
Published in Towards Data Science

Discover 3D Point Cloud Processing

with Python

Tutorial to simply set up your python environment, start processing and

visualize 3D point cloud data. Highlights Anaconda, NumPy, Matplotlib

and Google Colab.

5-Step Guide to set-up your

python environment
• We need to set-up our environment. I recommend to download

Anaconda Navigator, which comes with an easy GUI.

• Once downloaded and installed, create an environment (2nd tab on

the left > Create button), which allows you to specify a python

version (the latest is fine). You know it is selected when the green

arrow is next to it.

https://www.anaconda.com/distribution/

Published in Towards Data Science

Anaconda GUI — Manage independent projects through environments with different libraries /

Python versions

• Once created, you can then link wanted libraries without conflicts.

Very handy! For this, just search packages in what is installed (E.g.

NumPy, Matplotlib), and if it is not popping, then select Not

installed, check them both and click on Apply to install them.

Numpy and Matplotlib are standard libraries that will be useful for

this and future projects.

Searching for libraries in the conda library package manager

• You are almost set-up, now back to the Anaconda Home Tab, make

sure you are in the right environment (Applications on XXX), then

you can install Spyder as the IDE (Integrated Development

Environment)to start your code project.

🤓 Note: Spyder is one of the best tools for any amateur who is new to

python coding. Another great tool is Jupyter, which does a great job of

presenting interactive code to higher management for better

Published in Towards Data Science

visualization. We will explore this as well as Google Colab on future

posts.

• Once the installation progress bar is done you are ready! You can

now launch Spyder. While the GUI may allow several possibilities,

to directly obtain results, first write your script (1), execute your

script (2) and explore + interact with results in the console (3).

The 3 basic elements of the Spyder Python interface

Download your point cloud dataset

Published in Towards Data Science

For future experiments, we will use a sampled point cloud that you can

freely download from this repository. If you want to visualize it

beforehand without installing anything, you can check the webGL version.

3D Point Cloud of a statue from the Glyptotek Museum in Copenhagen, reconstructed with

Photogrammetry. The acquisition of the dataset extends the scope of the article and will be covered in a

separate post. If you want to learn such techniques, you can visit the Geodata Academy and 3D

Reconstructor.

Your first lines of code
In Sypder, let us start by using a very powerful library: NumPy. You can

already write your first shortcode in the script area (left window):

1 import numpy as np

2 file_data_path=”E:\sample.xyz”

3 point_cloud= np.loadtxt(file_data_path, skiprows=1,

max_rows=1000000)

This shortcode (1) import the library NumPy for further use as a short

name “np”; (2) create a variable that holds the string pointing to the file

that contains the points; (3) import the point cloud as a variable named

point_cloud, skipping the first row (holding, for example, the number of

points), and setting a maximal number of rows to run tests without

memory shortages.

You can now run your script (green arrow), and save it as a .py file on

your hard-drive when the pop-up appears. You can now access the first

point of the entity that holds your data (point_cloud) by directly writing

in the console:

In: point_cloud[0]

https://drive.google.com/drive/folders/1Ih_Zz9a6UcbUlaA-puEB_is7DYvXrb4w?usp=sharing
https://www.flyvast.com/flyvast/app/page-snapshot-viewer.html#/333/ec8d9a6c-de38-7249-e6fc-026c4ff67ef7
https://learngeodata.eu/
https://learngeodata.eu/order_step/3d-reconstructor/
https://learngeodata.eu/order_step/3d-reconstructor/

Published in Towards Data Science

You will then get an array containing the content of the first point, in this

case, X, Y and Z coordinates.

Out: array([0.480, 1.636, 1.085])

These were your first steps with python and point clouds. Now that you

know how to load point data, let us look at some interesting processes.

Extracting desired attributes
We have a point cloud with 6 attributes: X, Y, Z, R, G, B. It is important to

note that when playing with NumPy arrays, the indexes always start at 0.

