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5-Step Guide to generate 3D meshes 

from point clouds with Python 

Tutorial to generate 3D meshes (.obj, .ply, .stl, .gltf) automatically from 

3D point clouds using python. (Bonus) Surface reconstruction to create 

several Levels of Detail. 

In this article, I will give you my 3D surface reconstruction process for 

quickly creating a mesh from point clouds with python. You will be able to 

export, visualize and integrate results into your favorite 3D software, 

without any coding experience. Additionally, I will provide you with a 

simple way to generate multiple Levels of Details (LoD), useful if you 

want to create real-time applications (E.g. Virtual Reality with Unity). 

Several meshes automatically generated using Python. At the end of this article, you will be able to 

create your datasets from point clouds 

3D meshes are geometric data structures most often composed of a bunch 

of connected triangles that explicitly describe a surface 🤔. They are used 

in a wide range of applications from geospatial reconstructions to VFX, 

movies and video games. I often create them when a physical replica is 

demanded or if I need to integrate environments in game engines, where 

point cloud support is limited. 
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Example of a mesh generated from a 3D captured environment for a cool heritage project with Roman 

Robroek. (Left) 3D Point Cloud, (Middle) Vertices of the mesh overlay, (Right) Textured Mesh. 

They are well integrated in most of the software professionals work with. 

On top, if you want to explore the wonder of 3D printing, you need to be 

able to generate a consistent mesh from the data that you have. This 

article is designed to offer you an efficient workflow in 5 customizable 

steps along with my script remotely executable at the end of the article. 

Let us dive in! 

Step 1: Setting up the environment 
In the previous article, we saw how to set-up an environment easily with 

Anaconda, and how to use the GUI Spyder for managing your code. We 

will continue in this fashion, using only 2 libraries. 

For getting a 3D mesh automatically out of a point cloud, we will add 

another library to our environment, Open3D. It is an open-source library 

that allows the use of a set of efficient data structures and algorithms for 

3D data processing. The installation necessitates to click on the ▶️ icon 

next to your environment. 

https://www.insider.com/3d-virtual-tours-of-abandoned-places-2020-4#the-factory-was-the-largest-space-that-robroek-and-poux-have-converted-into-a-3d-image-8
https://www.insider.com/3d-virtual-tours-of-abandoned-places-2020-4#the-factory-was-the-largest-space-that-robroek-and-poux-have-converted-into-a-3d-image-8
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Open the Terminal and run the following command: 

conda install -c open3d-admin open3d==0.8.0.0 

🤓 Note: The Open3D package is compatible with python version 2.7, 

3.5 and 3.6. If you have another, you can either create a new environment 

(best) or if you start from the previous article, change the python version 

in your terminal by typing conda install python=3.5 in the Terminal. 

This will install the package and its dependencies automatically, you can 

just input y when prompted in the terminal to allow this process. You are 

now set-up for the project. 

Step 2: Load and prepare the data 
Launch your python scripting tool (Spyder GUI, Jupyter or Google 

Colab), where we will call 2 libraries: Numpy and Open3D. 

import numpy as np 

import open3d as o3d 

Then, we create variables that hold data paths and the point cloud data: 

input_path="your_path_to_file/" 

output_path="your_path_to_output_folder/" 

dataname="sample.xyz" 

point_cloud= np.loadtxt(input_path+dataname,skiprows=1) 
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🤓 Note: As for the previous post, we will use a sampled point cloud that 

you can freely download from this repository. If you want to visualize it 

beforehand without installing anything, you can check the webGL version. 

Finally, we transform the point_cloud variable type from Numpy to the 

Open3D o3d.geometry.PointCloud type for further processing: 

pcd = o3d.geometry.PointCloud() 

pcd.points = o3d.utility.Vector3dVector(point_cloud[:,:3]) 

pcd.colors = o3d.utility.Vector3dVector(point_cloud[:,3:6]/255) 

pcd.normals = o3d.utility.Vector3dVector(point_cloud[:,6:9]) 

🤓 Note: The following command first instantiates the Open3d point 

cloud object, then add points, color and normals to it from the original 

NumPy array. 

For a quick visual of what you loaded, you can execute the following 

command (does not work in Google Colab): 

o3d.visualization.draw_geometries([pcd]) 

Step 3: Choose a meshing strategy 
Now we are ready to start the surface reconstruction process by meshing 

the pcd point cloud. I will give my favorite way to efficiently obtain 

results, but before we dive in, some condensed details ar necessary to 

grasp the underlying processes. I will limit myself to two meshing 

strategies. 

