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b Royal Belgian Institute of Natural Sciences (RBINS), Direction Natural Environment Rue Vautier 29, 1000 Brussels, Belgium  

A B S T R A C T   

Cloud shadows present in high spatial resolution remote sensing datasets can affect the quality of the data if they are not properly detected and removed. When 
working with ocean data, cloud shadows are often difficult to differentiate from non-shadow values, since they show similar spectral characteristics than water pixels. 
A methodology to detect cloud shadows over the ocean is proposed. The present approach combines a series of tests applied directly to the physical variables derived 
from the satellite measured radiances, and it therefore does not depend on the wavebands measured by a specific satellite sensor. The tests include a departure from 
an EOF basis calculated using DINEOF, a threshold test, a proximity to cloud test and a ray tracing test. The weighing of the different tests can be adapted to each case 
or domain of study. The results are compared to manually detected shadows and to another shadow detection method. The approach works with cloud shadows of all 
sizes, and also with very small objects shadows, like the shadows projected by offshore windmills.   

1. Introduction 

The Multispectral Instrument (MSI) onboard Sentinel-2 satellites A 
and B is mainly designed to provide information on land surfaces for 
applications in agriculture, geology, forestry, mapping, global change 
research, etc. However, its performance in terms of signal-to-noise ratio 
(SNR) is sufficient to be used for marine applications, especially in 
turbid coastal waters. Compared to the dedicated ocean colour sensors 
(Moderate Resolution Imaging Spectroradiometer-Aqua -MODIS-AQUA- 
, Visible Infrared Imaging Radiometer Suite -VIIRS- and Sentinel-3 
Ocean and Land Colour Instrument -OLCI) Sentinel-2/MSI offers great 
advantages in terms of spatial resolution enabling the development of a 
new generation of coastal water quality products, as high resolution 
suspended particulate matter (SPM) and chlorophyll-a (CHL). 

The presence of clouds limits the usability of Sentinel-2 data, as 
happens with all optical satellite sensors. A more specific problem 
encountered by satellite sensors measuring at high spatial resolution, 
like Sentinel-2/MSI, is the presence of spatially resolved cloud shadows, 
which partially affect the signal being measured. These cloud shadows 
appear as border features surrounding clouds, but also as detached 
features, not associated with pixels identified as clouds. This is the case 
of shadows resulting from small, scattered clouds like cumulus-type 
clouds or plane contrails. Given the high spatial resolution of Sentinel- 
2 data, objects present in the coast or at sea (i.e. offshore windmills) 

can cast also small shadows. The shadows from clouds and these objects 
do not show specific spectral characteristics over water pixels (i.e. the 
ocean, which is in general a dark surface), which is precisely the object 
of this study. The intensity of the cloud shadows depends on the thick-
ness of the originating cloud. This makes it very difficult to accurately 
detect and flag them in order to exclude them from further processing. 
Furthermore, it is difficult to know the altitude of the different clouds 
present in a Sentinel-2 satellite image, an information that would allow 
the location of the shadows by projection. In addition, if a cloud is out of 
the limits of the domain of study, but projecting a shadow within it, 
projection approaches can fail. 

The presence of shadows therefore decreases the quality of the 
Sentinel-2 data, and a method to detect them is required. Methods 
developed to detect shadows in high spatial resolution data, as Landsat 
data, are based for example on cloud projection (i.e. Zhu and Woodcock, 
2012), a combination of projection plus spectral band tests (i.e. Huang 
et al., 2010; Luo et al., 2008; Braaten et al., 2015; Sun et al., 2018; Zhai 
et al., 2018), or spectral tests plus temporal coherency tests (Goodwin 
et al., 2013; Zhu and Woodcock, 2014). An improvement of the spectral 
plus projection combination test was proposed by Zhu and Woodcock 
(2014) by adding a temporal dimension to increase the robustness of the 
results. Methods based on spectral characteristics of an image depend on 
the existence of specific bands (like a thermal band) and are therefore 
satellite-dependent. Extensions to these approaches have been proposed 

* Corresponding author. 
E-mail address: a.alvera@ulg.ac.be (A. Alvera-Azcárate).  
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(i.e. Zhu, Z. and Wang, S. and Woodcock, C.E., 2015; Frantz et al., 2018; 
Qiu et al., 2019) that work with satellites without thermal band, like 
Sentinel-2. Another approach is using neural networks to detect cloud 
shadows (i.e. Hughes and Hayes, 2014), which can provide information 
on clouds shadows independently on the spectral bands present in a 
satellite. Most of the mentioned works have been applied to land sat-
ellite scenes, and very few deal with cloud shadow detection over the 
ocean. Detection of cloud shadows over water is challenging because of 
its dark colour, which results in very similar spectral characteristics to 
those of cloud shadows. The complexity of cloud top altitude variations 
makes it very difficult to know at which distance from the cloud the 
shadows can be actually located. Moreover, the large spatial variability 
of coastal turbid waters results in a very complex field with correct low 
SPM values and shadows intermingled in a single image. Temporal 
variability can be also very high, specially in the presence of strong 
currents, tidal-induced resuspension of bottom sediments or estuary 
discharges. This makes also difficult the exploitation of temporal co-
herency in the time series, specially for data from satellites like Sentinel- 
2, which have a revisit time of 5 days. 

