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Abstract This paper investigates how the efficiency and

robustness of a skilled rhythmic task compete against each

other in the control of a bimanual movement. Human

subjects juggled a puck in 2D through impacts with two

metallic arms, requiring rhythmic bimanual actuation. The

arms kinematics were only constrained by the position,

velocity and time of impacts while the rest of the trajectory

did not influence the movement of the puck. In order to

expose the task robustness, we manipulated the task con-

text in two distinct manners: the task tempo was assigned at

four different values (hence manipulating the time avail-

able to plan and execute each impact movement

individually); and vision was withdrawn during half of the

trials (hence reducing the sensory inflows). We show that

when the tempo was fast, the actuation was rhythmic (no

pause in the trajectory) while at slow tempo, the actuation

was discrete (with pause intervals between individual

movements). Moreover, the withdrawal of visual infor-

mation encouraged the rhythmic behavior at the four tested

tempi. The discrete versus rhythmic behavior give different

answers to the efficiency/robustness trade-off: discrete

movements result in energy efficient movements, while

rhythmic movements impact the puck with negative

acceleration, a property preserving robustness. Moreover,

we report that in all conditions the impact velocity of the

arms was negatively correlated with the energy of the puck.

This correlation tended to stabilize the task and was

influenced by vision, revealing again different control

strategies. In conclusion, this task involves different modes

of control that balance efficiency and robustness, depend-

ing on the context.

Keywords Rhythmic movements � Discrete movements �
Impact juggling � Sensorimotor loop � Robust control �
Energy-optimal control

Introduction

The computational approach is widely used in the motor

control literature, providing a unified framework to study

motor planning, control, estimation, prediction and learn-

ing (Jordan and Wolpert 1999; Wolpert and Ghahramani

2000; Bays and Wolpert 2007). Such concepts are inherited

from well established principles from system-theoretic

engineering, and their exploitation in motor control

remarkably parallels with analogous designs in robotics

(Schaal and Schweighofer 2005). As usually done in the

context of engineering designs, a conceptual diagram of

motor control can be elaborated as an assembling of dif-

ferent functional compartments, referring to the various

computational steps throughout the motor pathway. The
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highest level refers to the planning of the trajectory, i.e.,

the computation of the desired trajectory. Downstream

from planning, the movement control refers to mechanisms

used to compute the motor command in order to maintain

the actual trajectory close to the desired one. The pro-

cessing of sensory inflows may obviously influence the

motor command (control), but also necessitates to recom-

pute the reference trajectory (planning). Note that the

optimal control theory has been recently used to provide an

elegant framework to capture planning and control into a

single executive system (Todorov and Jordan 2002; Scott

2004; Todorov 2004, 2006; Bays and Wolpert 2007; Liu

and Todorov 2007).

The present paper aims at shedding light on a particular

computational aspect that is ubiquitous in control theory:

the trade-off between efficiency and robustness (often

referred as the performance/robustness trade-off in control

literature, see, e.g., Boulet and Duan 2007). Efficiency

quantifies how well a system performs (e.g., through the

minimization of a cost function); and robustness quantifies

how the stability is maintained despite uncertainties and

perturbations. For example, robustness can be quantified by

the noise level and the computational delay which are

tolerated before losing stability. Very often, efficiency and

robustness compete against each other, in the sense that—

for a fixed controller structure—the efficiency can only be

increased above a certain threshold by ‘‘sacrificing’’ the

robustness. Many textbooks in control theory (see, e.g.,

Franklin et al. 2005; Åström and Murray 2008) provide

caveat examples of closed-loop designs performing excel-

lently, but fragile to a slight change in any parameter.

Different requirements in efficiency and/or robustness can

therefore strongly influence the design of the control

structure, as well as the processing of sensory information.

Evidence for robust control has been shown in motor

execution, as demonstrated, e.g., for arm reaching (see,

e.g., Karniel and Inbar 2000; Liu and Todorov 2007) or

saccade execution (see, e.g., Harris and Wolpert 1998,

2006). The present paper illustrates how the trade-off

between efficiency and robustness influences the move-

ment execution in the particular context of a bimanual

rhythmic movement.

The task studied in this paper is an original simplified

juggling task (2D). It is a bimanual version of the

ball + racket task, extensively studied in the motor con-

trol literature (see, e.g., Schaal et al. 1996; Sternad 1999;

Sternad et al. 2001a, b; deRugy et al. 2003; Wei et al.

2007). Our task requires the stabilization of a puck tra-

jectory, through periodic impacts with two metallic arms

which are actuated by the subject (see Fig. 1). In this

task, the periodic movement of the puck forces the arms

to be rhythmically actuated, but not necessarily in a

sustained (or continuous) manner: only the arms

kinematics at impacts influence the course of the puck.

Such a bimanual movement is constrained by intrinsic

coordination rules which attract both arms into stable

actuation regimes, such as in-phase and anti-phase (see,

e.g., Kelso et al. 1979; Kelso 1995; Swinnen 2002).

While in-phase actuation does not make sense in the

present task, anti-phase actuation of the arms is the

intuitively stable control regime in which phase locking is

a primary feature. However, the arms could be also

actuated one after the other, in a relatively discrete and

decoupled manner, hence relaxing the phase locking

between both arms and potentially allowing some dwell

intervals between individual movements. While these two

strategies are actually rhythmic (since the arms adopt a

periodic pattern in both cases), we rely on the terminol-

ogy proposed by Hogan and Sternad (2007) to

differentiate the two types of movements in the rest of the

paper: the sustained mode is referred to as ‘‘rhythmic’’,

since the arms actuation was sustained with short rest

intervals; and the intermittent mode is referred to as

‘‘discrete’’, since the individual impacts are separated by

longer rest intervals.

