
Published in Towards Data Science

How to automate LiDAR point cloud

sub-sampling with Python

The ultimate guide to subsample 3D point clouds from scratch, with

Python. Two efficient methods are shown to import, process, structure

as a voxel grid, and visualise LiDAR data.

Point cloud sampling results by following the strategies explained in this guide. © F. Poux

In this article, I will give you my two favourite 3D processes for quickly

structuring and sub-sampling point cloud data with python. You will also

be able to automate, export, visualize and integrate results into your

favourite 3D software, without any coding experience. I will focus on code

optimization while using a minimum number of libraries (mainly

NumPy) so that you can extend what you learnt with very high flexibility!

Ready 😁?

Why do we need to sub-sample

point clouds?

Published in Towards Data Science

Point cloud datasets are marvellous! You can get a geometric description

of world entities by discretizing them through a bunch of points, which,

aggregated together, resemble the shape — the environment — of interest.

This is a point cloud of an abandoned wool factory. It was obtained by combining 3D Laser scanning

technology with photogrammetry. We created it with my friend Roman Robroek. While super

interesting, learning underlying 3D capture techniques extends the scope of the article.

But a major problem with 3D point clouds is that the data density may be

more than necessary for a given application. This often leads to higher

computational cost in subsequent data processing or visualisation. To

make the dense point clouds more manageable, their data density can be

reduced. This article provides you with the knowledge and actual scripts

to implement sub-sampling methods for reducing point cloud data

density.

Adapting the number of points in the point cloud is often a savant use of domain knowledge to balance

representativity & information redundancy. © Florent Poux

Let us dive in 🤿!

Published in Towards Data Science

Some light 3D theory, don’t

you think?
Ha, I tricked you 🙃. Before directly diving to the implementation of

sampling strategies, let us first review the typical sub-sampling methods

for point cloud data thinning. These include the random, the minimal

distance and the grid (often tagged as uniform) methods. The random

method is the simplest for reducing data density, in which a specified

number of data points is selected randomly.

The point cloud of this indoor room is sampled randomly. © Florent Poux

In the minimal distance method, the data point selection is constrained

by a minimum distance so that no data point in the selected subset is

closer to another data point than the minimum distance specified.

Published in Towards Data Science

The point cloud is sampled spatially, by making sure each point is at least 2 cm (scenario 1) or 5 cm

(scenario 2) from any point. © Florent Poux

In the grid method (which can be uniform), a grid structure — the handier

being a voxel grid structure — is created and a representative data point is

selected.

The point cloud is sampled using a voxel grid, with different voxel sizes. For each voxel, one

representative point is retained. © Florent Poux

Published in Towards Data Science

The latter two methods can achieve a more homogeneous spatial

distribution of data points in the reduced point cloud. In such cases, the

average data spacing is determined by the minimal distance or the voxel

edge length specified.

Okay for the theory, let us put it into action 🤠!

Step 1: Launch your Python

environment.
In the previous article below, we saw how to set-up an environment easily

with Anaconda and how to use the IDE Spyder for managing your code. I

recommend continuing in this fashion if you set yourself up to becoming a

fully-fledge python app developer 😆.

Discover 3D Point Cloud Processing with Python

Tutorial to simply set up your python environment, start processing and

visualize 3D point cloud data.towardsdatascience.com

But hey, if you prefer to do everything from scratch in the next 5 minutes,

I also give you access to a Google Colab notebook that you will find at the

end of the article. There is nothing to install; you can just save it to your

google drive and start working with it, also using the free datasets from

Step 2 👇.

In the Google Colab file, you can just run the script cell by cell and benefit from a direct coding

experience, on the web. A great way to start experimenting with Python. (Yes, cats are walking in the

window 😺). © F. Poux

https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7
https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7

Published in Towards Data Science

Step 2: Download a point

cloud dataset
In previous tutorials, I illustrated point cloud processing and meshing

over a 3D dataset obtained by using photogrammetry: the jaguar, that you

can freely download from this repository.

In this tutorial, we will extend the scope, and test on a point cloud

obtained through an aerial LiDAR survey. This is an excellent opportunity

to introduce you to the great Open Data platform: Open Topography. It is

a collaborative data repository for LiDAR users. Through a web map, you

can select a region of interest, and download the related point cloud

dataset with its metadata in different file formats (.laz, .las or as an ASCII

file).