The objective of this work is to derive a shadow detection approach 
for high resolution sensors like Sentinel-2 over oceanic waters, by per-
forming a series of tests on specific geophysical variables (SPM and CHL 
in this case) to ensure that the approach can be applied to any sensor, 
independently of the spectral bands available. The tests include a de-
parture from an Empirical Orthogonal Function (EOF) basis obtained by 
DINEOF (Data Interpolating Empirical Orthogonal Functions, Beckers 
and Rixen (2003); Alvera-Azcárate et al. (2005)), as well as a threshold 
test and a test on the proximity to identified clouds. We have also 
investigated the effect of adding a ray tracing test to reinforce the 
penalisation of zones most probably affected by cloud shadows. A 
description of the Sentinel-2 data used and the domain of study is made 
in Section 2. The proposed methodology to detect shadows is then 
described in Section 3. The results and their validation are presented in 
Sections 4 and 5 respectively and the conclusions and future outlook are 
presented in Section 6. 

2. Data used 

2.1. Satellite data 

Sentinel-2 with the MSI payload (S2/MSI) was launched by European 
Space Agency (ESA) in June 2015. The S2/MSI sensor has 13 bands in 
the visible ranges with spatial resolution ranging from 10 to 60 m, and a 
20 m resolution in the red to near-infrared (NIR) bands. The S2/MSI 
level 1C (L1C) products were obtained from the Copernicus Open Access 
Hub, as orthorectified 100 km × 100 km2 tiles (ortho-images in UTM/ 
WGS84 projection). The L1C products provide per-pixel Top Of Atmo-
sphere (TOA) reflectances with the parameters to transform them into 
radiances. 

The S2/MSI L1C tiles were processed with ACOLITE (v20180925, 
Dark Spectrum Fitting) to generate level 2 (L2) remote sensing reflec-
tance ρw(λ) products. ACOLITE performs the atmospheric correction 
using the “dark spectrum fitting” approach for coastal and inland water 
applications (Vanhellemont and Ruddick, 2018). Non-water pixels (i.e. 
land, cloud contamination) are flagged using the shortwave infrared 
(SWIR) band following the criteria: ρw(1610) > 0.0215. An additional 
cirrus cloud detection is performed based on the 1375 nm spectral band 
using ρw(1375) > 0.005. SPM concentration (gm− 3) products were 
generated using the algorithm of Nechad et al. (2010): 

SPM =
Aρρw

1 − (ρw/Cρ)
+Bρ (1)  

where Aρ (gm− 3), Bρ (gm− 3) and Cρ (unitless) are constant values which 
mainly depend on the water inherent optical properties and were set to 
610.94, 0 and 0.2324 respectively for the 665 nm spectral band. For the 
satellite data application Bρ is set to zero because the satellite sensor and 
processing will probably have different measurement errors from the 
calibration data. 

The CHL product is derived from a combination of two compatible 
algorithms: the O’Reilly blue-green band ratio OC3 algorithm (O’Reilly 
et al., 2000) and the red/Near-Infrared band ratio Gons algorithm (Gons 
et al., 2002, 2005). The OC3 algorithm was designed for open ocean 

Fig. 1. Domain of study, containing the Belgian Coastal Zone and part of the southern North Sea. Isobaths for 20 m depth are shown, as well as the location of the 
windmill parks (in blue). The different squares show the position of the subdomains given as examples in the Results Section 4. 
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waters and the Gons algorithm for eutrophic and turbid coastal waters. 
Pixel-based dynamic switching between these algorithms is performed 
based on best suited algorithm/water type combination as described in 
Van der Zande et al. (2019). 

