5-Step Guide to generate 3D meshes
from point clouds with Python

Tutorial to generate 3D meshes (.obj, .ply, .stl, .gltf) automatically from
3D point clouds using python. (Bonus) Surface reconstruction to create
several Levels of Detail.

In this article, I will give you my 3D surface reconstruction process for
quickly creating a mesh from point clouds with python. You will be able to
export, visualize and integrate results into your favorite 3D software,
without any coding experience. Additionally, I will provide you with a
simple way to generate multiple Levels of Details (LoD), useful if you
want to create real-time applications (E.g. Virtual Reality with Unity).

3D Python Series

Several meshes automatically generated using Python. At the end of this article, you will be able to
create your datasets from point clouds

3D meshes are geometric data structures most often composed of a bunch
of connected triangles that explicitly describe a surface &). They are used
in a wide range of applications from geospatial reconstructions to VFX,
movies and video games. I often create them when a physical replica is
demanded or if I need to integrate environments in game engines, where
point cloud support is limited.

Published in Towards Data Science

Example of a mesh generated from a 3D captured environment for a cool hertage project with Roman

Robroek. (Left) 3D Point Cloud, (Middle) Vertices of the mesh overlay, (Right) Textured Mesh.
They are well integrated in most of the software professionals work with.
On top, if you want to explore the wonder of 3D printing, you need to be
able to generate a consistent mesh from the data that you have. This
article is designed to offer you an efficient workflow in 5 customizable
steps along with my script remotely executable at the end of the article.
Let us dive in!

Step 1: Setting up the environment

In the previous article, we saw how to set-up an environment easily with
Anaconda, and how to use the GUI Spyder for managing your code. We
will continue in this fashion, using only 2 libraries.

For getting a 3D mesh automatically out of a point cloud, we will add
another library to our environment, Open3D. It is an open-source library
that allows the use of a set of efficient data structures and algorithms for
3D data processing. The installation necessitates to click on the [>] icon
next to your environment.

Published in Towards Data Science

https://www.insider.com/3d-virtual-tours-of-abandoned-places-2020-4#the-factory-was-the-largest-space-that-robroek-and-poux-have-converted-into-a-3d-image-8
https://www.insider.com/3d-virtual-tours-of-abandoned-places-2020-4#the-factory-was-the-largest-space-that-robroek-and-poux-have-converted-into-a-3d-image-8

Eocumanstiza

Open the Terminal and run the following command:

conda install -c open3d-admin open3d==0.8.0.0

Note: The Open3D package is compatible with python version 2.7,
3.5 and 3.6. If you have another, you can either create a new environment
(best) or if you start from the previous article, change the python version
in your terminal by typing conda install python=3.5 in the Terminal.

This will install the package and its dependencies automatically, you can
just input y when prompted in the terminal to allow this process. You are
now set-up for the project.

Step 2: Load and prepare the data

Launch your python scripting tool (Spyder GUI, Jupyter or Google
Colab), where we will call 2 libraries: Numpy and Open3D.

import numpy as np
import open3d as 03d

Then, we create variables that hold data paths and the point cloud data:

input_path="your_path_to_file/"
output_path="your_path_to_output_folder/"
dataname="sample.xyz"

point_cloud= np.loadtxt(input_path+dataname,skiprows=1)

Published in Towards Data Science

Note: As for the previous post, we will use a sampled point cloud that
you can freely download from this repository. If you want to visualize it
beforehand without installing anything, you can check the webGL version.

Finally, we transform the point_cloud variable type from Numpy to the
Open3D o3d.geometry.PointCloud type for further processing;:

ped = 03d.geometry.PointCloud()

ped.points = o3d.utility.VectorgdVector(point_cloud[:,:3])
ped.colors = 03d.utility.Vector3dVector(point_cloud[:,3:6]/255)
ped.normals = o3d.utility.Vector3zdVector(point_cloud[:,6:9])

Note: The following command first instantiates the Open3d point
cloud object, then add points, color and normals to it from the original
NumPy array.

