

Wallonie recherche CRA-W

Consortium building allowing the creation of common models for MIR based prediction of CH₄

Nicolas Gengler¹, F. Dehareng², H. Soyeurt¹, E. Froidmont², and A. Vanlierde² ¹University of Liège – Gembloux Agro-Bio Tech (ULiège-GxABT) ²Walloon Agricultural Research Center (CRA-W)

La port

Context

► CH₄ ← large scale phenotyping

- Difficult, time consuming, expensive
- Proxies ?
- Use of a milk mid-infrared (MIR) spectra based proxy
 - Was illustrated as being a real opportunity

Animal, page 1 of 8 © The Animal Consortium 2012 doi:10.1017/S1751731112000456

Potential use of milk mid-infrared spectra to predict methane emission of dairy cows

F. Dehareng^{1**}, C. Delfosse^{1*}, E. Froidmont², H. Soyeurt^{3,4}, C. Martin⁵, N. A. Vanlierde¹ and P. Dardenne¹

¹Valexisation of Agricultural Products Department, Waleon Agricultural Research Centre, B-5020 Gernblura, Belgium, ²Department o Agricultural Research Centre, B-5030 Gernblura, Belgium, ²Animal Science Unit, Gernblura Agri Bio-Tech, University of Lidge, B-50 Fund for Scientific Research, B-1000 Brussie, Belgium, ²UR1213 Hetriores, INRACIerront-Their Research Centre, F-63122 Sairt Go

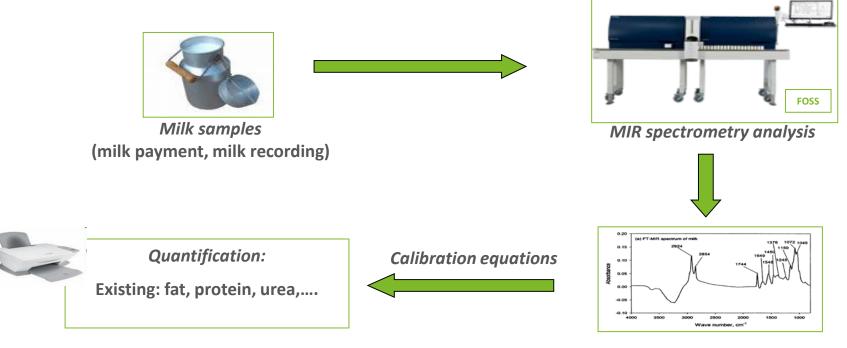
J. Dairy Sci. 98:5740–5747
 http://dx.doi.org/10.3168/jds.2014-8436
 @American Dairy Science Association[®], 2015.

Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra

A. Vanlierde,⁴¹ M.-L. Vanrobays,¹ F. Dehareng,⁴ E. Froidmont,⁴ H. Soyeurt,⁴ S. McP M. H. Deighton,# F. Grandi, II M. Kreuzer, II B. Gredler, T. P. Dardenne,⁴ and N. Gengler Yalioo Algoutura Research Center, Valoization of Agricultural Products Department, 5030 Gembloux, Begin 1 Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, 5030 G Yalioon Agricultura Research Center, Productos and Sectors Department, 5030 Gembloux, Begin § Teagaac, Annai and Grassland Research and Innovation Centre, Moorepark, Fernoy, Co. Cerk, Ireland Bagrouture Research Dusion, Department of Economic Development, Jobs, Transport and Resources, Ellinda 3221 Victoria, Australia ETH Zulich, Institute of Agricultural Sciences, 8052 Zürich, Switzerland

