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In this review, we consider and discuss the affinity and complementarity
between a generic sample preparation technique and the comprehensive two-
dimensional gas chromatography process. From the initial technical develop-
ment focus (e.g., on the GC×GC and solid-phase microextraction techniques),
the trend is inevitably shifting toward more applied challenges, and therefore,
the preparation of the sample should be carefully considered in any GC×GC sep-
aration for an overreaching research. We highlight recent biomedical, food, and
plant applications (2016–July 2020), and specifically those in which the combi-
nation of tailored sample preparation methods and GC×GC–MS has proven to
be beneficial in the challenging aspects of non-targeted analysis. Specifically on
the sample preparation, we report on gas-phase, solid-phase, and liquid-phase
extractions, and derivatization procedures that have been used to extract and
prepare volatile and semi-volatile metabolites for the successive GC×GC analy-
sis. Moreover, we also present a milestone section reporting the early works that
pioneered the combination of sample preparation techniques with GC×GC for
non-targeted analysis.

KEYWORDS
comprehensive two-dimensional gas chromatography,mass spectrometry, metabolomics, sam-
ple extraction

Abbreviations: CAR, carboxen; CBD, cannabidiol; CBN, cannabinol;
CSC, coconut shell charcoal; DHS, dynamic headspace; DI, direct
immersion; DVB, divinylbenzene; EG, ethyleneglycol; FID, flame
ionization detector; FM, flow modulation; GC-GC, heartcutting
multidimensional gas chromatography; GPe, gas-phase extractions; HR,
high resolution; HS, headspace; HSSE, headspace sorptive extraction;
LPe, liquid-phase extractions; MDE, magnetic dispersive extraction;
MSTFA, N-Trimethylsilyl-N-methyl trifluoroacetamide; NTME, needle
trap microextraction; ODS/GC, octa-decyl silica and graphite carbon;
P&T, purge and trap; PBS, phosphate-buffered saline; PDMS,
polydimethylsiloxane; PIL, poly ionic-liquid; PLE, pressurized liquid
extraction; QTOF, quadrupole-time of flight mass analyzer; SBSE, stir

1 INTRODUCTION

The first decade after the seminal paper from Phillips
[1] was especially abundant in the research for a better
understanding of the GC×GC process and orthogonality,
the visualization of the data, and the surprising “re-
discovery” of samples’ composition. These, in addition

bar sorptive extraction; SDE, simultaneous distillation extraction; SFE,
supercritical fluid extraction; SHS, static headspace; SPe, solid-phase
extractions; SVOC, semi volatile organic compound; Tenax TA,
2,6-diphenyl-p-phenylene oxide; THC, tetrahydrocannabinol; VOC,
volatile organic compound; XAD-2, styrene-divinylbenzene resin.
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F IGURE 1 Commonalities and characteristics of a generic sample preparation and the GC×GC separation steps

to the advancements of the transfer process, which also
led to the development of the different modulation forms
available nowadays, represented the main playground for
researchers in the early stage of GC×GC [2].
The sample preparation initially retained little attention

within GC×GC studies, with extremely limited or basic
procedures, as already pointed out [3], and with the main
attention focused around the novelty of the multidimen-
sional separation concept. The minor consideration for
the sample preparation when combined with GC×GC was
also partially due to the additional features of the mul-
tidimensional technique (increased selectivity, sensitivity,
speed, separation power, structure), compared to the con-
ventional (1D) GC separation. Nevertheless, even if the
additional 2D separation helps with analytes of interest
enrichment (i.e., the focusing effect especially for thermal
modulators), cleanup, and interference removal (fewer co-
elutions, and separation from the chemical noise, i.e.,
columns bleed), it does not justify overlooking a proper
and optimized sample preparation method. The prepara-
tion and extraction of the analytes of interest indeed repre-
sent the most crucial step in the analytical workflow as it
should provide an authentic representation of the sample,
setting a solid basis for the following analytical stages [4].
The introduction of SPME by Pawliszyn represented the

other groundbreaking advance which contributed strongly
to the increase of the consideration and use of novel,
green, and miniaturized sample preparation techniques
with GC×GC [5,6]. The most used form of SPME consists
of fused silica fibers coated with the extraction phase(s),
which are exposed to the headspace of, immersed in, or
put in direct contact with the sample [4].

It is worthy to highlight the fact that GC×GC and
SPME originated (1) in the same period [1,7], (2) from two
researchers who shared the same research laboratory for
some time, and (3) from similar fundamental concepts;
these facts are signs of the intimate relation of the two
techniques. Figure 1 resumes some of the key features
of a generic sample preparation and the GC×GC separa-
tion, highlighting the commonalities between the two pro-
cesses. Shared features and attributes can be identified for
both the sample preparation and the standalone GC×GC
process. Among these, the enrichment and clean-up of
analytes of interest, the interference removal, the tuning of
the selectivity, and the versatility of the approaches make
them the most powerful analytical alliance for complex
samples analysis. This becomes exceptionally true when
the detection is represented by mass spectrometry, thanks
to the unique identification capabilities to handle a multi-
tude of the extracted and separated analytes. In this case,
the data generated intrinsically contain all the information
for applying either a fingerprinting, a profiling, and/or a
targeted approach, based on the research questions.
An additional and common point regards the trend

toward greener approaches and miniaturization which is
true for both sample preparation and the GC×GC separa-
tion [3,5].
All the new evolutions after the introduction of SPME

and GC×GC, together with the rapid development of MS
and software-data handling tools since early 2000, surely
ignited the growing and valued the use of non-targeted
analysis in all applications fields. Nowadays, it is possible
to find demonstrations of the usefulness of non-targeted
analysis combining the many available forms of sample
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preparation with the high-resolution GC×GC-MS tech-
nique. In this review, we report on gas-phase (GPe), solid-
phase (SPe), liquid-phase (LPe) extractions, and derivati-
zation procedures which have been used to extract and
analyze volatile (boiling point range between 50 and
260◦C) and semi-volatile (boiling point range between
240–400◦C) metabolites from biological, food and plant
samples, with the focus on non-targeted applications in
last 5-years period (2016-July 2020). The description of the
underlying mechanism of the extraction types (i.e., GPe,
SPe, LPe) is reported in the following paragraph 3.

2 MILESTONES IN COMBINING
SAMPLE PREPARATION TECHNIQUES
AND GC×GC

Thirty years have passed since the first report of the mod-
ern sample preparation SPME and comprehensive 2D-GC
techniques. The intent of this paragraph is to recognize the
early contributions that pioneered the combination of sam-
ple preparation with high-resolution separation and detec-
tion for non-targeted analysis in biological, food, and plant
applications. It must be said that these early works that ini-
tiated the use of innovative sample preparation techniques
as up-front tools for GC×GC, yet focused mainly on the
increase of selectivity and sensitivity of the multidimen-
sional separation technique.
SPe techniques were the earliest sample preparation

procedures used with GC×GC. In 2002, Adahchour
et al. evaluated the general practicability of combining
headspace (HS)-SPME with GC×GC for the analysis of
flavors in garlic cloves [8]. Compared to conventional
GC, a 10- to 50-fold increase in sensitivity together with a
10-times higher peak capacity were reported. In addition,
the comparison of the PDMS and DVB/CAR/PDMS fibers
highlighted the improved extraction efficiency (up to
20-fold) when using the latter. Their study opened the
way for HS-SPME-GC×GC for detailed flavor analysis
and identification of aroma active compounds. In the
same year, Perera et al. reported increased sensitivity and
improved peak capacity using HS-SPME and GC×GC for
the analysis of wounded plants [9]. Furthermore, they
highlighted the usefulness of the fingerprinting approach
to define chromatographic regions of interest enabling
direct and easy sample comparison. Worth mentioning,
even if not relevant with the applications’ fields of this
review, is the very first HS-SPME-GC×GC application
carried out by Frisinger et al. in 1998 for environmental
volatile organic compound (VOC) determination. The
authors were still using the first thermal sweeper mod-
ulator and they discussed about the special care and
the details for the (manual) SPME sampling and injec-

tion procedures since no automation was yet available
[10].
In 2003, GC×GC followed mixed-bed SPE cartridges to

analyze drugs in horse and dog urine [11]. These cartridges
represent the most classical SPe, and are short disposable
columns containing a bed of porous particles, in which the
analytes or the fractions of interest are retained after a first
solvent elution, and then re-mobilized by elution using a
different solvent [12]. The authors performed the derivati-
zation of the amino groups of the drug metabolites to pro-
duce thermally stable analytes. This study demonstrated
the potential of the overall methodology in drug analysis
by providing lower detection limits of 0.04 mg/L against
0.1 mg/L using classical 1D GC, good reproducibility, and
the possibility of high-throughput sample screening using
the 2D chromatographic space.
In 2002, Seeley et al. employed sorbent traps with