So, if loaded without field names, then getting the second point is done

doing:

In: point_cloud[1]

Out: array([0.480, 1.636, 1.085, 25, 44, 68])

If from there we want to obtain the Red (R) attribute (the NumPy

“column” index is 3), we can do:

In: point_cloud[1][3]

Out: 25

If we want to extract the Z attribute for all the points in the point cloud:

In: point_cloud[:,1]

Out: array([2.703, 2.716, 2.712, …, 2.759, 2.741, 2.767])

If we want to extract only X, Y, Z attributes for all the points:

In: point_cloud[:,:3]

Out: array([[4.933, 2.703, 2.194],

[4.908, 2.716, 2.178],

[4.92 , 2.712, 2.175],

…,

[5.203, 2.759, 0.335],

[5.211, 2.741, 0.399],

[5.191, 2.767, 0.279]])

Congratulations, you just played around with multi-dimensional indexing

👏. Note that in the example above :3], the third column (R) is excluded

from the selection. Each result can be stored in variables if they are meant

to be used more than one time:

Published in Towards Data Science

xyz=point_cloud[:,:3]

rgb=point_cloud[:,3:]

Attribute-based data analysis
Now let us look at some useful analysis. If you want to know the mean

height of your point cloud, then you can easily do:

In: np.mean(point_cloud,axis=0)[2]

Out: 2.6785763

💡 Hint: here, the axis set to 0 is asking to look at each “column”

independently. If ignored, then the mean run on all the values, and if set

to 1, it will average per row.

If now you want to extract points which are within a buffer of 1 meter

from the mean height (we assume the value is stored in mean_Z):

In: point_cloud[abs(point_cloud[:,2]-mean_Z)<1]

Out: array([…])

💡 Hint: In python, and programming in general, there is more than

one way to solve a problem. The provided is a very short and efficient

way, which may not be the most intuitive. Trying to solve it using a for

loop is a great exercise. The aim is a good balance between clarity and

efficiency, see the PEP-8 guidelines.

Now you know how to set-up your environment, use Python, Spyder GUI

and NumPy for your coding endeavors. You can load point clouds and

play with attributes, but you can try other scenarios such as color filtering,

point proximities …

Basic 3D Visualisation
For this first 3D point clouds plotting experience, we will get our hands-

on one essential library: Matplotlib. First, we will add packages in the

import section of the initial script, to allow us to use them:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from mpl_toolkits import mplot3d

The imported dependencies act as following:

https://www.python.org/dev/peps/pep-0008/

Published in Towards Data Science

• numpy you already know this one 😉

• matplotlib.pyplot handles the plotting

• mpl_toolkits.mplot3d allows to create a 3d projection

From there, we can add the code that we explored before:

4 file_data_path=”E:\sample.xyz”

5 point_cloud= np.loadtxt(file_data_path,skiprows=1)

6 mean_Z=np.mean(point_cloud,axis=0)[2]

7 spatial_query=point_cloud[abs(point_cloud[:,2]-mean_Z)<1]

8 xyz=spatial_query[:,:3]

9 rgb=spatial_query[:,3:]

🤓 Note: We usually try to enhance readability when coding and the

PEP-8 is a great resource if you want nice guidelines. Ideally, variable

names should be lowercase, with words separated by underscores.

What you get is 4 variables (xyz and rgb), based on the spatial query

filtering the initial point cloud. Let us now dive into how to simply plot

the results. To begin with, let’s create a 3d axes object. For this, we pass

projection='3d' to plt.axes, which returns an Axes3DSubplot object.

10 ax = plt.axes(projection='3d')

https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions

Published in Towards Data Science

This is the empty canvas that we will be painting on. We will then draw a

scatter plot and we want to assign to each point a color. This can be quite

a tedious process, that is simplified by the following line of code

11 ax.scatter(xyz[:,0], xyz[:,1], xyz[:,2], c = rgb/255, s=0.01)

As you can see, we pass to the function the coordinates x, y, z through

xyz[:,0], xyz[:,1], xyz[:,2]; the colors for each point throughc = rgb/255, by

normalizing to a [0:1] interval dividing by the highest value; the on-screen

size of each point through s = 0.01.

Finally, we can plot the graph with the command below and enjoy the

visualization:

12 plt.show()

💡 Hint: in the Spyder 4.1.2 version and above, you can access your

plots in the graph tab of the variable explorer window, which creates

images by default. If you want to create an interactive visualization,

before launching the script, type %matplotlib auto to switch to

“automatic” (i.e. interactive) plots.

The full script is available here, and can be remotely executed on Google

Colab.

https://colab.research.google.com/drive/1irHovjyr_zGnv6R3yiFkuVdQ_S2-chU0

Published in Towards Data Science

Conclusion
You just learned how to import, process and visualize a point cloud

composed of millions of points, with as little as 12 lines of code! Well done

👏. But the path does not end here, and future articles will dive deeper in

point cloud spatial analysis, file formats, data structures, visualization,

animation and meshing. We will especially look into how to manage big

point cloud data as defined in the article below.