2.2. Manual cloud shadow identification 

Cloud shadows were manually identified for validation purposes by a 
human operator using the RGB images for the S2/MSI scenes for 29 April 
2017 and 4 August 2017 on the Belgian Coastal Zone. The RGB images 
were imported in GIMP (v2.10.2) and cloud shadows were selected 
using the ‘Bucket Fill’ tool enabling an automated selection of pixels 
based on the selected foreground colour. The number of filled pixels 
depends on the Fill threshold. The fill starts at the point selected by the 
operator and spreads outward until the colour value becomes “too 
different” from the selected pixel. The optimal threshold was selected 
through trial and error to obtain the best coverage of the considered 
cloud shadow. While this approach worked well in turbid waters and 
opaque clouds casting clearly defined shadows on the scattering waters, 
it was more difficult in clear absorbing waters where the colour differ-
ence caused by clouds was minimal compared to clear water pixels. In 
these conditions it was difficult to manually identify the borders of the 
cloud shadow. Similarly, shadows cast by thin clouds are blurry and 
difficult to clearly define. The manual identification of the cloud 
shadows took 10 to 15 h per image highlighting the need for an auto-
mated detection approach. 

2.3. Study areas 

The cloud shadow detection is first applied to the Belgian Coastal 
Zone (Fig. 1) in the southern North Sea. This zone comprises high SPM 
near the coast and a strong offshore decreasing gradient. The high SPM 
concentration near the coast is due to the discharge of the Scheldt, Rhine 
and Meuse rivers in the Scheldt-Rhine estuary (located in the eastern 
part of the domain), and therefore the temporal variability of SPM 
concentration is largely dependent on river discharge. The North Sea 
shelf is very shallow, with an average depth of 30 m in the large domain 
shown in Fig. 1, and an average depth of 15 m in the domain of study. 
Tidal currents therefore also play an important role in determining SPM 
concentration and dynamics, through deposition and resuspension. 

A second domain of study is the Venice area. This region presents in 
general lower values of SPM although river discharge results in high 
SPM values intermitently. The amount of clouds is lower than in the 
Belgian Coastal Zone, and shadows are less prominent. This region will 
be used therefore to test whether our shadow detection approach can 
deal with these characteristics. 

3. Detection of shadows: method description 

The shadows in high spatial resolution datasets like S2/MSI can have 
very different sizes, and represent therefore a multi-scale problem. 
Shadows can have all forms and sizes: from the large cumulus clouds 
casting shadows that can be several kilometers wide, to the thin and 

Fig. 2. Shadow detection example on 4 August 2017 (RGB view in the top left insert). From bottom to top: bottom left and right panels show the result of OEOF and 
Oconc respectively. The middle right panel show the Ofinal index, from which a threshold of 2 is applied to determine which pixels are shadows. The final shadow/non- 
shadow mask is shown in the middle left panel. Top left panel shows the initial SPM data, with very low values corresponding to cloud shadows. Top right panel 
shows the final image after shadows have been removed. 
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relatively small windmill masts, which are less than 100 m long. 
In order to detect shadows at different spatial scales, a set of different 

tests are performed on the data. These tests build on the outliers 
detection approach described in Alvera-Azcárate et al. (2012, 2015), in 
which outliers were detected in medium spatial resolution data (sea 
surface temperature from AVHRR and turbidity from SEVIRI, respec-
tively). In this approach, individual pixels with a behavior distinct from 
their neighboring pixels were targeted, but given the spatial extension of 
cloud shadows, these cannot be detected using directly the approach in 
Alvera-Azcárate et al. (2012, 2015). The detection of shadows in high 
resolution data needs the addition of some tests adapted to the problem. 
The tests are described as follows:  

• EOF index, OEOF: A first test determines the departure of each pixel 
from an EOF basis calculated from the data being analysed. This EOF 
basis is calculated using DINEOF (Beckers and Rixen, 2003; Alvera- 
Azcárate et al., 2005) to overcome the problem of missing data. The 
EOF basis is truncated by retaining only the modes that minimise the 
error of the reconstruction. Transient and localized features like 
shadows are therefore not part of the EOF basis and can be identified 
by its departure from it. The mean absolute difference between an 
original pixel and the estimation obtained by the truncated EOF basis 
is calculated. This test provides a departure index with values 
starting from zero (no difference between a pixel and the EOF basis at 
that point) and with an unbounded positive value for pixels differing 
from the EOF basis.  

• Proximity index, Oprox: Typically, pixels surrounding clouds are more 
likely to exhibit a shadow in their vicinity. This test gives a value of 1 
to pixels immediately surrounding an already missing value (cloud, 
land, bad data masked for quality reasons) and zero otherwise. This 
test can be applied iteratively to reach further away from the cloud or 
land edges.  