One advantage of the present juggling task is that it is

amenable to both mathematical analysis and behavioral

experiments (Ronsse et al. 2008). Initially, in Ronsse et al.

(2006), we have established that purely sensorless control

of this task is theoretically possible. However, this sens-

orless control is not robust and was hard to validate in

robotics experiments. In Ronsse et al. (2007), we showed

both theoretically and experimentally that the robustness of

the control is significantly enhanced with the help of a

cheap source of sensory feedback: the impact times. This

discrete, event-related, source of feedback significantly

improved the experimental stabilization of periodic jug-

gling patterns. However, robustness remained a critical

issue and we have particularly shown that an essential

Fig. 1 Experimental setup
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feature of this feedback controller was to impact the puck

with negative acceleration of the arm, exploiting the

sensorless dynamical properties (Schaal et al. 1996).

The aim of the present study is to investigate the human

behavior in the light of these theoretical findings. First, we

investigated how the withdrawal of vision modifies the task

control. The absence of vision should increase the uncer-

tainties in the task, since visual information is very

important to measure some state variables (e.g., the puck

energy); and to predict the future motion of the puck, such as

the forthcoming impact time (Land and McLeod 2000),

which is a fundamental control parameter (Ronsse et al.

2007). Second and in parallel, we asked the subjects to

perform the task at different tempi, hereby manipulating the

time available to execute each impact movement individu-

ally. Indeed, increasing the tempo also decreases the time to

plan and execute each movement, assuming that the absolute

time delay—inherent to the sensorimotor loop—remains

constant across conditions. Different tempi can be easily

achieved by the subjects, through a proper tuning of the

average aperture between the arms (the smaller the aperture,

the faster the tempo). In sum, we investigate to what extent

maintaining the robustness at a satisfactory level, despite

uncertainties, affects the efficiency of the actuation strategy.

It is predicted that the conditions in which the task robust-

ness is the most exposed (without vision, or at the fastest

tempi), acceleration should be more negative, while the

priority is given to maximize the control efficiency in the

other conditions. The proposed estimation of the task effi-

ciency is the average energy of the arms, since it can be

reasonably hypothesized that the minimization of the energy

cost is a key feature of skilled movement control. Previous

investigations in the optimal control framework have indeed

established that many typical movements result from an

attempt to minimize the control cost (Nakano et al. 1999;

Todorov and Jordan 2002; Todorov 2004; Liu and Todorov

2007), which can be considered as an approximate of the

effector energy cost as well.

Given the parallel between the robotics investigations

proposed in Ronsse et al. (2006, 2007) and the present

contribution, our simplified juggling experiment is thus

suited to address questions in robotics and motor control in

parallel (Schaal and Schweighofer 2005), in the particular

context of bimanual rhythmic movements.

Materials and methods

Task and experimental setup description

Nine healthy human subjects (4 female, 5 male, 23–

28 years old) volunteered to perform a bimanual, impact

juggling task. Two subjects were left-handed, seven were

right-handed (Edinburgh Handedness Test). One subject is

the first author of the paper while the others were naive

regarding the goals of the experiment. They provided

informed written consent, and reported no history of neu-

rological or musculoskeletal disorder. All had normal

vision, either natural or corrected. All the procedures

conducted were approved by the local ethics committee, in

compliance with the Helsinki declaration.

The subjects stood in front of an air-hockey table that

was tilted 12.5� w.r.t. the ground, and they actuated two

independent metallic arms that were free to rotate on the

table around their lower extremity (see Fig. 1). The two

points of rotation were mounted close to each other, on the

table frame. The subjects had to rotate the metallic arms in

order to impact a plastic puck (72 mm diameter) back and

forth. The subjects were instructed to stabilize the so-called

‘‘period-one’’ motion of the puck: a single parabola

between the arms [see Fig. 2 and Ronsse et al. (2006) for

an extended description of the setup].

Fig. 2 Average trajectories of the puck for the four tempi and the two

vision conditions (averaged across sessions and subjects, black

parabolas). As illustrated in the right panel, the solid black lines
represent the average position of the arms at impact hi (the arms rotate

around their lower extremity). The dashed dark gray lines represent

the average of the smallest (hm) and the largest (hM) angular position

of the arms during the cycle. r denotes the radial position of the puck

at impact. The shaded areas correspond to the standard deviations of

the mean impact positions and the mean puck trajectories. The

numerical values are given in Table 1, pooled for both arms
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The task tempo was assigned by a metronome, that beeped

either at T = 400, 600, 800 or 1,000 ms intervals. The sub-

jects were instructed to impact the puck such that the time

interval between two successive impacts equaled the met-

ronome tempo. Consequently the tempo T represents the

half-period of the steady-state periodic pattern of each arm.

At each tempo, the subjects were asked to perform the jug-

gling task for 2 min in normal visual condition, followed by

2 min with closed eyes. These 2 9 2 min blocks were

repeated six times per session: one at T = 400 ms, one at

T = 600 ms, two at T = 800 ms, and two at T = 1,000 ms.

This generated 120 s/0.4 s = 300 beeps at T = 400 ms;

120 s/0.6 s = 200 beeps at T = 600 ms; 2 9 120 s/0.8 s =

300 beeps at T = 800 ms; and 2 9 120 s/1 s = 240 beeps at

T = 1,000 ms per subject 9 vision condition 9 session, and

then potentially the same number of impacts. The succession

of tempi was randomly generated before each session. Each

of the nine subjects completed four sessions collected on

three or four different days, depending on the subject. They

were authorized to acquaint themselves with the task during

15 min before the first session.

A simplified model of this task has been studied in

Ronsse et al. (2006, 2007) for robotics applications. This

model is based on the combination of a parabolic trajectory

during flight time, and an impact rule for the puck velocity.

