}.
Recall: in the classical reconstruction problem, knowing the
(b16

7
√
nc+ 5)-deck of u suffices.

Using Lyndon words, that leads to

b 16
7
√
nc+5∑

i=1

1
i

∑
d |i

µ(d)q
i
d

questions. This bound is strictly greater than

(q − 1) +
q∑

i=1

|u|aσ(i)(q − i)

for every q and n ≥ q − 1.
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Thank you!
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