For a quick visual of what you loaded, you can execute the following
command (does not work in Google Colab):

o3d.visualization.draw_ geometries([pcd])

Step 3: Choose a meshing strategy

Now we are ready to start the surface reconstruction process by meshing
the pcd point cloud. I will give my favorite way to efficiently obtain
results, but before we dive in, some condensed details ar necessary to
grasp the underlying processes. I will limit myself to two meshing
strategies.

Strategy 1: Ball-Pivoting Algorithm [1]

The idea behind the Ball-Pivoting Algorithm (BPA) is to simulate the use
of a virtual ball to generate a mesh from a point cloud. We first assume
that the given point cloud consists of points sampled from the surface of
an object. Points must strictly represent a surface (noise-free), that the
reconstructed mesh explicit.

Published in Towards Data Science

https://drive.google.com/drive/folders/1Ih_Zz9a6UcbUlaA-puEB_is7DYvXrb4w?usp=sharing
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/333/ec8d9a6c-de38-7249-e6fc-026c4ff67ef7

Wi
4'%.\‘
N
YT i# T,
P :
‘)“’J‘r h
e
=
!

/

L _./"'l']
7
all

¥ : >
i

S|

X

R
S

D
Iy
‘

7
N
Z=a

R
!!.‘

Using this assumption, imagine rolling a tiny ball across the point cloud
“surface”. This tiny ball is dependent on the scale of the mesh, and should
be slightly larger than the average space between points. When you drop a
ball onto the surface of points, the ball will get caught and settle upon
three points that will form the seed triangle. From that location, the ball
rolls along the triangle edge formed from two points. The ball then settles
in a new location: a new triangle is formed from two of the previous
vertices and one new triangle is added to the mesh. As we continue rolling
and pivoting the ball, new triangles are formed and added to the mesh.
The ball continues rolling and rolling until the mesh is fully formed.

Published in Towards Data Science

Ilustration by Brett Rapponotti, Michael Snowden, and Allen Zeng. Source

The idea behind the Ball-Pivoting Algorithm is simple, but of course,
there are many caveats to the procedure as originally expressed here:

« Houw is the ball radius chosen? The radius, is obtained empirically
based on the size and scale of the input point cloud. In theory, the
diameter of the ball should be slightly larger than the average
distance between points.

. What if the points are too far apart at some locations and the ball
falls through? When the ball pivots along an edge, it may miss the
appropriate point on the surface and instead hit another point on
the object or even exactly its three old points. In this case, we check
that the normal of the new triangle Facet is consistently oriented
with the point's Vertex normals. If it is not, then we reject that
triangle and create a hole.

« What if the surface has a crease or valley, such that the distance
between the surface and itself is less than the size of the ball? In
this case, the ball would just roll over the crease and ignore the
points within the crease. But, this is not ideal behavior as the
reconstructed mesh is not accurate to the object.

« What if the surface is spaced into regions of points such that the
ball cannot successfully roll between the regions? The virtual ball is
dropped onto the surface multiple times at varying locations. This
ensures that the ball captures the entire mesh, even when the points
are inconsistently spaced out.

“;7;')‘;':\7‘:"\ ¢ ¥ ™
% Yo e > % (l?’, '
= - <
P =R &z s
) A t%ikf\::“ﬁ S ¥ e . =
-~ RADIUS 34! 7 RADIUS 5
N N
'\N *”)‘ e . 281K TRIANGLES

. 287K TRIANGLES
. 258K TRIANGLES
. 225K TRIANGLES

\t\\
\
L ,\
E
"'.) :\“
w‘g\/g %]
1 I}""‘\ i
7 7]}
/ /,n;@ s
B WN =

de

A s e
£ P
gf/ i RADIUS 74/ - RADIUS 10 5. 183K TRIANGLES
The radius influence in 5 visuals. You can see that the optimal mesh automatically balances the best
geometry fit and the number of triangles.