GC×GC, equipped with a differential flow modulator and
dual secondary columns, to characterize exhaled breath
from healthy humans [13]. Multi-bed sorbent trap tubes
(Carbotrap C/Carbotrap/Carbosieve SIII) were used to col-
lect 1.5 L of breath. The system enabled the characteriza-
tion of 100 compounds over a 10 min analysis. The unique
selectivity of the two secondary columns allowed increas-
ing further the resolution and the qualitative information
provided by GC×GC analysis. Even though this contri-
bution was mainly focused on the characteristics of the
flow modulated system, it demonstrated the effectiveness
of GC×GC for breath analysis, which was further investi-
gated in the following years [14]. An alternative and inter-
esting approach for breath analysis was highlighted in 2010
by Mieth et al., with the use of a needle trap microextrac-
tion (NTME) device [15]. Alveolar breath samples were
taken from patients undergoing cardiac surgery show-
ing the potential of the device for on-site sampling and
pre-concentration, for biomarkers discovery. Good storage
capabilities, up to one day according to the physicochemi-
cal properties of the analytes, andhigh throughput analysis
using an optimized autosampler were described.
In 2012, Risticevic et al. investigated for the first time

the potential of direct immersion (DI)-SPME and GC×GC
for metabolite profiling of apples [16]. An increased
(351 supplementary metabolites) and more balanced
metabolite coverage were obtained when using DI-SPME,
avoiding loss of polar and high molecular weight analytes.
However, it was highlighted that a comprehensive charac-
terization of the metabolome was only achievable under
optimized conditions for both the sample preparation
and the separation. The authors fully exploited GC×GC
attributes, i.e., the 2D separation space occupation and the
structured separation, to optimize the SPME method.
Cordero et al. also took advantage of multiple sam-

pling techniques with the GC×GC attributes [17]. The
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complementarity of gas-phase (i.e., dynamic headspace
(DHS)) and solid-phase (i.e., headspace sorptive extraction
(HSSE), HS-SPME, DI-SPME, and stir bar sorptive extrac-
tion (SBSE)) sampling approaches was demonstrated in
the characterization of VOCs and semi-volatile organic
compounds (SVOCs) in dry milk powder. In DHS, contin-
uous removal of volatiles from the matrix is obtained with
a constant inert gas flow to increase the efficiency of the
extraction. Regarding SBSE, it has the same working prin-
ciples of SPME: in this case, a magnetic stir bar is coated
with the sorbent and can be immersed (classical SBSE), or
suspended in the headspace (HSSE) of the samples. The
authors highlighted for the first time the effectiveness of
the combination of HSSE and SBSE with GC×GC for a
sensomics investigation in food analysis thanks to their
high concentration factors enabling broad analyte cover-
age. These results pointed out the importance of the choice
of the sample preparation since this latter can greatly influ-
ence the obtained fingerprints of complex volatile frac-
tions.
Shortly after its introduction, GC×GC–MS also served

the emerging metabolomics field. The great potential of
structured 2D chromatograms has been initially shown for
lipids [18,19]. In these early reports, a derivatization proce-
dure (i.e., transesterification) was necessary to isolate the
fatty acids from the rest of thematrix andmake themmore
suitable for GC×GC analysis, as methyl ester derivatives.
The modulator band compression allowed the concurrent
determination of themajor aswell asminor components of
milk and various vegetable and fish oils, revealing a novel
chemical complexity of those “well-known” samples.
Following such a demonstration of the increased capac-

ities of GC×GC over 1D GC, in 2005 GC×GC was used
to identify biomarkers of obesity extracted from mouse
spleen [20]. The extracted metabolites were derivatized
with commonly used silylation agents, prior to GC×GC
analysis. Amino- and hydroxyl acids together with few car-
bohydrates’ derivatives were identified in the two popula-
tions, with sugar alcohols classified as potential biomark-
ers of obesity. This was the first claimed non-targeted
metabolomics study using GC×GC-MS, demonstrating
that direct translation from 1D GC–MS to 2D GC–MS was
possible, and set the basis for the use of GC×GC in biomed-
ical research.

3 NON-TARGETED ANALYSIS
APPLICATIONS

With the refinement and advancement of the hardware,
which improves the technique robustness and reliability,
and software tools, which help with the high-dimensional
data handling and processing, recent applications aremore

and more focused on applied challenges. The workflow
used for the literature survey in the period covering 2016
until mid-2020 is provided in the supporting information
(Supporting Information Figure S1). These references are
listed in Supporting Information Table S1, which also con-
tains brief information on the sample type, the sample
preparation, and the GC×GC-MS methodology. Selected
biomedical-, food-, and plant-related applications which
reported more emphasis on the sampling step are instead
described within each of the following section to summa-
rize the recent trends and challenges of non-targeted anal-
ysis combining innovative sample preparation techniques
and GC×GC. Unless otherwise stated, all the applications
described in this review involved GC×GC-MS with cryo-
genic modulation. Some remarkable applications during
the covered period are summarized in Table 1, in which
more technical details on the sample preparation condi-
tions are reported.
Along the review, the modern sample preparation tech-

niques which preceded the GC×GC-MS analysis were
grouped into the principal classifications of GPe, SPe, LPe,
and derivatization protocols (Figure 2) [21].
In GPe, a gas is used to strip the volatile compounds

off the sample, which can be injected directly (traditional
static HS) or trapped onto a sorbent trap. SPe is based on
the transfer of the compounds of interest from a gas, liquid,
or supercritical fluid matrix to a solid sorbent. In LPe, the
extracting agent is a liquid fluid, as in the common case of
liquid–liquid extractions [22].
SPe and most of the GPe techniques rely on sorbent-

based interactions with the analytes to extract. Among
these techniques, surely SPE, SPME, SBSE, NTME, and
DHS through trap tubes are the most promising and the
most usedwith GC×GC. For amore detailed description of
the techniques reported in this review, please refer to the
literature [12,23,24].
Generally, GPe methods are exclusively dedicated to

VOC sampling, while SPe, LPe, and the derivatization
approaches are suitable also for the heavier SVOCs.Among
SPe, some techniques can be used both in headspace
or direct immersion approaches (e.g., HS/DI-SPME and
HSSE/SBSE) [25]. In the case of multistep sample prepara-
tion protocols, for example, a derivatization step followed
bymultiple extractions, the sample preparation techniques
were counted separately for the generation of Figure 2.
As already highlighted, each analytical step and espe-

cially the sample preparation could introduce a bias
(in the selectivity) in the final result, which makes the
realization of a true non-targeted and unbiased anal-
ysis very challenging and arguable. For example, any
extraction strategy sets at the inception of the whole
methodology a certain degree of selectivity towards a
defined class of analytes, depending on their chemical



192 FRANCHINA et al.

T
A
B
L
E

1
Se
le
ct
ed

ap
pl
ic
at
io
ns
in
th
e
or
de
ra
st
he
y
ap
pe
ar
in
th
e
m
an
us
cr
ip
t.
A
ll
bi
of
lu
id
sa
nd

tis
su
es
ar
e
fr
om

hu
m
an

un
le
ss
ot
he
rw
is
e
st
at
ed
.F
or
SP
M
E,
th
e
co
at
in
g
w
as

D
V
B/
C
A
R/
PD

M
S
if
no
ts
pe
ci
fie
d
fu
rt
he
r.
Fo
rH

SS
E
an
d
SB
SE
,t
he

co
at
in
g
w
as
PD

M
S
if
no
ts
pe
ci
fie
d
fu
rt
he
r.
TM

an
d
FM

ar
e
th
er
m
al
an
d
flo
w
m
od
ul
at
or
,r
es
pe
ct
iv
el
y

Fi
el
d

Sa
m
pl
e
ty
pe

H
ig
hl
ig
ht
s

Sa
m
pl
e
pr
ep
ar
at
io
n

G
C
×
G
C

D
et
ec
to
r

B
io
m
ed
ic
al

ap
pl
ic
at
io
ns

Br
ea
th
[3
0]

