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ABSTRACT 

TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet 

the characteristics of TH17 cells that contribute to host defense against infection are not clear. To 

elucidate the antimicrobial machinery of the TH17 subset, we studied the response to 

Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17 secreted 

protein with direct antimicrobial activity.  We generated C. acnes-specific antimicrobial TH17 

clones (AMTH17) with varying antimicrobial activity against C. acnes, which we correlated by 

RNA-seq to the expression of transcripts encoding proteins that contribute to antimicrobial 

activity. Additionally, we validated that AMTH17-mediated killing of C. acnes as well as bacterial 

pathogens, was dependent on the secretion of granulysin, granzyme B, perforin and histone H2B.  

We found that AMTH17s can release fibrous structures composed of DNA decorated with the 

histone H2B that entangle C. acnes that we call T cell extracellular traps (TETs). Within acne 

lesions, H2B and IL-17 colocalized in CD4+ T cells, in proximity to TETs in the extracellular 

space composed of DNA decorated with H2B. This study identifies a functionally distinct 

subpopulation of TH17 cells with an ability to form TETs containing secreted antimicrobial 

proteins that capture and kill bacteria. 
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INTRODUCTION 

T cell responses represent an important component of the adaptive immune response and 

contribute to host defense against microbial pathogens by secreting cytokines that activate 

antimicrobial effector pathways and proteins that directly lyse infected targets (1). Classically, 

CD4+ T cell subsets with diverse immunological functions have been distinguished based on 

unique cytokine secretion patterns and transcription factor profiles (2-7). TH17 cells express the 

transcriptional factor RORJt and secrete IL-17, IL-22, and IL-26 among others.  Cytokines such 

as TGF-β, IL-1-β, and IL-6 are involved in TH17 cell differentiation (8-10), and signals from 

these cytokines result in the activation of the transcription factor STAT3, which directly regulates 

downstream genes involved in TH17 differentiation (11, 12). Defective TH17 cell responses in 

STAT3 deficient patients have been associated with increased susceptibility to bacterial 

infections, indicating that the TH17 subset has a major role in host defense (13-16). 

 

The ability of T cells to lyse infected targets cells can be accompanied by the release of 

antimicrobial effector molecules that kill both intracellular and extracellular bacteria. Two major 

mechanisms are responsible for T cell-mediated cytolytic activity. The first involves the secretion 

of lytic granules containing perforin and granzymes by T cells upon contact with a target, and the 

second involves the interaction of membrane-bound Fas ligand on T cells with Fas molecule on 

the target cell (17, 18). In addition to CD8+ T cells, several in vivo studies have demonstrated that 

cytolytic CD4+ T cells can play a protective role in viral clearance, antimicrobial activity against 

intracellular bacteria (19) and elimination of tumors (20-25). 

 

The identification of CD4+ T mediated killing of target cells has been described within the entire 

heterogeneous CD4+ T cell population and little is known about the extent to which CD4+ T 

subsets are involved in CD4+ T cell-mediated antimicrobial activity. In the case of the TH17 cells, 

most of the work has been done in defining their role in pathologic inflammation and disease (26, 
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27). It is unclear what distinguishes inflammatory TH17 cells elicited by pathogens from tissue 

resident TH17 cells induced by commensals. Two functionally distinct populations of TH17 cells 

can simultaneously reside within the gut during pathogen-induced inflammation; notably, TH17 

induced by segmented filamentous bacteria (SFB) was shown to induce non-inflammatory 

homeostatic TH17 cells, whereas Citrobacter rodentium-induced TH17 cells exhibited a high 

inflammatory cytokine profile reflecting an inflammatory effector potential (28). Similarly, we 

and others have demonstrated that Cutibacterium acnes is a potent inducer of IL-17 and IFN-J in 

CD4+ T cells, and that IL-17+ cells are present in perifollicular infiltrates of acne lesions,  

indicating that TH17 cells contribute to the pathogenesis of the disease (8, 29). Moreover, acne-

associated (CA) and healthy-associated (CH) strains of C. acnes differentially modulate the CD4+T 

cell responses to induce an IL-17/IFN-J or IL-17/IL-10+ secreting TH17 cells respectively. 

However, little is known about how TH17 cells contribute to the killing of C. acnes as TH17-

mediated release of the antimicrobial protein IL-26 did not reduce bacterial viability (30). 

  

Here, we used RNA sequencing (RNA-seq) to determine the mechanism(s) involved in 

antimicrobial TH17 cell-mediated killing of bacteria, initially studying the immune response to C. 

acnes. We generated C. acnes-specific antimicrobial TH17 clones (AMTH17) with varying 

antimicrobial activity against C. acnes. We show that C. acnes-induced AMTH17 cells represent a 

subset of CD4+ TEM and TEMRA cells. RNA-seq analysis indicate that cytotoxic gene expression in 

AMTH17 clones correlate with both protein secretion and antimicrobial activity against C. acnes 

and is dominated by a number of known antimicrobial proteins. We found that AMTH17 cells 

release histone-rich T cell extracellular traps (TETs) in conjunction with antimicrobial proteins 

that can entangle and kill bacteria. This suggests that AMTH17-mediated killing of bacteria may be 

a general mechanism that contributes to homeostatic regulation of bacterial colonization.  
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RESULTS 

C. acnes-specific AMTH17 are highly enriched in cytotoxic genes 

Besides the CD8+ cytolytic T lymphocytes (CTLs), human CD4+ T cells with cytolytic functions 

have been reported in response to viral infections (31-34). The CD4+ T cells are able to function 

as CTLs ex vivo and can be detected following vaccinations, including against poliovirus, small 

pox and in response to vaccines against HIV infection (35, 36) and likely to play a role in host 

defense (37). Since during the propagation of long-term CD4+ T cell lines in the absence of 

cloning, cells expressing cytotoxic and antimicrobial activity are lost after several weeks of 

culture (17), we developed a cloning strategy that involves the use of whole C. acnes bacteria to 

stimulate immune cells, and used sterile cell sorting to select for C. acnes-specific TH17 cells 

(Fig. S1). We generated and maintained short-term cultures of stable C. acnes strain-specific 

TH17 clones, which enabled us to recapitulate the spectrum of the biology, present in ex vivo 

TH17 cells (28). The quick expansion also permitted the analysis of transcripts associated with 

TH17 cells. We first compared the antimicrobial activity of supernatants derived from these 

clones against C. acnes and several bacterial strains.  We identified antimicrobial TH17 cells, 

hereafter termed AMTH17 that had antimicrobial activity against C. acnes and other Gram-positive 

and Gram-negative bacteria (Fig. 1, A and B). We also identified non-antimicrobial TH17 clones, 

hereafter termed, n-AMTH17, that lacked antimicrobial potency (Fig. 1A). Both the AMTH17 and n-

AMTH17 clones were able to secrete IL-17 upon stimulation with α-CD3/CD28 antibodies (Fig. 

1C). In further comparisons of the cytokine secretion patterns of the AMTH17 and n-AMTH17 clones, 

we observed that the secretion of IL-17, IL-22, IL-26 and IFN-J (p=< 0.001) was higher in the n-

AMTH17 than in the AMTH17 clones (Fig. 1D). On the other hand, IL-10 levels were elevated 

within the AMTH17 compared to the n-AMTH17 clones (Fig. 1E) suggesting that the AMTH17 subset 

likely produce IL-10 in addition to other cytokines as an important regulatory molecule to 

dampen excessive inflammation.  
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We next investigated the phenotype of the TH17 clones via flow cytometry. We analyzed 15 

AMTH17 clones and discovered that a mean of 64% of the AMTH17 were enriched in the CD4-TEM 

(T effector memory) and 34% within the TEMRA subsets defined as (CD4+CD45RA-CCR7- and 

CD4+CD45RA+CCR7-) cells respectively (Fig. 2, A and B). On the other hand, of the 5 n-AMTH17 

clones that we analyzed, 82% were highly enriched within the CD4-TEM and 15% CD4-TCM 

(CD4+CD45RA-CCR7+) (Fig. 2, A and C). In addition, these clones expressed transcripts 

associated with tissue resident memory T cells such as CXCR6, ITGAE (CD103), KFL2 and 

S1PR1 (Fig. S2) (38, 39). These data suggest that the AMTH17 cells are at an advanced stage of 

differentiation, and may have the ability to exert antimicrobial activity as they home to peripheral 

non-lymphoid tissues such as the skin. 

 

AMTH17 cells exhibit antimicrobial activity as early as six hours 

T cells are generally thought to contribute to antimicrobial activity either by releasing cytokines, 

which recruit and activate other cells, or by major histocompatibility complex (MHC)-restricted 

lysis of infected host cells (40). The fact that only supernatants derived from activated AMTH17 

clones had an ability to kill C. acnes in in vitro CFU assays, suggested that these T cells were 

producing soluble bactericidal product(s). To further understand the mechanism(s) of TH17 cell 

mediated killing, we used RNA-seq to determine differential antimicrobial gene expression in 

AMTH17 and n-AMTH17 clones. To this end, we took advantage of the finding that AMTH17 clones 

had varying levels of antimicrobial activity, which we termed Low, Medium and High based on 

the results of C. acnes CFU assays. Against C. acnes strain HL005PA2 (Fig. 2D), reductions 

greater than 5-log, 3-log and 1-log in CFU were observed using undiluted supernatants derived 

from activated High, Medium and Low AMTH17 clones respectively. In contrast, supernatants 

from activated n-AMTH17 clones did not exhibit antimicrobial activity against the three C. acnes 

strains that we tested (HL005PA2, HL096PA1, and HL110PA1). We next determined the killing 

kinetics of AMTH17 supernatants against C. acnes. As shown in (Fig. 2E), we established that 
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antimicrobial activity was detectable after 6h, reaching a 2-log reduction after 12h of incubation. 