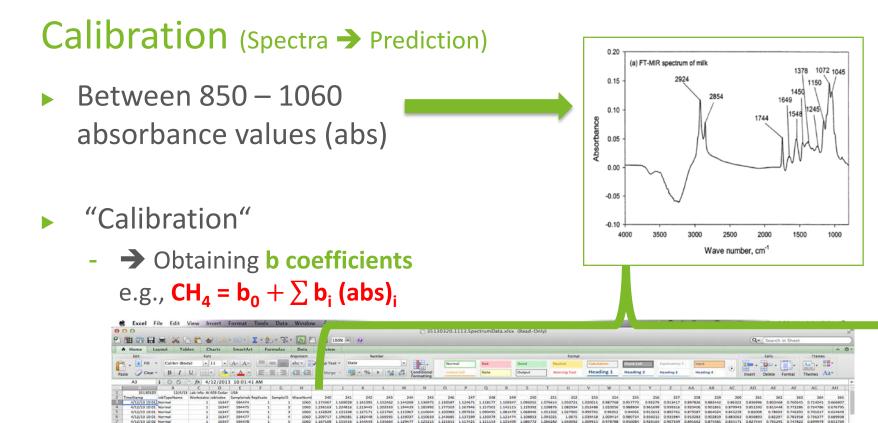
¶Qualitas AG, 6300 Zug, Switzerland

ASGGN Meeting 2019 Ghent


J. Dairy Sci. 101:7618–7624 https://doi.org/10.3168/jds.2018-14472

© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers



How Do MIR Based Predictions Work ?

Raw data = MIR spectra

1.133002 1.127066 1.122078

1.146019

1 117671 1 109208 1 107273 1.096476

1190874 1182911 1172735 1161865 1151669 1143049 113631 1130957 1125694 1117533

1 180014 1 175545

1 138466 1 12752

1.11669

1.108818

1.096017 1.076372

114036 1150114 1138788 1126144 1111003 1091775 1067501 1038748 1007782 0.977797

1164828 1156106 1150041 1141139 1132156 1123661 1115392 1105891 1092815 1073926 1048334 1017289 0.964019 0.952332 0.925952 0.905181 0.888508 0.872262

1.090429 1.081782 1.067953

1.049533

10%0 1167036 1156633 1145854 1135802 1126541 1117732 1109274 1101368 1094015 1086384 1076447 1062362 1042571 1010809 0.98738 0.957831 0.990723 0.908221 0.889375 0.871403 0.850882 0.829849 0.788961 0.747047 0.700443 0.85297

1060 1169111 1169761 1154766 1144589 1154646 1126915 1119111 1112890 1106769 1099915 1088792 1073712 1059717 1029855 1004613 0.980962 0.961168 0.945892 0.921763 0.907054 0.880855 0.860089 0.827304 0.790603 0.752961

1060 1198159 118971 1178066 1166343 1156427 1148788 1142807 1137113 1129805 1118718 1101875 1078291 1048451 1014756 0.980894 0.950805 0.926216 0.907466 0.892477 0.876627 0.855913 0.827311 0.789875 0.744909 0.895814 0.646591

122403 1213125 1398521 1384055 1371649 1361668 1353332 1144992 138413 1319296 1098054 1070594 1038691 1005597 0.974892 0.949074 0.928538 0.91407 0.991240 0.845185 0.879114 0.845185 0.809115 0.766015 0.718615 0.879804

1.017293 0.983248 0.951526 0.925137 0.904733

0.95153 0.930002

11044 1084163 1056653 1023923 0.989759 0.958312 0.982446 0.912582 0.896557 0.880364 0.859762 0.831504 0.794412 0.749671

0.934465 0.915001 0.896632

104714 1020331 0989472 0958561 0931038 0.90858 0.890205 0.872867 0.852573 0.825909 0.791237 0.749204

0.957698

0.888346 0.872143 0.851806 0.823983

0.91198 0.895409 0.873539 0.84627

0.875259 0.847636

0.787326 0.742849

0.811199

0.812561

0.85216 0.824778 0.788644 0.744651 0.695766

0.769066 0.722521 0.675398

0.672058

0.2004 0.45084T

4/12/13 10:02 Normal

4/12/13 10:02 Norma

4/12/13 10:02 Normal

4/12/13 10:02 Normal

4/12/13 10:02 Normal

4/12/18 10:02 Norma

4/12/13 10:02 Normal

4/12/13 10:02 Norm

4/12/13 10:02 Norma

6/12/13 10:02 Normal

4/12/13 10:03 Normal

4/12/13 10:03 Norm

16347 594479

COLUMN.

