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How to automate LiDAR point cloud 

sub-sampling with Python 

The ultimate guide to subsample 3D point clouds from scratch, with 

Python. Two efficient methods are shown to import, process, structure 

as a voxel grid, and visualise LiDAR data. 

Point cloud sampling results by following the strategies explained in this guide. © F. Poux 

In this article, I will give you my two favourite 3D processes for quickly 

structuring and sub-sampling point cloud data with python. You will also 

be able to automate, export, visualize and integrate results into your 

favourite 3D software, without any coding experience. I will focus on code 

optimization while using a minimum number of libraries (mainly 

NumPy) so that you can extend what you learnt with very high flexibility! 

Ready 😁? 

Why do we need to sub-sample 

point clouds? 
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Point cloud datasets are marvellous! You can get a geometric description 

of world entities by discretizing them through a bunch of points, which, 

aggregated together, resemble the shape — the environment — of interest. 

 

This is a point cloud of an abandoned wool factory. It was obtained by combining 3D Laser scanning 

technology with photogrammetry. We created it with my friend Roman Robroek. While super 

interesting, learning underlying 3D capture techniques extends the scope of the article. 

But a major problem with 3D point clouds is that the data density may be 

more than necessary for a given application. This often leads to higher 

computational cost in subsequent data processing or visualisation. To 

make the dense point clouds more manageable, their data density can be 

reduced. This article provides you with the knowledge and actual scripts 

to implement sub-sampling methods for reducing point cloud data 

density. 

 

Adapting the number of points in the point cloud is often a savant use of domain knowledge to balance 

representativity & information redundancy. © Florent Poux 

Let us dive in 🤿! 
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Some light 3D theory, don’t 

you think? 
Ha, I tricked you 🙃. Before directly diving to the implementation of 

sampling strategies, let us first review the typical sub-sampling methods 

for point cloud data thinning. These include the random, the minimal 

distance and the grid (often tagged as uniform) methods. The random 

method is the simplest for reducing data density, in which a specified 

number of data points is selected randomly. 

The point cloud of this indoor room is sampled randomly. © Florent Poux 

In the minimal distance method, the data point selection is constrained 

by a minimum distance so that no data point in the selected subset is 

closer to another data point than the minimum distance specified. 
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The point cloud is sampled spatially, by making sure each point is at least 2 cm (scenario 1) or 5 cm 

(scenario 2) from any point. © Florent Poux 

In the grid method (which can be uniform), a grid structure — the handier 

being a voxel grid structure — is created and a representative data point is 

selected. 

The point cloud is sampled using a voxel grid, with different voxel sizes. For each voxel, one 

representative point is retained. © Florent Poux 
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The latter two methods can achieve a more homogeneous spatial 

distribution of data points in the reduced point cloud. In such cases, the 

average data spacing is determined by the minimal distance or the voxel 

edge length specified. 

Okay for the theory, let us put it into action 🤠! 

Step 1: Launch your Python 

environment. 
In the previous article below, we saw how to set-up an environment easily 

with Anaconda and how to use the IDE Spyder for managing your code. I 

recommend continuing in this fashion if you set yourself up to becoming a 

fully-fledge python app developer 😆. 

Discover 3D Point Cloud Processing with Python 

Tutorial to simply set up your python environment, start processing and 

visualize 3D point cloud data.towardsdatascience.com 

But hey, if you prefer to do everything from scratch in the next 5 minutes, 

I also give you access to a Google Colab notebook that you will find at the 

end of the article. There is nothing to install; you can just save it to your 

google drive and start working with it, also using the free datasets from 

Step 2 👇. 

In the Google Colab file, you can just run the script cell by cell and benefit from a direct coding 

experience, on the web. A great way to start experimenting with Python. (Yes, cats are walking in the 

window 😺). © F. Poux 

https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
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Step 2: Download a point 

cloud dataset 
In previous tutorials, I illustrated point cloud processing and meshing 

over a 3D dataset obtained by using photogrammetry: the jaguar, that you 

can freely download from this repository. 

In this tutorial, we will extend the scope, and test on a point cloud 

obtained through an aerial LiDAR survey. This is an excellent opportunity 

to introduce you to the great Open Data platform: Open Topography. It is 

a collaborative data repository for LiDAR users. Through a web map, you 

can select a region of interest, and download the related point cloud 

dataset with its metadata in different file formats (.laz, .las or as an ASCII 

file). 