In contrast, supernatants derived from activated n-AMTH17 clones lacked antimicrobial activity 

against C. acnes even after 24h incubation. Thus, in subsequent bulk RNA-seq experiments, 15 

AMTH17 clones with varying antimicrobial activity were stimulated with α-CD3/CD28 for 6h and 

12h, and as a control, we used 5 n-AMTH17 clones (Fig. 2D). 

 

Identification of antimicrobial proteins of AMTH17 by RNA sequencing 

Using the transcriptome sequencing data, we next correlated the genes that had a greater than 

twofold expression within AMTH17 over the n-AMTH17 with antimicrobial activity as determined by 

in vitro C. acnes CFU activity. There were 431 and 983 genes identified in the AMTH17 specific 

signatures for the 6 and 12h time point, respectively (Fig. 3, A and B). Subsequent, overlap of 

these genes with an antimicrobial gene list from the Gene Cards database revealed 50 and 98 

common genes with significantly higher expression in AMTH17 compared to the n-AMTH17 clones 

at 6 and 12h time points, respectively (Fig. 3, A and B). These common genes included cytotoxic 

granule and antimicrobial protein genes encoding GNLY, GZMB, GZMA, PRF1, and histones 

H2B and H4, and were also highly enriched in the High killer AMTH17 as compared to the n-

AMTH17 clones (Fig. 3, C and D, Table S1 and S2).  Transcripts encoding transcription factors and 

receptors related to TH17 cells such as RORc, IL17RE were also expressed at high levels in the 

AMTH17 clones (Fig. S3). The GNLY transcript had the highest mean expression in AMTH17 

compared to the n-AMTH17 clones at both the 6h and 12h time-points (Fig. S3, A and B). GNLY is 

linked to the cytotoxic function of natural killer and CD8+ T cells, and has a wide range of 

antimicrobial activity against bacteria and fungi (18, 19).   

 

Cytotoxic gene expression in AMTH17 clones is highly correlated with protein secretion and 

antimicrobial activity  
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To assess the functional capacity of AMTH17, we confirmed the expression of some of the 

cytotoxicity-related transcripts (GNLY, GZMB, and PRF1) at the protein level following 6 and 

12h in vitro stimulation with α-CD3/CD28 antibodies. We found that gene expression of GNLY, 

GZMB, PRF1 as determined by RNA-seq had a high positive correlation with the protein 

secretion data (r = 0.85, 0.79 and 0.58 at 6h), and (r = 0.87, 0.64 and 0.39 at 12h), respectively 

(Fig. 4B and D). We then performed CFU experiments using the same supernatants that were 

measured using ELISA. We observed a negative correlation in GNLY, GZMB and PRF1 gene 

expression and antimicrobial activity in AMTH17 (r = -0.89, -0.75 and -0.71 at 6h), and (r = -0.94, -

0.81 and -0.63 at 12h), respectively (Fig. 4A and 4C), suggesting that the products of these genes 

may play an important role in AMTH17-mediated antimicrobial activity against a wide variety of 

pathogens. The correlation between PRF1 gene correlation and perforin protein expression 

decreased from 6 to 12 hours.  In looking at a dynamic process in which the transcripts and 

protein are induced and degraded with different kinetics, the correlation may vary with time (41). 

We further validated that granulysin, granzyme B and perforin are highly enriched within the 

AMTH17 and not the n-AMTH17 clones (Fig. S4, A and B). Therefore, our combined transcriptomics, 

protein analysis and antimicrobial CFU data suggest that AMTH17-mediated killing is a general 

mechanism, and just like CD8+ cytolytic T lymphocytes, AMTH17 can secrete granulysin, 

granzymes, perforin and other molecules as part of their antimicrobial arsenal, and these 

molecules can act synergistically to target C. acnes and a multitude of other cutaneous pathogens. 

 

Histones H2B contributes to AMTH17-mediated antimicrobial activity  

RNA-seq data revealed that GNLY was the top gene expressed in activated AMTH17 compared to n-

AMTH17. The high values of GNLY expression are consistent with the role of granulysin as a 

protein with broad-spectrum antimicrobial activity against microbial pathogens (1). Neutralizing 

the effect of granulysin using a monoclonal antibody led to a 2-log reduction but not a complete 

abrogation in bacteria CFU (Fig. 5A). We therefore reasoned that the AMTH17- mediated killing 
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can involve a complex of other molecules and further mined the RNA-seq data to gain a global 

view of additional genes highly expressed in AMTH17 in comparison to n-AMTH17 clones. We 

discovered that histones (HIST2H2BE, HIST4H4 and HIST1H2BG) were among the top genes 

that were highly expressed after stimulation of AMTH17. Specifically, we observed a negative 

correlation in HIST2H2BE gene expression and antimicrobial activity in AMTH17 (r = -0.67, at 

6h), and (r = -0.77, at 12h), respectively (Fig. 5, B and D). We also found that gene expression of 

HIST1H2BE as determined by RNA-seq had a high positive correlation with the protein secretion 

data (r = 0.79, at 6h) and (r = 0.88, at 12h) respectively (Fig. 5, C and E). These data therefore 

suggested that histone H2B contributes to the AMTH17-mediated antimicrobial activity. 

Histone proteins share essential traits of cationic antimicrobial peptides (CAMPS), and are a 

major antimicrobial component of neutrophil extracellular traps (NETs) (42). To confirm that 

histone H2B can negatively affect C. acnes growth, we used recombinant histone H2B and H4 

and performed CFU assays. Indeed a 1 and 2.5-log reduction in bacterial CFU was observed 

when C. acnes was incubated with recombinant H2B and H4 respectively (Fig. 5F). Treatment of 

AMTH17 supernatants with neutralizing antibodies to histone H2B and H4 led to a 1 to -2-log 

reduction in bacteria CFU (Fig. S5, A). A pronounced decrease in CFU was observed against E. 

coli, and S. aureus (Fig. 5, G and H) treated with recombinant histone H4. Histones have been 

reported in the mitochondria, cytosolic granules and cell surface (43), and on this basis, we 

reasoned that the AMTH17 may have an ability to secrete histones upon exposure to bacteria and 

that these extranuclear histones can play an important role in host defense.  We therefore stained 

the AMTH17 clones with D-H2B histone antibodies and DAPI and found that histone H2B could 

localize to the cell surface of AMTH17 clones (Fig. S5, B-D). To address whether AMTH17 secrete 

histone H2B, we stimulated AMTH17 and n-AMTH17 clones, harvested the supernatants and lysates 

and performed ELISA and western blots. Indeed, the AMTH17 and not the n-AMTH17 clones were 

able to secrete histones (Fig. S6). Together these data support our notion that histones can be 
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secreted by AMTH17 and that they are antimicrobial against both Gram-positive and Gram-

negative bacteria. 

Previous studies detected DNA in supernatants of peripheral blood mononuclear cells stimulated 

with phytohemagglutinin (44, 45). Although both human and mouse CD4+ T cells could release 

DNA and histones, it was not determined which T cell subset was involved (46). We therefore 

next examined the ability of TH1 and TH2 cells to secrete histones. We demonstrate that both TH1 

and TH2 cell lines release the signature cytokines IFN-γ and IL4, respectively upon stimulation 

with PMA (Fig. S6, D and E). However, both cell lines lacked the ability to secrete histones and 

subsequently kill C. acnes in vitro (Fig. S6, F). In addition, histone/DNA complex formation by 

these cells were undetectable by confocal microcopy (Fig. S7, A and B). These data indicate that 

the ability of AMTH17 cells to secrete histone-coated ETs as part of an antimicrobial response is 

specific to this T cell subpopulation.  

 

AMTH17 cells release T cell extracellular traps (TETs) that entangle C. acnes 

Based on the fact that the AMTH17 were viable after histone secretion, we hypothesized that the 

mechanism of histone secretion involves an early non-lytic extracellular trap formation that can 

be induced by the recognition of bacterial stimuli/products. As shown previously, the formation 

of extracellular traps by immune cells is an important mechanism in the innate immune response 

(42, 47). Extracellular traps are composed of chromatin coated with histones, proteases and 

cytosolic proteins that not only ensnare bacteria fungi and protozoans, but also provide a high 

concentration of antimicrobial molecules that help trap and kill bacteria and fungi (42, 48-51). To 

study the mechanism of TH17 extracellular trap formation, we stimulated AMTH17 and n-AMTH17 

clones with phorbol 12-myristate 13-acetate (PMA), α-CD3/CD28 antibodies or C. acnes, either 

in the presence or in the absence of deoxyribonuclease (DNase). Confocal staining shows histone 

H2B accumulated in the cytoplasm and cell surface of AMTH17 suggesting that traps can mediate 

T cell antimicrobial activity (Fig. 6 and S5, C and D). Furthermore, confocal microscopy 
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demonstrate that activated AMTH17 form TETs, that are fibrous structures composed of DNA 

prominently decorated with histone H2B (Fig. 6, S7 and S8).  To closely visualize the TETs, we 

used scanning electron microscopy and revealed that AMTH17 are able to externalize a meshwork 

of extracellular traps into the extracellular space that entangle C. acnes (Fig. 7 and S9). We next 

tested the TET forming characteristics of AMTH17 and n-AMTH17 clones activated only by contact 

with C. acnes. We observed that C. acnes were able to induce TETs in AMTH17 and not the n-

AMTH17 (Fig. 7 E and F), and that these structures could trap bacteria (Fig. 7, F). Because 

extracellular traps are degraded by treatment with DNase (42) this enzyme was added to PMA-

activated AMTH17 followed by addition of C. acnes. Treatment of AMTH17 with DNase led to a 

reduction in TET formation (Fig. S9, G and H).  