Strategy 2: Poisson reconstruction [2]

Published in Towards Data Science

https://cs184team.github.io/cs184-final/writeup.html
https://cs184team.github.io/cs184-final/writeup.html

The Poisson Reconstruction is a bit more technical/mathematical. Its
approach is known as an implicit meshing method, which I would
describe as trying to “envelop” the data in a smooth cloth. Without going
into too many details, we try to fit a watertight surface from the original
point set by creating an entirely new point set representing an isosurface
linked to the normals. There are several parameters available that affect
the result of the meshing:

P
o \

A

)

Which depth? a tree-depth is used for the reconstruction. The
higher the more detailed the mesh (Default: 8). With noisy data you
keep vertices in the generated mesh that are outliers but the
algorithm doesn’t detect them as such. So a low value (maybe
between 5 and 7) provides a smoothing effect, but you will lose
detail. The higher the depth-value the higher is the resulting
amount of vertices of the generated mesh.

Vet =y, .. _\\i—\ /"**\ “\/ e
y n B f] \ 2 w&%

/ -
PTH 4 / DEPTH 5) _DEPTH 6

\.-. 5 < h\ % I .f_h v % &aﬁ‘

—_

DEPTH 7 } DEPTH 8 } DEPTH 9

Which width? This specifies the target width of the finest level of
the tree structure, which is called an octree &. Don’t worry, I will
cover this and best data structures for 3D in another article as it
extends the scope of this one. Anyway, this parameter is ignored if
the depth is specified.

Which scale? It describes the ratio between the diameter of the cube
used for reconstruction and the diameter of the samples’ bounding
cube. Very abstract, the default parameter usually works well (1.1).

Published in Towards Data Science

SCALE 1

Effects of the scale parameters on the results. See how it envelops the initial point cloud.

« Which fit? the linear_fit parameter if set to true, let the
reconstructor use linear interpolation to estimate the positions of
iso-vertices.

Step 4: Process the data

Strategy 1: BPA

We first compute the necessary radius parameter based on the average
distances computed from all the distances between points:

distances = pcd.compute_nearest_neighbor_distance()
avg_ dist = np.mean(distances)
radius = 3 * avg_ dist

In one command line, we can then create a mesh and store it in the
bpa_mesh variable:

bpa_mesh =
o3d.geometry.TriangleMesh.create_from_ point_cloud_ball_pivoting(pc
d,o3d.utility.DoubleVector([radius, radius * 2]))

Before exporting the mesh, we can downsample the result to an
acceptable number of triangles, for example, 100k triangles:

dec_mesh = mesh.simplify_quadric_decimation(100000)

Additionally, if you think the mesh can present some weird artifacts, you
can run the following commands to ensure its consistency:

dec_mesh.remove_degenerate_ triangles()
dec_mesh.remove_duplicated_ triangles()
dec_mesh.remove_ duplicated_ vertices()

dec_mesh.remove_non_manifold_edges()

Published in Towards Data Science

Strategy 2: Poisson’ reconstruction

Note: The strategy is available starting the version 0.9.0.0 of
OpengsD, thus, it will only work remotely at the moment. You can execute
it through my provided google colab code offered here.

To get results with Poisson, it is very straightforward. You just have to
adjust the parameters that you pass to the function as described above:

poisson_mesh =
o3d.geometry.TriangleMesh.create_from_ point_cloud_poisson(pcd,
depth=8, width=0, scale=1.1, linear_fit=False)[0]

Note: The function output a list composed of an 03d.geometry object
followed by a Numpy array. You want to select only the o3d.geometry
justifying the [0] at the end.

To get a clean result, it is often necessary to add a cropping step to clean
unwanted artifacts highlighted as yellow from the left image below:

— W - N —
\" b : 0N
| i \ /A
\ v I‘ | "'_\ L7 /" \
\

o A /l\':'_‘l o // /Lv?_

& i <0 AN . i i~ e
. .] 3 . &S A h\ ~ | 2

| 4
/// ‘ - L) KX \' o e
/ B f] (I' / e —

The original Poisson’s reconstruction (left) and the cropped mesh (right)

For this, we compute the initial bounding-box containing the raw point
cloud, and we use it to filter all surfaces from the mesh outside the
bounding-box:

bbox = ped.get_axis_ aligned_bounding_box()
p_mesh_crop = poisson_mesh.crop(bbox)

You now have one or more variables that each hold the mesh geometry,
well Well done! The final step to get it in your application is to export it!