The impact rule assumes that the normal component of the

puck velocity vn—relative to the arm velocity at impact r _hi;

i.e., the product between the radial position of impact r and

the arm angular velocity at impact _hi—is reversed at

impact and multiplied by a coefficient of restitution e:

vþn � r _hi ¼ �eðv�n � r _hiÞ
, vþn ¼ �ev�n þ ð1þ eÞr _hi

ð1Þ

where the - and + superscripts denote the normal velocity

before and after the impact, respectively. Equation 1

properly captures that the post-impact velocity of the puck

(vn
+) is controlled via the arm velocity at impact _hi: The puck

energy (per unit of mass) equals n = 0.5vr
2 + 0.5vn

2 + gr,

where vr is the radial component of the puck velocity and g

the constant of gravity. Thus Eq. 1 also captures how the

puck energy is updated through impacts (via the normal

velocity vn) by tuning the impact velocity _hi: Steady-state

analysis of the model revealed that the tempo of the task

corresponds to one steady-state energy level of the puck, for

a fixed angular position of impacts hi (Ronsse et al. 2006):

n ¼ 3þ tan2 hi

8 tan2 hi

T2g2: ð2Þ

The coefficient of restitution of the arms—i.e., the ratio

between the absolute value of the puck velocity after and

before an impact with one arm at rest ð _hi ¼ 0 in Eq. 1)—

was estimated at e = 0.49.

A Chronos eye tracker (CHRONOS VISION GmbH,

Berlin, Germany), which is based on high-frame rate

CMOS sensors (Clarke et al. 2002), was used to monitor

the correct closing of the eyes when instructed. The 3D

positions of infrared light-emitting diodes (IREDs) at the

top of the arms and at the center of the puck were measured

using an OptoTrak 3020 system (Northern Digital, Ontario,

Canada). The OptoTrak was mounted on the ceiling about

3 m in front of the subject. The positions of the IREDs

were rotated to be expressed in a coordinate system with

two axes parallel to the air-hockey table frame, and the

third one pointing upward, and centered between the

rotation points of the arms. The position of each IRED was

sampled at 200 Hz with a resolution of about 0.1 mm

within the working environment. Each block was executed

over a period of 120 s, and its data recorded in separate

files.

Data analysis

Digital processing of the raw data was performed with

MATLAB (the MathWorks Inc., Natick, MA, USA). The

arms IREDs were filtered at 10 Hz by a zero-phase digital

filter (autoregressive, forward and backward). The puck

trajectories were not filtered because the puck velocity was

discontinuous at impact: these discontinuity points identi-

fied the impact times. Velocities and accelerations of the

puck and the two arms were computed from position sig-

nals by means of a central difference algorithm (i.e., with

no time lag).

The flight time is defined as the time between two suc-

cessive impacts. More precisely, the flight time

corresponding to impact k is Dt = t[k] - t[k - 1], where

t[k] is the time of impact k. Similarly, an arm cycle cor-

responds to the time interval between two successive

impacts on the same arm, that is t[k] - t[k - 2].

This paper does not focus on transient or initialization

phases. Since the subjects did not maintain steady state

cycles during the whole blocks, we kept only the steady-

state cycles in the database, i.e. the cycles corresponding to

Dt [ [0.2T, 2T] and impacting the arms alternatively.

Furthermore, we kept only the impact runs containing at

least four successive impacts, and we removed the two first

and the last one. The images of the eye tracker were used to

verify that the subjects followed the instruction to close

their eyes during the blocks without vision. In the data

reported here and corresponding to the ‘‘without vision’’

condition, we kept only the impacts for which we can

certify that the eyes were actually closed during at least

80% of the corresponding puck flight time. Other impacts

were not analyzed. After this complete selection, the

database contained 28,176 pairs of flights and impacts
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distributed as follows: 6,101 impacts at T = 400 ms with

vision (i.e., 56% of the metronome beats in the corre-

sponding condition), 2,834 impacts at T = 400 ms without

vision (26%), 4,487 impacts at T = 600 ms with vision

(62%), 2,058 impacts at T = 600 ms without vision (29%),

6,695 impacts at T = 800 ms with vision (62%), 1,891

impacts at T = 800 ms without vision (18%), 3,271

impacts at T = 1,000 ms with vision (39%), and 839

impacts at T = 1,000 ms without vision (10%). These

cycles thus represent the steady-state behavior during

successful completion of the task. Given the corresponding

percentages, note that the task was more difficultly per-

formed without vision, or at the slowest tempo.

The steady-state trajectories, depending on the tempo

and the vision condition, were characterized by the fol-

lowing parameters: the angular position of the arm at

impact hi, the radial position of the puck at impact r, the

smallest angle of the arm during the cycle hm and the

largest angle of the arm during the cycle hM (see Fig. 2,

right panel). The arm angular positions were measured with

respect to the bisecting line of the wedge, i.e., the vertical

axis of the movement plane.

To assess whether the arms maintained a pose interval

during the cycle, we computed the activity period of the

impacting arm as the percentage of the movement cycle

during which the arm was actually moving, according to a

combined velocity ð _h[ 5�=sÞ OR acceleration

ð€h[ 20�=s2Þ criterion. For instance, if this ratio equals

90% for a cycle, it means that the arm velocity and

acceleration were simultaneously below 5�/s and 20�/s2,

respectively,—i.e., the arm was at rest—during 10% of the

cycle. We also computed the synchronization between both

arms during one cycle as their averaged relative phase, via

the non-normalized correlation coefficient of both arms

velocity _h1 and _h2 :

cos / ¼
d_h1: _h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dj _h1j2 :dj _h2j2
q ¼

R

Dt
_h1ðtÞ _h2ðtÞdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

Dt
_h

2

1
ðtÞdt:

R

Dt
_h

2

2
ðtÞdt

q :

Synchronized in-phase or anti-phase movements lead to

cos / = -1 and cos / = 1, respectively. Decoupled

movements, i.e., if at least one arm is at rest ð _h ¼ 0Þ at any

time, lead to cos / = 0. All the parameters characterizing

the arms trajectory were calculated for each flight time or

arm cycle individually. The mean and standard deviation

were calculated within each 2-min block, and then aver-

aged across sessions and subjects.