 

To explore the disease relevance of TH17 TET formation in vitro, we investigated whether such 

extracellular structures could be detected in vivo in biopsy specimens from acne patients. We 

detected H2B and IL-17 in the inflammatory infiltrate in acne lesions but not in normal skin (Fig. 

S10).  We further investigated the presence of extracellular traps in acne lesions using confocal 

microscopy labelling CD4, IL-17 and H2B as well as DAPI.  We identified CD4+ T cells 

expressing IL-17 in acne lesions (Fig. S11).  The area containing CD4+ IL-17+ cells was selected 

and H2B visualized (Fig. 8). IL-17 and H2B colocalized with DNA in fibrous structures in the 

extracellular space proximal to the CD4+ T cells indicative of extracellular trap formation. 

Identical structures were detected in a second acne biopsy sample (Fig. S12).  The isotype 

controls for both samples was negative (Fig. S13). In summary, our data demonstrate that, as in 

several innate immune cells (42, 47, 52-54), AMTH17s can release traps composed of DNA 

decorated with lysine-rich histones such as H2B, providing a mechanism by which the adaptive T 

cell response can monitor and regulate commensals such as C. acnes and invading pathogens 

including S. aureus.   
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DISCUSSION 

Most of our understanding about mechanisms of host defense against infectious disease has come 

from exploration of the response to pathogenic microbes. However, the vast majority of microbial 

encounters are those resulting from commensal and/or symbiotic relationship with the microbiota. 

In the case of acne vulgaris, while most humans harbor C. acnes on their skin, the loss of the skin 

microbial diversity together with the action of the innate immune response, in particular, is 

thought to drive the chronic inflammatory condition (55). The ability of C. acnes strains to induce 

differential activation of both the innate and adaptive arms of the immune response are most 

likely due to differences in lineage specific genetic elements among the strains (56). In this study, 

we identify AMTH17 cells as a population within the CD4+ TH17 subset, discovered through RNA-

seq and functional analysis that utilizes a combination of antimicrobial molecules to kill C. acnes 

and other microbial pathogens. Importantly, AMTH17 cells have the ability to form T cell 

extracellular traps (TETs) in vitro which are also detected in vivo in acne lesions. 

 

Previous studies have reported the presence of extracellular traps in neutrophils, mast cells 

macrophages and basophils (42, 48, 57-59). The ETs entrap not only Gram-positive and Gram-

negative bacteria, such as Staphylococcus aureus, Salmonella typhimurium, Streptococcus 

pneumoniae and Group A streptococci, but also pathogenic fungi, such as Candida albicans (42, 

49, 60-62). However, it is not known whether T cells form ETs and trap bacteria such as C. 

acnes. Notably, we observed that C. acnes can activate AMTH17 leading to the formation of T cell 

extracellular traps, fibrous structures composed of DNA that are prominently decorated with 

histone H2B, and that the TETs upon release form a meshwork in the extracellular space that 

have the capacity to entangle C. acnes. After entrapment, we visualized through scanning EM 

that most of the C. acnes were killed. However, some bacteria have developed strategies to 

reduce trapping and killing by repelling cationic antimicrobial peptides (CAMPs) in ETs (63) or 

by degrading the DNA backbone with a deoxyribonuclease (DNase) (60, 62). Treatment of TETs 
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with commercial DNase rendered the TETs ineffective suggesting that DNA is required for the 

TET structure and function. As part of the pathogenesis of acne, disruption of the pilosebaceous 

unit results in the entry of C. acnes into the dermis, which contributes to the induction of an 

inflammatory response. We have previously determined that IL-17+ cells are present in the 

perifollicular infiltrate of inflamed acne lesions (64). Herein, we visualized TETs in vivo in 

biopsy specimens from acne lesions, observing the colocalization of fibrous structures composed 

of DNA and H2B in proximity to CD4+ T cells expressing IL-17. We demonstrate that these 

TETs can contribute to an antimicrobial response against C. acnes, but may also contribute to 

inflammation.  

We further characterized the full repertoire of antimicrobial molecules expressed by AMTH17 in 

our RNA-seq dataset, and identified histones as a component of AMTH17-mediated immunity. 

Histones have been reported to coat ETs of neutrophils and other innate immune cells (42, 47). 

Four core histones (H2A, H2B, H3, and H4) form an octamer, around which DNA is wrapped in 

nucleosomes. These histones can display biological activities different from nucleosome 

structures and form an important part of skin defense (65).  Histones are hydrophobic, cationic, 

and can form amphipathic α-helical structures and therefore share essential traits of CAMPS. 

Lysine-rich histones H2A and H2B are present on the epithelial surface of the placenta, providing 

the placenta and fetus protection against microbial infection (43). In addition, histone H2A and 

H2B both possess the capacity to neutralize endotoxin (66) and in our study, we demonstrate 

antimicrobial activity against E. coli, S. aureus and C. acnes. Therefore, the observation that 

histone H2B gene expression highly correlated with granulysin activity in CFU assays is 

consistent with its antimicrobial action (67), but how this increased antimicrobial response is 

activated in vivo is unknown. We also observed high expression of the arginine-rich histone H4 in 

AMTH17. Histone H4 is known to mediate antimicrobial activity through the destruction of the cell 

membrane, and human sebocytes can release H4, which displays bactericidal activity against S. 



14 
 

aureus and C. acnes. The antibacterial activity of H4 is enhanced by the presence of fatty acids 

on the skin (67). 

 

TH17 cells are well known for their host protective role against fungal infections in barrier tissues, 

in particular, those caused by Candida albicans and in protection against extracellular bacteria 

(68-71). Our findings highlight the relevance of TH17 immunity to the skin commensal C. acnes 

and other bacterial strains. Direct comparison of AMTH17 and n-AMTH17 clones confirmed that 

AMTH17 displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. 

We show that the antimicrobial activity of AMTH17 is associated with a rapid expression and 

induction of antimicrobial transcripts, the impact of which is underscored by the finding that the 

top most abundantly secreted antimicrobial molecules of AMTH17 (granulysin, histones H2B) 

alone accounted for nearly 50% of the antimicrobial killing. We further identified multiple 

antimicrobial transcripts/molecules that are functionally important to immune defense. These 

results suggest that the antimicrobial molecules including granulysin, granzyme B, and perforin 

can act synergistically as part of the antimicrobial arsenal of AMTH17. It therefore seems more 

likely that the AMTH17 is a functionally distinct population that serves a protective role during 

infection. We suggest a model where, in the case of extracellular bacteria, AMTH17 cells can 

secrete granulysin that is then attracted to the bacterial cell wall by ionic interactions mediated by 

positively charged arginine residues. These residues interact with the negatively charged 

phospholipids on the surface of the pathogen, and granulysin can then alter membrane 

permeability, leading to osmotic lysis by itself. We also envisage a scenario where granulysin can 

colocalize with the pore forming molecule perforin and act synergistically with granzyme B, 

histone H2B and H4 leading to osmotic lysis. Both mechanisms can allow granulysin to access 

the intracellular compartments in which the pathogens reside leading to bacteria killing. 

Additionally, the impact of other antimicrobial cytokines such as IL-26 cannot be definitively 
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excluded in the bacterial killing even though we did not see significant difference in IL-26 

expression between the AMTH17 and n-AMTH17 clones.  

 

ETs have been observed in diseases such as human appendicitis (42) sinusoids of the liver and 

lungs during sepsis (72). The evidence presented in the paper shows that those TH17 cells that 

express histones make TETs and secrete a combination of molecules that have antimicrobial 

activity against extracellular bacteria.  The TETs were detected in acne lesions, linking them to 

the site of disease where they could contribute to the antimicrobial response in the extracellular 

environment, such as in the extracellular matrix for example. Human genetic studies indicate that 

alterations in TH17 cell differentiation due to STAT3 mutations, or deletion of IL-17 receptors 

predisposes to multiple infections, such that these mechanisms are necessary for host defense (13, 

69). Patients with Hyper – immunoglobulin E syndrome (HIES), caused by mutations in STAT3 

have few detectable TH17 cells in peripheral blood (69); and a failure of TH17 CD4 cell 

differentiation in vitro (13, 15, 73-75). Therefore, it is not possible to study the role of TETs in 

STAT3 deficient TH17 cells in humans.  In addition murine and human genetic approaches point 

strongly to the model that IL-17RA/RC signaling in non-myeloid cells as a necessary in vivo 

effector mechanism of TH17 cells (76, 77).  However, these studies do not indicate whether TH17 

production of IL-17 is sufficient for host defense. It will be difficult to assess whether TETs are 

also necessary for host defense, as inherited mutations in HIST2H2BE have not been reported. 

Nevertheless, it is possible that both IL-17 and TETs contribute to host defense against 

extracellular bacteria. It is likely that there is redundancy in the immune response such that 

several antimicrobial mechanisms work additively or in synergy in vivo to destroy extracellular 

bacteria.  