COLUMN

594482

394484

594483

594486

594483

594488

16347

16347 16347 16347

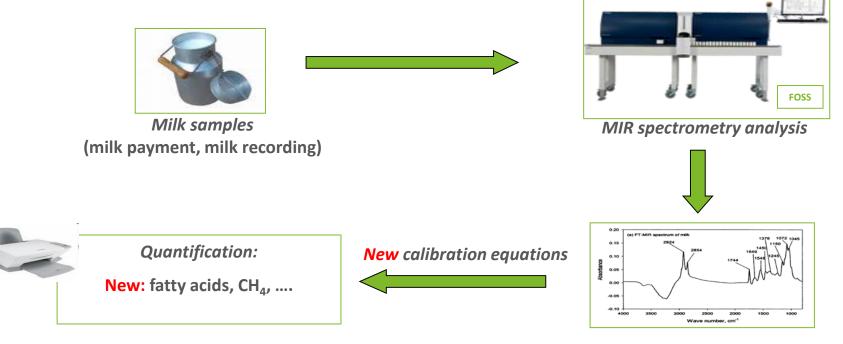
16347 594481 197093 1.178723 1.163159 1.150549 1.140653

230022 1 224966 1,214292 1 201249 188049 1 175656 1.164285 1.153811 1.143735 1.132917 1 119541 1.101634 1.078005 1.049107 1.01723 0.985743

1 173401 1 169987

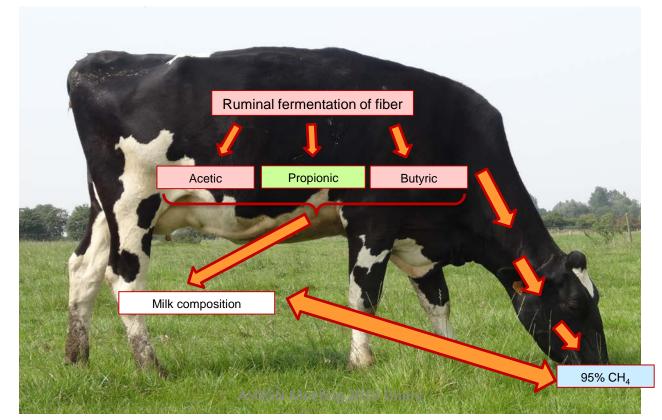
160648 1.00047

1060


1060 1.190054 1.186357 1.181249

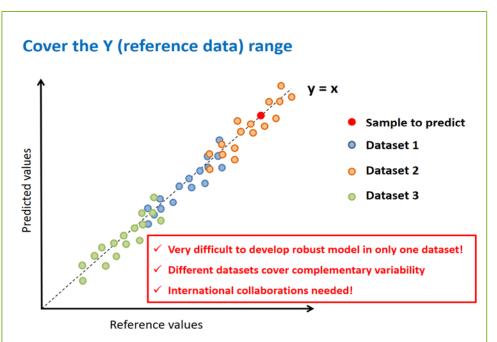
13

Δ


New MIR Predicted Phenotypes

Raw data = MIR spectra

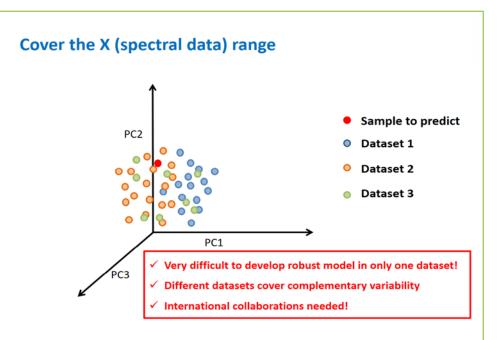
$CH_4 \leftarrow \rightarrow Milk Composition$


6

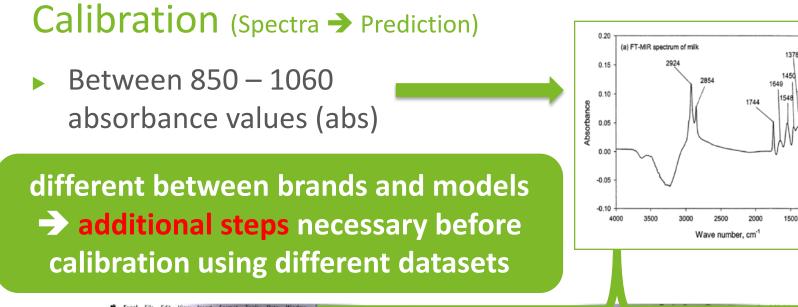
Calibration Needs....

Largest possible (and expected) variability

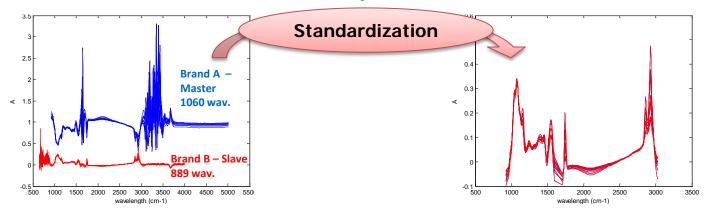
- In reference phenotypes
 - E.g., if values between
 1 and 10 are expected,
 reference data from
 1 to 10 are needed
 for calibration,
 potentially 1/10 of each



Calibration Needs....