Closed-loop control of the puck trajectory was analyzed

by linear correlations of one perceived candidate variable

(input of the controller) and one controlled variable (output

of the controller). Significant correlations have been found

between the puck energy during flight n[k] (computed at

mid-flight, since the puck flights were almost frictionless)

and the arm velocity at the next impact _hi½k þ 1� (which is

the most straightforward controlled variable). The puck

energy was chosen as a potentially perceived and calcu-

lated state variable, since it depends only on the puck

position and velocity which are two state variables mea-

surable through oculomotor tracking (i.e., low position and

velocity errors). The arm velocity at impact determines the

energy restored to the puck (through the impact rule

Eq. 1). Since the tempo of the task corresponds to one

steady-state energy level of the puck for a fixed angular

impact position (see Eq. 2), focusing on the energy control

is a simple way to aggregate the influence of all the state

variables in one single parameter to quantify how well the

subjects controlled the task tempo. Differences between the

experimental contexts will be discussed through the dif-

ferences of both the correlation slopes (strength of the

closed-loop tuning) and the correlation coefficients (vari-

ability). Both the puck energy n and the arm velocity _hi

were normalized w.r.t. the average values, in order to

compare the correlations across different conditions cor-

responding to different averages. The parameters have been

normalized block per block around the average of the

block, i.e., �n and _hi :

Dn½k�ð%Þ ¼ n½k� � �n
�n

� 100%;

D _hi½k�ð%Þ ¼
_hi½k� � _hi

_hi

� 100%:

ð3Þ

After normalization, we kept each impact as an individual

event (point) to compute the averaged correlation slopes,

across blocks, sessions and subjects. Note that the corre-

lation slope must be negative if the task is stable, such that

the deviations around the steady-state energy are com-

pensated for by corrections of the arm velocity at impact. If

vn
-—hence the pre-impact energy n[k]—is smaller than

steady-state, _hi½k þ 1� must be larger than steady-state in

order to make vn
+—hence the post-impact energy

n[k + 1]—closer to steady-state. The larger the absolute

value of the slope, the more rapid this decay.

Statistics

The analysis of variance of the steady-state parameters was

computed using classical factorial analysis of variance

(ANOVAs). The first within-subject factor was the tempo T

and the second factor was the vision condition (4 9 2

design). All ANOVAs were evaluated as significant for

P-levels of 0.05. Main and interaction effects were further

analyzed using Tukey HSD post hoc tests. Negativity of the

arm acceleration was further examined by single sample

t-tests against zero, for the 4 9 2 conditions.
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Linear regressions were processed using a standard

regression algorithm (least square minimization). Statisti-

cal comparisons were based on analysis of covariance

(ANCOVA) that was applied to the normalized puck

energy Dn[k] at the mid-point of each flight, with the dif-

ferent conditions (tempo, vision) as factors and the

normalized arm velocity at impact D _hi½k þ 1� as co-variate

(homogeneity of slope linear model).

All statistical analysis were completed using Statistica

(StatSoft Inc., OK, USA).

Results

Steady-state trajectories

The subjects succeeded to juggle the puck close to the

tempo T dictated by the metronome, both with eyes open or

closed (see Table 1).

The steady-state juggled pattern was a parabola, with

radial impact position r and angular aperture 2hi. Figure 2

displays these steady-state trajectories, for the four tempi

and the two vision conditions. The impact position of the

arms hi, the smallest angular position of the arms during

cycle hm, and the largest angular position of the arms

during cycle hM are also represented. The numerical values

of these parameters, and the position range (hM - hm), are

given in Table 1, pooled for both arms. Factorial ANOVAs

revealed a strong significant dependence of all these vari-

ables except r on the tempo (all P \ 0.0001). Accordingly,

for Dt, hi, hm and hM, Tukey HSD post hoc tests revealed

that any pair of corresponding to two different tempi were

all significantly different from each other. For r, the eight

values were not significantly different from each other. For

the range (hM - hm), Tukey test results are more tedious to

report and do not seem to follow a clear trend across tempi.

In contrast, only hM and the range (hM - hm) significantly

depended on the vision condition (both P \ 0.0001).

Tukey HSD post hoc tests here revealed that the pairwise

vision conditions that were indeed significantly different

from each other corresponded to T = 800 and 1,000 ms

(bold fonts on Table 1). The interaction between both

factors was never significant. In order to increase (or

decrease) the tempo, the subjects had the choice to reduce

(or augment) either the radial position or the angular

aperture (or the two of them, see Eq. 2). As reported in

Table 1 and Fig. 2, the radial impact position did not sig-

nificantly vary across conditions. In contrast, the

dependence of the angular variables on the tempo suggests

that the subjects adapted the aperture between the arms to

juggle the different tempi: the faster the tempo, the smaller

the aperture (Fig. 2).

Moreover, the dependence of hM and the range (hM -

hm) on the vision condition suggests that the subjects

actuated their arms over a smaller position range with

vision than without, the difference reaching significance for

the two slowest tempi.