 

Although our data indicates that TETs are involved in antimicrobial responses, as are other ETs, 

we cannot exclude the possibility that TETs contribute to pathology.  In psoriasis, neutrophil ETs 
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may contribute to TH17 induction as part of the disease pathogenesis (78). In addition, a 

correlation between the presence of neutrophil ET-associated DNA and pathology has also been 

implicated in other diseases (42, 70), and whether this is true for C. acnes-induced TETs remains 

to be explored.  A charge-mediated mechanism whereby cationic antimicrobial molecules and 

histones such as H2B and H4 in TETs trap negatively charged commensals such as C. acnes 

seems plausible. The fact that TH17 cells can release traps implies that these cells can act as an 

important link between the innate and adaptive responses targeting efficient clearance of invading 

pathogens. Taken together, our data identifies a functionally distinct subpopulation of TH17 cells 

with an ability to secrete antimicrobial proteins and T cell extracellular traps to capture and kill 

extracellular bacteria. 
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MATERIALS AND METHODS 

Bacterial strains 

C. acnes strains used in this study were obtained from Biodefense and Emerging Infections 

Research Resources Repository (BEI Resources) and cultured as previously described (30). 

Staphylococcus aureus SA113, Pseudomonas aeruginosa PAO1 and Escherichia coli DH5α were 

grown in Luria broth (LB) overnight at 370C with agitation. Overnight bacterial cultures were sub 

cultured and incubated until midlog was reached, which was determined to be OD600 = 0.4. 

Cultures were washed in sterile PBS and renormalized to OD600 = 0.4 in culture media.  

 

PBMC isolation, stimulation and cytokine ELISAs 

Peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors with written 

informed patient consent, as approved by the University of California, Los Angeles Institutional 

Review Board. PBMCs were then isolated using Ficoll–Paque gradients (GE Healthcare) as 

previously described (30). Briefly, cells were cultured in T cell media (RPMI 1640, 10% heat 

inactivated human serum (Gemini), 2mM L-glutamine, 10U/ml penicillin and 100 µg/ml 

streptomycin) and stimulated with different strains of C. acnes at 1 multiplicity of infection (1 

MOI). Levels of cytokines accumulated in culture supernatants were measured by ELISA. As a 

positive control for NET formation, neutrophil isolation was done using the Neutrophil Isolation 

Kit (Miltenyi Biotec, Auburn, CA) following manufacturer’s protocol and assessed for 

spontaneous NET formation (incubated with RPMI medium with 2% fetal calf serum for 130 

min) and for NET formation after stimulation with 20nM phorbol 12-myristate 13-acetate (PMA) 

for 80, 100, and 130 min as previously described (42). 

 

Sterile Cell sorting, TH17 cloning and neutrophil isolation  

We developed a cloning system that uses C. acnes microbes and autologous monocytes as APCs. 

This cloning approach provides a large number of antigens and a variety of stimuli to innate 
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receptors to elicit polarizing cytokines for TH17 differentiation. Briefly, PBMCs were stimulated 

for 16 hours with C. acnes strains, and cytokine secretion determined using IL-17 cytokine 

secretion capture assay following the manufacturer’s protocol (Miltenyi). After IL-17 staining, 

the cells were further stained with α-CD4 antibodies (BD, clone RPA-T4) and the CD4+ IL-17+ 

cells sorted under sterile conditions using Beckton Dickinson FACS Vantage (San Jose, CA). 

Dead cells were excluded by DAPI staining. Sorted cells were cloned in Terasaki plates (Nunc 

Microwell, Sigma-Aldrich) as previously described (30) and maintained in T cell media 

supplemented with 100 U/ml IL-2 and 2ng/ml IL-23. To avoid the effect of long-term culture, 

TH17 cell clones were expanded for a maximum of 13 days aliquoted and frozen, and/or used 

immediately for RNA-seq and subsequent functional experiments. Samples were acquired on BD 

Biosciences FacsScan, and analyzed using FlowJo software (V7.6). In additional experiments, 

human TH1 and TH2 cells were isolated using CD4+ T cell isolation kits (Miltenyi) and cultured in 

the presence of IL-2 and AB serum as previously described (79). Levels of IFN-γ and IL-4 were 

determined by ELISA (R&D). 

  

 

Bacterial CFU assay 

C. acnes strains were grown under anaerobic conditions in Reinforced Clostridial Medium 

(Oxoid, Basingstroke, England) for 2 days and collected in mid-log phase. The bacteria were 

washed three times with the assay buffer (10 mM Tris pH 7.4, supplemented with 0.03% volume 

trypticase soy broth, Tris-TSB), and enumerated by applying a conversion factor of 7.5 x 107 

bacteria per mL=1 OD600. TH17 culture supernatants were diluted in Tris-TSB and the CFU 

assays performed as previously described (80, 81). For the S. aureus, E. coli and P. aeruginosa, 

CFU assays; bacteria were grown as described above and resuspended in RPMI 1640. Depletion 

of granulysin was performed by incubating supernatants with 10ug/ml of neutralizing α-

granulysin mAb (Biolegend, clone DH10) or an isotype mAb for 12 h at 40C. 100µl reactions 
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(bacteria + TH17 supernatants or rhIL-26 or α-granulysin or α-H2B, or α-H4, Abcam) were added 

to 1.5-ml tubes and incubated at 370C with shaking for 1, 3, or 24 h after the specified incubation 

periods, 10-fold serial dilutions were plated on LB plates to quantify surviving CFU.  

 

Bulk RNA-seq Library and Sequencing  

Fifteen AMTH17 and five n-AMTH17 clones (control) generated from six healthy donors were 

stimulated with α-CD3/CD28 (BD) in T cell media. Total RNA was isolated at two time points (6 

and 12h) after treatment using RLT buffer supplemented with 1% β-mecaptoethanol (QIAGEN). 

RNA extraction was performed on a total of forty samples according to manufacturer’s 

instructions using RNAeasy Micro Kit (QIAGEN), including the on-column DNase treatment 

step. Extracted RNA was quantified with Quant-iT RiboGreen RNA Assay Kit (Invitrogen) and 

RNA quality was assessed using the Agilent 2200 Tapestation (RNA Assay). mRNA libraries 

were prepared using the Illumina TruSeq mRNALibrary Prep kit following manufacturer’s 

protocol. Briefly, total RNA was subjected to poly-A-selection to purify messenger RNA, then 

fragmented and converted into double stranded cDNA. Double stranded cDNA was then end-

repaired, ligated to adapters and amplified. Final libraries were quantified using PicoGreen 

(Invitrogen) and the quality was assessed using the Agilent 2200 Tapestation (D1000 Assay). 

Libraries were pooled (4 per lane) at equimolar quantities (10uM each library) and sequenced on 

a HiSeq 2000 sequencer (Illumina) with 50bp single-end protocol. The data discussed in this 

publication have been deposited in NCBI's Gene Expression Omnibus (82). 

 

Bioinformatics methods 

The alignment of the samples was performed using STAR 2.5.3 (83) using the human genome 

(GRCh38.90). We explored the data to check for outliers and one sample (S31) was removed 

from downstream analyses.  For each experiment, the 19 samples were divided into groups (Low, 

Medium, High, and n-AMTH17) based on in vitro C. acnes CFU killing assay. We filtered reads for 
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low counts and remaining were normalized using TMM (trimmed mean of M-values) in the 

edgeR package (84) in R. Reads were then processed by voomwithqualityweight in Limma to 

convert into log2 counts per million (logCPM) with associated precision weights (Law et. al 

2014; Ritchie et al 2015), followed by contrast comparisons. 11,995 genes and 12,040 genes were 

kept for contrast comparisons in the six hours and 12 hours stimulation experiments respectively. 

For CFU, correlation analysis, AMTH17 and n-AMTH17 (controls) clones were stimulated with α-

CD3/CD28 (BD), total RNA was isolated (6 and 12h), and processed for RNA-seq. Specific 

AMTH17 gene signatures with a twofold or more expression in comparison to the n-AMTH17 clones 

were used in a correlation analysis with % antimicrobial activity determined by in vitro C. acnes 

activity. Genes with a coefficient of correlation (r) >0.5 were overlapped with a list of 

antimicrobial related molecules obtained from the Gene Cards database 

(https://www.genecards.org/). The RNAseq data have been deposited in NCBI's Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE144852 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144852). 

 

Scanning Electron Microscopy  

TH17 clones were adhered on silicon wafers (Ted Pella Inc.) treated with 0.01% Poly-L-lysine 

(Sigma). C. acnes added at a 1:1 ratio were incubated for 20, 40, 60 and 90 minutes at room 

temperature. Samples were rinsed with warm fixative (2.5% glutaraldehyde in 0.1M sodium 

cacodylate buffer, pH 7.4) then incubated with fresh fixative for 1h on ice. Next, samples were 

rinsed 5 times (2min each) with 0.1M sodium cacodylate and then post-fixed with 2% osmium 

tetroxide in 0.1M sodium cacodylate for 30min on ice. Following the incubation with osmium, 

the samples were rinsed five times (2min each) with diH2O and then dehydrated by incubating 

with an ascending series of ethanol concentrations (30, 50, 70, 85, 95% 2min each). Dehydration 

was completed by washing the samples in 3 changes (2min each) of 100% anhydrous ethanol. 