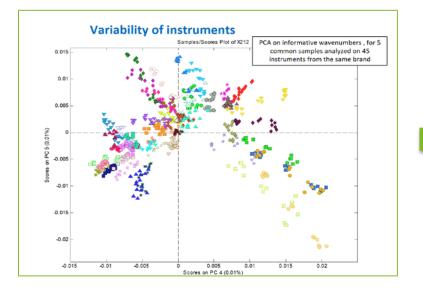

Largest possible (and expected) variability

- In reference phenotypes
- But also in spectral data
 - I.e., spectra used during calibration process should cover expected range of spectra used when predicting


1072 1045

	00	cel File	e Edit	View	Inser	ru		Tools	Data	-	Vindov						100010		113 508	-		0.000															
10																	1.32	130320.1	LII3.5pe	ctrumba	LLADA I	(reau-O	niy)														
2	面(d 010	S	5 🚭 🗄	215	anir 1	Σ • 2	10 · 7	. · (E E	U 🔅	100% +	0																			Q	Search In	a Sheet		
1	A Hon	ne Layo	out T	ables	Charts		SmartArt	Fe	ormulas	111	Data	view	¥.																								~
	Ed	e			Font					Align	10900			N	mber									Format										Cella		Themes	Contract of Contract
2	s . 1	6 Fill +	Calibri (8	lody)	- 11	-12	4- A-	1001	- 10	abs	- 8	р Тел	at + Da	6e		1.		Norm	1	Red .		Good		utral-	Calcul	et lesse	Ohilk Cal	1000	Diplomitivy.	r. Inp	a.		-	6m . []	11-1 F	Aa'n.	
Par	ste (Clear *	BI	¥	1H-1	4 -	A -	「鹿」	* 3	F	é	Merg	0	- %	> %	63 9	onditional		d Çali	Note		Output		ming Text	Hea	ling 1	Heading	2	Heading 3	Hea	ading 4		Insert		ormat 1	Themes	Aa-
1	AJ		00	- fx	4/12/2	2013	10:01:41	AM		-				-																		-	-	-	_	_	_
з		A		1	1	1	1		5		H		1	ĸ	L.	M	N.	0	P	Q.	R	-5	T	U.	V	W	X	Ψ.	2	AA.	All	AC.	AD	AE	AS	AG	AH
		35130320			40: A/ 403 C	edar U	SA																														
3	Time5ta		bTypeName	Work	statio Jobini		ampleinds A	eplicate	Samplei	O We		240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	
l		2/13 10:01 No				6347	594474			1	\$060	1.174367	1.169028	1.161095	1.152462	1 144269	1.136975	1.130587	1.124671	1.118177	1.109347	1.096055	1.076614	1.050721	1.020011	0.987768	0.957773	0.93279	0.913417	0.897826	0.882442	0.86322	0.836996	0.802468	0.760545	0.714041	0.6661
		2/13 10:01 No				6347	594475	1	L	2	1060	1.236163	1.224816	1.213445	1.203333	1.194433	1.185992	1.177303	1.167946	1.157501	1.145115	1.129392	1.108876	1.082934	1.052488	1.020056	0.988904	0.961699	0.939316	9.920406	0.901861	0.879943	0.851592	0.815448	0.772286	0.724786	
		2/13 10:01 No				6347	594476	- 1	L.		1060	1.132829	1.131338	1.127171	1.121764	1.115967	1.110044	1.103983	1.097631	1.090495	1.081479	1.068946	1.051302	1.027905	0.999765	0.96952	0.94056	0.915653	0.895761	0.879587	0.864024	0.845259	0.82008	0.78693	0.746393	0.701017	
		2/13 10:01 No				6347	\$94477		L	4	3060	1.209717	1.196581	1.182448	1.169595	1.159037	1.150633	1.143685	1.137299	1.130579	1.121474	1.108853	1.091021	1.0675	1.039418	1.009414	0.980754	0.956015	0.935984	0.919283	0.902859	0.883063	0.856893	0.82297	0.781938	0.736377	
		2/13 10:02 No				6347	594478		L	5	1090	1.167169	1.155416	1.144443	1.135664	1.129477	1.125215	1.121651	1.117421	1.111153	1.101409	1.086772	1.066282	1.040092	1.009915	0.978788	0.950084	0.926164	0.907339	0.891662	0.875581	0.855171	0.827444	0,791295	0.747822	0.692979	