St
an
da
rd
iz
at
io
n
of
ex
ha
le
d
br
ea
th
sa
m
pl
in
g
vi
a
di
re
ct

co
lle
ct
io
n
an
d
pr
e-
co
nc
en
tr
at
io
n
on
to
TD

tu
be
s

Tr
ap

(T
en
ax
TA

/C
ar
bo
gr
ap
h
1T
D
)

FM
Q
/F
ID

U
rin

e
(h
um

an
an
d

an
im
al
)[
42
]

In
cr
ea
se
d
de
te
ct
io
n
an
d
ch
ar
ac
te
riz
at
io
n
of

tr
ac
e-
le
ve
ls
te
ro
id
s

SP
E
(C

18
),
de
riv
at
iz
at
io
n

(s
ily
la
tio
n,
M
O
X
+
TM

SI
)

TM
H
R
TO

F

U
rin

e
[4
3]

Id
en
tif
ic
at
io
n
of
ne
w
tu
be
rc
ul
os
is
m
et
ab
ol
ite
s

D
er
iv
at
iz
at
io
n

(s
ily
la
tio
n,
BS
TF
A
+
TM

C
S)

TM
TO

F

U
rin

e,
tis
su
e
an
d
ce
ll

lin
es
(a
ni
m
al
)[
45
]

Fa
st
sa
m
pl
e
ex
tr
ac
tio
n
pr
ot
oc
ol
(2
-h
)f
or
m
ul
tip
le

m
at
ric
es
un
ta
rg
et
ed

pr
of
ili
ng

D
er
iv
at
iz
at
io
n
(M

ST
FA

+
TM

C
S)

TM
Q

Sp
ut
um

[4
6]

D
et
ec
tio
n
of
m
ar
ke
rs
of
m
yc
ob
ac
te
ria

sp
ec
ie
sa
nd

M
.

tu
be
rc
ul
os
is

D
er
iv
at
iz
at
io
n
(a
lk
yl
at
io
n,
TM

A
H
)

TM
FI
D

Se
ru
m
[4
7]

N
ov
el
bi
om

ar
ke
ri
de
nt
ifi
ca
tio
n
of
C
ro
hn
’s
di
se
as
es

D
er
iv
at
iz
at
io
n

(s
ily
la
tio
n,
M
O
X
+
M
ST
FA

)
TM

H
R
TO

F

Sk
in
VO

C
s[
52
]

St
ra
ig
ht
fo
rw
ar
d
in
vi
vo

pa
ss
iv
e
co
lle
ct
io
n
of
sk
in

VO
C
su
si
ng

ru
bb
er
ba
nd
s

PD
M
S
br
ac
el
et
sa
nd

an
kl
et
s

TM
TO

F

Ba
ct
er
ia
lc
ul
tu
re
[6
2]

M
on
ito
rin

g
vo
la
til
e
m
et
ab
ol
om

e
ch
an
ge
so
fb
ac
te
ria
l

cu
ltu
re
s(
Rh
iz
ob
iu
m
sp
.)

H
S-
SP
M
E

TM
TO

F

Ba
ct
er
ia
lc
ul
tu
re
[6
3]

in
vi
vo

st
ud
y
of
an
tib
ac
te
ria
la
ge
nt
s’
ef
fe
ct
on

th
e

vo
la
til
e
pr
of
ile

an
d
m
et
ab
ol
om

ic
pa
th
w
ay
s(
E.
co
li)

H
S-
SP
M
E

TM
TO

F

Ba
ct
er
ia
la
nd

fu
ng
i

co
-c
ul
tu
re
s[
64
]

in
vi
vo

ch
ar
ac
te
riz
at
io
n
of
ba
ct
er
ia
an
tif
un
ga
lV
O
C

ac
tiv
ity

an
d
co
-c
ul
tu
re
VO

C
pr
of
ile

ch
an
ge
s(
C.

va
cc
in
ii)

H
SS
E
(P
D
M
S/
EG

)
TM

TO
F

Ba
ct
er
ia
lc
ul
tu
re
[3
7]

Sa
m
pl
in
g
pe
rf
or
m
an
ce
ev
al
ua
tio
n
of
di
ffe
re
nt
so
rb
en
t

m
at
er
ia
ls
fo
ru
nt
ar
ge
te
d
an
d
ta
rg
et
ed

ba
ct
er
ia
l

VO
C
sa
na
ly
si
s(
E.
co
li,
S.
au
re
us
,P
.a
er
ug
in
os
a)

Tr
ap

(D
H
S,
Te
na
x
TA

,
C
ar
bo
pa
ck
Y/
X/
C
ar
bo
xe
n1
00
0,

C
ar
bo
pa
ck
B/
X,
C
ar
bo
pa
ck
Y)

TM
TO

F

Fo
od

an
d
pl
an
t

ap
pl
ic
at
io
ns

Tr
ap
pi
st
be
er
[6
9]

C
om

pa
ris
on

of
di
ffe
re
nt
ex
tr
ac
tio
n
te
ch
ni
qu
es
fo
r

vo
la
til
e
ar
om

a
pr
of
ili
ng

H
S-
SP
M
E
(C
A
R/
PD

M
S)
,c
la
ss
ic
al
an
d

m
ul
tip
le
SB
SE

(P
D
M
S/
EG

),
tr
ap

(S
H
S
an
d
D
H
S,
Te
na
x
TA

)

TM
TO

F

Fr
ui
ty
be
er
[7
0]

D
ev
el
op
m
en
to
fa

pu
rg
e-
an
d-
tr
ap

ex
tr
ac
tio
n
m
et
ho
d

fo
ra
ro
m
a
ch
ar
ac
te
riz
at
io
n

Tr
ap

(P
&
T,
Te
na
x
TA

)
FM

TO
F

W
in
e
[7
2]

PI
L
co
at
in
g
fo
rS
PM

E,
in
cr
ea
si
ng

re
co
ve
ry
fo
rp
ol
ar

co
m
po
un
ds

H
S-
SP
M
E
(P
A
,D
V
B/
C
A
R/
PD

M
S,
th
re
e

PI
L
co
at
in
gs
)

FM
Q
/F
ID

C
of
fe
e
[8
1]

C
he
m
ic
al
pr
of
ili
ng

(w
ith

fo
cu
so
n
SV
O
C
s)
of
co
ffe
e

ro
as
tin
g
pr
oc
es
s

Tr
ap

(D
H
S,
C
SC

+
XA

D
-2
),

liq
ui
d-
ex
tr
ac
tio
n
(D
C
M
)

TM
Q
,

FI
D

C
oc
oa

[8
3]

Ta
rg
et
ed

an
d
un
ta
rg
et
ed

sa
m
pl
in
g
ap
pr
oa
ch
;

co
m
bi
ne
d
w
ith

lo
w
eV

M
S
io
ni
za
tio
n
fo
ri
m
pr
ov
ed

id
en
tif
ic
at
io
n
ca
pa
ci
ty

H
S-
SP
M
E

TM
TO

F

(C
on
tin
ue
s)



FRANCHINA et al. 193

T
A
B
L
E

1
(C
on
tin
ue
d)

Fi
el
d

Sa
m
pl
e
ty
pe

H
ig
hl
ig
ht
s

Sa
m
pl
e
pr
ep
ar
at
io
n

G
C
×
G
C

D
et
ec
to
r

O
liv
e
oi
l[
90
]

C
om

pa
ris
on

of
fo
ur
ex
tr
ac
tio
n
m
et
ho
ds
an
d
so
rb
en
ts

fo
rv
ol
at
ile

fin
ge
rp
rin

tin
g

H
S-
SP
M
E,
H
SS
E
(P
D
M
S,

PD
M
S/
C
ar
bo
pa
ck

B,
PD

M
S/
EG

),
M
M
SE

(O
D
S/
C
B)
,H

SS
E,
tr
ap

(D
H
S,

Te
na
x
TA

)

TM
TO

F

A
pp
le
[9
3-
94
]

in
vi
vo

an
d
ex
vi
vo
m
et
ab
ol
om

e
pr
of
ili
ng

us
in
g

ov
er
-c
oa
te
d
fib
er
fo
ri
m
pr
ov
ed

pe
rf
or
m
an
ce

H
S-
an
d
D
I-
SP
M
E

TM
TO

F

C
an
na
bi
s[
10
1]