Step 5: Export and visualize

Exporting the data is straightforward with the write_triangle_mesh
function. We just specify within the name of the created file, the extension

Published in Towards Data Science

https://colab.research.google.com/drive/1HXVOK53ac6BJHAFxdEVluhFr7UAZKtDV

that we want from .ply, .obj, .stl or .gltf, and the mesh to export. Below,
we export both the BPA and Poisson’s reconstructions as .ply files:

o3d.io.write_triangle_mesh(output_path+"bpa_mesh.ply", dec_mesh)
o3d.io.write_triangle_ mesh(output_path+"p_mesh_ c.ply",
p_mesh_ crop)

To quickly generate Levels of Details (LoD), let us write your first
function. It will be really simple. The function will take as parameters a
mesh, a list of LoD (as a target number of triangles), the file format of the
resulting files and the path to write the files to. The function (to write in
the script) looks like this:

def lod_mesh_ export(mesh, lods, extension, path):
mesh_lods={}
foriin lods:
mesh_lod = mesh.simplify_quadric_decimation(i)
o3d.io.write_triangle_mesh(path+"lod_"+str(i)+extension,
mesh_lod)
mesh_lods[i]=mesh_lod
print("generation of "+str(i)+" LoD successful")
return mesh_lods

& Hint: I will cover the basics of what the function does and how it is
structured in another article. At this point, it is useful to know that the
Jfunction will (1) export the data to a specified location of your choice in
the desire file format, and (2) give the possibility to store the results in a
variable if more processing is needed within python.

The function makes some magic, but once executed, it looks like nothing
happens. Don’t worry, your program now knows what lod_mesh_ export
is, and you can directly call it in the console, where we just change the
parameters by the desired values:

my_lods = lod_mesh_export(bpa_mesh,
[100000,50000,10000,1000,100], ".ply", output_path)

What is very interesting, is that now you don’t need to rewrite a bunch of
code every time for different LoDs. You just have to pass different
parameters to the function:

my_lods2 =lod_mesh_export(bpa_mesh, [8000,800,300], ".ply",
output_path)

Published in Towards Data Science

If you want to visualize within python a specific LoD, let us say the LoD
with 100 triangles, you can access and visualize it through the command:

o3d.visualization.draw_geometries([my_lods[100]])

To visualize outside of python, you can use the software of your choosing
(E.g Open-source Blender, MeshLab and CloudCompare) and load
exported files within the GUI. Directly on the web through WebGL, you
can use Three.js editor or Flyvast to simply access the mesh as well.

Finally, you can import it in any 3D printing software and get quotations
about how much it would cost through online printing services €.

Example of the gold print of the model for around 20 cm. To get a rough idea of the price using online
services, you can count 400 euros for a basic resin print. This extends the scope of the tutorial and will
be covered in another article

Bravo. In this 5-Step guide, we covered how to set-up an automatic
python 3D mesh creator from a point cloud. This is a very nice tool that
will prove very handy in many 3D automation projects! However, we

assumed that the point cloud is already noise-free, and that the normals
are well-oriented.

Published in Towards Data Science

https://threejs.org/editor/
https://www.flyvast.com/flyvast/app/index.html#/login/overviewOfferFree

Some displayed normals

If this is not the case, then some additional steps are needed and some
great insights already discussed in the article below will be cover in
another article

The full code is accessible here: Google Colab notebook

Conclusion

You just learned how to import, mesh, export and visualize a point cloud
composed of millions of points, with different LoD! Well done! But the
path does not end here, and future posts will dive deeper in point cloud
spatial analysis, file formats, data structures, visualization, animation and
meshing. We will especially look into how to manage big point cloud data
as defined in the article below.

Published in Towards Data Science

https://colab.research.google.com/drive/1HXVOK53ac6BJHAFxdEVluhFr7UAZKtDV

References

1.

10.

Poux, F. The Smart Point Cloud: Structuring 3D intelligent point
data, Liege, 2019.