		2/13 10:02 No				6347	594479	1	L	6	1060	1.197093	1.178723	1.163159	1.150549	1.140653	1.133002	1.127066	1.122078	1.11669	1.108818	1.096017	1.076372	1.049533	1.017293	0.983248	0.951526	0.925137	0.904733	0.888346	0.872143	0.851806	0.823983	0.787326	0.742849		
		2/13 10:02 No				6347	594480	3	L	7	1060		1.214322	1.191816	1.176712	1.166241	1.158485	1.152303	1.14673	1.140299	1.13081	1.115819	1.093662	1.064489	1.030662	0.996158	0.965111	0.940168	0.921439	0.906493	0.891282	0.87156	0.844219	0.808172	0.76457	0.716417	
		2/13 10:02 No				6347	594481				1060	1.190054	1.186357	1.183249	1.180014	1.175545	1.149019	1.14036	1.150114	1.138788	1.126144	1.111002	1.091775	1.067501	1.038748	1.007782	0.977797	0.95153	0.930002	0.91198	0.89-5409	0.873539	0.84627	0.811199	0.769066	0.722523	
		2/13 10:02 No				6347	594482	1	1	9	1060	1.230022	1.224966	1.214292	1.201249	1.188049	1.175656	1.164285	1.153811	1.143735	1.132917	1.119541	1.101634	1.078005	1.049107	1.01723	0.985743	0.957698	0.934465	0.915091	0.896632	0.875259	0.847636	0.812061	0.769016	0.721041	
		2/13 10:02 No				6347	594483			10	1060	1.190874	1.182911	1.172735	1.161865	1.151669	1.143049	1.13631	1.130957	1.125494	1.117533	1.1044	1.084163	1.056653	1.023923	0.989759	0.958312	0.932446	0.932582	0.896537	0.880364	0.859762	0.831504	0.794417	0.749673	8.7004	0.650
		2/13 10:02 No				6347	594484	1.3	L	11	1060	1.167036	1.156633	1.145854	1.135802	1.126541	1.117732	1.109274	1.101368	1.094015	1.086384	1.076647	1.062562	1.042571	1.016809	0.98738	0.957631	0.930723	0.908221	0.889375	0.871403	0.850582	0.823649	0.768961	0.747047	0.700445	
		2/13 10:02 No				6347	594485	- 1		12	\$060	1.22582	1.22403	1.213125	1.198521	1.184055	1.171649	1.161668	1.153332	1.144992	1.134413	1.119296	1.098054	3.070594	1.038691	3.005597	0.974892	0.949074	0.928538	0.911407	0.894216	0.873114	0.845185	0.809115	0.766015	0.718635	
		2/13 10:02 No				6347	594486	1		13	1060	1.169111	1.163761	1.154766	1.144583	1.134848	1.126315	1.119111	1.112585	1.106763	1.099315	1.088792	1.073732	1.053717	1.029855	1.004513	0.980962	0.961168	0.945832	0.933622	0.921763	0.907034	0.889855	0.860083	0.827304	0.790603	
		2/13 10:02 No				6347	594487	1		14	1060	1.198159	1.18971	1.178066	1.166343	1.156427	1.148788	1.142807	1.137113	1.129805	1.118718	1.101895	1.078291	1.048451	1.014756	0.980894	0.950605	0.926216	0.907666	0.892477	0.876627	0.855913	0.827311	0.789875	0.744969	0.695814	
		2/13 10:03 No				6347	594488		L	15	1060	1.173401	1.169982	1.164828	1 158106	1 150041	1.141139	1 132156	1.123661	1.115392	1.105891	1.092815	1.073926	1.048334	1.017289	0.984219	0.952532	0.925952	0.905181	0.888508	0.872262	0.85216	0.824778	0.785644	0.744651	0.695766	
	4/12	2/13 10:03 No	ormal		1 1	6347	594489	3	L	16	2060	1.168304	1.160648	1.149947	1.138466	1.12752	1.117671	1.109208	1.102273	1.096474	1.090429	1.081782	1.067953	1.04734	1.020331	0.989472	0.958561	0.931058	0.90858	0.890205	0.872867	0.852573	0.825909	0.791237	0.749204	0.702502	0.6550