• Concentration test, Oconc: The presence of shadows in ocean colour 
variables is always associated to low values of the variable being 
analysed relative to the surrounding clear water pixels. However, as 
already mentioned, these are still within the range of plausible 
values, and cannot be detected as outliers by applying a fixed 
threshold. To overcome this, a varying threshold is instead applied, 
which depends on the amount of missing data in each individual 
image and the quantile distribution of the values of the variable used 
(SPM concentration or CHL in this case). The higher the percentage 
of missing data (%MD) of a given image, the higher the quantile 
below which data are considered suspect. The concentration test is 
only applied when %MD > 20%: 

data > Q%MD/100→Oconc = 0; (else Oconc = 1) (2) 

The rationale behind this setting is that, the higher the percentage of 
missing data on a given image (and therefore of clouds), the more 
probable that a given clear pixel is a shadow. As an example, if a given 
image has 10% of missing data, and the 10th quantile for all the values of 
that same image is 0.3, then all pixels with an SPM value smaller than 
0.3 gm− 3 will be given a Oconc = 1. If that same image has 15% of missing 
data, and the 15th quantile is 0.47, then all pixels with an SPM value 

Fig. 3. Shadow detection example on 4 August 2017 
in an open domain containing the northwest corner of 
Fig. 2 (shown by the red line). From bottom to top: 
bottom left and right panels show the result of OEOF 
and Omedian respectively. The middle right panel show 
the Ofinal index, from which a threshold of 2 is applied 
to determine which pixels are shadows. The final 
shadow/non-shadow mask is shown in the middle left 
panel. Top left panel shows the initial SPM data, with 
very low values corresponding to cloud shadows. Top 
right panel shows the final image after shadows have 
been removed. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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smaller than 0.47 gm− 3 will be given a Oconc = 1.  

• Median test, Omedian: the difference between a given pixel and a local 
median calculated over a 30 × 30 box, normalized by the mean 
absolute deviation calculated over the same domain, is calculated. 
Departures from this median are penalised. This test is only applied if 
the percentage of missing data is lower than 20%, as the computa-
tional cost is high and this test is most efficient in detecting very 
small shadows on clear days (like windmill mast shadows). The size 
of the box has been chosen to concentrate in small-scale features. 

An index Ofinal is finally calculated as the weighted sum of the three 
mentioned tests: 

Ofinal = W1OEOF +W2Oprox +W3Oconc (3)  

with W1, W2 and W3 the weights applied to each test. These weights can 
change depending on the data and the objectives, and the specific values 
used in this work will be presented in Section 4. In the case of having less 
than 20% of missing data in a given image, the concentration test Oconc is 
substituted by the median test Omedian: 

Fig. 4. Shadow detection example on 1 January 2017 in the C-Power offshore windmill park (RGB view in the top left insert). From bottom to top: bottom left and 
right panels show the result of OEOF and Omedian respectively. The middle right panel show the Ofinal index, from which a threshold of 2 is applied to determine which 
pixels are shadows. The final shadow/non-shadow mask is shown in the middle left panel. Top left panel shows the initial SPM data, with very low values corre-
sponding to windmill shadows, and very large values associated with a ship wake. Top right panel shows the final image after shadows and wake have been removed. 
Red squares in the top row indicate the domain shown in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 5. Detail of the red insert of Fig. 4. Left panel shows initial SPM and right panel shows SPM after removal of shadows and other suspect data, as the ship wake. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Ofinal = W1OEOF +W2Oprox +W4Omedian (4) 

All weights can be adjusted to the characteristics of the variable and 
region of interest. 

An additional test can be added, in line with other existing cloud 
shadow detection methods, to estimate the probable location of the 
shadow given the position of a cloud. A ray tracing approach has been 
adopted, and can be described as follows:  

• Ray tracing test, Oray: For every pixel of the scene, we compute the 
position of the sun in the sky using the Julia package AstroLib. We 
assume that the altitude of the clouds is known and constant. The 
cloud layer is represented by a binary mask (0 clear sky and 1 
covered sky). We computed the ray connecting a given pixel and the 
sun and then determined where this ray would intersect the cloud 
layer. If the nearest point to this intersection is a cloud, then the pixel 
has a shadow index of 1. Otherwise it has an index of 0. 

We have used the ray tracing test by establishing a top of the cloud 
height of 1.5 km, which is of course not always the case. However, the 
ray tracing test is used only to provide a probable area of suspicious 
pixels, and it is most useful when thin and scattered clouds are present. 
The combination of the four tests and their weights determines if a pixel 
is shadowed or not. If the ray tracing test is applied, it is added to the 
previous one: Ofinal = Ofinal + Oray. 

4. Results 

4.1. Detection of cloud shadows in the Belgian Coastal Zone 

The shadow detection approach was applied to the 2017 S2/MSI data 

described in Section 2. Given the very large size of S2/MSI data, the 
DINEOF reconstruction was applied to subsets of data, covering each 1/ 
4th of the domain shown in Fig. 1. Examples of results in some of these 
subsets are shown here. 