Download a point cloud of interest from the OpenTopography Open Data Platform. This will be the 

dataset that we will use for this tutorial. © Florent Poux 

At this phase, what is important to know is that you can easily process 

both the ASCII file and the .las file with python (the .laz is more tricky). 

The .las file is far more compressed than the ASCII file (355 Mo vs 1026 

Mo for the example in this guide), but it will necessitate that you use a 

library called LasPy. So now, if you need 3D point cloud datasets over a 

large region, you know where you can find great datasets easily 🗺️. 

https://learngeodata.eu/
https://drive.google.com/drive/folders/1Ih_Zz9a6UcbUlaA-puEB_is7DYvXrb4w?usp=sharing
https://www.opentopography.org/
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🤓 Note: For this how-to guide, you can use the point cloud in this 

repository, that I already filtered, colourized and translated so that you 

are in the optimal conditions. If you want to visualize and play with it 

beforehand without installing anything, you can check out the webGL 

version. 

Okay, now that we are set-up, let us write some code 💻. First, we install 

the library package that is missing to read .las files. If you are with 

anaconda, I suggest you run the following command by looking up the 

conda-forge channel: 

conda install -c conda-forge 

Else, in general, you can use the pip package installer for Python by 

typing: 

pip install laspy 

Then, let us import necessary libraries within the script (NumPy and 

LasPy), and load the .las file in a variable called point_cloud. 

import numpy as np 

import laspy as lp 

input_path="gdrive/My Drive/10-MEDIUM/DATA/Point Cloud 

Sample/" 

dataname="NZ19_Wellington.las" 

point_cloud=lp.file.File(input_path+dataname+".las", mode="r") 

Nice, we are almost ready! What is great, is that the LasPy library also 

give a structure to the point_cloud variable, and we can use 

straightforward methods to get, for example, X, Y, Z, Red, Blue and Green 

fields. Let us do this to separate coordinates from colours, and put them 

in NumPy arrays: 

points = np.vstack((point_cloud.x, point_cloud.y, 

point_cloud.z)).transpose() 

colors = np.vstack((point_cloud.red, point_cloud.green, 

point_cloud.blue)).transpose() 

🤓 Note: We use a vertical stack method from NumPy, and we have to 

transpose it to get from (n x 3) to a (3 x n) matrix of the point cloud. 

And we are set up! Moving on to step 3 👇. 

https://drive.google.com/file/d/12Iy4fkJ1i1Xh-dzGvsf_M66e8eVa1vyx/view?usp=sharing
https://drive.google.com/file/d/12Iy4fkJ1i1Xh-dzGvsf_M66e8eVa1vyx/view?usp=sharing
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/358/1377563e-a899-850a-5047-da4904ed443f
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/358/1377563e-a899-850a-5047-da4904ed443f
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Step 3: Choose a sampling 

strategy. 
We will focus on decimation and voxel grid sampling. Now is the time to 

pick a side 🙂 

💡 Hint: I will give you code scripts that actually maximize the use of 

NumPy, but know that you can achieve similar results with widely 

different implementations (or through importing other packages). The 

main difference is often the execution time. The goal is to have the best 

execution runtime while having a readable script. 

Strategy 1: Point Cloud Random subsampling 
If we define a point cloud as a matrix (m x n), then the decimated cloud 

is obtained by keeping one row out of n of this matrix : 

 

At the matrix level, the decimation simply acts by keeping points every nth row depending on the n 

factor. Of course, this is made based on how are stored the points in the file. © F. Poux 

Slicing a list in python is pretty simple with the command 

l[start:end:step]. To shorten and parametrize the expression, you can just 

write the lines: 

factor=160 

decimated_points_random = points[::factor] 
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🤓 Note: Running this will keep 1 row every 160 rows, thus diving the 

size of the original point cloud by 160. It goes from 13 993 118 points to 87 

457 points. 

 

Top-view of the point cloud and its decimated counterpart. © F. Poux 

Strategie 2: Point Cloud Grid Sampling 
The grid subsampling strategy will be based on the division of the 3D 

space in regular cubic cells called voxels. For each cell of this grid, we will 

only keep one representative point. This point, the representant of the 

cell, can be chosen in different ways. For example, it can be the barycenter 

of the points in that cell, or the closest point to it. 