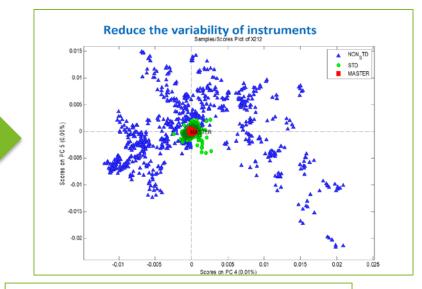
Standardization of MIR Spectra....



► Two steps to generate "standardized" (harmonized) spectral data

- 1. Transforming from different ranges of wavelength to a common one
- 2. Applying "bias" and "slope" corrections for each wavelength

Standardization of MIR Spectra....

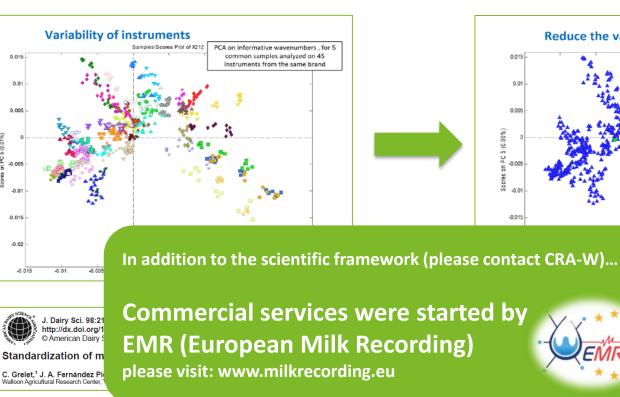


J. Dairy Sci. 98:2150–2160 http://dx.doi.org/10.3168/jds.2014-8764 © American Dairy Science Association[®], 2015.

Standardization of milk mid-infrared spectra from a European dairy network

C. Grelet,¹ J. A. Fernández Pierna,¹ P. Dardenne, V. Baeten, and F. Dehareng² Walloon Agricultural Research Center, Valorisation of Agricultural Products Department, 24 Chaussée de Namur, 5030 Gembloux, Belgium

J. Dairy Sci. 100:7910–7921 https://doi.org/10.3168/jds.2017-12720 © American Dairy Science Association[®], 2017.


Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models

C. Grelet,* J. A. Fernández Pierna,* P. Dardenne,* H. Soyeurt,† A. Vanlierde,* F. Colinet,† C. Bastin,‡ N. Gengler,† V. Basten,* and F. Dehareng*¹ "valorization of Adricultural Products Department, Walloon Adricultural Research Center, 5030 Gembloux, Belgium

*Valorization of Agricultural Products Department, Walloon Agricultural Research Center, 5030 Gembloux, Belgium †Agriculture, Bio-Engineering, and Chemistry Department, University of Liège, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium ‡Walloon Breeding Association, B-5590 Ciney, Belgium

Standardization of MIR Spectra....

PC 5 (0.01%)

Reduce the variability of instruments NON_TD . STD MASTER 0.01 0.015 0.02 0.025 4 (0.01%)

eters

Vanlierde,* F. Colinet,† C. Bastin,1

5030 Gembloux, Belgium ux Aaro-Bio Tech, 5030 Gembloux, Belaium

Calibration Needs....

- Largest possible (and expected) variability
 - In reference phenotypes
 - But also in spectral data

→ Importance of international collaborations obvious

Needed: Consortium building allowing the creation of common models for MIR based prediction of CH₄

Innovative Consortium Building

- ► Why → last slides!
- ► How → building an efficient consortium ?
 - In the MIR world tradition of machine-builder equations 🙁
- But inspiration from Near-Infrared Spectrometry (NIRS) world .
 - Existence of NIRS forage and feed testing consortia
 - > A well documented example: NIRSC in the USA (see: http://www.nirsconsortium.org)

→ "Open" consortium building

"Open" Consortium Building: Principles

- Defining calibration building organizations
 - Can be different for each equation, here CH₄: CRA-W and ULiège-GxABT
- Consortium members retain full ownership and control of their data
 - Providing their data only to equation builders
 - Data can only be used to improve equations under development
- By helping improving equations, consortium members get:
 - Access to calibrated equations
 - Access to all future updates when additional data from new members is included
 - "Open" as everybody can join same conditions

As Scientists → Why Joining?