Ta
rg
et
ed

an
d
un
ta
rg
et
ed

m
ul
tic
la
ss
m
et
ab
ol
ite

pr
of
ili
ng

us
in
g
a
si
ng
le
ex
tr
ac
tio
n

SB
SE

FM
,T
M

TO
F,

H
R
TO

F
Se
du
m
ro
se
um

ro
ot

fo
od

su
pp
le
m
en
t

[1
02
]

Ex
tr
ac
tio
n
an
d
ch
ar
ac
te
riz
at
io
n
of
lo
w
m
ol
ec
ul
ar

w
ei
gh
tc
ar
bo
hy
dr
at
es
an
d

ph
en
yl
al
ka
no
id
-g
ly
co
si
de
s

D
er
iv
at
iz
at
io
n

(s
ily
la
tio
n,
TM

SI
+
TM

SC
)

TM
TO

F

Es
se
nt
ia
lo
il
[1
06
]

LC
-p
re
fr
ac
tio
na
tio
n
fo
rt
he

an
al
ys
is
of
ox
yg
en
at
ed

sp
ec
ie
s

H
PL
C

TM
Q

A
vo
ca
do

[1
09
]

Pr
ot
oc
ol
fo
rd
ire
ct
de
te
rm

in
at
io
n
of
co
nt
am

in
an
ts
in

fa
tty

m
at
ric
es
ba
se
d
on

im
pr
ov
ed

fib
er
co
at
in
g

D
I-
SP
M
E

TM
TO

F

M
O
X,
m
et
ho
xa
m
in
e;
TM

SI
,N
-tr
im
et
hy
ls
ily
lim

id
az
ol
e;
BS
TF
A
,N
,O
-B
is
(tr
im
et
hy
ls
ily
l)t
rif
lu
or
oa
ce
ta
m
id
e;
TM

C
S,
ch
lo
ro
tr
im
et
hy
ls
ila
ne
;M

ST
FA

,N
-tr
im
et
hy
ls
ily
ltr
ifl
uo
ro
ac
et
am

id
e;
TM

A
H
,t
rim

et
hy
la
ni
lin
iu
m
hy
dr
ox
-

id
e.

or physical properties. Keeping in mind this unavoidable
bias-introduction, non-targeted strategies generally tend
to use wide-selectivity analytical steps to characterize
in-depth the samples, track and/or compare hundreds of
analytes between groups of samples to address specific
research questions. Like for the GC column chemistries,
different materials with variable selectivity are available
for the sorbent-based extractions. The discussion on the
different sorbent materials and their selectivity will not
be herein described, and a series of reviews and books are
provided for more detailed information [12,23,24,26].
Over this period of 5 years (2016–2020), we observed that

the characterization of volatilemetabolites frombiological,
food, and plant samples through headspace sampling rep-
resents the most common approach (57 %) used in combi-
nation with GC×GC. A dominant position for sampling is
held by SPME, which appears to be used preferably in the
HS mode (39%) rather than in DI mode (1%).

3.1 Biomedical-related

The interest for non-targeted metabolomic analysis in
biomedical research is in constant development, making it
one of the most active and promising fields of application.
Studies are mainly driven by the search for novel diagnos-
tic and prognostic biomarkers of heath-altered states, and
their basis relies on the fact that metabolite levels vary at
the early stage of the diseases. Early diagnosis together
with an increased understanding of human diseases would
allow improving the quality of life and expectations of the
patients. However, there are numerous challenges associ-
ated with biomarker discovery in this field. In particular,
the variability and complexity of the biological matrices
(i.e., biological fluids, biopsies, tissues, cell cultures), com-
prising thousands of metabolites characterized by a wide
range of concentrations and physicochemical properties,
are posing the major challenges. In addition, a single
analytical platform is not sufficient to exhaustively cover
and analyze such a broad range of metabolites, and thus
multiplatform strategies should ideally be sought [27]. The
diversity of the metabolome and the related difficulties to
identify de novometabolites delay the direct correlation or
mapping of (novel) biochemical pathways [28].
In view of the sample preparation techniques used over

the past 5 years, HS-SPME together with sorbent traps and
derivatization procedures have been the most used sam-
pling techniques, representing together ∼70% of the meth-
ods reported in the 2016–2020 literature (Figure 2).
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F IGURE 2 Distribution of the sample preparation types used in combination with GC×GC in the period 2016–2020. In the bar charts, the
bar on the left groups biomedical-related applications, and the one on the right groups the food- and plant-related applications

3.1.1 Biological fluids

Blood, urine, and exhaled breath have been thoroughly
studied matrices to identify potential biomarkers of
metabolism perturbations [29,30].
The growing interest for exhaled breath analysis can

be explained by its non-invasive nature, allowing its
use for a broad range of patients. Exhaled breath sam-
pling for GC×GC analysis is a two-stage process since
the direct injection into the separation system has not
yet been demonstrated. In most of the studies, breath
collection was performed using Tedlar sampling bags
before the pre-concentration on sorbent traps. In this case,
the pre-concentration step that enables sample enrich-
ment is particularly important, as analytes are present
in trace-levels. Over the past 5 years, trap tubes have
been the most commonly used sampling technique for
breath analysis [31–36], although a more recent trap-
ping technique, the NTME has demonstrated great poten-
tial for breath analysis [37]. Ideally, NTME devices and
trap tubes could be used for simultaneous collection
and pre-concentration avoiding the intermediate use of
Tedlar bags, but until today, only few specific devices
exist [38–40]. In a recent study, Wilde et al. opti-

mized the sampling parameters of a device enabling the
direct collection and pre-concentration of breath, with
no need for a derivatization step, onto trap tubes to
identify potential markers of acute breathlessness [35].
In their study, the trap tubes were desorbed in a flow-
modulated (FM)-GC×GC system with dual MS and flame
ionization detection (FID), combining high-separation
power, more uniform response factors, and identification
capabilities.
In another work, VOC bio-sampling in serum and

exhaled breath using trap tubes was evaluated among dif-
ferent packing materials, highlighting the importance of
the sorbent selection due to the different matrix contri-
butions (e.g., relative humidity effect on the sorbent type
and complexity) [41]. In Figure 3 is shown the longitudinal
sampling profile of some endogenous metabolites released
in breath after coffee ingestion using differently packed
tubes. Among the six tested sorbent traps, the tubes packed
with Tenax TA showed the best sampling performance in
terms of reproducibility and sensitivity, allowing longer
metabolite tracking times and higher consistency of the
measurements. The results reinforced the previous obser-
vations about the sampling for bacterial VOC (see Section
3.1.3) [42].
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F IGURE 3 Longitudinal tracking of breathmetabolites from coffee (-30, 0, 45, and 90minwith respect to its intake) using different sorbent
traps. Reproduced from [41] with permission from Elsevier

F IGURE 4 Different HS-SPME-GC×GC-MS chromatograms of a urine sample using different fiber sorbent phases. Reproduced with
permission from [43]

In the context of biofluids, SPME in HS mode is the
second most popular technique for volatile analytes
characterization by GC×GC [43–46]. Mack et al. evaluated
the efficiency of different HS-SPME fibers to measure
urinary volatile metabolites linked to dietary intake
[43]. As can be seen in Figure 4, a richer chromatogram
and higher extraction yields were obtained when using
the triphasic DVB/CAR/PDMS fiber, with the authors
pointing out the importance of careful evaluation and
optimization of the materials/conditions for analyte
extraction. In addition, they highlighted the impact of
data treatment and especially the normalization. They
compared different normalization approaches relying on

physiologic properties (i.e., osmolality, creatinine, and
urine volume), and data-driven normalizations (i.e., mass
spectral total useful signal and probabilistic quotient
normalization), and among six compounds identified as
potential markers of coffee consumption, only one was
confirmed independently of the normalization used.
The triphasic fiber is common and appears to be an opti-

mal fiber for biofluid analysis, and has been used to extract
VOCs from urine and blood for different objectives such as
asthma phenotyping [44], colorectal cancer diagnosis [45],
and fertility monitoring [46].
When seeking for increased metabolite coverage, for

example, high molecular weight and/or polar metabolites,
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F IGURE 5 GC×GC-MS chromatograms of derivatized (A) 40 standard steroids and two internal standards and (B) a human urine sample.
Reproduced from [47] with permission from the Royal Society of Chemistry

a derivatization procedure is widely used to make sugars,
amino acids, fatty acids, and steroids amenable for GC
analysis and to characterize them. Such metabolites are
essential to living organisms and their levels are most of
the time correlated to metabolism perturbations or disease
states. Even though the derivatization protocols make the
sample preparationmore extensive, their utilization can be
maximized in combination with GC×GC [47–55].
Bileck et al. described a non-targeted method for the

comprehensive analysis of steroid metabolites in urine

[47]. Using a previously optimized derivatization proce-
dure, they highlighted the complexity of the matrix and
the numerous co-elutions between urinary steroids and
other metabolites (Figures 5A–5B). The increased separa-
tion power ofGC×GCenabled the characterization of up to
70 steroids in urine from different sources (infants, adults,
and rodents) against 26 using classical GC– and LC–MS
methods.
Additional studies reported the increased characteriza-

tion of the urinemetabolome combining awell-established
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derivatization process and GC×GC separation, which
enabled to discover new tuberculosis markers reflecting
adaptations from the host-pathogen interaction and treat-
ment failure [48,49].
In some cases, the increased resolution provided by