Rhythmic or discrete behavior

In normal visual condition, two stereotyped actuation

profiles were adopted by the subjects. The fastest tempi

(e.g., T = 400 ms, see Fig. 3, left) were characterized by

rhythmic and sustained actuation of both arms in syn-

chrony (see velocity profiles), resembling to a sinusoidal

harmonic movement. In contrast, for the slow tempi (e.g.,

T = 1,000 ms, see Fig. 3, right), the arms were actuated

one after the other to impact the puck. In this case, the

actuation was a train of discrete movements.

As illustrated by these typical cycles, the synchroniza-

tion between the arms and the activity period (see

‘‘Materials and methods’’) strongly depended on the task

tempo. The transition from rhythmic and synchronized

movements (fast tempo) to discrete and decoupled move-

ments (slow tempo) is clearly illustrated in Fig. 4 which

Table 1 The table reports the means of the average and standard deviation of the flight time Dt, the angular position at impact hi, the radial

position of the puck at impact r, the smallest angular position of the arm during the cycle hm, the largest angular position of the arm during the

cycle hM, and the arm position range hM - hm

Tempo T (ms) 400 600 800 1,000

Vision With Without With Without With Without With Without

Dt (ms) 415 ± 63 409 ± 60 601 ± 93 602 ± 89 808 ± 132 817 ± 132 1,000 ± 173 992 ± 154

hi (deg) 22.0 ± 4.8 22.3 ± 4.5 32.1 ± 5.0 32.5 ± 5.5 42.6 ± 5.2 42.2 ± 6.5 51.0 ± 5.7 49.9 ± 6.6

r (mm) 620 ± 109 611 ± 145 591 ± 108 577 ± 151 595 ± 122 600 ± 161 594 ± 143 600 ± 162

hm (deg) 17.3 ± 4.4 17.7 ± 3.9 26.0 ± 4.5 26.6 ± 4.7 35.7 ± 5.1 35.0 ± 5.1 41.4 ± 6.6 41.4 ± 5.4

hM (deg) 28.7 ± 5.5 29.5 ± 4.7 40.3 ± 5.7 43.8 ± 5.5 52.0 ± 6.1 55.2 ± 5.7 61.9 ± 6.8 66.2 ± 5.7

hM - hm (deg) 11.4 ± 3.7 11.8 ± 3.1 14.3 ± 4.6 17.2 ± 3.7 16.3 ± 5.4 20.2 ± 4.9 20.5 ± 7.9 24.8 ± 6.0

These variables are given for the four tempi and the two vision conditions. Tukey HSD post hoc tests revealing significant (P \ 0.01) differences

between the two vision conditions are highlighted in bold characters

198 Exp Brain Res (2008) 187:193–205
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reports the synchronization index and the activity period

for the 4 9 2 conditions. Factorial ANOVAs revealed that

both variables depended on the tempo [both F(3,399) [ 38,

P \ 0.0001], and on the vision condition [both

F(1,399) [ 10, P \ 0.05], but not on their interaction. In

sum, Fig. 4 shows that the faster the tempo, the larger the

synchronization index and the longer the activity period of

the arms. At the fastest tempo (T = 400 ms), both arms

were almost always moving (activity period close to 100%)

in synchrony (synchronization index close to 1). As the

tempo decreased, the arms were actuated more and more

intermittently, resulting in a loss in synchrony and a

decreased activity period.

Moreover, it shows the same trend both with and without

vision. It further reveals that the absence of vision favored

the sustained and synchronized actuation mode. The smallest

difference is observed at T = 400 ms since, in this case, the

actuation was rhythmic and synchronized regardless of the

Fig. 3 Typical angular trajectories at fast tempo (T = 400 ms, left)
and slow tempo (T = 1,000 ms, right). Top panels, the right and left
arm angular position (red and blue, respectively) and the angular

position of the puck (dashed black, see the right panel with color

legend) are represented. For clarity, the radial position of the puck is

not represented in this graph. The thicker portions emphasize the

periods when the arms are at rest. The vertical lines denote the impact

times. Bottom panels, the right and left arm velocity (red and blue,

respectively) are represented. The black dots denote the point of

maximum velocity (velocity peak) around impacts

Fig. 4 The left panels depict

the mean of the synchronization

index (cosine of the average

relative phase, see ‘‘Materials

and methods’’—top) and of the

activity period (bottom) of the

arms, as a function of the tempo

T and the vision condition: with

vision (black) and without

vision (gray). Error bars denote

±0.95 Conf. Interval. The right
panels depict the standard

deviations of the same variables
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vision condition. Figure 4 also reports the standard deviation

analysis. Factorial ANOVAs also revealed that the standard

deviation of both variables depended on the tempo [both

F(3,399) [ 7, P \ 0.0001], and on the vision condition

[both F(1,399)[ 28, P \ 0.0001], but not on their interac-

tion. The variability of the bimanual coordination indices

increased as the tempo decreased and—unexpectedly—

decreased without visual information. In sum, the more

discrete the control, the more variable the bimanual actuation

profile. In contrast, rhythmicity implied more consistency

(less variability in arms trajectory).

Arm acceleration at impact

In our results, the arm position and velocity at impact did

not vary significantly across the two vision conditions:

their steady-state values are fixed by the period-one orbit,

i.e., the reference tempo and the coefficient of restitution

(Ronsse et al. 2006).

In contrast, as illustrated on Fig. 5, the arm acceleration at

impact varied across conditions. Factorial ANOVA revealed

a dependence on the vision condition [F(1,399) = 34.3,

P \ 0.0001], and on the tempo [F(3,399) = 3, P \ 0.05],

while the dependence on their interaction was not significant.