The specific weight of each subtest described in Section 3 was 
determined first by establishing which tests had a larger impact in the 
detection of shadows. The truncated EOF basis used to calculate OEOF 
consisted of 3 EOFs (determined by cross-validation by DINEOF). For 
images with more than 20% of missing data, Oconc and OEOF played the 
largest roles, and for images with less than 20% of missing data, it was 
Omedian that best helped detecting shadows. Given this, and after trying 
several combinations, the following weights were used:  

• More than 20% of missing data: W1 = 0.8; W2 = 0.2; W3 = 0.2  
• Less than 20% of missing data: W1 = 0.2; W2 = 0.2; W4 = 0.8 

The level above which a pixel is classified as shadow was fixed at 2 
after some trials. Therefore, it was decided that pixels providing a value 
of 1 in the Oconc test, when more than 20% of missing data are present, 
are automatically classified as shadow. The OEOF and Oprox tests help in 
finding some other pixels that are not correctly classified as shadow by 
the Oconc test alone. In this first domain, the ray tracing test was not used 
since it didn’t have a measurable impact in the final shadow detection. 

An example of shadow detection for 4 August 2017 is shown in Fig. 2, 
covering domain 1 as shown in Fig. 1. The amount of missing data on 
this day is 25%. The cloud shadows located along the southern coast are 
correctly detected, as well as the scattered shadows in the middle of the 
domain. There is one zone in the northwest corner of the domain that 
presents a large amount of false positives (i.e. pixels classified as 
shadows that are valid SPM data) since both Oconc and OEOF classify these 

Fig. 6. Shadow detection example on 29 August 2019 in 
domain 4 (see RGB view top left). From bottom to top: bot-
tom left and right panels show the result of OEOF and Oconc 
respectively. The middle right panel show the Oray index, 
with 1 to pixels affected by a cloud. The final shadow/non- 
shadow mask is shown in the middle left panel. Top left 
panel shows the initial SPM data, with very low values cor-
responding to cloud shadows. Top right panel shows the final 
image after shadows have been removed.   
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pixels as suspect. This zone is characterized by low values of SPM, which 
suggests that the accuracy of the shadow detection can be improved if 
the detection of shadows for that zone would be made separately, for 
example by determining a domain of open waters, with low values of 
SPM. 

To test this idea, an open waters domain containing the northwestern 
corner of Fig. 2 is used to test if the detection of shadows is improved in 
that corner. Fig. 3 shows the shadow detection in domain 2 (Fig. 1), with 
the same tests as in Fig. 2 except for Oconc test which is replaced by the 
Omedian, as the amount of missing data in domain 2 for 4 August is of 4%. 
It can be seen that the cloud shadows are now more accurately detected 
in the overlapping corner. The approach presented is therefore able to 
work in domains with lower SPM concentration values, where the 
shadows are not so clearly visible. A careful compositing to reunite all 
subscenes after shadow detection is of course needed. 

4.2. Detection of windmill shadows 

The presence of shadows from other sources than clouds is also 
visible in high spatial resolution satellite data. Offshore windmill farms 
are being developed quickly in many places around the globe, including 
the North Sea. Our domain of study contain three farms (either finished 
or under construction): Norther, C-Power and Northwind. The shadow 
detection has been applied to a domain containing the C-Power wind 
farm (domain 3 in Fig. 1), and the results on a very clear day (19 January 
2017, with 0% of missing data) are shown in Fig. 4. In this case, as the 
amount of missing data is smaller than 20%, the Oconc test is replaced by 

the Omedian test. The shadows of the windmills are correctly detected by 
our approach. The wake of a ship crossing the wind farm results in 
erroneous high SPM concentration values, and these pixels are also 
detected as shadows. Since our approach can also detect features that 
are anomalous with respect to their surroundings, the detection of such 
erroneous data is also possible. 

A detail of this figure is shown in Fig. 5, in which the detection of the 
windmill masts shadows is more clearly seen. This figure also shows that 
the turbid wakes created by the current flowing through the windmill 
masts (e.g. Vanhellemont and Ruddick, 2014), in a west-southwest di-
rection from the masts, are (correctly) not detected as anomalous, 
contrary to the ship wake. 

