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๏ No Optics Institute @ ULiège 

๏ Research shown here carried out at Space sciences, 
Technologies, and Astrophysics Research (STAR) Institute 

๏ Not an overview of ULiège photonics activities, also 
carried out at 
• CSL (Centre Spatial de Liège): design, metrology, diffractive 

optics, solar cells, nano-structures, sensing, etching, etc 

• CESAM (Complex and Entangled Systems from Atoms to 
Materials): quantum optics, nano-materials, etc 

• probably others…

DISCLAIMER



EXOPLANETS DOING THE DANCE
8 YEARS OF HIGH-CONTRAST IMAGING MONITORING

—HR8799 and its four giant planets—



EXOPLANET IMAGING CHALLENGES
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The star never turns off —> need specialized instruments to access 

HIGH CONTRAST (from 1,000 to 10,000,000,000) 

at SMALL ANGULAR SEPARATION (below 1 arcsec)



STELLAR CORONAGRAPHY
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VORTEX CORONAGRAPH
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THE VORTEX PHASE MASK

๏ Scalar vortex 
• helical piece of glass 

๏ Vector vortex = spatially  
variant half wave plate 
• liquid crystal polymers 

• subwavelength gratings 

• photonic crystals
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GENESIS OF THE ANNULAR GROOVE PHASE MASK

๏ 4-quadrant PM → sub-wavelength grating → annular groove PM 

๏ Advantages: 

• clear 360° discovery space 

• achromaticity
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GRATING DESIGN/OPTIMIZATION
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MANUFACTURING DIAMOND AGPM @ UPPSALA
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1. diamond coated with Al 
and Si layers (sputtering)

photoresist spin coating baking

apply stamp ethanol bath baking

thick Al layer

thin Si layer

thin Al layer

2. e-beam pattern transferred 
with solvent-assisted moulding

3. reactive ion etching

Al etching

Si etching

Al etching
Diamond  
etching

soft stamp 
replicated 

from e-beam

10µm

Vargas Catalan et al. (2016)

Diamond = ultra broadband transparency + many other convenient properties



MWIR/LWIR TESTING ON VODCA BENCH
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Beam shaping

Coronagraphy

« Vortex Optical Demonstrator for Coronagraphic Applications »

Jolivet et al. (2019)



A FEW YEARS TO GET IT RIGHT…
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2.2. AGPM design and manufacturing 21

telescopes. Developing a testing facility capable to accurately measure their perfor-
mance and describe their behavior is the main subject of this thesis.

Figure 2.6: Evolution of the manufacturing of diamond AGPMs. Top: N-band
AGPMs, with periods ⇡ 4.6 µm, manufactured in November 2009, October 2010,
and February 2012 (from left to right). Bottom: cracked spares of L-band AGPMs,
with periods ⇡ 1.4 µm, manufactured in March 2011 and September 2012 (from left
to right). From Delacroix (2013).

2.2.3 Anti-reflective gratings
The first AGPM manufactured had lower than predicted rejection ratio as the on-
axis light reflected inside the AGPM was not canceled by the optical vortex. Fixing
this issue is mandatory to reach performance close to the simulations and also to im-
prove the throughput of the AGPM since coronagraphic instruments usually have
to face the issue of low flux observations.

To avoid internal reflections, instead of a single layer film it is possible to use SG
as an anti-reflective intermediate medium (Figure 2.7). The refractive index of a SG
can be tuned by adjusting its filling factor and take the appropriate value to mini-
mize the total reflectivity of the AGPM (Karlsson and Nikolajeff, 2003). Delacroix
(2013) described a ⇠17% backside reflection of the bare diamond substrate in the
L-band, reduced to ⇠1.9% thanks to the ARG. The theoretical transmission in the L-
band is averaged to ⇠87% at L-band (limited by photon absorption in the diamond
substrate, Forsberg and Karlsson (2013)).

Experimental results on the ARG are detailed in section 6.3.



CURRENT STATE-OF-THE-ART
13

Broadband filter (3.5 - 4.0 µm)

10+ SCIENCE-GRADE AGPMS NOW PRODUCED, RANGING FROM 2 TO 13 µm 

AGPM 
centered

Jolivet et al. (2019)



NEXT STEP: CONQUER THE WORLD
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THE VORTEX WORKS!
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First light at Large Binocular Telescope (Arizona)

Defrère et al. (2014)



DETECTION OF CLOSE COMPANIONS
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VLT/NACO: confirmation of a close brown 
dwarf companion around HD 206893

Keck/NIRC2: first image of 
the brown dwarf companion 

around HIP 79124

Serabyn et al. (2017)

Milli et al. (2017)



SEARCH FOR PROTO-PLANETS IN YOUNG DISKS
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10/2015 10/2016

Reggiani et al. (2018)



NEXT DESTINATION: EXTREMELY LARGE TELESCOPE
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ELT - 38m 
(2025)

VLT - 8m 
(2001)



BELGIUM CONTRIBUTING TO ELT/METIS
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THE ELT’S NEW NEEDS
20
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λ/D

charge-2
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Period not constant, breaking 
ZOG condition —> need to 

discretize the pattern

topological charge



CHARGE-4 DESIGNS
21

Construction with straight lines

Construction with curved lines

Delacroix et al. (2014)