Tukey HSD post hoc tests further revealed that the pairwise

differences between the data with and without vision were

significant for any given tempo T (P \ 0.05), but for

T = 400 ms. The standard deviations ranged around

220 deg/s2 and did not reach significant dependence on the

factors or their interaction. With vision at slower tempi, i.e.,

at T = 600, 800 and 1,000 ms, the acceleration at impact

was not significantly different from zero (single sample

t-tests, all P [ 0.59). The five other conditions corresponded

to acceleration significantly different from zero and negative

(all P \ 0.01). In sum, the subjects adopted more negative

acceleration at impact without visual information (signifi-

cant for all but for T = 400 ms).

Average energy of the arm

As suggested by Fig. 3, bottom, the two identified actua-

tion modes (rhythmic or discrete) corresponded to different

velocity profiles. We analyzed whether this difference may

also reflect a difference in the energy of the arms during the

movement execution, assuming that larger energy could

require a larger effort to impact the puck at the proper

velocity. Energy can thus be a way to quantify to control

efficiency. We calculated an indirect estimation of this

quantity via the average absolute velocity of the impacting

arm during one cycle, since the arm kinetic energy is

directly proportional to the square of the velocity (potential

energy has been neglected).

This quantity is displayed on Fig. 6. The influence of the

tempo [F(3,399) = 13.5] and the vision condition [F(1,399)

= 47.4] were significant (factorial ANOVA, all

P \ 0.0001), but not their interaction. As suggested by the

confidence intervals, Tukey HSD post hoc tests revealed

that the pairwise differences between the data with and

without vision were significant for any given tempo T

(P \ 0.05), but for T = 400 ms. Figure 6 reveals that the

absence of vision increased the average velocity at the four

tested tempi. Once again, the smallest difference between

vision conditions is reported at the fastest tempo

(T = 400 ms). Moreover, with vision, the fastest tempo

(T = 400 ms) corresponded to larger average velocity than

the three other tempi (significant for T = 800, 1,000 ms,

Tukey HSD post hoc tests, P \ 0.0001). The standard

deviations ranged around 7�/s and did not reach significant

dependence on the factors or their interaction.

In summary, the conditions corresponding to the

rhythmic mode of control corresponded not only to the

Fig. 5 Mean of the acceleration of the arm at impact, as a function of

the tempo T and the vision condition: with vision (black) and without

vision (gray). Error bars denote ± 0.95 Conf. Interval

Fig. 6 Mean of the averaged absolute velocity of the impacting arm

across a complete arm cycle, as a function of the tempo T and the

vision condition: with vision (black) and without vision (gray). Error
bars denote ± 0.95 Conf. Interval
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largest average velocities but also to the ‘‘more negative’’

acceleration at impact (see Fig. 5), hereby suggesting the

recruitment of a control strategy that exploits the task

robustness (negative acceleration), sacrificing the effi-

ciency (energy).

Control of the puck energy

To assess potential contributions of active control based on

perceived errors, we investigate in the present section how

the impact velocity of the arm compensates for a mismatch

between the puck energy during the preceding flight and its

steady-state, depending on the requested tempo T (Eq. 2).

This correlation between the two variables must be nega-

tive (smaller puck energy requires larger impact velocity,

and vice versa). In sum, the larger the slope in absolute

value, the stronger the control, as mentioned in the

‘‘Materials and methods’’ section.

Figure 7 reveals that the slopes were negative with

highly significant correlation coefficients (P \ 0.0001) at

the four tempi, with or without vision. Moreover, they were

similar across tempi for a given vision condition: they

ranged between -1 and -1.15 in the presence of visual

information, while they were about twice smaller (between

-0.49 and -0.59) in the absence of visual information.

The analysis of covariance revealed that the slope coeffi-

cients significantly depended on the vision condition

[F(1,28160) = 1,230.6], on the tempo [F(3,28160) = 12.1]

(both P \ 0.0001) and on their interaction [F(3,28160)

= 4.7, P \ 0.05]. The large number of degrees of freedom

is due to the fact that each impact was considered as an

independent event for this analysis, such that the picture

captures the global average of the subjects behavior.

However, each point has been normalized with respect to

its own block (see Eq. 3). It is further observed that the

data variance was higher without vision (correlation coef-

ficients around -0.47) than with vision (correlation

coefficients around -0.66). This result is not in contra-

diction with the result reported on Fig. 4: this figure

revealed that the arms trajectory was less variable without

vision, while here we established that the puck energy was

more variable without vision. These results are not

incompatible: less variability in the puck energy could be

achieved by a finer tuning of the arms, leading to more

variability in their trajectory.

Since a larger slope should correspond to a better reg-

ulation of the energy around steady-state, we analyzed the

variability of the energy around its steady-state for the 4

9 2 conditions. Table 2 shows the mean and standard

deviation of the puck energy at mid-flight, as a function of

the tempo and vision condition. A factorial ANOVA

revealed a small dependence of the mean energy on the

tempo [F(3,399) = 6.3, P \ 0.05] but neither on the vision

condition nor on their interaction. More interestingly, the

same factorial ANOVA analysis of the standard deviation

Fig. 7 The relative (D) velocity of the arm at the impact _hi½k þ 1� as

a function of the relative (D) energy of the puck at mid-flight n[k]

(around means), for each tempo and vision conditions. The black
points (top) depict the impacts with vision and the gray points

(bottom) those without vision. The straight lines represent the linear

regressions of these data, the regression slopes and the correlation

coefficients being indicated above each graph (P \ 0.0001 in all

conditions)
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of the energy revealed dependences on the vision condition

[F(1,399) = 168.4, P \ 0.0001], on the tempo [F(3,399)

= 3.8, P \ 0.05] and on the interaction between both fac-

tors [F(3,399) = 4.8, P \ 0.05]. In sum, the variance of the

data was much larger without than with visual information.

The subjects maintained the puck energy more efficiently

around its steady-state value with vision, and this corre-

sponded to larger slopes in the correlations reported in

Fig. 7.