Strategy 1: Ball-Pivoting Algorithm [1] 
The idea behind the Ball-Pivoting Algorithm (BPA) is to simulate the use 

of a virtual ball to generate a mesh from a point cloud. We first assume 

that the given point cloud consists of points sampled from the surface of 

an object. Points must strictly represent a surface (noise-free), that the 

reconstructed mesh explicit. 

https://drive.google.com/drive/folders/1Ih_Zz9a6UcbUlaA-puEB_is7DYvXrb4w?usp=sharing
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/333/ec8d9a6c-de38-7249-e6fc-026c4ff67ef7
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Using this assumption, imagine rolling a tiny ball across the point cloud 

“surface”. This tiny ball is dependent on the scale of the mesh, and should 

be slightly larger than the average space between points. When you drop a 

ball onto the surface of points, the ball will get caught and settle upon 

three points that will form the seed triangle. From that location, the ball 

rolls along the triangle edge formed from two points. The ball then settles 

in a new location: a new triangle is formed from two of the previous 

vertices and one new triangle is added to the mesh. As we continue rolling 

and pivoting the ball, new triangles are formed and added to the mesh. 

The ball continues rolling and rolling until the mesh is fully formed. 
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Illustration by Brett Rapponotti, Michael Snowden, and Allen Zeng. Source 

The idea behind the Ball-Pivoting Algorithm is simple, but of course, 

there are many caveats to the procedure as originally expressed here: 

• How is the ball radius chosen? The radius, is obtained empirically 

based on the size and scale of the input point cloud. In theory, the 

diameter of the ball should be slightly larger than the average 

distance between points. 

• What if the points are too far apart at some locations and the ball 

falls through? When the ball pivots along an edge, it may miss the 

appropriate point on the surface and instead hit another point on 

the object or even exactly its three old points. In this case, we check 

that the normal of the new triangle Facet is consistently oriented 

with the point's Vertex normals. If it is not, then we reject that 

triangle and create a hole. 

• What if the surface has a crease or valley, such that the distance 

between the surface and itself is less than the size of the ball? In 

this case, the ball would just roll over the crease and ignore the 

points within the crease. But, this is not ideal behavior as the 

reconstructed mesh is not accurate to the object. 

• What if the surface is spaced into regions of points such that the 

ball cannot successfully roll between the regions? The virtual ball is 

dropped onto the surface multiple times at varying locations. This 

ensures that the ball captures the entire mesh, even when the points 

are inconsistently spaced out. 

The radius influence in 5 visuals. You can see that the optimal mesh automatically balances the best 

geometry fit and the number of triangles. 

Strategy 2: Poisson reconstruction [2] 

https://cs184team.github.io/cs184-final/writeup.html
https://cs184team.github.io/cs184-final/writeup.html
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The Poisson Reconstruction is a bit more technical/mathematical. Its 

approach is known as an implicit meshing method, which I would 

describe as trying to “envelop” the data in a smooth cloth. Without going 

into too many details, we try to fit a watertight surface from the original 

point set by creating an entirely new point set representing an isosurface 

linked to the normals. There are several parameters available that affect 

the result of the meshing: 

• Which depth? a tree-depth is used for the reconstruction. The 

higher the more detailed the mesh (Default: 8). With noisy data you 

keep vertices in the generated mesh that are outliers but the 

algorithm doesn’t detect them as such. So a low value (maybe 

between 5 and 7) provides a smoothing effect, but you will lose 

detail. The higher the depth-value the higher is the resulting 

amount of vertices of the generated mesh. 

 

• Which width? This specifies the target width of the finest level of 

the tree structure, which is called an octree 🤯. Don’t worry, I will 

cover this and best data structures for 3D in another article as it 

extends the scope of this one. Anyway, this parameter is ignored if 

the depth is specified. 

• Which scale? It describes the ratio between the diameter of the cube 

used for reconstruction and the diameter of the samples’ bounding 

cube. Very abstract, the default parameter usually works well (1.1). 
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Effects of the scale parameters on the results. See how it envelops the initial point cloud. 

• Which fit? the linear_fit parameter if set to true, let the 

reconstructor use linear interpolation to estimate the positions of 

iso-vertices. 

Step 4: Process the data 

Strategy 1: BPA 
We first compute the necessary radius parameter based on the average 

distances computed from all the distances between points: 

distances = pcd.compute_nearest_neighbor_distance() 

avg_dist = np.mean(distances) 

radius = 3 * avg_dist 

In one command line, we can then create a mesh and store it in the 

bpa_mesh variable: 

bpa_mesh = 

o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(pc

d,o3d.utility.DoubleVector([radius, radius * 2])) 

Before exporting the mesh, we can downsample the result to an 

acceptable number of triangles, for example, 100k triangles: 

dec_mesh = mesh.simplify_quadric_decimation(100000) 

Additionally, if you think the mesh can present some weird artifacts, you 

can run the following commands to ensure its consistency: 

dec_mesh.remove_degenerate_triangles() 

dec_mesh.remove_duplicated_triangles() 

dec_mesh.remove_duplicated_vertices() 

dec_mesh.remove_non_manifold_edges() 
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Strategy 2: Poisson’ reconstruction 
🤓 Note: The strategy is available starting the version 0.9.0.0 of 

Open3D, thus, it will only work remotely at the moment. You can execute 

it through my provided google colab code offered here. 