Download a point cloud of interest from the OpenTopography Open Data Platform. This will be the

dataset that we will use for this tutorial. © Florent Poux

At this phase, what is important to know is that you can easily process

both the ASCII file and the .las file with python (the .laz is more tricky).

The .las file is far more compressed than the ASCII file (355 Mo vs 1026

Mo for the example in this guide), but it will necessitate that you use a

library called LasPy. So now, if you need 3D point cloud datasets over a

large region, you know where you can find great datasets easily 🗺️.

https://learngeodata.eu/
https://drive.google.com/drive/folders/1Ih_Zz9a6UcbUlaA-puEB_is7DYvXrb4w?usp=sharing
https://www.opentopography.org/

Published in Towards Data Science

🤓 Note: For this how-to guide, you can use the point cloud in this

repository, that I already filtered, colourized and translated so that you

are in the optimal conditions. If you want to visualize and play with it

beforehand without installing anything, you can check out the webGL

version.

Okay, now that we are set-up, let us write some code 💻. First, we install

the library package that is missing to read .las files. If you are with

anaconda, I suggest you run the following command by looking up the

conda-forge channel:

conda install -c conda-forge

Else, in general, you can use the pip package installer for Python by

typing:

pip install laspy

Then, let us import necessary libraries within the script (NumPy and

LasPy), and load the .las file in a variable called point_cloud.

import numpy as np

import laspy as lp

input_path="gdrive/My Drive/10-MEDIUM/DATA/Point Cloud

Sample/"

dataname="NZ19_Wellington.las"

point_cloud=lp.file.File(input_path+dataname+".las", mode="r")

Nice, we are almost ready! What is great, is that the LasPy library also

give a structure to the point_cloud variable, and we can use

straightforward methods to get, for example, X, Y, Z, Red, Blue and Green

fields. Let us do this to separate coordinates from colours, and put them

in NumPy arrays:

points = np.vstack((point_cloud.x, point_cloud.y,

point_cloud.z)).transpose()

colors = np.vstack((point_cloud.red, point_cloud.green,

point_cloud.blue)).transpose()

🤓 Note: We use a vertical stack method from NumPy, and we have to

transpose it to get from (n x 3) to a (3 x n) matrix of the point cloud.

And we are set up! Moving on to step 3 👇.

https://drive.google.com/file/d/12Iy4fkJ1i1Xh-dzGvsf_M66e8eVa1vyx/view?usp=sharing
https://drive.google.com/file/d/12Iy4fkJ1i1Xh-dzGvsf_M66e8eVa1vyx/view?usp=sharing
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/358/1377563e-a899-850a-5047-da4904ed443f
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/358/1377563e-a899-850a-5047-da4904ed443f

Published in Towards Data Science

Step 3: Choose a sampling

strategy.
We will focus on decimation and voxel grid sampling. Now is the time to

pick a side 🙂

💡 Hint: I will give you code scripts that actually maximize the use of

NumPy, but know that you can achieve similar results with widely

different implementations (or through importing other packages). The

main difference is often the execution time. The goal is to have the best

execution runtime while having a readable script.

Strategy 1: Point Cloud Random subsampling
If we define a point cloud as a matrix (m x n), then the decimated cloud

is obtained by keeping one row out of n of this matrix :

At the matrix level, the decimation simply acts by keeping points every nth row depending on the n

factor. Of course, this is made based on how are stored the points in the file. © F. Poux

Slicing a list in python is pretty simple with the command

l[start:end:step]. To shorten and parametrize the expression, you can just

write the lines:

factor=160

decimated_points_random = points[::factor]

Published in Towards Data Science

🤓 Note: Running this will keep 1 row every 160 rows, thus diving the

size of the original point cloud by 160. It goes from 13 993 118 points to 87

457 points.

Top-view of the point cloud and its decimated counterpart. © F. Poux

Strategie 2: Point Cloud Grid Sampling
The grid subsampling strategy will be based on the division of the 3D

space in regular cubic cells called voxels. For each cell of this grid, we will

only keep one representative point. This point, the representant of the

cell, can be chosen in different ways. For example, it can be the barycenter

of the points in that cell, or the closest point to it.