Discussion

The present paper investigates an original rhythmic task,

requiring the stabilization of a juggled puck through an

appropriate bimanual actuation pattern. The impact task is

a 2D bimanual extension of the classical movement of a

ball bouncing on a racket (Schaal et al. 1996; Sternad

1999; Sternad et al. 2001a, b; Katsumata et al. 2003; de-

Rugy et al. 2003; Dijkstra et al. 2004; Wei et al. 2007).

The task was performed at four different tempi, and in two

distinct vision conditions.

The task context constrains the actuation strategy. First,

the withdrawal of visual information deprives the subject

from a major source of sensory inflow, and most likely

deteriorates the quality of the feedback estimation of the

state of the body (arm kinematics) and the environment

(puck trajectory). Second, increasing the tempo reduces the

time available to plan and execute each movement indi-

vidually. We showed that the experimental conditions

influence the control strategy, despite an unchanged task

objective.

Two different primitives of control?

Our analysis revealed that different strategies were adopted

for the execution of the arms movements, depending on the

context of the task, i.e., the requested tempo and the

presence or absence of vision. A rhythmic actuation

mode—similar to a sinusoidal harmonic movement—was

favored not only at the fastest tempi, but also by

suppressing the visual information, whatever the tempo.

The increase in the activity period was correlated with an

increase in the bimanual synchronization index, in agree-

ment with basic intrinsic bimanual coordination rules (see,

e.g., Swinnen 2002; Swinnen and Wenderoth 2004, for

reviews). In contrast, with vision at the slowest tempi, the

actuation was a train of discrete movements (Hogan and

Sternad 2007). It is important to notice that the change in

actuation mode was not due to mechanical limitations of

the setup, since the average maximal angular position of

the arms (hM always \67�) remained far from the table

frame (i.e., ±90�) even at the slowest tempo (see Fig. 2;

Table 1). The dynamical consequences of these different

execution strategies are explored in the rest of this dis-

cussion, in the light of the trade-off between efficiency and

robustness.

The rhythmic actuation mode—adopted both at the

fastest tempi and without vision—highlights an interesting

property of the impact model. Indeed this actuation mode

corresponds to negative acceleration at impact. Negative

acceleration at impact has been demonstrated to be a

necessary condition for the stability of passive strategies in

impact tasks (Schaal et al. 1996; Sternad 1999; Sternad

et al. 2001a, b; deRugy et al. 2003), hence suggesting that

the sustained actuation mode was recruited to reduce the

need for feedback processing. Consistently, this strategy

was adopted when either the sensory inflows were altered

(withdrawal of visual information) or when the time

available for sensory integration, planning and execution of

individual movements was the shortest (fastest tempo), that

is, in contexts exposing the robustness of the actuation.

Interestingly, we have demonstrated that negative impact

acceleration can directly quantify the closed-loop robust-

ness with a simple mechanical model of this task (Ronsse

et al. 2007). Note that we provided convincing results that

only negative impact acceleration permits to juggle the

puck either without (Ronsse et al. 2006) or with limited

feedback (Ronsse et al. 2007) in robotics experiments.

In contrast, when the tempo was slower and the visual

information was available, the acceleration was close to

zero, and the subjects preferred to rest on the discrete mode

of control. Nearly zero arm acceleration at impact means

that the maximum velocity of the arm during the cycle (the

velocity peak) is very close to the velocity at impact. This

can be a signature of a strategy reducing the energy cost of

the movement. Indeed, since the impact velocity is con-

strained by the mechanics of the setup (i.e., the energy to

restore to the puck, see Eq. 1), the cheapest movement to

reach this velocity necessitates to impact at the velocity

peak. If the velocity peak were at impact, the arm would

never move at a larger velocity that the one requested by

the impact rule. The discrete actuation mode thus reduces

the energy of the movement around impacts. Moreover,

long periods of inactivity between the impacts were

Table 2 The table reports the mean and standard deviation (SD) of

the puck energy (per unit of mass) at mid-flight (106 m2/s2),

depending on the tempo and vision condition

Tempo

T (ms)

400 600 800 1,000

With vision 2.03 ± 0.36 1.91 ± 0.31 1.91 ± 0.33 1.92 ± 0.36

Without

vision

2.02 ± 0.48 1.87 ± 0.45 1.94 ± 0.44 1.96 ± 0.42

202 Exp Brain Res (2008) 187:193–205

123



detected in that mode, which further contributes to reduce

the energy cost of the movement. Finally, the average

absolute velocity throughout the whole arm cycle was

smaller than in the other conditions. Consistently, Table 1

also revealed that the position range of the arms,—i.e., the

movement amplitude hM - hm—within cycles was sys-

tematically larger without than with vision, while the

impact position did not significantly change. In summary,

both the average velocity and the position range were lar-

ger when the execution mode was more rhythmic and

synchronized between both arms. An increased energy

expense (reducing the efficiency in energy cost) was the

price to pay for a more negative acceleration at impact

(increasing the robustness).

It has been suggested that human movements are pro-

grammed by proper combinations of units of action—or

primitives—(see, e.g., Hogan and Sternad 2007, for a

recent review), both in the combination of several sub-

movements into a single movement (Novak et al. 2002),

and in the combination of discrete and rhythmic move-

ments (Ijspeert et al. 2003). Supporting this last

assumption, Schaal et al. (2004) demonstrated in an

imaging study that discrete and rhythmic movements are

executed by different cortical and cerebellar structures. The

present study also illustrates that a rhythmic mode or a train

of discrete actuation mode are recruited within a single

task, just depending on the context, i.e., the tempo and the

available feedback; and that, consistently with Schaal et al.

(2004), the rhythmic mode may be controlled by a simpler

computational structure than the discrete mode, since it is

based on a reduced need of feedback (better robustness).