Poux, F.; Valembois, Q.; Mattes, C.; Kobbelt, L.; Billen, R. Initial
User-Centered Design of a Virtual Reality Heritage System:
Applications for Digital Tourism. Remote Sens. 2020, 12, 2583,
d0i:10.3390/rs12162583.

Poux, F.; Neuville, R.; Nys, G.-A.; Billen, R. 3D Point Cloud
Semantic Modelling: Integrated Framework for Indoor Spaces and
Furniture. Remote Sens. 2018, 10, 1412, d0i:10.3390/rs10091412.

Billen, R.; Jonlet, B.; Luczfalvy Jancso, A.; Neuville, R.; Nys, G.-A.;
Poux, F.; Van Ruymbeke, M.; Piavaux, M.; Hallot, P. La transition
numeérique dans le domaine du patrimoine bati: un retour
d’expériences. Bull. la Comm. R. des Monum. sites Fouill. 30 2018,
119—148.

Poux, F.; Billen, R. Voxel-based 3D Point Cloud Semantic
Segmentation: Unsupervised geometric and relationship featuring vs
deep learning methods. ISPRS Int. J. Geo-Information 2019, 8,
doi:10.3390/ijgi8050213.

Kharroubi, A.; Hajji, R.; Billen, R.; Poux, F. Classification And
Integration Of Massive 3d Points Clouds In A Virtual Reality (VR)
Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2019, 42, 165—171, d0i:10.5194/isprs-archives-XLII-2-W17-165-
2019.

Bassier, M.; Vergauwen, M.; Poux, F. Point Cloud vs. Mesh Features
for Building Interior Classification. Remote Sens. 2020, 12, 2224,
d0i:10.3390/rs12142224.

Poux, F.; Ponciano, J. J. Self-Learning Ontology For Instance
Segmentation Of 3d Indoor Point Cloud. In International Archives
of Photogrammetry, Remote Sensing and Spatial Information
Sciences; ISPRS, Ed.; Copernicus Publications: Nice, 2020; Vol.
XLIII, pp. 309—316.

Poux, F.; Mattes, C.; Kobbelt, L. Unsupervised segmentation of
indoor 3D point cloud: application to object-based classification. In
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences; 2020; Vol. XLIV—4, pp. 111—118.

Poux, F.; Billen, R.; Kaspryzk, J.-P.; Lefebvre, P.-H.; Hallot, P. A

Published in Towards Data Science

11.

12.

13.

14.

15.

Built Heritage Information System Based on Point Cloud Data: HIS-
PC. ISPRS Int. J. Geo-Information 2020, 9, 588,
d0i:10.3390/1jgi9100588.

Poux, F.; Billen, R. A Smart Point Cloud Infrastructure for intelligent
environments. In Laser scanning: an emerging technology in
structural engineering; Lindenbergh, R., Belen, R., Eds.; ISPRS
Book Series; Taylor & Francis Group/CRC Press: London, United
States, 2019; pp. 127—149 ISBN in generation.

Tabkha, A.; Hajji, R.; Billen, R.; Poux, F. Semantic Enrichment Of
Point Cloud By Automatic Extraction And Enhancement Of 360°
Panoramas. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2019, XLII-2/W17, 355—362, d0i:10.5194/isprs-archives-
XLII-2-W17-355-2019.

Poux, F.; Neuville, R.; Hallot, P.; Van Wersch, L.; Jancso, A. L.;
Billen, R. Digital investigations of an archaeological smart point
cloud: A real time web-based platform to manage the visualisation of
semantical queries. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. - ISPRS Arch. 20177, XLII-5/W1, 581—588, doi:10.5194/isprs-
Archives-XLII-5-W1-581-2017.

Poux, F.; Hallot, P.; Jonlet, B.; Carre, C.; Billen, R. Segmentation
semi-automatique pour le traitement de données 3D denses:
application au patrimoine architectural. XYZ 2014, 141, 69—75.

Novel, C.; Keriven, R.; Poux, F.; Graindorge, P. Comparing Aerial
Photogrammetry and 3D Laser Scanning Methods for Creating 3D
Models of Complex Objects. In Capturing Reality Forum; Bentley
Systems: Salzburg, 2015; p. 15.

Published in Towards Data Science