Illustration of the voxel grid sampling methodology. © F. Poux

We will work in two sub-steps.

Published in Towards Data Science

1. First, we create a grid structure over the points. For this, we actually

want to initially compute the bounding box of the point cloud (i.e. the box

dimensions that englobe all the points). Then, we can discretize the

bounding box into small cubic grids: the voxels. These are obtained by

setting the length, width and height of the voxel (which is equal), but it

could also be set by giving the number of desired voxels in the three

directions of the bounding box.

voxel_size=6

nb_vox=np.ceil((np.max(points, axis=0) - np.min(points,

axis=0))/voxel_size)

🤓 Note: You can see the little axis=0 that is actually fundamental if you

want to be sure you apply the max method “per column”. The ceil then

will make sure to keep the ceiling of the difference (element-wise), and

thus, when divided by the voxel_size, it returns the number of empty

voxels in each direction. With a cubic size of 6 m, we get 254 voxels along

X, 154 voxels along Y and 51 along Z: 1 994 916 empty voxels.

2. For each small voxel, we test if it contains one or more points. If it does,

we keep it, and we take note of the points indexes that we will have to link

to each voxel.

non_empty_voxel_keys, inverse, nb_pts_per_voxel = np.unique(((points

- np.min(points, axis=0)) // voxel_size).astype(int), axis=0,

return_inverse=True, return_counts=True)

idx_pts_vox_sorted=np.argsort(inverse)

🤓 Note: We want to work with indices rather than coordinates for

simplicity and efficiency. The little script above is a super-compact way to

return the “designation” of each non-empty voxel. On top, we want to

access the points that are linked to each non_empty_voxel through

idx_pts_vox_sorted, and how many there are (nb_pts_per_voxel). This

is done by first looking out unique values based on the integer “indices”

gathered for each point. The argsort method is actually returning the

index of the points that we can later link to the voxel index.

Published in Towards Data Science

The grid obtained over the point cloud data. © F. Poux

3. Finally, we compute the representant of the voxel. I will illustrate this

for both the barycenter (grid_barycenter) and the closest point to the

barycenter (grid_candidate_center).

💡 Hint: The use of python dictionaries to keep the points in each voxel

is my recommendation. This sparse structure is more adapted than full

arrays which will use all your memory on bigger point clouds. A

dictionary cannot take a [i, j, k] vector of coordinates as key if it is a list,

but converting it to a tuple (i, j, k) will make it work.

• We initialise self-explanatory variables of which a counter

last_seen:

voxel_grid={}

grid_barycenter,grid_candidate_center=[],[]

last_seen=0

• We create a loop that will iterate over each non-empty voxel, while

allowing to work with both the index idx of the array, and the value

vox, which is actually the [i, j, k] of the voxel.

for idx,vox in enumerate(non_empty_voxel_keys):

• Then (don’t forget to indent) we feed the loop with a way to

complete the voxel_grid dictionary with contained points.

Published in Towards Data Science

 voxel_grid[tuple(vox)]= points[idx_pts_vox_sorted[

 last_seen:last_seen+nb_pts_per_voxel[idx]]]

• Still in the loop, you can now pick/compute the representative of

the voxel. It can be the barycenter that you append to the list of all

barycenters:

 grid_barycenter.append(np.mean(voxel_grid[tuple(vox)],axis=0))

• Or it can be the closest point to the barycenter (uses Euclidean

distances):

 grid_candidate_center.append(

 voxel_grid[tuple(vox)][np.linalg.norm(voxel_grid[tuple(vox)] -

 np.mean(voxel_grid[tuple(vox)],axis=0),axis=1).argmin()])

Notice the difference of results between the voxel subsampling keeping the barycenter (white points) vs

the closest point to it (red points). © F. Poux

• Finally, don’t forget to update your counter, to make sure the

selection in the array of points is correct:

 last_seen+=nb_pts_per_voxel[idx]

🤓 Note: Most of my M.Sc. students will accomplish the task with a

bunch of imbricated “for” or “while” loop. It does work, but it is not the

most efficient. You have to know Python is not very optimized with loops.

Thus, when processing point clouds (which are often massive), you

should aim at a minimal amount of loops, and a maximum amount of

“vectorization”. With NumPy, this is by “broadcasting”, a mean of

vectorizing array operations so that looping occurs in C instead of Python

(more efficient). Take the time to digest what I do in this third step

Published in Towards Data Science

(especially the details of playing with indexes and voxels), or check out

the Google Colab script for more in-depth information.