4.3. Shadow detection in chlorophyll data in the Belgian Coastal Zone 

In order to test the accuracy of the shadow detection in a different 
setting, a test has been made using CHL data in 2019 in domain 4 of 
Fig. 1. The dataset used consists of 77 images spanning from 9 January 
2019 to 2 December 2019 (images that have more than 96% of missing 
data have been removed). After realising some tests with different 
weights for each of the subtests, it was decided that the same combi-
nation of tests (i.e. W1 = 0.8; W2 = 0.2; W3 = 0.2 for more than 20% of 
missing data) led to satisfying results. The ray tracing test was also used 
in this example, since we observed the presence of thin and scattered 
clouds. The threshold to decide whether a pixel is a cloud shadow or not 
was set to 1.5 (instead of 2 with SPM). While we have kept the same 
values as the previous examples, these need to be adjusted to the 

Fig. 7. Shadow detection example on 6 October 2019 in the Venice area (see insert map bottom left and RGB view top left). From bottom to top: bottom left and right 
panels show the result of OEOF and Oconc respectively. The middle right panel show the Oray index, with 1 to pixels affected by a cloud. The final shadow/non-shadow 
mask is shown in the middle left panel. Top left panel shows the initial SPM data, with very low values corresponding to cloud shadows. Top right panel shows the 
final image after shadows have been removed. 

A. Alvera-Azcárate et al.                                                                                                                                                                                                                      



Remote Sensing of Environment 253 (2021) 112229

8

variable and domain of study. An example on 29 August 2019 is pre-
sented in Fig. 6, with all the subtests as in previous examples. Shadows 
are generally well detected, and the addition of ray tracing is useful for 
some shadows near the southwest corner. 

4.4. Shadow detection in SPM data on the Venice area 

The shadow detection approach has been also tested in a different 
region. S2/MSI SPM data in the Venice area from 2019 were chosen, as 
this region presents very different values in SPM than the Belgian 
Coastal Zone. The weights were again maintained as in the 2 previous 
tests, adding the ray tracing test as well. The threshold to classify a pixel 
as shadow or not was set to 2. An example on 6 October 2019 is pre-
sented in Fig. 7, again showing that most shadows are correctly 
identified. 

5. Validation 

5.1. Cloud shadow detection in the Belgian Coastal Zone SPM dataset 

In order to assess the accuracy of our approach, we have selected 2 
scenes in which cloud shadows have been detected manually: 29 April 
2017 and 4 August 2017 in the Belgian Coastal Zone. As described in 
Section 2.2, shadows were detected manually along the domain of study 
by individually selecting all pixels identified as shadow. While this is a 
long and tedious work to realise, it also provides a very strict validation 
baseline to compare our shadow detection approach with. 

An example is shown in Fig. 8 for 29 April 2017. In this case, 63% of 
the pixels detected manually as being shadows have been detected by 
our approach. The percentage of no-cloud pixels classified as shadows by 
our approach but not manually is 3%, and while these can be considered 
false positives, close inspection of the image shows that there are also 
pixels at the edges of clouds that might have been overlooked in the 
manual detection. 

Two more examples are given for small scattered clouds, on 4 August 
2017 (Fig. 9). First on the eastern part of the domain (domain 6, shown 
in the left column of Fig. 9). On this part of the domain, 85.20% of the 
pixels detected manually as being shadows have been detected by our 
approach. A 4.10% of the open-sea data (i.e. no clouds nor shadows) are 
classified as shadows by our approach but not manually, but again, this 
percentage includes false positives and pixels not detected manually but 
that are shadows. The second example is given for domain 2, and it is 
shown in the right column of Fig. 9. On this part of the domain, 75.22% 
of the pixels detected manually as being shadows have been detected by 
our approach. A 1.21% of the open-sea data (i.e. no clouds nor shadows) 
are classified as shadows by our approach but not manually, a per-
centage that includes false positives and pixels not detected manually 
but that are shadows. In this specific frame, close inspection of the 
scattered pixels detected with our approach shows they are mostly 
whitecaps in the initial data, and have been identified as suspect data. 

5.2. Comparison with Idepix 

While the comparison with manually detected shadows provides a 
very good frame to objectively assess the accuracy of the results, it is 
interesting to assess how our approach compares with other existing 
automated approaches for detection of cloud shadows. For the example 
on 4 August 2017 we can therefore assess the accuracy of our method 
and the accuracy obtained with Idepix, a S2/MSI cloud shadow pro-
cessor developed for the SNAP (Sentinel Application Platform) software 
(Lebreton et al., 2016). Idepix combines the cloud mask with sun ge-
ometry to search regions of maximum probability for shadow pixels. As 
no cloud height is available for S2/MSI data, a maximum cloud height is 
predetermined as a function of latitude. Within the projected region of 
potential cloud shadow, the cloud mask is shifted towards the surface 
reflectance minimum along the illumination path. These pixels are 
flagged as IDEPIX_CLOUD_SHADOW. Additionally, pixels within the 
potential shadow area are clustered based on surface reflectances and 
the darkest cluster is flagged as IDEPIX_CLUSTERED_CLOUD_SHADOW. 
Both flags were combined to a single cloud shadow flag in this study. 