GC×GC was not sufficient, and specific sample prepa-
ration was necessary for the determination of specific
classes of metabolites. For example, the derivatization
of serum and urine samples using methoxyamine and
MSTFA (1% TMSCI) yielded in the trimethylsilane adducts
of lactate and pyruvate that were not sufficiently different
to be separated. Instead, the use of one-step derivatization
protocol using MSTFA (1% TMSCI) enabled the sepa-
ration of the derivatized forms of lactate and pyruvate,
suggesting that variations in derivatization strategies may
further increase molecular feature detection in complex
biomedical samples [50].
At the cost of making the global sample preparation

more extensive, Di Giovani et al. insisted on the need for
careful optimization of each step of the extraction and
derivatization process together with a robust experimen-
tal design to identify serological biomarkers of Crohn’s
diseases, and long-term quality controls [52]. Here, the
optimized sample preparation procedure allowed identi-
fying 33 potential biomarkers in serum to discriminate
healthy volunteers from three subgroups of patients hav-
ing Crohn’s disease, namely with high, low, and quiescent
endoscopic activity.

3.1.2 Tissue and biopsies

When the starting material is a tissue, time-consuming
multistep sample preparation is required, especially
for hypothesis-generating, non-targeted metabolomics
studies. Sample homogenization, metabolites extraction,
and derivatization are some of the steps usually involved
in the sample preparation [50,56]. Joseph et al. identi-
fied some metabolites related to lipid metabolism in rat
muscle which could be used in therapeutic approaches
for monitoring type 2 diabetes and obesity [56]. However,
the sample preparation required approximately 14 h
of labor. Yu et al. developed and validated a sampling
protocol requiring only 2 h for metabolite extraction and
derivatization from tissue, demonstrating the potential for
further improvement towards high-throughput sample
preparation protocols [50].
The in vivo sampling and investigation of VOCs emit-

ted from human skin has been recently exploited and
investigated with GC×GC [57,58]. Roodt et al. described
a PDMS silicone rubber in the form of bracelets and
anklets to characterize the human skin microbiome [57].
After the passive sampling for 4 h, the bracelets were

thermally desorbed into the GC×GC inlet, enabling the
characterization of around 300 volatiles with acceptable
reproducibility (< 40 % RSD for 75 % of the detected com-
pounds). To analyze the heavier SVOCs from human skin,
Dolezal et al. reported the use of glass beads. Following a
cleaning step, the glass beads were handled and rolled in
the palms of the volunteers for 10 min. Hexane was then
used to extract the scent molecules [58].
As for breath analysis, such a straightforward and non-

invasive in vivo skin sampling holds high interest and
potential in the medical field. However, so far, not many
reports have made use of this alternative in vivo sampling
techniques with GC×GC, and further studies are required
to understand their full capabilities.

3.1.3 In vitro and cell culture-based

In vitro research is of particular interest since it enables the
study of biological processes leading to the production of
VOC and SVOC in an “easy-to-manipulate” environment
compared to in vivo systems.
HS-SPME is a commonly used approach in in vitro

studies, mainly due to its simplicity, reproducibility, and
possible automation [41,59–65]. Recently, this approach
was employed to study the volatile metabolites from
lung epithelial cells subjected to chemical and biological
inflammation using, hydrogen peroxide and sputum from
asthmatic patients, respectively [65]. A DVB/CAR/PDMS
fiber was selected to extract thewidest range of VOCs emit-
ted from the cell culture subjected to the different stressors.
According to the type of inflammation induced and the
associated status of the cells, different volatile metabolites
have been characterized. Increased production of volatile
compounds was reported following the co-incubation of
epithelial cells with inflammatory sputum when com-
pared to cells treated with non-inflammatory sputum
and non-treated cells. The principal component analysis
of Figure 6 is demonstrating the differentiation between
chemically and biologically stressed epithelial cells and
three different cellular controls consisting of non-treated
cells (green), cells diluted in PBS that is used to treat the
sputum samples (yellow), and cells treated with sputum
from healthy volunteers (pink). Such clear differentiation
is confirming the potential of volatile metabolites to reflect
the status of lung epithelial cells and therefore, alterations
in their metabolism.
HS-SPME has also been used to characterize virally

infected respiratory cells [60] and to study the volatile pro-
file of numerous bacteria and fungi [66,67]. Martins et al.
have evidenced differences in the extracellular volatile
metabolites of two different yeasts found in beer and wine
[66]. The analysis, using HS-SPME, of S. cerevisiae and
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F IGURE 6 Principal component analysis of the chemical and
biological induced inflammation on A549 lung epithelial cells using
selected features. Adapted and reproduced from [65], with permis-
sion from the Royal Society of Chemistry

S. pastorianus, at different sampling points corresponding
to different growth phases (lag, exponential, and logarith-
mic), revealed a high number of compounds that were
correlated with specific metabolic pathways. A similar
approach was used to study the extracellular and intracel-
lular metabolites on bacteria exposed to heavy metals [67].
In this case, the rapid extraction of bacterial volatiles (the
extracellular and intracellular fractions were obtained in
only 15 min and a 60 min SPME fiber exposure was neces-
sary to extract the volatile compounds) allowed identifying
the evolution in the volatile metabolome to further under-
stand bacterial survival in a contaminated environment.
Mousavi et al. reported the use of HS-SPME to successfully
follow metabolic changes of E. coli induced by natural
antibacterial agents such as clove oil and eugenol in real-
time and in vivo [68]. The treatment of E. coliwith clove oil
induced a dysregulation of 125 volatile metabolites, among
which derivatives formed along with the fatty acid biosyn-
thetic pathways, such as alcohols, ketones, and esters,
were the most affected. This exposition of SPME fiber
during the bacterial growth (in vivo) enhanced the amount
of chemical information that can be obtained from the
biological system under study while avoiding any a priori
samplemanipulation. Similarly, anHSSEmethodhas been
exploited to characterize antifungal VOC activity of bac-
teria and enabled to highlight new volatile metabolome
properties from the co-culture of bacteria and fungi
[69].

Thermal desorption tubes also represent a valid alterna-
tive for in vitro research sampling. The need for consistent
analyte extraction between in vitro and in vivo studies for
biomarker discovery and translation (e.g., breath or urine
and cell cultures) has been recently reported [42]. The
authors highlighted the importance of the sorbentmaterial
selection for the trap tubes in bacterial VOC sampling from
cultures. Indeed, the physicochemical characteristics of
the numerous adsorbentmaterials available are influenced
differently by the sampling conditions (e.g., humidity)
and sample complexity, affecting the final results. Figure 7
shows the heatmap of three bacterial strains (P. aerugi-
nosa, S. aureus, E. coli) involved in lung infections and
obtained with two differently packed traps. The better
separation of the three bacterial strains was highlighted
when using Tenax TA, thanks to its higher reproducibility
and metabolites coverage during the sampling.
Despite the advantages of HS-based sampling, the

study of cell and bacteria metabolism often requires the
characterization of SVOCs, which are intrinsically more
interrelated with the matrix and can be more challeng-
ing to extract. In these cases, conventional extractions
followed by derivatization techniques are the approaches
generally used. As an example, Miguez et al. used sily-
lation agents to study small polar metabolites from the
lycopene and mevalonate pathways of E. coli [70]. Among
these, homocysteine and homoserine have been identified
as possible growth inhibitors associated with the overnight
induction of the mevalonate pathway of E. coli. Their opti-
mized quenching protocol allowed the measurement of
the metabolites over 6 h with a high turnover rate. The
protocol provided an increased understanding of the
central carbon metabolism of E. coli that can be used to
drive pathway and strain engineering.