First interest in "Open" calibration process
 Jusers of equations -> industry!

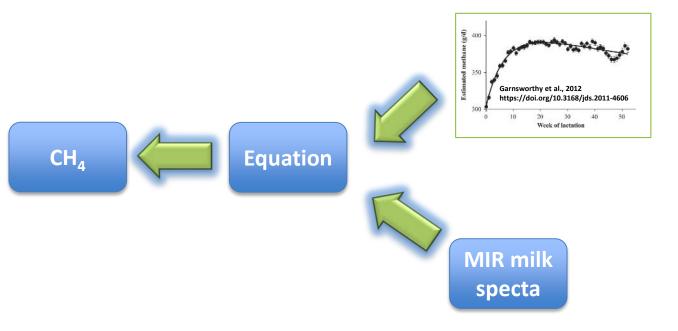
But from a scientific point of view?
 interest for scientists?

Creation and use of MIR based prediction (of CH₄ or other traits) → additional contributions and research efforts needed

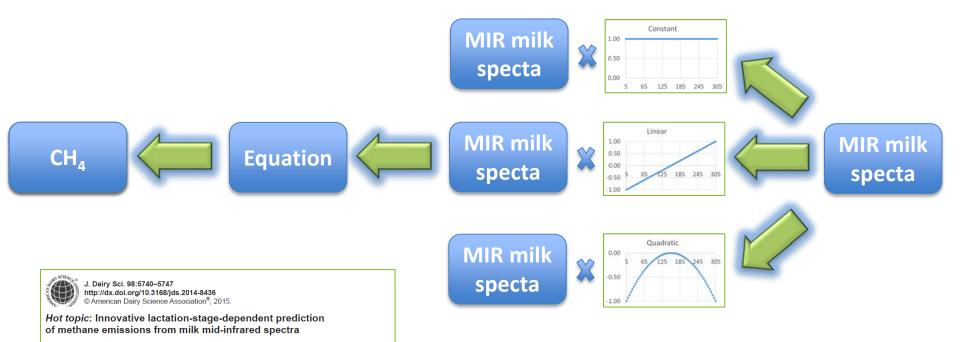
Additional Contributions and Research Efforts

- Many aspects as development of CH₄ MIR based proxies large research needs as:
 - Different types of CH_4 reference traits \rightarrow alternative equations
 - Novel calibration strategies, e.g. machine learning
 - Important questions outside the direct scope of calibration (e.g. of usefulness of equations): genetic vs. phenotypic correlations → breeding
- Leading to interesting publications during process

→ Some examples next slides



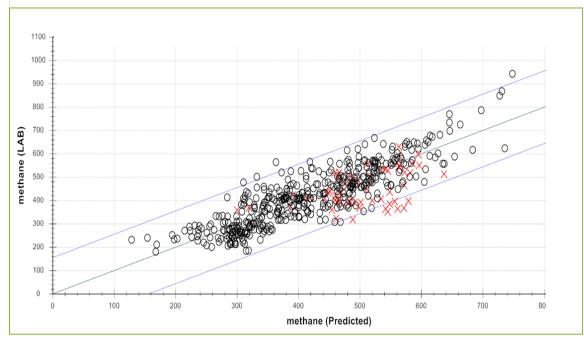
CH₄ Equation



CH₄ Equation → Lactation Stage Dependent

CH₄ Equation → Lactation Stage Dependent

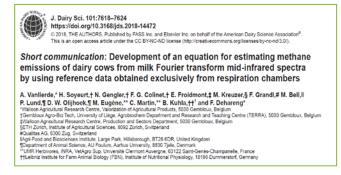
A. Vanlierde,^{x1} M.-L. Vanrobays,†¹ F. Dehareng,^{*} E. Froidmont,‡ H. Soyeurt,† S. McParland,§ E. Lewis,§ M. H. Deighton,# F. Grandl,II M. Kreuzer,II B. Gredler,¶ P. Dardenne,^{*} and N. Gengler†²