References
1. Poux, F. The Smart Point Cloud: Structuring 3D intelligent point

data, Liège, 2019.

2. Poux, F.; Valembois, Q.; Mattes, C.; Kobbelt, L.; Billen, R. Initial
User-Centered Design of a Virtual Reality Heritage System:
Applications for Digital Tourism. Remote Sens. 2020, 12, 2583,
doi:10.3390/rs12162583.

3. Poux, F.; Neuville, R.; Nys, G.-A.; Billen, R. 3D Point Cloud
Semantic Modelling: Integrated Framework for Indoor Spaces and
Furniture. Remote Sens. 2018, 10, 1412, doi:10.3390/rs10091412.

4. Billen, R.; Jonlet, B.; Luczfalvy Jancsó, A.; Neuville, R.; Nys, G.-A.;
Poux, F.; Van Ruymbeke, M.; Piavaux, M.; Hallot, P. La transition
numérique dans le domaine du patrimoine bâti: un retour
d’expériences. Bull. la Comm. R. des Monum. sites Fouill. 30 2018,
119–148.

5. Poux, F.; Billen, R. Voxel-based 3D Point Cloud Semantic
Segmentation: Unsupervised geometric and relationship featuring vs
deep learning methods. ISPRS Int. J. Geo-Information 2019, 8,
doi:10.3390/ijgi8050213.

6. Kharroubi, A.; Hajji, R.; Billen, R.; Poux, F. Classification And
Integration Of Massive 3d Points Clouds In A Virtual Reality (VR)
Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2019, 42, 165–171, doi:10.5194/isprs-archives-XLII-2-W17-165-
2019.

7. Bassier, M.; Vergauwen, M.; Poux, F. Point Cloud vs. Mesh Features
for Building Interior Classification. Remote Sens. 2020, 12, 2224,
doi:10.3390/rs12142224.

8. Poux, F.; Ponciano, J. J. Self-Learning Ontology For Instance

Published in Towards Data Science

Segmentation Of 3d Indoor Point Cloud. In International Archives
of Photogrammetry, Remote Sensing and Spatial Information
Sciences; ISPRS, Ed.; Copernicus Publications: Nice, 2020; Vol.
XLIII, pp. 309–316.

9. Poux, F.; Mattes, C.; Kobbelt, L. Unsupervised segmentation of
indoor 3D point cloud: application to object-based classification. In
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences; 2020; Vol. XLIV–4, pp. 111–118.

10. Poux, F.; Billen, R.; Kaspryzk, J.-P.; Lefebvre, P.-H.; Hallot, P. A
Built Heritage Information System Based on Point Cloud Data: HIS-
PC. ISPRS Int. J. Geo-Information 2020, 9, 588,
doi:10.3390/ijgi9100588.

11. Poux, F.; Billen, R. A Smart Point Cloud Infrastructure for intelligent
environments. In Laser scanning: an emerging technology in
structural engineering; Lindenbergh, R., Belen, R., Eds.; ISPRS
Book Series; Taylor & Francis Group/CRC Press: London, United
States, 2019; pp. 127–149 ISBN in generation.

12. Tabkha, A.; Hajji, R.; Billen, R.; Poux, F. Semantic Enrichment Of
Point Cloud By Automatic Extraction And Enhancement Of 360°
Panoramas. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2019, XLII-2/W17, 355–362, doi:10.5194/isprs-archives-
XLII-2-W17-355-2019.

13. Poux, F.; Neuville, R.; Hallot, P.; Van Wersch, L.; Jancsó, A. L.;
Billen, R. Digital investigations of an archaeological smart point
cloud: A real time web-based platform to manage the visualisation of
semantical queries. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. - ISPRS Arch. 2017, XLII-5/W1, 581–588, doi:10.5194/isprs-
Archives-XLII-5-W1-581-2017.

14. Poux, F.; Hallot, P.; Jonlet, B.; Carre, C.; Billen, R. Segmentation
semi-automatique pour le traitement de données 3D denses:
application au patrimoine architectural. XYZ 2014, 141, 69–75.

15. Novel, C.; Keriven, R.; Poux, F.; Graindorge, P. Comparing Aerial
Photogrammetry and 3D Laser Scanning Methods for Creating 3D
Models of Complex Objects. In Capturing Reality Forum; Bentley
Systems: Salzburg, 2015; p. 15.