3.2 Food- and plant-related

The non-targeted analysis of metabolites in food- or
plant-related products commonly aims for obtaining a
chemical snapshot of the sample composition. Regarding
food-related products, the detection of small molecules
such as acids, alcohols, aldehydes, carbonyl compounds,
esters, ketones, phenols, or terpenoids is of high impor-
tance as this information can be used for a variety of
applications. For example, it allows controlling food
production processes, maintaining or improving food
quality, or developing a particular organoleptic property.
In plants instead, the chemical signature is related to a
particular metabolic setting of a physiological/altered
state. The study of small metabolites as a picture of
the metabolic state using high-resolution techniques
appeared in early 2000 and progressed until nowadays
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F IGURE 7 Heatmap and hierarchical cluster analysis showing the clustering of the control, and SA, PA and EC cultures using (A) Tenax
TA and (B) CarbopackY/CarbopackX/Carboxen1000 as sorbent materials. Adapted and reproduced from [42] with permission from Elsevier

with the continuous implementation of cutting-edge
analytical technologies [71]. In the context of GC×GC, the
recent years have seen the majority of the non-targeted
analysis in food and plant-related samples focusing on the
more volatile metabolites, thus exploiting HS techniques
(94 %) involving GPe (DHS, purge-and-trap (P&T), static
headspace (SHS)), and SPe (HS-SPME, HSSE).
Especially miniaturized sampling techniques allowing

for pre-concentration such as SPME, HSSE, and DHS
have shown to be useful to limit artifact formation and
match the analytical requirements of automation [72]. It
has become more and more evident that the hyphenation
of a robust sample preparation technique with advanced
GC×GC separation andMS detection is important and that
suitable software and data-handling tools with statistical
analysis are necessary to make proper use of the high-
density acquired information.
Regarding food- and plant-related products, 82 % of the

revised literature of the last 5 years used non-targeted
approaches (metabolite profiling and/or fingerprinting),
18 % aimed for a targeted approach, and∼80% involved the
use of HS-SPME.

3.2.1 Beverages

The understanding of the aroma composition, for exam-
ple, to improve sensory properties, is one of the main
focus in the analysis of beverages. The aroma, which can
be considered as a major consideration for consumers’
choice, derives primarily from its ingredients; however,
it is also strongly influenced by its production process.
Concerning the aroma and sensory studies of any kind
of beverage, surely the headspace sampling is the pri-
mary and most used technique exploited with GC×GC
[72].
The majority of the revised literature investigating alco-

holic beverages used SPME in HS-mode for aroma anal-
ysis. HS-SPME in combination with FM-GC×GC-MS has
been used to distinguish beers fermented with two dif-
ferent yeast strains. Multiway principal components anal-
ysis revealed 46 compounds, among the approximately
210 detected, which were relevant for the classifica-
tion [73]. Paiva et al. chose the commercially available
DVB/CAR/PDMS fiber to obtain the widest analyte cover-
age for their non-targeted analysis.
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Static (classical SHS,HS-SPME) and dynamicHS extrac-
tion techniques (DHS) have been compared for the aroma
analysis of Belgian Trappist beers [74]. The authors also
tested the extraction efficiency of classical and multiple
SBSE, concluding that DHS exhibited a satisfying trap-
ping efficiency for aroma VOCs while producing limited
chromatographic artifacts. An alternative dynamic sam-
pling, involving the use of P&T (Tenax TA) was explored
with a FM-GC×GC-MS system, discussing a straightfor-
ward and informative workflow for aroma analysis on dif-
ferent fruity beers [75]. As for theDHS, purge-and-trap rep-
resents a long-established dynamic technique, which con-
sists of pushing the VOCs continuously from the liquid
sample (bubbling an inert gas through the sample) into the
HS, resulting in a more efficient extraction of the analytes.
Also, this study is the first published paper reporting on the
combination of purge-and-trap with GC×GC.
In the quest for unique selectivity, ionic-liquid coatings

have been recently developed for sampling methods
[76,77], in addition to their use as stationary phase for GC
columns [78,79]. Few recent pieces of research reported on
the use of poly ionic-liquid (PIL)-based sorbent coatings
for HS-SPME in GC×GC [80,81]. Crucello et al. investi-
gated several non-ionic and PIL-based sorbent coatings for
HS-SPME, analyzing VOCs in Brazilian wine [80]. About
350 peaks were detected in four wine samples. Among
the five different fibers tested, the DVB/CAR/PDMS and
one of the PIL coated fibers exhibited improved selectivity
toward a broad range of aroma VOCs present in wine.
That particular PIL-coated fiber extracted more effectively
polar analytes found in wine compared to the popular
DVB/CAR/PDMS fiber because significantly higher dis-
tribution coefficients can be obtained with ionic liquid
coatings. Noteworthy is that some compounds were solely
detected employing the aforementioned PIL fiber. For
example, two of the four potential markers to distinguish
“Isabella” and “BRS Magna” wine cultivars, namely ethyl
butanoate and ethyl methyl succinate, were only extracted
when using the PIL-based SPME fiber.
Similarly, for non-alcoholic beverages such as tea and

coffee, HS-SPME has been extensively applied for the
analysis of infusions or dried plant material [82–84]. Nev-
ertheless, also the direct immersion approach (DI-SPME)
[82], simultaneous distillation extraction (SDE) [85], and
derivatization [86] have been reported.
Aroma components of several green tea and chestnut

were analyzed by Zhu et al., using two different sam-
ple preparation techniques (SDE and HS-SPME) [87]. The
authors considered SDE as themost suitable sample prepa-
ration technique for green tea aroma; however, due to
the poor solubility and volatility of chestnut aroma com-
pounds in the SDE solvents, HS-SPME was applied as an
alternative extraction technique. Eventually, (1) the com-

bination of SDE with GC×GC–MS used to determine the
odor activity value, and (2) the HS-SPME/GC–MS/GC-O
used for the identification of key odorants, revealed eight
VOCs as the most definite odorants to promote the forma-
tion of the chestnut-like aroma of green tea.
Magagna et al. sampled VOCs from the HS of dried

black tea leaves in different conditions (i.e., untreated,
suspended, and infused in water) [82]. The dry plant
material was sampled via HS-SPME, SBSE, and DHS and
the infusion via DI-SPME, and SBSE. The efficiency of
each sampling method was compared in terms of numbers
of analytes extracted and their response. Significant differ-
ences in extraction capabilities were shown, depending on
the technique used. On one hand, DHS and HSSE (both
using PDMS) revealed good recovery of less polar and low
volatility analytes such as saturated aldehydes (C10 to C18),
methyl ketones (C11 to C15), and somemedium-chain alco-
hols. On the other hand, HS-SPME (DVB/CAR/PDMS)
showed the highest suitability for highly-volatile aldehy-
des (C5 to C7) and was therefore considered by the authors
as the most suitable sampling technique to establish
aroma fingerprinting. Nevertheless, the authors suggested
that the most comprehensive chemical signature would
be provided by the combination of the complementary
information offered by the different sampling approaches.
Similarly, the chemical composition of raw coffee has

been correlated to the end products’ quality, authentic-
ity, and sensory properties [88]. Novaes et al. reported a
method for the analysis of low volatility compounds in
green Arabica coffee extracts without the need for prior
fractionation or another pre-treatment (e.g., derivatiza-
tion) [89]. After liquid-liquid extraction (at circa 77◦C),
samples were subjected to high-temperature GC and
GC×GC. The GC×GC set-up, consisting of a relatively
short 1D column (11 m) and therefore requiring the opti-
mization of some separation conditions such as trap
temperature, oven temperature program, and flow rate,
allowed for the elution also of thermo-labile and low
volatility compounds. Despite minimal sample prepara-
tion, superior performances of GC×GC in comparison to
GC resulted in improved compound identification and
group-type analysis of the approximately 200 detected
compounds. The same authors developed a sampling pro-
tocol for the trapping of VOCs and SVOCs during the roast-
ing process of coffee beans [88]. For the dynamic sam-
pling, the authors tested two different sorbents (XAD-2
and CSC). Figure 8 displays the GC×GC results for VOCs
and SVOCs extraction of the coffee roasting process using
XAD-2 (left side) andCSC (right side) adsorbents for differ-
ent time-intervals. The boxed zones highlight SVOCs elu-
tion regions. Figure 8 readily demonstrates that the use of
XAD-2 for the sample preparation, in combination with
a high-temperature column set for the two-dimensional
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F IGURE 8 GC×GC results for VOCs and SVOCs extraction (DHS) of the coffee roasting process using flow-through/active sampling
with two different adsorbents (XAD-2 and CSC, on the right and on the left, respectively) at different roasting time intervals. The boxed zones
highlight SVOC elution regions. Adapted and reproduced from [88] with permission from Elsevier

separation allowed the specific identification of SVOCs for
the chemical profiling of the roasting process.