Next, samples were loaded into a Tousimis Autosamdri810 critical point dryer and dried at the 

https://www.genecards.org/
https://urldefense.com/v3/__https:/www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144852__;!!F9wkZZsI-LA!R4ehv5SJHJNvwlOWGoWls-Ytkin_5yF5-YKy7x6TVgK8OVPM-aw0NW6IU9x72-wpqek$
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critical point of CO2 before mounting the silicon wafers onto aluminum SEM stubs with double-

sided carbon tape and transferring them to an ion-beam sputter coater and coating with 

approximately 5nm of iridium. Finally, secondary electron images were acquired with a Zeiss 

Supra 40VP scanning electron microscope set to 3.5kV accelerating voltage. All reagents were 

purchased from Electron Microscopy Sciences (Hatfield, PA). 

 

Cell culture, immunoperoxidase and immunofluorescence labeling 

C. acnes were labeled with PKH26 (Sigma) following manufactures protocol. TH17 clones were 

then treated with PMA, PKH26-labeled C. acnes or left untreated in T cell medium for 3h.  

Following stimulation, both TH17 clones and PKH-labeled C. acnes and were adhered to Poly-L-

lysine-coated transwells for one hour. Cells were then washed and fixed for 30 minutes 

with BD Cytofix/Cytoperm (BD Biosciences) before being washed again. Next cells were 

blocked with normal Goat Serum for 20 minutes, and immunolabeled with primary antibodies for 

Histone H2B (Abcam) for one hour. Following washing, cells were stained with secondary 

antibodies for one hour, washed and mounted with DAPI. Immunofluorescence of cell cultures 

was examined using a Leica-TCS-SP8 MP inverted single confocal laser-scanning microscope 

(Leica) at the Advanced Microscopy/Spectroscopy Laboratory Macro-Scale Imaging Laboratory 

(California NanoSystems Institute, UCLA). For immunoperoxidase labeling, de-identified normal 

skin and acne lesion specimens were obtained from the UCLA Translational Pathology Core 

Laboratory after signed written informed consent. Staining for histone H2B and IL-17 (Abcam) 

was performed using the standard streptavidin–biotin technique, using the commercial kit HRP-

AEC system following manufacturer’s recommendations (R&D Systems). For confocal imaging 

of acne tissues, immunofluorescence labeling was performed by serially incubating cryostat tissue 

sections with anti-human mAbs for 2 hours and washed 3 times with 1× PBS, followed by 

incubation with specific, fluorochrome-labeled (A488, A568, A647) goat anti–mouse 

immunoglobulin antibodies (Molecular Probes) for 90 minutes. Controls included staining with 
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isotype-matched antibodies. Nuclei were stained with DAPI (Invitrogen, Life Technologies, 

Thermo Fisher Scientific). Immunofluorescence of skin sections was examined using Leica-TCS-

SP8 MP as described above.  

 

Histone H2B Western blot analysis 

Western blot assays were performed using supernatants and whole cell lysates from TH17 clones. 

Protein concentrations were estimated by Bradford method (Thermo fisher). Briefly, lysates 

prepared from cells in a lysis buffer containing protease inhibitor cocktail (Roche) were separated 

by SDS-PAGE, transferred to PVDF membranes, and subjected to immunoblotting. Immunoblots 

were performed with lysates and supernatants using anti-H2B antibody (1:1000, Abcam) and b-

actin (1:5000, Abcam, ab8227) as an internal control overnight.  

 

Statistical analysis 

For statistical analysis, data obtained from at least three independent experiments were performed 

using GraphPad Prism software version 8. If datasets were not normally distributed, a non-

parametric test was used to determine significance. If more than two datasets were compared, 

One-way analysis of variance was used to compare variances within groups. Post hoc two-tailed 

Student’s t-test was used for comparison between two groups. For comparisons among 3 or more 

groups, we used repeated measures one-way ANOVA with Greenhouse-Geisser correction, along 

with Tukeys’s multiple comparison test, with individual variances computed for each 

comparison. Significant differences were considered for those probabilities ≤ 5% (P≤ 0.05).  

Study approval. This study was conducted according to the principles expressed in the 

Declaration of Helsinki. The study was approved by UCLA IRB (#118-00193). All donors and 

acne patients provided written informed consent for the collection of peripheral blood and 

subsequent analysis.  
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FIGURE LEGENDS 

Fig. 1. AMTH17 secrete TH17-associated cytokines and are antimicrobial against C. acnes and 

other bacterial strains. (A) Observed CFU activity against C. acnes strain HL005PA1 after 4 h 

incubation with AMTH17 clone S26 and n-AMTH17 clone S35 supernatants. (B) Observed CFU 

activity against several bacterial strains after 24 h incubation with AMTH17 clone S26 and n-

AMTH17 clone S35 supernatants. Data represents the mean ± SEM. n>3. ****p<0.0001 by 

repeated measures 1-way ANOVA for treatment groups compared to n-AMTH17 supernatants in 

panel D and C. acnes in panel E. (C) AMTH17 and n-AMTH17 clones were stimulated with α-

CD3/CD28 for 5h and IL-17 and IFN-J expression determined by flow cytometry. n>3. (D-E) 

Cytokine levels in AMTH17 clones (S26, S27, S28) and n-AMTH17 clones (S35, S38, S44) as 

determined by ELISA. Data are shown as mean ± SEM. n>3 (D and E). *p<0.05, **p<0.01, 

**p<0.001 by 2-tailed Students’s t test. 

 

Fig. 2. AMTH17 are CD4+ TEM and TEMRA cells and demonstrate antimicrobial activity as 

early as six hours. (A) AMTH17 and n-AMTH17 clones were stimulated with α-CD3/CD28 and 

stained with antibodies to CD4, CD45RA and CCR7. The AMTH17 clones consisted of primarily 

CD4+CD45RA+CCR7-RA (TEM) and CD4+CD45RA-CCR7- (TEMRA) whereas the n-AMTH17 clones 

consisted mainly of TEM and +CD45RA-CCR7+ (TCM). Data is representative of four independent 

experiments using clones derived from four different donors. (B and C) Analysis of memory 

markers in AMTH17 clones (S5, S16, S26, S28) and n-AMTH17 clones (S10, S13, S35, S38) by flow 

cytometry (n=4). ****p<0.0001 by repeated measures 1-way ANOVA for TEM compared to TCM, 

TEMRA and TN. (D) Several AMTH17 and n-AMTH17 clones were stimulated with α-CD3/CD28 and 

supernatants used for CFU assays against C. acnes strain HL096PA1. The AMTH17 clones were 

subsequently stratified into High, Medium, and Low based on the results of the CFU assays. 

****p<0.001 by repeated measures 1-way ANOVA, Low, Medium and High killer AMTH17 

compared to n-AMTH17. (E) Observed antimicrobial kinetics of supernatants derived from 
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activated AMTH17 clones against several C. acnes strains (HL110PA1, HLA110PA3, HL043PA1, 

HL096PA1 HL005PA2, and ATCC6919) in CFU assays. Data are shown as mean ± SEM. n>3. 

****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to C. acnes 

control.  

 

Fig. 3. Antimicrobial transcripts are highly expressed in AMTH17. (A and B) AMTH17 genes 

with a log2Fold-change (FC) >2 and positively correlated with % antimicrobial activity (r>0.5) 

were overlapped with an antimicrobial gene list from the Gene Cards database. (C-D) Heatmap of 

the top 20 highest correlated genes with % antimicrobial activity found in the AMTH17 clones with 

Low (sky blue), Medium (yellow) and High (purple) antimicrobial activity against C. acnes at 6h 

(C) and 12h (D). Annotation for % antimicrobial activity and correlation coefficient values for 

each sample and gene are displayed on top (dark blue) and on the left (green). Gene expression 

values are displayed as Z-scores of log10 normalized counts. 

 

Fig. 4. Antimicrobial gene expression in AMTH17 clones highly correlate with both protein 

secretion and antimicrobial CFU activity. (A-D) Correlation plots of GNLY, PRF1 and GZMB 

expression in stimulated AMTH17 as determined by RNA-seq. Specific AMTH17 gene signatures 

with a twofold or more expression in comparison to the n-AMTH17 clones and that highly 

correlated with C. acnes CFU activity (A and C) and ELISA protein secretion (B and D) are 

shown for the 6h and 12h time points. p value by Student’s t test (n=15).  

 

Fig. 5. Histones H2B is a component of AMTH17 antimicrobial activity. (A) Supernatants 

derived from activated AMTH17 clone S26 were incubated with D-granulysin neutralizing antibody 

or control IgG for 1h prior and used in CFU assay against C. acnes strain HL005PA1. Data are 

shown as mean ± SEM. n>3. ****p<0.0001 by repeated measures 1-way ANOVA for treatment 
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groups compared to C. acnes control. (B-E) Correlation plots of HIST2H2BE gene expression in 

AMTH17 as determined in RNA-seq against CFU assays and ELISA protein secretion after 6h (B 

and C), and 12h (D and E). p value by Students t test (n=20). (F) Observed CFU activity against 

C. acnes strain HLA110PA3 after 4 h incubation with recombinant histones H2B, H4 and heat 

inactivated controls. Data are representative of 4 independent experiments. ****p<0.0001 by 

repeated measures 1-way ANOVA for treatment groups compared to C. acnes control.  

 (G) Supernatants derived from activated AMTH17 clone S26 were incubated with D-H2B 

neutralizing antibody or control IgG for 1h prior and used in CFU assay against E. coli. Data are 

representative of 3 independent experiments. ****p<0.0001 by repeated measures 1-way 

ANOVA for treatment groups compared to E.coli control. (H) S. aureus after 24h incubation with 

recombinant histone H2B and H4. Data shows average CFU from three independent experiments 

****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to S. aureus 

control. 