The whole domain for 4 August 2017 is shown in Fig. 10, together 
with the shadows detected manually, with Idepix and with our 
approach. It can be seen that our approach shows more scattered pixels 
that have been detected as shadows but do not appear in the manual 
mask (especially in the southwest corner). On the other hand, Idepix 
seems to have overestimated the shadow for the large cloud situated in 
the southwest, and presents also some scattered clouds near the coast 
not detected manually. In order to assess the accuracy of each method, 
we will zoom in these two places, marked with a square in Fig. 10. 

Fig. 11 shows the first zoomed image. Compared with the manual 
shadow mask, our approach detects 82.30% of the shadows, with 9.70% 
of false positives, which appear to be scattered shadows north of the 
cloud associated with low concentration SPM values. Idepix on the other 
hand, has a too large cloud shadow, and compared with the manual 
mask it detects 65% of them. In terms of false positives in Idepix, 
because of the large shadow, this value goes up to 18%. The second 
zoom is presented in Fig. 12. Here our approach detects too few 
shadows, summing up to 50% of the manual shadows and 1.9% of false 
positives. Idepix detects 60% of the manual shadows, with 1.6% of false 
positives. We can see an artifact in the Idepix detected shadows in the 
form of a line, and again some scattered shadows for our approach. 

The percentage of shadows detected in the second zoom is quite low 
for our approach, though Idepix also underperformed with respect to the 
results in the first zoom. This scene appeared as specially challenging for 
both approaches. Close inspection of this scene reveals that our 
approach failed to detect thin shadows caused by the clouds edges. A 
way to improve on this would therefore be to increment the shadows by 
two or three pixels around the detected shadows. The number of false 
positives would however also increase. 

Fig. 8. Cloud shadow detection on 29 April 2017. Top panel shows SPM values, 
with low values (dark blue) due to shadows, and clouds in white. Bottom panel 
shows pixels detected as cloud both manually and by the present methodology 
(pink), pixels detected manually but not by our method (light blue) and pixels 
detected by our method but not manually (red). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 9. Cloud shadow detection on two subdomains on 4 August 2017. Top left panel (east domain) shows SPM values, with low values (dark blue) due to shadows, 
and clouds in white. Bottom left panel shows pixels detected in the east domain as cloud both manually and by the present methodology (pink), pixels detected 
manually but not by our method (light blue) and pixels detected by our method but not manually (red, mostly at some cloud edges). Top right panel (northwest 
domain) shows SPM values, with low values (dark blue) due to shadows, and clouds in white. Bottom left panel shows pixels detected in the northwest domain as 
cloud both manually and by the present methodology (pink), pixels detected manually but not by our method (light blue) and pixels detected by our method but not 
manually (red, mostly at some cloud edges). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

A. Alvera-Azcárate et al.                                                                                                                                                                                                                      



Remote Sensing of Environment 253 (2021) 112229

10

Fig. 10. Cloud shadow detection on domain 4, for 4 August 2017. Top left panel shows SPM values, with low values (dark blue) due to shadows, and clouds in white. 
Bottom left panel shows pixels detected as shadow manually (in red). Top right panel shows the shadows detected by Idepix, and the bottom right panel shows the 
shadows detected by the present method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5.3. Chlorophyll BCZ dataset validation 

For the validation of the CHL shadow detection in the Belgian Coastal 
Zone we have the results of our approach and from Idepix. Because none 
of these two can be considered the truth, it is more a comparison exercise 
than a validation, although visual inspection can already give a good 
estimate about the shadow detection accuracy of each method. First, the 
results of the subtests are presented in Fig. 13. It can be seen that both 
approaches identify most of the shadow pixels present in the left panel. 
The present method still has some scattered pixels detected as shadows, 
but on the other hand it also detects correctly that some pixels in the low 
left corner, close to the coast, are probably not shadow. Idepix classifies 
all these as shadow. If we were to consider Idepix as the truth, our 
approach detects 70.5% of Idepix shadows, and Idepix classifies as no 
shadow 12.5% of pixels classified as shadow in our approach. 

5.4. SPM Venice dataset validation 

For the SPM dataset in Venice, a comparison with Idepix is also done. 
The results are presented in Fig. 14 for Idepix and our approach. This 
case, with a large cloud cover over most of the scene, seemed to be more 
difficut for Idepix, which ended up classifying large zones as shadow, 
while clearly these are not shadowed in the left panel. Idepix took more 
than 20 h of computation for this single scene. Our approach looks closer 
to what the actual shadows are. Comparing again the percentage of 
pixels detected as shadows in each technique, there are 54% of Idepix 
shadows that have been classified as shadows by our approach, and 29% 
of shadows in our approach that have not been classified as shadows in 
Idepix. 