This voxel sampling strategy is usually very efficient, relatively uniform,

and useful for downward processes (but this extend the scope of the

current tutorial). However, you should know that while the point spacing

can be controlled by the size of the grid, we cannot “accurately” control

the number of sampling points.

Step 4: Visualize your results
To simply visualize in-line your results (or within Python), you can use

the matplotlib library, with its 3D toolkit (see the previous article for

understanding what happens under the hood). Run the following

command, illustrated over the decimated point cloud :

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

decimated_colors = colors[::factor]

ax = plt.axes(projection='3d')

ax.scatter(decimated_points[:,0], decimated_points[:,1],

decimated_points[:,2], c = decimated_colors/65535, s=0.01)

plt.show()

🤓 Note: Looking at the number of possible points, I would not

recommend in-line visualisation with classical libraries such as

matplotlib if your subsampled results exceed the million mark.

The decimated point cloud visualized in MatplotLib within Python. © F. Poux

https://towardsdatascience.com/discover-3d-point-cloud-processing-with-python-6112d9ee38e7

Published in Towards Data Science

In the very likely event your point cloud is too heavy for visualizing this

way, you can export the data in an eatable file format for your software of

choice. To get an ASCII file, you can use the command:

np.savetxt(output_path+dataname+"_voxel-best_point_%s.poux" %

(voxel_size), grid_candidate_center, delimiter=";", fmt="%s")

🤓 Note: A “;” delimited ASCII file is created, ending with .poux 🤭. The

“fmt” command is to make sure the writing is most standard, for example

as a string.

💡 Hint: If you also want to make operations to retrieve the colour of

voxels representatives, be careful with the NumPy dtype of the sum of

colours. The colour type “uint16” can take values from 0 to 65535.

Change the type when summing and go to uint16 (or uint8) after the

final division.

Step 5: Automation in 3D

processing
Now that you addressed steps 1 to 4, it is time to create functions and put

them together in an automated fashion 🤖. Basically, we want (a) to load

the data and libraries, (b) set parameters value, (c) declare functions, (d)

call them when needed, (e) return some kind of results. This can be to

show in-line the results and/or to export a sampled point cloud file to be

used in your 3D software, outside of Python.

You already know how to do a, b and e, so let us focus on b and c 🎯. To

create a function, you can just follow the provided template below:

def cloud_decimation(points, factor):

 # YOUR CODE TO EXECUTE

 return decimated_points

🤓 Note: The function created is called cloud_decimation, and eats two

arguments which are points and factor. It will execute the desired code

written inside and return the variable decimated_points when it is called.

and to call a function, nothing more straightforward: simply write

cloud_decimation(point_cloud, 6) (the same way you would use the

function print(), but here you have two arguments to fill by the

values/variables that you want to pass to the function).

Published in Towards Data Science

A function for voxel grid sampling of a point cloud. Get the code from the Google Colab script. ©

F. Poux

By creating a suite of functions, you can then use your script directly, just

changing the set parameters at the beginning.

The full code is accessible here: Google Colab notebook.

Additionally, you can check out the follow-up article if you want to extend

your capabilities using the library Open3D, and learn specific commands

related to 3D point clouds and 3D mesh processing.

Conclusion
You just learned how to import, sub-sample, export and visualize a point

cloud composed of millions of points, with different strategies! Well done!

But the path does not end here, and future posts will dive deeper in point

cloud spatial analysis, file formats, data structures, visualization,

animation and meshing. We will especially look into how to manage big

point cloud data as defined in the article below.

Other advanced sampling methods for point cloud exist. For example, you

could follow a uniform sampling method such as the Farthest Point

method, a more advanced geometric sampling [1] or even semantic

sampling. Also, the voxelisation algorithm given here can be used for

advanced processing such as 3D semantic modelling [2] or semantic

segmentation, as shown in [3].

https://colab.research.google.com/drive/1addhGqN3ZE1mIn4L6jQnnkVs7_y__qSE?usp=sharing

Published in Towards Data Science

References
1. Poux, F. The Smart Point Cloud: Structuring 3D intelligent point

data, Liège, 2019.