Fig. 6. AMTH17 extracellular structures are prominently coated with Histone H2B.  (A-B)     

n-AMTH17 clones S13 (A) and AMTH17 clone S16 (B) were stimulated with PMA for 2 hours as 

previously described (42) and incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, 

and stained with DAPI (blue) and α-histone H2B (green). Confocal staining images are shown. 

White arrows indicate T cell extracellular traps and ensnared C. acnes. Magnification 63X.   

 

Fig. 7. Antimicrobial TH17 release extracellular traps that entangle C. acnes. Scanning 

electron microscopy of the interaction of AMTH17 and C. acnes at different time points. (A) 

AMTH17 clones were stimulated with PMA for 30 minutes. (B and C) PMA and C. acnes for 30 

minutes. (D)  D-CD3/CD28 for 30 minutes. (E and F) C. acnes 30 minutes. (G) PMA and C. 

acnes for 40 minutes, and (H) PMA, C. acnes and DNase for 40 minutes (42). Extended and 

released TETs can be seen attached to bacteria.  
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Fig. 8 Expression of T cell extracellular traps in acne lesions. (A). Confocal images of IL-17 

(red), histone H2B (green), and nuclei (DAPI, blue) in acne lesions. Dashed-line boxes identify 

the area further studied at higher power. (B). Higher power magnification of the delineated 

regions marked in (A) showing H2B (green) and DAPI (red) only.  White arrows indicate T cell 

extracellular traps in proximity to CD4+IL-17+H2B+ triple-positive cells within acne lesions. 

TETs are visualized as fibrous structures containing DNA (DAPI, blue) decorated with histone 

H2B (green) in the extracellular space. The images are projections of confocal z stacks generated 

from sections of 10µm thickness. Magnification, (A) 63X with zoom 2X from lower 

magnification in supplemental figure S9, and (B) is zoom 4X from (A). Data is from three 

individual samples. Scale bar, 10µm (enlarged insets). 
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Supplementary figures 

Fig. S1. Scheme for generation of TH17 clones. PBMCs were isolated from normal donors and 

stimulated for 16 hours with either CH or CA associated C. acnes strains. Cytokine secretion was 

determined using IL-17 cytokine secretion capture assay. After IL-17 staining, cells were further 

stained with α-CD4 antibodies and the CD4+ IL-17+ cells sorted under sterile conditions and 

cloned in Terasaki plates. On day 7, C. acnes-specific clones were selected using T cell 

proliferation assays (30) followed by a further 6-day expansion in 24 well plates in T cell media 

supplemented with 100 U/ml IL-2 and 2ng/ml IL-23. On day 13, TH17 cell clones were either 

frozen, and/or used immediately in subsequent functional experiments.  

Fig. S2. Tissue resident memory T cell markers expressed by TH17 clones. (A and B). 

Normalized count expression of tissue resident memory T cell genes, CXCR6, ITGAE (CD103), 

KFL2 and S1PR1 expression in AMTH17 compared to n-AMTH17 clones as determined by RNA-seq 

after 6h (A) and 12h (B) stimulation with α-CD3/CD28 antibodies are shown. *p<0.05, 

**p<0.01, ***p<0.001 by 2-tailed Students’s t test. 

 

Fig. S3. AMTH17 antimicrobial signatures revealed by RNA-seq. (A and B). Normalized count 

expression of antimicrobial-related genes, transcriptional factors, and IL17-associated receptor 

genes in AMTH17 compared to n-AMTH17 clones as determined by RNA-seq after 6h (A) and 12h 

(B) stimulation with α-CD3/CD28 antibodies are shown. *p<0.05, **p<0.01, ***p<0.001 by 2-

tailed Students’s t test. 

 

Fig. S4. Secretion of antimicrobial molecules by AMTH17 (A) Flow cytometry of a 

representative AMTH17 clone S26 stimulated with α-CD3/CD28 antibodies and stained for 

granulysin, granzyme B and perforin. Data is representative of three independent experiments. 

(B) Secretion of cytotoxic molecules by AMTH17 compared to n-AMTH17 clones as measured by 

ELISA. *p<0.05, **p<0.01, ***p<0.001 by 2-tailed Students’s t test. 
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. 

Fig. S5. Effects of neutralizing histone H2 and H4 on AMTH17 antimicrobial activity. (A) 

Supernatants derived from activated AMTH17 and n-AMTH17 clones were incubated with D-H2B 

and D-H4 neutralizing antibodies for 1h and used for CFU assay against C. acnes strain 

HL005PA1. Data is representative of three independent experiments. ****p<0.0001 by repeated 

measures 1-way ANOVA for treatment groups compared to C. acnes + n-AMTH17 control.  (B-D) 

Confocal microscopy of AMTH17 clone S26 stimulated with PMA for 30 minutes, fixed, and 

stained with (B) DAPI (blue) (C) Histone H2B (green) (D) an overlay of DAPI and Histone H2B. 

Original magnification: ×63. 

 

Fig. S6. Histones H2B expression in AMTH17 clones. Western blotting analysis of histone H2B 

protein expression in (A) supernatants and (B) lysates derived from activated AMTH17 and n-

AMTH17 clones. (C) Secretion of histone H2B by AMTH17 compared to n-AMTH17 clones as 

measured by ELISA. ****p<0.0001 by repeated measures 1-way ANOVA for AMTH17 

supernatants compared to n-AMTH17 Cl. S38 control. (D and E) Secretion of IFN-γ, IL-4 and 

histone H2B by TH1 and TH2 cell lines as measured by ELISA. ****p<0.001 by repeated 

measures 1-way ANOVA for AMTH17 clone compared to TH1 cell line. (F) Several TH1 and TH2 

cell lines were stimulated with PMA and supernatants used for CFU assays against C. acnes 

strain HL096PA1. Observed CFU activity is shown. ****p<0.001 by repeated measures 1-way 

ANOVA for AMTH17 S26 clone compared to a TH2 cell line. 

 

Fig. S7. Characterization of histone H2B expression on TH1 and TH2 cell lines. (A-B) TH1 

(A) and TH2 cell line (B) were stimulated with PMA for 2 hours as previously described  and 

incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, stained with DAPI (blue) and 
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α-histone H2B isotype control antibodies (green). Confocal staining images are shown. Original 

magnification: x63.    

 

Fig. S8. AMTH17 extracellular structures are prominently coated with Histone H2B.  (A-B)     

n-AMTH17 clone S13 (A) and AMTH17 clone S16 (B) were stimulated with PMA for 2 hours as 

previously described (42) and incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, 

stained with DAPI (blue) and α-histone H2B isotype control antibodies (green). Confocal staining 

images are shown. Original magnification: x63.    

 

Fig. S9. AMTH17 release extracellular traps that entangle C. acnes. Scanning electron 

microscopy of the interaction of AMTH17 and n-AMTH17 clones with C. acnes at different time 

points. (A-B) AMTH17 clones were stimulated with PMA and C. acnes for 60 minutes. (C-E) 

AMTH17 clones stimulated with D-CD3/CD28 antibodies for 20, 30 and 60 minutes respectively. 

(F) n-AMTH17 clone stimulated with PMA and C. acnes 30 minutes. (G) n-AMTH17 clone stimulated 

with PMA and C. acnes + DNase 90 minutes. (H) AMTH17 clone stimulated with PMA and C. 

acnes + DNase 90 minutes. (I) neutrophil stimulated for 30 minutes with PMA and C. acnes 

positive control (42).  

 

 

 

Fig. S10. Histone H2B and IL-17 expression in acne lesions. Representative section from skin 

biopsy specimens of normal and acne lesions stained by the immunoperoxidase method with 

monoclonal antibodies specific for histone H2B, IL-17 and corresponding isotype controls (n=3). 

Multiple histone H2B and IL-17-positive cells (brown) can be seen scattered around the dermis. 

Original magnification: x40. 
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Fig. S11. Colocalization of CD4+IL-17+ T cells in acne lesions.  High power confocal images 

of IL-17 (red), CD4 (cyan), and nuclei (DAPI, blue) in acne lesions of two donors (D1 and D2). 

Merge indicate CD4+T cell secreting IL-17 within acne lesions. Dashed-line boxes identify the 

area further studied at higher power. The images are projections of confocal z stacks generated 

from sections of 10µm thickness. Scale bar, 10µm (enlarged insets). Original magnification: ×63. 

 

Fig. S12. Colocalization of IL-17+H2B+ T cells in acne lesions. (A) Confocal images of IL-17 

(red), histone H2B (green), and nuclei (DAPI, blue) in acne lesions. Dashed-line boxes identify 

the area further studied at higher power. (B). Higher power magnification of the delineated 

regions marked in (A) showing H2B (green) and DAPI (blue) only.  White arrows indicate T cell 

extracellular traps in proximity to CD4+IL-17+H2B+ triple-positive cells within acne lesions. 

TETs are visualized as fibrous structures containing DNA (DAPI, blue) decorated with histone 

H2B (green) in the extracellular space. The images are projections of confocal z stacks generated 

from sections of 10µm thickness. Magnification, (A) 63X with zoom 2X from lower 

magnification in supplemental figure S11, and (B) is zoom 4X from (A). Data is from three 

individual samples. Scale bar, 10µm (enlarged insets). 