 

Illustration of the voxel grid sampling methodology. © F. Poux 

We will work in two sub-steps. 
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1. First, we create a grid structure over the points. For this, we actually 

want to initially compute the bounding box of the point cloud (i.e. the box 

dimensions that englobe all the points). Then, we can discretize the 

bounding box into small cubic grids: the voxels. These are obtained by 

setting the length, width and height of the voxel (which is equal), but it 

could also be set by giving the number of desired voxels in the three 

directions of the bounding box. 

voxel_size=6 

nb_vox=np.ceil((np.max(points, axis=0) - np.min(points, 

axis=0))/voxel_size) 

🤓 Note: You can see the little axis=0 that is actually fundamental if you 

want to be sure you apply the max method “per column”. The ceil then 

will make sure to keep the ceiling of the difference (element-wise), and 

thus, when divided by the voxel_size, it returns the number of empty 

voxels in each direction. With a cubic size of 6 m, we get 254 voxels along 

X, 154 voxels along Y and 51 along Z: 1 994 916 empty voxels. 

2. For each small voxel, we test if it contains one or more points. If it does, 

we keep it, and we take note of the points indexes that we will have to link 

to each voxel. 

non_empty_voxel_keys, inverse, nb_pts_per_voxel = np.unique(((points 

- np.min(points, axis=0)) // voxel_size).astype(int), axis=0, 

return_inverse=True, return_counts=True) 

idx_pts_vox_sorted=np.argsort(inverse) 

🤓 Note: We want to work with indices rather than coordinates for 

simplicity and efficiency. The little script above is a super-compact way to 

return the “designation” of each non-empty voxel. On top, we want to 

access the points that are linked to each non_empty_voxel through 

idx_pts_vox_sorted, and how many there are (nb_pts_per_voxel). This 

is done by first looking out unique values based on the integer “indices” 

gathered for each point. The argsort method is actually returning the 

index of the points that we can later link to the voxel index. 
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The grid obtained over the point cloud data. © F. Poux 

3. Finally, we compute the representant of the voxel. I will illustrate this 

for both the barycenter (grid_barycenter) and the closest point to the 

barycenter (grid_candidate_center). 

💡 Hint: The use of python dictionaries to keep the points in each voxel 

is my recommendation. This sparse structure is more adapted than full 

arrays which will use all your memory on bigger point clouds. A 

dictionary cannot take a [i, j, k] vector of coordinates as key if it is a list, 

but converting it to a tuple (i, j, k) will make it work. 

• We initialise self-explanatory variables of which a counter 

last_seen: 

voxel_grid={} 

grid_barycenter,grid_candidate_center=[],[] 

last_seen=0 

• We create a loop that will iterate over each non-empty voxel, while 

allowing to work with both the index idx of the array, and the value 

vox, which is actually the [i, j, k] of the voxel. 

for idx,vox in enumerate(non_empty_voxel_keys): 

• Then (don’t forget to indent) we feed the loop with a way to 

complete the voxel_grid dictionary with contained points. 
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   voxel_grid[tuple(vox)]= points[idx_pts_vox_sorted[ 

   last_seen:last_seen+nb_pts_per_voxel[idx]]] 

• Still in the loop, you can now pick/compute the representative of 

the voxel. It can be the barycenter that you append to the list of all 

barycenters: 

   grid_barycenter.append(np.mean(voxel_grid[tuple(vox)],axis=0)) 

• Or it can be the closest point to the barycenter (uses Euclidean 

distances): 

   grid_candidate_center.append( 

   voxel_grid[tuple(vox)][np.linalg.norm(voxel_grid[tuple(vox)] - 

   np.mean(voxel_grid[tuple(vox)],axis=0),axis=1).argmin()]) 

 

Notice the difference of results between the voxel subsampling keeping the barycenter (white points) vs 

the closest point to it (red points). © F. Poux 

• Finally, don’t forget to update your counter, to make sure the 

selection in the array of points is correct: 

   last_seen+=nb_pts_per_voxel[idx] 

🤓 Note: Most of my M.Sc. students will accomplish the task with a 

bunch of imbricated “for” or “while” loop. It does work, but it is not the 

most efficient. You have to know Python is not very optimized with loops. 