2. Poux, F.; Valembois, Q.; Mattes, C.; Kobbelt, L.; Billen, R. Initial
User-Centered Design of a Virtual Reality Heritage System:
Applications for Digital Tourism. Remote Sens. 2020, 12, 2583,
doi:10.3390/rs12162583.

3. Poux, F.; Neuville, R.; Nys, G.-A.; Billen, R. 3D Point Cloud
Semantic Modelling: Integrated Framework for Indoor Spaces and
Furniture. Remote Sens. 2018, 10, 1412, doi:10.3390/rs10091412.

4. Billen, R.; Jonlet, B.; Luczfalvy Jancsó, A.; Neuville, R.; Nys, G.-A.;
Poux, F.; Van Ruymbeke, M.; Piavaux, M.; Hallot, P. La transition
numérique dans le domaine du patrimoine bâti: un retour
d’expériences. Bull. la Comm. R. des Monum. sites Fouill. 30 2018,
119–148.

5. Poux, F.; Billen, R. Voxel-based 3D Point Cloud Semantic
Segmentation: Unsupervised geometric and relationship featuring vs
deep learning methods. ISPRS Int. J. Geo-Information 2019, 8,
doi:10.3390/ijgi8050213.

6. Kharroubi, A.; Hajji, R.; Billen, R.; Poux, F. Classification And
Integration Of Massive 3d Points Clouds In A Virtual Reality (VR)
Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2019, 42, 165–171, doi:10.5194/isprs-archives-XLII-2-W17-165-
2019.

7. Bassier, M.; Vergauwen, M.; Poux, F. Point Cloud vs. Mesh Features
for Building Interior Classification. Remote Sens. 2020, 12, 2224,
doi:10.3390/rs12142224.

8. Poux, F.; Ponciano, J. J. Self-Learning Ontology For Instance
Segmentation Of 3d Indoor Point Cloud. In International Archives
of Photogrammetry, Remote Sensing and Spatial Information
Sciences; ISPRS, Ed.; Copernicus Publications: Nice, 2020; Vol.
XLIII, pp. 309–316.

9. Poux, F.; Mattes, C.; Kobbelt, L. Unsupervised segmentation of
indoor 3D point cloud: application to object-based classification. In
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences; 2020; Vol. XLIV–4, pp. 111–118.

10. Poux, F.; Billen, R.; Kaspryzk, J.-P.; Lefebvre, P.-H.; Hallot, P. A

Published in Towards Data Science

Built Heritage Information System Based on Point Cloud Data: HIS-
PC. ISPRS Int. J. Geo-Information 2020, 9, 588,
doi:10.3390/ijgi9100588.

11. Poux, F.; Billen, R. A Smart Point Cloud Infrastructure for intelligent
environments. In Laser scanning: an emerging technology in
structural engineering; Lindenbergh, R., Belen, R., Eds.; ISPRS
Book Series; Taylor & Francis Group/CRC Press: London, United
States, 2019; pp. 127–149 ISBN in generation.

12. Tabkha, A.; Hajji, R.; Billen, R.; Poux, F. Semantic Enrichment Of
Point Cloud By Automatic Extraction And Enhancement Of 360°
Panoramas. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2019, XLII-2/W17, 355–362, doi:10.5194/isprs-archives-
XLII-2-W17-355-2019.

13. Poux, F.; Neuville, R.; Hallot, P.; Van Wersch, L.; Jancsó, A. L.;
Billen, R. Digital investigations of an archaeological smart point
cloud: A real time web-based platform to manage the visualisation of
semantical queries. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. - ISPRS Arch. 2017, XLII-5/W1, 581–588, doi:10.5194/isprs-
Archives-XLII-5-W1-581-2017.

14. Poux, F.; Hallot, P.; Jonlet, B.; Carre, C.; Billen, R. Segmentation
semi-automatique pour le traitement de données 3D denses:
application au patrimoine architectural. XYZ 2014, 141, 69–75.

15. Novel, C.; Keriven, R.; Poux, F.; Graindorge, P. Comparing Aerial
Photogrammetry and 3D Laser Scanning Methods for Creating 3D
Models of Complex Objects. In Capturing Reality Forum; Bentley
Systems: Salzburg, 2015; p. 15.