 

Fig. S13. Colocalization of IL-17+H2B+ T cells in acne lesions.  (A) High power confocal 

images of acne lesions from donor D1 labeled with isotype control antibodies; CD4 isotype 

(mIgG1; cyan), IL-17 isotype (mIgG2b; red), histone H2B isotype (rabbit IgG; green), and nuclei 

(DAPI, blue). (B) High power confocal images of acne lesions from donor D2 labeled with 

isotype control antibodies; CD4 isotype (mIgG1; cyan), IL-17 isotype (mIgG2b; red), histone 

H2B isotype (rabbit IgG; green), and nuclei (DAPI, blue). The images are projections of confocal 

z stacks generated from sections of 10µm thickness. Scale bar, 10µm (enlarged insets). Original 

magnification: ×63.  



32 
 

 

 

Table S1. Common genes expressed in the AMTH17 clones after 6h stimulation. Specific 

AMTH17 gene signatures with a twofold or more expression in comparison to the n-AMTH17 clones 

and that highly correlated with CFU activity were overlapped with an antimicrobial gene list from 

the Gene Cards database. 30 common genes at 6h time point are listed. The top 20 genes are 

listed in figure 3.  

 

Table S2. Common genes expressed in the AMTH17 clones after 12h stimulation. Specific 

AMTH17 gene signatures with a twofold or more expression in comparison to the N n-AMTH17 

clones and that highly correlated with CFU activity were overlapped with an antimicrobial gene 

list from the Gene Cards database. 78 common genes at the 12h time point are listed. The top 20 

genes are listed in figure 3.  
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Fig. 1. AMTH17 secrete TH17-associated cytokines and are antimicrobial against C. acnes and other bacterial strains. (A) Observed CFU activity 
against C. acnes strain HL005PA1 after 4 h incubation with AMTH17 clone S26 and n-AMTH17 clone S35 supernatants. (B) Observed CFU activity 
against several bacterial strains after 24 h incubation with AMTH17 clone S26 and n-AMTH17 clone S35 supernatants. Data represents the mean ±
SEM. n>3. ****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to n-AMTH17 supernatants in panel D and C. 
acnes in panel E. (C) AMTH17 and n-AMTH17 clones were stimulated with α-CD3/CD28 for 5h and IL-17 and IFN-g expression determined by flow 
cytometry. n>3. (D-E) Cytokine levels in AMTH17 clones (S26, S27, S28) and n-AMTH17 clones (S35, S38, S44) as determined by ELISA. Data are 
shown as mean ± SEM. n>3 (D and E). *p<0.05, **p<0.01, **p<0.001 by 2-tailed Students’s t test.

IFN-g

IL
-1

7P
E

Isotype AMTH17 S26 n-AMTH17 S35



A

B C

D E

C
D

45
R

A

n-AMTH17 S10Isotype

Isotype

CCR7

AMTH17 S28

Fig. 2. AMTH17 are CD4+ TEM and TEMRA cells and demonstrate antimicrobial activity as early as six hours. (A) AMTH17 and n-AMTH17 clones 
were stimulated with α-CD3/CD28 and stained with antibodies to CD4, CD45RA and CCR7. The AMTH17 clones consisted of primarily 
CD4+CD45RA+CCR7-RA (TEM) and CD4+CD45RA-CCR7- (TEMRA) whereas the n-AMTH17 clones consisted mainly of TEM and +CD45RA-CCR7+

(TCM). Data is representative of four independent experiments using clones derived from four different donors. (B and C) Analysis of memory 
markers in AMTH17 clones (S5, S16, S26, S28) and n-AMTH17 clones (S10, S13, S35, S38) by flow cytometry (n=4). ****p<0.0001 by repeated 
measures 1-way ANOVA for TEM compared to TCM, TEMRA and TN. (D) Several AMTH17 and n-AMTH17 clones were stimulated with α-CD3/CD28 
and supernatants used for CFU assays against C. acnes strain HL096PA1. The AMTH17 clones were subsequently stratified into High, 
Medium, and Low based on the results of the CFU assays. ****p<0.001 by repeated measures 1-way ANOVA, Low, Medium and High killer
AMTH17 compared to n-AMTH17. (E) Observed antimicrobial kinetics of supernatants derived from activated AMTH17 clones against several C. 
acnes strains (HL110PA1, HLA110PA3, HL043PA1, HL096PA1 HL005PA2, and ATCC6919) in CFU assays. Data are shown as mean ±
SEM. n>3. ****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to C. acnes control. 
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Fig. 3. Antimicrobial transcripts are highly expressed in AMTH17. (A and B) AMTH17 genes with a log2Fold-change (FC) >2 and positively 
correlated with % antimicrobial activity (r>0.5) were overlapped with an antimicrobial gene list from the Gene Cards database. (C-D) Heatmap of 
the top 20 highest correlated genes with % antimicrobial activity found in the AMTH17 clones with Low (sky blue), Medium (yellow) and High 
(purple) antimicrobial activity against C. acnes at 6h (C) and 12h (D). Annotation for % antimicrobial activity and correlation coefficient values for 
each sample and gene are displayed on top (dark blue) and on the left (green). Gene expression values are displayed as Z-scores of log10 

normalized counts.
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Fig. 4. Antimicrobial gene expression in AMTH17 clones highly correlate with both protein secretion and antimicrobial CFU activity. (A-D) Correlation plots of 
GNLY, PRF1 and GZMB expression in stimulated AMTH17 as determined by RNA-seq. Specific AMTH17 gene signatures with a twofold or more expression in 
comparison to the n-AMTH17 clones and that highly correlated with C. acnes CFU activity (A and C) and ELISA protein secretion (B and D) are shown for the 
6h and 12h time points. p value by Student’s t test (n=15). 
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Fig. 5. Histones H2B is a component of AMTH17 antimicrobial activity. (A) Supernatants derived from activated AMTH17 clone S26 were incubated 
with a-granulysin neutralizing antibody or control IgG for 1h prior and used in CFU assay against C. acnes strain HL005PA1. Data are shown as 
mean ± SEM. n>3. ****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to C. acnes control. (B-E) Correlation 
plots of HIST2H2BE gene expression in AMTH17 as determined in RNA-seq against CFU assays and ELISA protein secretion after 6h (B and C), 
and 12h (D and E). p value by Students t test (n=20). (F) Observed CFU activity against C. acnes strain HLA110PA3 after 4 h incubation with 
recombinant histones H2B, H4 and heat inactivated controls. Data are representative of 4 independent experiments. ****p<0.0001 by repeated 
measures 1-way ANOVA for treatment groups compared to C. acnes control. (G) Supernatants derived from activated AMTH17 clone S26 were 
incubated with a-H2B neutralizing antibody or control IgG for 1h prior and used in CFU assay against E. coli. Data are representative of 3 
independent experiments. ****p<0.0001 by repeated measures 1-way ANOVA for treatment groups compared to E.coli control. (H) S. aureus 
after 24h incubation with recombinant histone H2B and H4. Data shows average CFU from three independent experiments ****p<0.0001 by 
repeated measures 1-way ANOVA for treatment groups compared to S. aureus control.
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Fig. 6. AMTH17 extracellular structures are prominently coated with Histone H2B.  (A-B)     n-AMTH17 clones S13 (A) and AMTH17 clone S16 (B) 
were stimulated with PMA for 2 hours as previously described (42) and incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, and 
stained with DAPI (blue) and α-histone H2B (green). Confocal staining images are shown. White arrows indicate T cell extracellular traps and 
ensnared C. acnes. Magnification 63X.  
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Fig. 7. Antimicrobial TH17 release extracellular traps that entangle C. acnes. Scanning electron microscopy of the interaction of 

AMTH17 and C. acnes at different time points. (A) AMTH17 clones were stimulated with PMA for 30 minutes. (B and C) PMA and C. 
acnes for 30 minutes. (D) a-CD3/CD28 for 30 minutes. (E and F) C. acnes 30 minutes. (G) PMA and C. acnes for 40 minutes, and 

(H) PMA, C. acnes and DNase for 40 minutes (42). Extended and released TETs can be seen attached to bacteria. 
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Fig. 8 Expression of T cell extracellular traps in acne lesions. (A). Confocal images of IL-17 (red), histone H2B (green), and nuclei (DAPI, blue) in 
acne lesions. Dashed-line boxes identify the area further studied at higher power. (B). Higher power magnification of the delineated regions 
marked in (A) showing H2B (green) and DAPI (red) only.  White arrows indicate T cell extracellular traps in proximity to CD4+IL-17+H2B+ triple-
positive cells within acne lesions. TETs are visualized as fibrous structures containing DNA (DAPI, blue) decorated with histone H2B (green) in 
the extracellular space. The images are projections of confocal z stacks generated from sections of 10µm thickness. Magnification, (A) 63X with 
zoom 2X from lower magnification in supplemental figure S9, and (B) is zoom 4X from (A). Data is from three individual samples. Scale bar, 
10µm (enlarged insets).
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Fig. S1. Scheme for generation of TH17 clones. PBMCs were isolated from normal donors and stimulated for 16 hours with either CH or CA

associated C. acnes strains. Cytokine secretion was determined using IL-17 cytokine secretion capture assay. After IL-17 staining, cells were 

further stained with α-CD4 antibodies and the CD4+ IL-17+ cells sorted under sterile conditions and cloned in Terasaki plates. On day 7, C. 
acnes-specific clones were selected using T cell proliferation assays (30) followed by a further 6-day expansion in 24 well plates in T cell 

media supplemented with 100 U/ml IL-2 and 2ng/ml IL-23. On day 13, TH17 cell clones were either frozen, and/or used immediately in 