6. Discussion and conclusions 

A method to detect shadows in high spatial resolution ocean satellite 
data has been described. The method detects shadows of various sizes, 
from large clouds down to the masts of offshore windmills. Large cloud 
shadows can affect the quality of the images and hence the analysis 
derived from them, but also at the mast-scale size, undetected shadows 
can have a net influence in studies aiming at assessing the impact of 
offshore windmill parks in the total quantity of suspended matter. 

The methodology proposed is based on a series of tests applied 
directly to the physical variables derived from the satellite measured 
radiances. It does not depend therefore in the characteristics of the 
satellite sensor (wavebands measured) and can be applied to any sat-
ellite. The data used in this work was suspended particulate matter 
(SPM) and chlorophyll (CHL) measured by Sentinel-2, and two domains 
(Belgian Coastal Zone and Venice) and periods (2017 and 2019) were 
analysed. The tests include a departure from a truncated EOF basis 
calculated from a time series of images (large departures are penalised), 
a threshold test (low values are penalised), a proximity test (pixels 
adjacent to missing data are penalised), and a median test in images with 
low percentage of missing data (departures from local median are 
penalised). A ray tracing test can also be used, which calculates the path 
between each pixel and the Sun to determine if there is a cloud pro-
jecting a shadow. This test has proved to be useful in the presence of thin 
and scattered clouds, and therefore we recommend its use along the rest 
of the tests. These various tests can be weighed differently depending on 
the dataset used, and the threshold above which data are discarded can 
also be adjusted. 

The results were compared to manually selected cloud shadows, and 

Fig. 11. Cloud shadow detection on the first zoom of 
domain 4, for 4 August 2017. Top left panel shows 
SPM values, with low values (dark blue) due to 
shadows, and clouds in white. Bottom left panel 
shows pixels detected as cloud manually (in red). Top 
right panel shows the shadows detected by Idepix, 
and the bottom right panel shows the shadows 
detected by the present method. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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Fig. 12. Cloud shadow detection on the second zoom 
of domain 4, for 4 August 2017. Top left panel shows 
SPM values, with low values (dark blue) due to 
shadows, and clouds in white. Bottom left panel 
shows pixels detected as shadow manually (in red). 
Top right panel shows the shadows detected by Ide-
pix, and the bottom right panel shows the shadows 
detected by the present method. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Fig. 13. Cloud shadow detection on CHL data on 29 August 2019, in the domain indicated by a square in Fig. 6. Left panel: initial CHL data. Center panel: pixels 
identified by Idepix as shadows (red). Right panel: pixels identified by Idepix as sadows (red). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 14. Cloud shadow detection on CHL data on 6 October 2019. Left panel: initial CHL data. Center panel: pixels identified by Idepix as sadows (red). Right panel: 
pixels identified by Idepix as sadows (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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overall a good accuracy is achieved in detecting shadows. The presence 
of false positives were due mainly to scattered pixels classified as 
shadow, and are probably low values penalised by the concentration 
test. Other sources of false positives were anomalous data present in the 
image but not due to the presence of clouds. The proposed method, as it 
penalises anomalous data independently of their absolute value, also 
detects wrong high SPM values associated with the wake of a ship, and 
whitecaps. These features are penalised by the EOF test. 

A comparison with another shadow detection technique, Idepix, has 
been also performed. Depending on the frame, either Idepix or our 
approach performed better, compared to the manually detected pixels. 
Idepix seemed to overclassify possible shadow pixels, flagging large 
areas which are visibly not shadows. Our approach presents scattered 
pixels, not associated with a cloud, classified as shadows. Detecting too 
large shadows, as in Idepix, results in large areas being flagged out, 
which makes subsequent uses of the data more difficult. Scattered pixels 
on the other hand may have a smaller impact on the potential use of the 
data afterwards, as these scattered points are easier to interpolate, and 
do not obscure totaly large zones of valid data. In our tests we have 
observed a tendency for Idepix to overestimate cloud shadows, and an 
accuracy of 60–65%. 

In our proposed method, all the tests and the final detection are 
based on a series of thresholds that can be adapted to provide more or 
less strict shadow detection. Stronger thresholds will provide a larger 
detection accuracy, but more false positives will be also present in the 
final dataset. The user can assess the thresholds best suited to their 
application and domain of study. 
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Alvera-Azcárate, A., Sirjacobs, D., Barth, A., Beckers, J.-M., 2012. Outlier detection in 
satellite data using spatial coherence. Remote Sens. Environ. 119, 84–91. 
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