3.2.2 Plant-based edibles

The assessment of quality represents often a central aim
in the research field of edibles, and the combination of
robust sample preparation and high-resolution separation
techniques contribute to provide dense information about
sample composition. Among themost common food prod-
ucts derived from plants, cocoa and hazelnut composition
have been studied deeply using HS techniques [90–94].
For example, the volatile metabolome of cocoa from dif-

ferent regions was analyzed using HS-SPME and GC×GC-
MS [90]. The SPMEmethod was standardized, pre-loading
an internal standard (α-thujone) onto the fiber before
sampling for the normalization of analyte response. In
their study, they exploited the complexity of the cocoa
headspace to develop new workflows for non-targeted and
targeted analysis. Also, they highlighted the value of the
combination of softer ionization with conventional elec-
tronic ionization to increase the level of confidence for the
identification of VOCs.
The HS of vegetable oils generally carries sensory-

relevant information which can be used not only to define
the quality but also to discriminate different varieties and
geographical origins. HS-SPMEwas used by Lukić et al. for



202 FRANCHINA et al.

F IGURE 9 PCA scores plot of in vivo DI-SPME data for apples with higher maturity index (green circles), apples with lower maturity
index (blue circles), and ex vivo HS-SPME data obtained for control samples (red circles). Reproduced from [100]

the characterization and differentiation of virgin olive oils
made from different varieties grown in different regions
[95].
Multiple headspace sampling techniques have been

applied to study the complex volatilome of olive oils
[96]. The extraction capabilities of static (HSSE, HS-
SPME), monolithic material sorptive extraction, and
dynamic headspace extraction (DHS), were compared
as well as several sorbent materials (DVB/CAR/PDMS,
PDMS, PDMS/Carbopack B, PDMS/EG, ODS, ODS/GC,
and Tenax TA). Interestingly, the authors pointed out that
the sampling techniques with higher amounts of sorbent,
such as HSSE and DHS (Tenax TA), gave better results
in terms of concentration capacity, resulting in a higher
extraction yield. However, they focused the attention prin-
cipally on the use of the HS-SPME approach and discussed
how the combination of such a technique can successfully
be integrated with GC×GC-MS.
On the less volatile fraction of vegetable oils, derivati-

zation approaches for the characterization of the minor
components (unsaponifiable fraction) were also proposed,
combining a silylation method with GC×GC-high resolu-
tion (HR)MS [97] and aminiaturized-SPEwith dual detec-
tion GC×GC-MS/FID [98].
After the relevant contribution from Risticevic et al.

showing the potential of DI-SPME [16], further in vivo and
in situ apple metabolome studies have been performed
[99,100]. In these studies, the authors confirmed the fea-

sibility of the approach to provide unbiased metabolite
coverage, compared to traditional approaches requiring
metabolism quenching and laborious sample preparation.
Apple was used as a living plant sample to detect changes
in metabolic fingerprints in response to fruit maturation.
An overcoated triphasic SPME fiber was used, showing
more effective cleanup and reduced decomposition prod-
ucts. In these works, esters were the most important con-
tributors to the aroma profile of apples, both in quan-
titative and qualitative terms. Also, the comprehensive
metabolome coverage obtained with in vivo DI-SPME was
reflected by the extraction of aldehydes, ketones, alcohols,
aromatic compounds, carboxylic acids, aromatic aldehy-
des, aromatic ketones, benzyl alcohols, alkanes, benzyl
acetates, and glycol ethers, as well as metabolites originat-
ing from the lipoxygenase pathway. For the esters profil-
ing, the structurally ordered GC×GC chromatograms sup-
ported the identification of 13 acetates, 5 propanoates, 10
butanoates, and ethyl hexanoates. Interestingly, a compar-
ison of the in vivo sampling on the intact apple with the ex
vivo sampling following homogenization and metabolism
quenching, revealed differences in metabolites, corrobo-
rating the fact that the metabolome is influenced by the
sample preparation procedure and that many metabolites
can be produced or altered during this step (Figure 9).
The analysis of fatty acids in foodstuff is another com-

mon area of research, which typically involves the deriva-
tization and isolation of targeted classes before theGC×GC
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F IGURE 10 Apex/dot plot with the identified FFAs in edible oils using the MDE followed by GC×GC-MS (a). Saturated FFAs (b), C14:N
(c), C16:N (d), C18:N (e), C20:N (f), C22:N (g), in edible oils using the magnetic dispersive extraction followed by GC×GC-MS analysis. Cx:y represent
the carbon number and the unsaturation degree of the fatty acids. Reproduced from [101] with permission from Elsevier

separation. The determination of free fatty acids in edi-
ble oils is particularly important for quality and authen-
ticity control, and it was recently investigated by per-
forming magnetic dispersive extraction (MDE) followed
by derivatization using silylation agents [101]. The extrac-
tion method combined the advantages of magnetic solid-
phase extraction and dispersive liquid-liquid microextrac-
tion. However, the multiple steps and the emulsification
issues can impede its widespread use. After the extraction,
free fatty acids were derivatized using silylation agents,
concentrated, and then injected in a GC×GC-MS system.
The authors highlighted the help given by the regular and
predictable patterns of the homolog fatty acids,which facil-
itated the qualitative analysis of fatty acids without the use
of analytical standards (Figure 10).

3.2.3 Plant parts and extracts

The non-targeted analysis of plant parts and extracts
usually aims at the better characterization of the sam-
ples and understanding of biochemical processes, and
the acquired knowledge could support in correlating the
health-beneficial properties of the natural products.
The composition of a variety of plant extracts or resins

used in traditional oriental medicine has been charac-
terized by GC×GC [102,103]. The analysis of these typi-
cally complex natural products benefits substantially from
the increased separation power allowing for the precise
determination of the compounds with potential biologi-
cal activity [102]. In a comparative study of the volatile
metabolite profiles of resin from fiveDracaena species, HS-
SPME–GC×GC–MSallowed identifying 20 terpenoid com-
ponents. It was found that the terpenoid compounds are

species-specific and that the monoterpene fraction could
serve to determine chemotaxonomic markers [103].
The VOCs from Frankincense (the gum resin of

Boswellia papyrifera), which also present potent antimi-
crobial activities, were studied using a PDMS/DVB SPME
fiber allowing the detection of about 220 compounds in
a single analysis [104]. Group-type separation allowed for
the classification of monoterpenes, sesquiterpenes, and
diterpenes, and unidentified compounds could be further
classified based on the elution pattern and mass spectral
information.
A continuously emerging field is the analysis of

cannabis and its related products, which are mainly used
for their psychoactive and medicinal activities. About
500 compounds have been identified and, among them,
cannabinoids and terpenoids currently hold the high-
est interest for their biological and synergistic activity.
Conventional studies have led to protocols optimized
for the analysis of a few targeted analytes or chemical
classes. Instead, GC×GC has shown its advantages in the
multiclass and high-resolution analysis of a variety of
analytes [105,106]. In a recent approach, a methodology
involving the use of SBSE was employed for the multiclass
metabolite profiling of cannabis inflorescences [107]. The
SBSE was selected to cover the high molecular weight
metabolites, and particular attention was dedicated to the
optimization of the extraction conditions in order to extend
the analytes class coverage (Figure 11). Using a fractional
factorial design, five chemical classes were considered
to optimize the extraction conditions in a non-targeted
fashion. Figure 11A shows the response trends under the
different extraction variables and levels considering the
investigated classes, which were group-type separated
in the GC×GC space and tracked using characteristics
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F IGURE 11 A) Response plots under different extraction conditions of monoterpenes, sesquiterpenes, hydrocarbons, cannabinoids, and
terpenoid alcohols and fatty acids. B) SBSE FM-GC×GC-MS chromatogram of a cannabis inflorescence sample. Adapted and reprinted with
permission from [107]. Copyright 2020 American Chemical Society