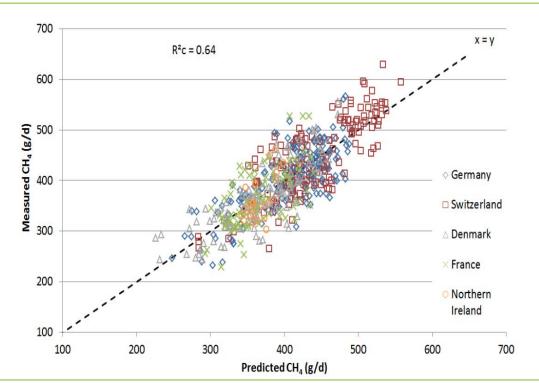

First Test of Chamber Data

- ▶ X chamber CH₄
- \triangleright O reference SF₆
- Reported in

J. Dairy Sci. 98:5740–5747 http://dx.doi.org/10.3168/jds.2014-8436 © American Dairy Science Association[®], 2015.

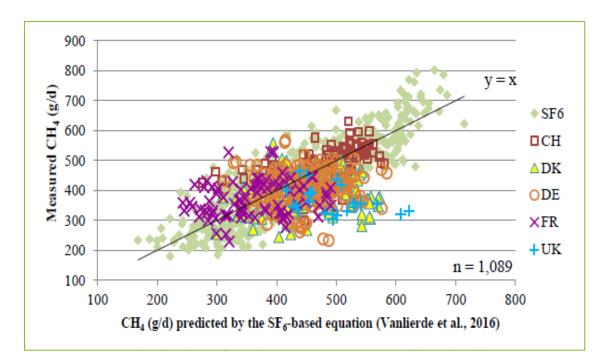
Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra


A. Vanlierde,*¹ M.-L. Vanrobays,†¹ F. Dehareng,* E. Froldmont,‡ H. Soyeurt,† S. McParland,§ E. Lewis,§-M. H. Deighton,# F. Grandi,II M. Kreuzer,II B. Gredler,¶ P. Dardenne,* and N. Gengler†²



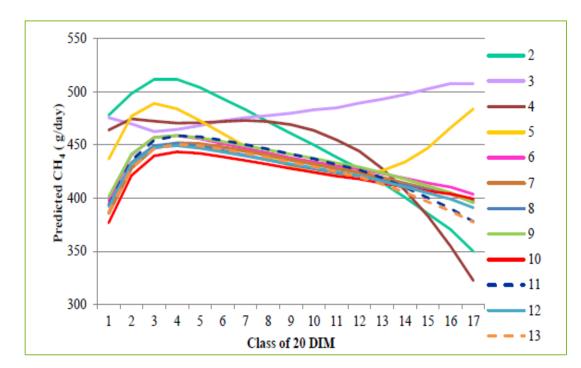
Use of Chamber Data

- Collaboration throughout
 Collaboration throu
- Created opportunity to generate first chamber equation
- Please see in:



Improving Robustness and Accuracy

- Glimpse to ongoing research
- Here
 - How a SF₆based equation predicts chamber data
 - Not included in calibration



Evolution of Equations Applied to ½ x 10⁶ TDR

- Differences between equations:
 - Based on more data*
 - Chamber and SF₆ \rightarrow 6 to 13 \leftarrow RC + SF₆
 - Adding effects:
 - > 6 → 13

*equation 3 not lactation stage dependent

Research Focuses → Opportunities

- Equations with more data
- Equations with novel variables
 - Milk, live-weight, parity, breed,....
- Other methods....
 - Machine learning
 - Federated learning,...
- Opportunity widespread use of Greenfeed:
 - Creating Open "Greenfeed MIR" consortium
- Important: adding genetic and genomic context
 - Phenotypic vs. genetic correlations → interest of proxies

Other Advantages (And Disadvantages) of Our "Open" Type of Consortia

- Compared to "joint" databases
 - There partners contribute to, but also have (restricted) access
- Our approach has one major advantage
 - We can accommodate many different data protection schemes
 - From highly proprietarian data (e.g. from industry projects) to publically available "open data"
- Should compensate major disadvantage as obviously
 - → Use of this calibration database only for equation building
- But objectives different!
 - Situations where other type of consortia fit better

Belgian Motto

L'union fait la force – Eendracht maakt macht - Einigkeit macht stark

Acknowledgements

- Support throughout the Futurospectre partnership
 - AWE Comité du Lait CRA-W ULiège-GxABT
- CECI Consortium for computational resources
- Service Public de Wallonie (SPW DGO3, Belgium) agriculture
- National Fund for Scientific Research
- Support by different European Projects:

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.

C.E.C.I 】