GRATING OPTIMIZATION: FDTD SIMULATIONS
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MEEP simulations of charge-4 vortex (L. König, work in progress)
Material RHC amplitude LHC amplitude RHC phase LHC phase



TRYING VARIOUS DESIGNS…
23

N=8 N=12 N=16 N=20 N=24



FIRST CHARGE-4 COMPONENTS: DONE!
24

First manufactured charge-4 mask

Transitions between sectors 
shows up in 2D null depth map

- 14 -

Courtesy of Ernesto Vargas  (Al masks? )



NEXT STEP: GOING FULL METASURFACE
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Chen, Zhu & Capasso (2020)

beam steering and conversion of a conventional Gaussian beam
into a beam with an orbital angular momentum (OAM) or a
vortex beam. In both cases, dramatic changes on light
propagation take place within a distance of less than λ/5,
opening new possibilities of light control with semiconductor-
industry-compatible materials and an easy fabrication proce-
dure.
Figure 4a,b shows schematics and scanning electron

microscopy (SEM) images for a fabricated beam deflecting
metasurface with 96 × 96 μm total size, unit cell is shown in
inset. The metasurface contains eight nanoblocks from Table 1,
where each is responsible for a phase shift from 0 to 2π with π/
4 increments. We consider light propagation from isotropic
medium 1 to the medium 3 through bulk substrate with the
metasurface on top as shown in the inset in Figure 4c.
Deflection angle for a beam can be calculated with the
following equation38 θ3 = sin−1[(n1 sin θ1 + λ0/Γ)/n3], where
n1 and n3 are refractive indices for media 1 and 3, θ1 is the
incidence angle, λ0 is the free-space wavelength of light, and Γ is
the periodicity of the structure. We consider normal incidence
of a light beam on the metasurface with the period of the
structure Γ = 6.4 μm fabricated on the substrate surrounded by
air. In this case, the angle of refraction is θ3 ≈ 14°. We consider
plane wave light propagation through infinite two-dimensional
periodic array of silicon nanoblocks. Numerical simulations
confirm the theoretically calculated refraction angle, as shown
in Figure 4c.
We used a diode laser as a light source to perform

measurements for beam steering using a NIR detector card
to determine deflected beam position; schematic of exper-
imental setup is shown in Figure 5. The card converts invisible
IR signal to visible region; thus, deflected beam position was
captured by visible light camera. The laser beam was focused by
lens to the spot with approximately 45 μm waist. Inset on the
left in Figure 4d shows the results of beam-position

measurement without (top) and with (bottom) metasurface.
As can be seen, the beam power is refracted to the left side of
the screen, while other diffraction orders can be also seen. The
presence of other diffraction orders with much smaller
intensities compared to the main beam can be caused by the
fact that the unit cell size is comparable to wavelength of light,41

by imperfections in fabrication process and violation of local
periodicity assumed in our design. The refraction angle for the
main beam is measured to be 13.1°, which is close to theoretical
and numerical simulations’ predictions. Insets on the right show
NIR camera images of input and output beams with measured
transmission power to desired order normalized on input
power to be around 36%.
Finally, to demonstrate flexibility of designed dielectric

nanoblocks for phase control, we fabricated a spatial light
modulator that converts a regular Gaussian laser beam into an
OAM beam, or vortex. Such structured light beams have a
potential for applications ranging from quantum information
processing and high-dimensional communication systems to
optical manipulation on nanoscale.11,23,24,42,43 Schematics of
fabricated metasurface for twisted beam generation is shown in
Figure 6a, which contains eight sectors for the particular 0-to-
2π phase shift. Optical vortices, unlike conventional Gaussian
beams, possess a donut-shape intensity profile and helical
wavefront with phase change from 0 to 2π in cross-section.
Fabricated beam converter SEM image is shown in Figure 6b,
where the total size of the sample is 96 × 96 μm. We performed
numerical simulations in CST MICROWAVE STUDIO
software package for reduced size model with 67.2 × 67.2
μm size to reduce calculation time and memory consumption.
Figure 6c,d shows the results of numerical simulations
corresponding to the normalized transmitted beam intensity
and phase at distance of 0.5λ0 from metasurface, respectively.
Transmittance for numerically simulated light propagation is
56.4%. Corresponding experimentally measured intensity

Figure 6. (a) Schematics and (b) scanning electron microscopy image for optical vortex beam converter with eight sectors with nanoblocks from
Table 1, unit cells for each sector of metasurface are shown. Each sector introduce an additional π/4 phase shift, thus covering 0 to 2π phase change.
(c,d) Numerically calculated normalized amplitude and phase distribution. (e) Intensity distribution for measured output vortex beam in form of
donut shape. (f,g) Vortex and Gaussian beams interference experiment results showing spiral-shaped and fork-like intensity distribution.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b02926
Nano Lett. 2015, 15, 6261−6266

6264

Shalaev et al. (2015)

Hsiao et al. (2017)

Devlin et al. (2017)Challenges: broadband, high throughput



ON OUR WAY TOWARDS IMAGING OTHER EARTHS
26

0.55 au 1.1 au

ELT/METIS end-to-end simulation 
alpha Centauri A + two Earth twins 

5h observation @ 10µm 