To get results with Poisson, it is very straightforward. You just have to 

adjust the parameters that you pass to the function as described above: 

poisson_mesh = 

o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, 

depth=8, width=0, scale=1.1, linear_fit=False)[0] 

🤓 Note: The function output a list composed of an o3d.geometry object 

followed by a Numpy array. You want to select only the o3d.geometry 

justifying the [0] at the end. 

To get a clean result, it is often necessary to add a cropping step to clean 

unwanted artifacts highlighted as yellow from the left image below: 

The original Poisson’s reconstruction (left) and the cropped mesh (right) 

For this, we compute the initial bounding-box containing the raw point 

cloud, and we use it to filter all surfaces from the mesh outside the 

bounding-box: 

bbox = pcd.get_axis_aligned_bounding_box() 

p_mesh_crop = poisson_mesh.crop(bbox) 

You now have one or more variables that each hold the mesh geometry, 

well Well done! The final step to get it in your application is to export it! 

Step 5: Export and visualize 
Exporting the data is straightforward with the write_triangle_mesh 

function. We just specify within the name of the created file, the extension 

https://colab.research.google.com/drive/1HXVOK53ac6BJHAFxdEVluhFr7UAZKtDV
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that we want from .ply, .obj, .stl or .gltf, and the mesh to export. Below, 

we export both the BPA and Poisson’s reconstructions as .ply files: 

o3d.io.write_triangle_mesh(output_path+"bpa_mesh.ply", dec_mesh) 

o3d.io.write_triangle_mesh(output_path+"p_mesh_c.ply", 

p_mesh_crop) 

To quickly generate Levels of Details (LoD), let us write your first 

function. It will be really simple. The function will take as parameters a 

mesh, a list of LoD (as a target number of triangles), the file format of the 

resulting files and the path to write the files to. The function (to write in 

the script) looks like this: 

def lod_mesh_export(mesh, lods, extension, path): 

    mesh_lods={} 

    for i in lods: 

        mesh_lod = mesh.simplify_quadric_decimation(i) 

        o3d.io.write_triangle_mesh(path+"lod_"+str(i)+extension, 

mesh_lod) 

        mesh_lods[i]=mesh_lod 

    print("generation of "+str(i)+" LoD successful") 

    return mesh_lods 

💡 Hint: I will cover the basics of what the function does and how it is 

structured in another article. At this point, it is useful to know that the 

function will (1) export the data to a specified location of your choice in 

the desire file format, and (2) give the possibility to store the results in a 

variable if more processing is needed within python. 

The function makes some magic, but once executed, it looks like nothing 

happens. Don’t worry, your program now knows what lod_mesh_export 

is, and you can directly call it in the console, where we just change the 

parameters by the desired values: 

my_lods = lod_mesh_export(bpa_mesh, 

[100000,50000,10000,1000,100], ".ply", output_path) 

What is very interesting, is that now you don’t need to rewrite a bunch of 

code every time for different LoDs. You just have to pass different 

parameters to the function: 

my_lods2 = lod_mesh_export(bpa_mesh, [8000,800,300], ".ply", 

output_path) 
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If you want to visualize within python a specific LoD, let us say the LoD 

with 100 triangles, you can access and visualize it through the command: 

o3d.visualization.draw_geometries([my_lods[100]]) 

To visualize outside of python, you can use the software of your choosing 

(E.g Open-source Blender, MeshLab and CloudCompare) and load 

exported files within the GUI. Directly on the web through WebGL, you 

can use Three.js editor or Flyvast to simply access the mesh as well. 

Finally, you can import it in any 3D printing software and get quotations 

about how much it would cost through online printing services 🤑. 

Example of the gold print of the model for around 20 cm. To get a rough idea of the price using online 

services, you can count 400 euros for a basic resin print. This extends the scope of the tutorial and will 

be covered in another article 

Bravo. In this 5-Step guide, we covered how to set-up an automatic 

python 3D mesh creator from a point cloud. This is a very nice tool that 

will prove very handy in many 3D automation projects! However, we 

assumed that the point cloud is already noise-free, and that the normals 

are well-oriented. 

https://threejs.org/editor/
https://www.flyvast.com/flyvast/app/index.html#/login/overviewOfferFree
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Some displayed normals 

If this is not the case, then some additional steps are needed and some 

great insights already discussed in the article below will be cover in 

another article 

The full code is accessible here: Google Colab notebook 

 

Conclusion 
You just learned how to import, mesh, export and visualize a point cloud 

composed of millions of points, with different LoD! Well done! But the 

path does not end here, and future posts will dive deeper in point cloud 

spatial analysis, file formats, data structures, visualization, animation and 

meshing. We will especially look into how to manage big point cloud data 

as defined in the article below. 

  

https://colab.research.google.com/drive/1HXVOK53ac6BJHAFxdEVluhFr7UAZKtDV
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