Active control of the puck energy

Our data suggest also a feedback correction of the arm

impact velocity between successive impacts, primarily

correlated to the energy of the puck during the preceding

flight. The error feedback gain was significantly negative

for the eight conditions, and twice larger with than without

vision. For the conditions corresponding to negative

acceleration, this negative acceleration has naturally con-

tributed to make the gain negative, i.e., independently of

the presence of sensory inflows: larger energy during flight

normally corresponds to longer flight time, thus to smaller

impact velocity if the acceleration is negative. However,

we checked by mean of numerical simulations of the task

model that sensorless stabilization of the puck (under

sinusoidal actuation of the arms, thus with negative

acceleration at impact) does generate negative slopes but

with smaller magnitudes than the slopes reported here (data

not shown). In sum, even with negative acceleration, the

correlation between the energy during flights and the arm

velocity at the next impact is—at least partly—a basic

manifestation of closed-loop control in our data, whose

tuning reveals also the trade-off between efficiency and

robustness. Indeed, a primary role of any feedback loop is

to reduce the sensitivity to uncertainties in the plant model:

a higher feedback gain improves the closed-loop perfor-

mance (a twice larger gain in the presence of vision

resulted in less variability of the puck energy around the

steady-state) but deteriorates its robustness, increasing the

proneness to instability in the presence of delays or noise

measurement (i.e., if the sensors are unperfect, see, e.g.,

Franklin et al. 2005; Åström and Murray 2008; Boulet and

Duan 2007). In summary, it is better to rely on feedback

active control when the sensory inflows are accurate, while

it is better to rely on passive control (i.e., control signals

not depending on the sensory inflows) when they are noisy.

In general, the variability around the correlation slopes

remained important, since the puck energy is potentially

difficult to be accurately estimated, while other closed-loop

mechanisms may have been implemented by the subjects

and not captured by this simple model.

With vision (and at comfortable tempo), the subjects

could use it to estimate the puck energy (e.g., at mid-flight).

Huys and Beek (2002) reported interesting results on the

gaze dynamics in the three-balls cascade juggling (one of

the most classical juggling pattern): the point-of gaze was

confined close to the zenith of the balls trajectory, while the

gaze and balls dynamics were frequency-locked, suggest-

ing both small position and velocity errors around zenith.

Consistently, the puck energy (depending on both the

position and the velocity) could be potentially estimated (at

mid-flight) in this kind of juggling task. Consequently, less

noisy estimation of the puck energy would result in higher

feedback gain. In our data, the gain of the feedback was not

affected by the tempo in a given visual condition, while the

fastest tempo required to process the sensory feedback and

update the corresponding movement in a very short time.

This could be another consequence of having adopted the

rhythmic mode of control (with negative acceleration) as

the tempo increased, since negative acceleration naturally

contributes to make the gain negative without sensory

processing (see above). This pleads once again in favor of

adopting the robust strategy with negative acceleration as

the tempo increases.

The rhythmic actuation mode exploits valuable

dynamical properties of impact tasks, in order to make the

control robust. This actuation mode is likely implemented

from a baseline oscillation whose amplitude and/or phase is

controlled on the basis of the sensory inflows. A similar

actuation mode is described in the analysis of locomotion,

i.e., a rhythmic movement in which the visual inflow is not

permanently processed and where passive dynamical

properties are of prime interest (see, e.g., McGeer 1990;
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Goswami et al. 1998; Collins et al. 2001, 2005). Interest-

ingly, a control structure based on closed-loop control of

amplitude and phase has been proposed by Buschges

(2005) for the control of locomotory central pattern gen-

erators. Moreover, Kuo (2002) discussed the fundamental

properties of the trade-off between efficiency and robust-

ness for a combined feedback–feedforward model of a

central pattern generator for locomotion. Kuo’s main

conclusion was that a purely feedforward central pattern

generator is highly sensitive to unexpected disturbances. In

contrast, a pure feedback control analogous to reflex

pathways can compensate for disturbances, but is poorly

robust to imperfect sensors. He illustrated through an ele-

gant model that the best trade-off results in a proper

combination of feedback and feedforward.

In contrast, the discrete mode is easily viewed as a train

of individual movements, executed under optimality prin-

ciples minimizing the energy cost and controlled to reach

the desired velocity at the expected impact time (Land and

McLeod 2000; Ronsse et al. 2007). The execution of these

movements could be modeled and quantified by the theory

of optimal control (Bryson and Ho 1969) which has been

successful in modeling typical discrete movements like

reaching, pointing or aiming (Todorov and Jordan 2002;

Scott 2004; Todorov 2004, 2006; Bays and Wolpert 2007;

Liu and Todorov 2007).

The MOSAIC model proposed by Wolpert and col-

leagues (Wolpert and Kawato 1998; Jordan and Wolpert

1999; Wolpert and Ghahramani 2000; Haruno et al. 2001)

is a general framework to model the ability to generate

accurate and appropriate motor behavior under many dif-

ferent and often uncertain environmental and contextual

conditions. This architecture has been proposed for motor

control, on the basis of multiple pairs of forward (predictor)

and inverse (controller) models stored in the brain. A

similar architecture could be elaborated for our task, in

which the pairs of internal models (for control) are dif-

ferent for the two primitives of fundamental behavior

(rhythmic-discrete), and may help to program accurate

movements despite delays in the loop (Desmurget and

Grafton 2000).

This paper main objective was to illustrate the impor-

tance of an essential concept of control theory,—i.e., the

robustness of the actuation strategy—in the execution of a

motor control task. Through an informative example, we

illustrated that the control behavior may balance differ-

ently the robustness and the efficiency with respect to

dynamical criteria, while the task objective remained

unchanged.
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