Thus, when processing point clouds (which are often massive), you 

should aim at a minimal amount of loops, and a maximum amount of 

“vectorization”. With NumPy, this is by “broadcasting”, a mean of 

vectorizing array operations so that looping occurs in C instead of Python 

(more efficient). Take the time to digest what I do in this third step 
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(especially the details of playing with indexes and voxels), or check out 

the Google Colab script for more in-depth information. 

This voxel sampling strategy is usually very efficient, relatively uniform, 

and useful for downward processes (but this extend the scope of the 

current tutorial). However, you should know that while the point spacing 

can be controlled by the size of the grid, we cannot “accurately” control 

the number of sampling points. 

Step 4: Visualize your results 
To simply visualize in-line your results (or within Python), you can use 

the matplotlib library, with its 3D toolkit (see the previous article for 

understanding what happens under the hood). Run the following 

command, illustrated over the decimated point cloud : 

import matplotlib.pyplot as plt 

from mpl_toolkits import mplot3d 

decimated_colors = colors[::factor] 

ax = plt.axes(projection='3d') 

ax.scatter(decimated_points[:,0], decimated_points[:,1], 

decimated_points[:,2], c = decimated_colors/65535, s=0.01) 

plt.show() 

🤓 Note: Looking at the number of possible points, I would not 

recommend in-line visualisation with classical libraries such as 

matplotlib if your subsampled results exceed the million mark. 

 

The decimated point cloud visualized in MatplotLib within Python. © F. Poux 

https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
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In the very likely event your point cloud is too heavy for visualizing this 

way, you can export the data in an eatable file format for your software of 

choice. To get an ASCII file, you can use the command: 

np.savetxt(output_path+dataname+"_voxel-best_point_%s.poux" % 

(voxel_size), grid_candidate_center, delimiter=";", fmt="%s") 

🤓 Note: A “;” delimited ASCII file is created, ending with .poux 🤭. The 

“fmt” command is to make sure the writing is most standard, for example 

as a string. 

💡 Hint: If you also want to make operations to retrieve the colour of 

voxels representatives, be careful with the NumPy dtype of the sum of 

colours. The colour type “uint16” can take values from 0 to 65535. 

Change the type when summing and go to uint16 (or uint8) after the 

final division. 

Step 5: Automation in 3D 

processing 
Now that you addressed steps 1 to 4, it is time to create functions and put 

them together in an automated fashion 🤖. Basically, we want (a) to load 

the data and libraries, (b) set parameters value, (c) declare functions, (d) 

call them when needed, (e) return some kind of results. This can be to 

show in-line the results and/or to export a sampled point cloud file to be 

used in your 3D software, outside of Python. 

You already know how to do a, b and e, so let us focus on b and c 🎯. To 

create a function, you can just follow the provided template below: 

def cloud_decimation(points, factor): 

   # YOUR CODE TO EXECUTE 

   return decimated_points 

🤓 Note: The function created is called cloud_decimation, and eats two 

arguments which are points and factor. It will execute the desired code 

written inside and return the variable decimated_points when it is called. 

and to call a function, nothing more straightforward: simply write 

cloud_decimation(point_cloud, 6) (the same way you would use the 

function print(), but here you have two arguments to fill by the 

values/variables that you want to pass to the function). 
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A function for voxel grid sampling of a point cloud. Get the code from the Google Colab script. © 

F. Poux 

By creating a suite of functions, you can then use your script directly, just 

changing the set parameters at the beginning. 

The full code is accessible here: Google Colab notebook. 

Additionally, you can check out the follow-up article if you want to extend 

your capabilities using the library Open3D, and learn specific commands 

related to 3D point clouds and 3D mesh processing. 

Conclusion 
You just learned how to import, sub-sample, export and visualize a point 

cloud composed of millions of points, with different strategies! Well done! 

But the path does not end here, and future posts will dive deeper in point 

cloud spatial analysis, file formats, data structures, visualization, 

animation and meshing. We will especially look into how to manage big 

point cloud data as defined in the article below. 

Other advanced sampling methods for point cloud exist. For example, you 

could follow a uniform sampling method such as the Farthest Point 

method, a more advanced geometric sampling [1] or even semantic 

sampling. Also, the voxelisation algorithm given here can be used for 

advanced processing such as 3D semantic modelling [2] or semantic 

segmentation, as shown in [3]. 

  

https://colab.research.google.com/drive/1addhGqN3ZE1mIn4L6jQnnkVs7_y__qSE?usp=sharing
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