ions (Figure 11B). Under optimized conditions, different
cannabis chemovars belonging to sativa, indica, and
hybrid subspecies were analyzed combining SBSE with a
FM-GC×GC-MS system. In addition to chemotype clas-
sification, quantitative analysis was performed on three
common cannabinoids (THC, CBD, and CBN). Note-
worthy, the non-targeted sampling strategy found also
confirmation with the detection of exogenous compounds
like pesticides, plasticizers, and cannabinoids degradation
products, which were identified with high confidence by
using high-resolution MS (SBSE-GC×GC-HR MS).
Some high molecular weight molecules, such as small

carbohydrates and phenylalkanoid glycosides play an
important role in the biological activity of plants. Even
though these molecules are typically analyzed via HPLC,
Carrero-Carralero et al. reported a derivatization proto-
col employed in combination with GC×GC for the anal-
ysis of Sedum roseum root dietary supplement [108]. In
this uncommon choice of analyzing sugar and glycosides,
the authors highlighted the importance of the optimiza-
tion of the derivatization step (silylation) for the class of
phenylpropanoid glycosides. The final derivatization pro-
cedure allowed for the complete and reproducible identi-
fication and quantification of targeted compounds with a
GC-based system. Also, the non-targeted analysis revealed
the presence of a variety of other important compounds
such as polyphenols, terpenes, phenylalkanoids, carbohy-
drates, and glycosides which were co-extracted and sepa-
rated in the high-resolution chromatographic system.
Essential oils and other plant extracts from aromatic

plants are widely appreciated in the food and flavor indus-
try due to their olfactory properties. Essential oils, typically
obtained by hydrodistillation, are mainly injected directly,
although a sample preparation step beforehand can be ben-

eficial to increase selectivity. For example, an additional
liquid-liquid extraction combined with high-resolution
GC×GC-MS (QTOF) was used for the detailed chemo-
typic profiling of essential oils of different hop genotypes
[109]. Bendif et al. compared the extract of T. munbyanus
obtained via hydrodistillation, pressurized liquid extrac-
tion (PLE), and supercritical fluid extraction (SFE) [110].
The authors discussed the impact of solvent polarity using
PLE, and how the different ratios resulted in various total
phenolic content which was related to the antioxidant
activities. However,major differenceswere observed in the
metabolic profile of essential oils obtained via hydrodis-
tillation, mostly characterized by the presence of typical
terpenoids, whereas the more lipophilic SFE extracts con-
tained higher amounts of long-chain hydrocarbons and
tocopherols.
Other pre-separation procedures, especially those based

on chromatographic techniques have been proposed to
select specific fractions of interest. Tissandie et al. reported
a detailed investigation of vetiveryl acetates and vetiver
oils and related it to the final olfactory properties [111]. A
series of SPE cartridges (i.e., silica and silver) were used
to isolate the different chemical classes before GC×GC-
MS/FID for qualitative and quantitative analysis. The
authors exploited the different SPE characteristics and
elution solvents polarity to obtain a selective fractioning
of the samples (i.e., hydrocarbons, esters, aldehydes and
ketones, tertiary alcohols, and vetivones) for detailed
characterization. The authors finally concluded that
the GC×GC analysis of vetiveryl acetates allowed more
reliable quantification of their constituents, superior to
what the conventional GC-FID could offer.
Another powerful approach that also holds the pos-

sibility for automation and on-line configuration, is the
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use of liquid chromatography as a pre-fractionation step
before the GC×GC separation. A detailed qualitative anal-
ysis of the volatile fractions of mandarin and lime essen-
tial oils was achieved by combining HPLC and GC×GC–
MS [112,113], although in an off-line configuration in these
examples. The pre-separation using a normal phase HPLC
process aimed at the isolation of the oxygenated com-
pounds contributing to the composition of the essential
oils.
Hydrodistillation followed by a hybrid heart-cut GC-GC

and GC×GC-MS system was combined for the analysis
of hop (Humulus lupulus L.) essential oil and agarwood
(Aquilaria malaccensis) oleoresin [114]. This represents a
neat example to show the close relation of sample prepara-
tion and multidimensional chromatography in contribut-
ing to the removal of interferences and the increase of sen-
sitivity. In this configuration, the initial heart-cut GC-GC
acted as the sample preparation step and replaced a con-
ventional fractionation step, allowing to isolate the frac-
tion of interest which was then further subjected to the
high-resolution GC×GC separation. Figure 12 shows the
analysis of oxygenated sesquiterpenes in agarwood oleo-
resin using GC-FID (Figure 12A), heart-cut GC–GC (Fig-
ure 12B), and GC–GC×GC–MS (Figure 12C). An extension
of compound coverage concerning oxygenated sesquiter-
penes was apparent when samples were subjected to the
high-dimensional separation system (GC-GC×GC–MS).
Generally, the use of DI-SPME appears not common,

especially in the case ofmatriceswith high-fat content, and
due to issues related to the direct exposure of the coating
with the matrix (lack of reproducibility, poor sensitivity, or
insufficient ruggedness).
Noteworthy, DeGrazia et al. [115] presented an approach

for DI-SPME analysis of high-fat content matrices (in avo-
cado puree). A commercially available PDMS/DVB fiber
was over-coated with an additional layer of PDMS to
enhance inertness and prevent fouling of the fiber sur-
face. Critical parameters for the sample extraction such as
pre-desorption rinsing and post-desorption washing were
optimized for time, solvent mixture, and agitation condi-
tions, to assure satisfactory sensitivity and reproducibil-
ity of the method [4]. In their study, the utilization of
GC×GC provided sufficient resolution for the evaluation
of the fiber coatings. Indeed, the multidimensional sep-
aration allowed the assessment of the degree of matrix
accumulation in the fiber and/or the formation of artifacts
at the injector port, for example, resulting in high back-
ground signals and very complex 2D chromatograms. The
modified PDMS/DVB/PDMS coating showed superior per-
formance regarding its robustness which permitted more
than 100 consecutive extraction cycles. Finally, themethod
was automated, resulting in a high-throughput approach
with minimal sample preparation for food analysis.

F IGURE 1 2 Sequential GC-GC×GC-MS analysis of the oxy-
genated sesquiterpenes in A. malaccensis oleoresin. (Ai) 1D FID
response, the region to be heart-cut (H/C) is denoted by the dotted
rectangle, with an inset (Aii) of the expansion of the target region.
(Bi) H/C GC-GC-MS analysis of the target region and with an inset
(Bii) of the 1DFID response. (C)GC-GC×GC-MSanalysis of the target
region. Reprinted with permission from [114]. Copyright 2020 Amer-
ican Chemical Society

4 CONCLUSIONS AND PERSPECTIVES

The affinity and complementarity between a generic
sample preparation technique and the GC×GC sepa-
ration was herein considered and commented. Recent
biomedical, food, and plant applications (2016-2020) were
also discussed, specifically those in which non-targeted
analysis was sought, and the combination of tailored
sample preparation methods and GC×GC-MS has proven
to be beneficial.
Even though common features between a typical sample

preparation and the GC×GC separation can be identi-
fied (Figure 1), the full optimization of the two processes
remains fundamental for reliable and reproducible results,
especially in the challenging aspects of non-targeted
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analysis in biomedical, food, and plant applications.
Moreover, their combination with the identification
capability of mass spectrometry generates the most pow-
erful and flexible analytical platform for complex sample
analyses. Indeed, a complete analytical methodology that
exploits (1) a wide and an unbiased analyte extraction from
the sampling step, and (2) the sensitivity, the separation,
and identification power from the GC×GC separation
and the MS detection, represents a solid advantage for
non-targeted analysis.
In the quest for greener, miniaturized, faster, selec-

tive/universal, and robust sampling strategies, it will be
interesting to see how some recently developed sam-
pling alternatives (vacuum-based, thin-film, paper-based,
freeze-concentration, or solvent-assisted SPe techniques
[116–119]) will perform with GC×GC.
An additional aspect to consider indeed is the use of

GC×GC to discover new sample preparation techniques
and to fully exploit, evaluate, and refine the existing ones.
In fact, the GC×GC increased separation power provides
a more comprehensive overview of the sampling perfor-
mance, and finally of the sample composition.
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