subsequent functional experiments. 
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Fig. S2. Tissue resident memory T cell markers expressed by TH17 clones. (A and B). Normalized count expression of tissue 
resident memory T cell genes, CXCR6, ITGAE (CD103), KFL2 and S1PR1 expression in AMTH17 compared to n-AMTH17 
clones as determined by RNA-seq after 6h (A) and 12h (B) stimulation with α-CD3/CD28 antibodies are shown. *p<0.05, 
**p<0.01, ***p<0.001 by 2-tailed Students’s t test.
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Fig. S3. AMTH17 antimicrobial signatures revealed by RNA-seq. (A and B). Normalized count expression of antimicrobial-related genes, 
transcriptional factors, and IL17-associated receptor genes in AMTH17 compared to n-AMTH17 clones as determined by RNA-seq after 6h 
(A) and 12h (B) stimulation with α-CD3/CD28 antibodies are shown. *p<0.05, **p<0.01, ***p<0.001 by 2-tailed Students’s t test.
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Fig. S4. Secretion of antimicrobial molecules by AMTH17 (A) Flow cytometry of a representative AMTH17 clone S26 stimulated with α-
CD3/CD28 antibodies and stained for granulysin, granzyme B and perforin. Data is representative of three independent experiments. (B) 
Secretion of cytotoxic molecules by AMTH17 compared to n-AMTH17 clones as measured by ELISA. *p<0.05, **p<0.01, ***p<0.001 by 2-
tailed Students’s t test.
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Fig. S5. Effects of neutralizing histone H2 and H4 on AMTH17 antimicrobial activity. (A) Supernatants derived from activated AMTH17 and n-

AMTH17 clones were incubated with a-H2B and a-H4 neutralizing antibodies for 1h and used for CFU assay against C. acnes strain 
HL005PA1. Data is representative of three independent experiments. ****p<0.0001 by repeated measures 1-way ANOVA for treatment 
groups compared to C. acnes + n-AMTH17 control.  (B-D) Confocal microscopy of AMTH17 clone S26 stimulated with PMA for 30 minutes, fixed, 
and stained with (B) DAPI (blue) (C) Histone H2B (green) (D) an overlay of DAPI and Histone H2B. Original magnification: ×63.
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Fig. S6. Histones H2B expression in AMTH17 clones. Western blotting analysis of histone H2B protein expression in (A) supernatants and (B) 
lysates derived from activated AMTH17 and n-AMTH17 clones. (C) Secretion of histone H2B by AMTH17 compared to n-AMTH17 clones as measured 
by ELISA. ****p<0.0001 by repeated measures 1-way ANOVA for AMTH17 supernatants compared to n-AMTH17 Cl. S38 control. (D and E) 
Secretion of IFN-γ, IL-4 and histone H2B by TH1 and TH2 cell lines as measured by ELISA. ****p<0.001 by repeated measures 1-way ANOVA 
for AMTH17 clone compared to TH1 cell line. (F) Several TH1 and TH2 cell lines were stimulated with PMA and supernatants used for CFU assays 
against C. acnes strain HL096PA1. Observed CFU activity is shown. ****p<0.001 by repeated measures 1-way ANOVA for AMTH17 S26 clone 
compared to a TH2 cell line.
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Fig. S7. Characterization of histone H2B expression on TH1 and TH2 cell lines. (A-B) TH1 (A) and TH2 cell line (B) were stimulated with PMA for 2 
hours as previously described  and incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, stained with DAPI (blue) and α-histone H2B 
isotype control antibodies (green). Confocal staining images are shown. Original magnification: x63.   
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Fig. S8. AMTH17 extracellular structures are prominently coated with Histone H2B.  (A-B)     n-AMTH17 clone S13 (A) and AMTH17 clone S16 (B) 

were stimulated with PMA for 2 hours as previously described (42) and incubated with PKH-labeled C. acnes (red) (1:1). Cells were fixed, 

stained with DAPI (blue) and α-histone H2B isotype control antibodies (green). Confocal staining images are shown. Original magnification: x63.   
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Fig. S9. AMTH17 release extracellular traps that entangle C. acnes. Scanning electron microscopy of the interaction of AMTH17 and n-AMTH17
clones with C. acnes at different time points. (A-B) AMTH17 clones were stimulated with PMA and C. acnes for 60 minutes. (C-E) AMTH17 clones 
stimulated with a-CD3/CD28 antibodies for 20, 30 and 60 minutes respectively. (F) n-AMTH17 clone stimulated with PMA and C. acnes 30 
minutes. (G) n-AMTH17 clone stimulated with PMA and C. acnes + DNase 90 minutes. (H) AMTH17 clone stimulated with PMA and C. acnes + 
DNase 90 minutes. (I) neutrophil stimulated for 30 minutes with PMA and C. acnes positive control (42). 
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Fig. S10 Histone H2B and IL-17 expression in acne lesions. Representative section from skin biopsy specimens of normal and acne lesions 

stained by the immunoperoxidase method with monoclonal antibodies specific for histone H2B, IL-17 and corresponding isotype controls 

(n=3). Multiple histone H2B and IL-17-positive cells (brown) can be seen scattered around the dermis. Original magnification: x40.
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Fig. S11. Colocalization of CD4+IL-17+ T cells in acne lesions.  High power confocal images of IL-17 (red), CD4 (cyan), and nuclei (DAPI, 
blue) in acne lesions of two donors (D1 and D2). Merge indicate CD4+T cell secreting IL-17 within acne lesions. Dashed-line boxes identify 
the area further studied at higher power. The images are projections of confocal z stacks generated from sections of 10µm thickness. 
Scale bar, 10µm (enlarged insets). Original magnification: ×63.
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Fig. S12. Colocalization of IL-17+H2B+ T cells in acne lesions. (A) Confocal images of IL-17 (red), histone H2B (green), and nuclei (DAPI, 

blue) in acne lesions. Dashed-line boxes identify the area further studied at higher power. (B). Higher power magnification of the delineated 

regions marked in (A) showing H2B (green) and DAPI (blue) only.  White arrows indicate T cell extracellular traps in proximity to CD4+IL-

17+H2B+ triple-positive cells within acne lesions. TETs are visualized as fibrous structures containing DNA (DAPI, blue) decorated with histone 

H2B (green) in the extracellular space. The images are projections of confocal z stacks generated from sections of 10µm thickness. 

Magnification, (A) 63X with zoom 2X from lower magnification in supplemental figure S11, and (B) is zoom 4X from (A). Data is from three 

individual samples. Scale bar, 10µm (enlarged insets).
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Fig. S13. Colocalization of IL-17+H2B+ T cells in acne lesions.  (A) High power confocal images of acne lesions from donor D1 labeled with 
isotype control antibodies; CD4 isotype (mIgG1; cyan), IL-17 isotype (mIgG2b; red), histone H2B isotype (rabbit IgG; green), and nuclei (DAPI, 
blue). (B) High power confocal images of acne lesions from donor D2 labeled with isotype control antibodies; CD4 isotype (mIgG1; cyan), IL-17 
isotype (mIgG2b; red), histone H2B isotype (rabbit IgG; green), and nuclei (DAPI, blue). The images are projections of confocal z stacks 
generated from sections of 10µm thickness. Scale bar, 10µm (enlarged insets). Original magnification: ×63. 
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EXOC8 HDAC9 AQP3
ITGAM CCND1 LGALS1
ATN1 CCR1 PROCR
SRC EGLN2 PLEK
HSPA1B ABCC1 ZBP1
CSF1 GJB2 TRIM8
ACO1 TNFRSF1B SPSB2
IL17RE SIK2 F3
BIRC3 TGIF1 CTSB
SMAD7 PXN SETBP1

Table S1. Common genes expressed in the AMTH17 clones after 6h stimulation. Specific AMTH17 gene signatures 
with a twofold or more expression in comparison to the n-AMTH17 clones and that highly correlated with CFU activity 
were overlapped with an antimicrobial gene list from the Gene Cards database. 30 common genes at 6h time point 
are listed. The top 20 genes are listed in figure 3.



CCL1 BAX CCR1 SP1 CASP4 SYTL1

F2R FTL EGLN2 ALOX5AP AQP3 PELI3

CSF2 ACO1 USF1 HAVCR2 SLC22A4 SPSB2

HBEGF AKT1 MYBL1 FPGS RELB

PLA2G2C HLA-DRB1 LYPD3 MAP2K2 PYCARD

CXCR3 TNFRSF1A CHP1 PLCD1 LGALS1

FTH1 SMAD7 CEBPB PLD2 GDI1

RHOA NEO1 TYK2 VAV1 TNFRSF18

NR1H2 HDAC9 IFNGR1 PINK1 SH3KBP1

MAP3K3 BAK1 CASP9 GGT1 SETBP1

FURIN IL2RB PLD1 PAK1 PLEK

CFH HLA-DRB5 CDKN1A SERPINH1 SECTM1

ITGB2 VHL CTSB ANXA2 BHLHE40

CRAT ITGA3 TNFRSF1B TGIF1 ZBP1

ULK1 GALE ERN1 PXN TRIM8

Table S2. Common genes expressed in the AMTH17 clones after 12h stimulation. Specific AMTH17 gene signatures with a twofold or 

more expression in comparison to the N n-AMTH17 clones and that highly correlated with CFU activity were overlapped with an 

antimicrobial gene list from the Gene Cards database. 78 common genes at the 12h time point are listed. The top 20 genes are 

listed in figure 3.
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