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Abstract

This paper introduces four new algorithms that can be used
for tackling multi-agent reinforcement learning (MARL)
problems occurring in cooperative settings. All algorithms
are based on the Deep Quality-Value (DQV) family of al-
gorithms, a set of techniques that have proven to be suc-
cessful when dealing with single-agent reinforcement learn-
ing problems (SARL). The key idea of DQV algorithms is
to jointly learn an approximation of the state-value func-
tion V , alongside an approximation of the state-action value
function Q. We follow this principle and generalise these al-
gorithms by introducing two fully decentralised MARL al-
gorithms (IQV and IQV-Max) and two algorithms that are
based on the centralised training with decentralised execu-
tion training paradigm (QVMix and QVMix-Max). We com-
pare our algorithms with state-of-the-art MARL techniques
on the popular StarCraft Multi-Agent Challenge (SMAC) en-
vironment. We show competitive results when QVMix and
QVMix-Max are compared to well-known MARL techniques
such as QMIX and MAVEN and show that QVMix can even
outperform them on some of the tested environments, being
the algorithm which performs best overall. We hypothesise
that this is due to the fact that QVMix suffers less from the
overestimation bias of the Q function.

Introduction
Reinforcement Learning (RL) is a machine learning
paradigm where an agent needs to learn how to interact with
an environment (Sutton and Barto 2018). While interacting,
the agent performs certain actions, which are all then as-
sociated with a certain reward. This reward signal r gives
the agent some feedback about the quality of the actions it
has performed over time, and the central goal of training
an RL agent consists of learning a policy π, which allows
the agent to perform actions which will maximise its ex-
pected cumulative reward. Over the years, several progress
has been made by combining traditional RL techniques with
deep neural networks (LeCun, Bengio, and Hinton 2015;
Schmidhuber 2015). The successful marriage between RL
and deep learning, which comes with the name of deep rein-
forcement learning (DRL) (François-Lavet et al. 2018), has
led to many algorithms that have managed to outperform
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each other over the years (Mnih et al. 2015; Hasselt, Guez,
and Silver 2016; Hessel et al. 2017; Sabatelli et al. 2018).
With the rise of always more successful and powerful algo-
rithms, part of the DRL community has started to shift its
attention from single-agent RL (SARL) problems to multi-
agent RL (MARL), an RL scenario which is characterised
by the presence of multiple agents that interact together. In
the special case of cooperative MARL, agents cooperate in
order to achieve a common goal. Cooperation in multi-agent
systems is of large practical interest since many real-world
problems can be formulated in a cooperative MARL set-
ting. Some examples of these are found in robotics (Aşık
and Akın 2012), sports (Zhao et al. 2019), and, as we will be
approaching in this paper, games.

Sometimes, when compared to more traditional SARL,
cooperative MARL can be characterised by the additional
challenge of the environment being partially observable.
Formally, this corresponds to agents interacting in a decen-
tralised partially observable Markov decision process (Dec-
POMDP) (Oliehoek, Amato et al. 2016), which results in
agents that only perceive a subset of the state space and that
select their actions independently (more details are given in
the background section). It is well known that partial observ-
ability can be particularly challenging and prevents a cen-
tralised controller to be used to solve these kinds of MARL
problems. As a result, the MARL community first consid-
ered SARL approaches to independently control each agent
with a fully decentralised (FD) controller. Later it exploited
a method called centralised training with decentralised exe-
cution (CTDE), which allows exploiting additional informa-
tion of the environment.

This paper focuses on these approaches by consider-
ing the popular StarCraft Multi-Agent Challenge (SMAC)
(Samvelyan et al. 2019) as a testbed. We do this by first
adapting and then improving the DRL algorithms of the
Deep Quality-Value (DQV) family of techniques (Sabatelli
et al. 2020). These algorithms are characterised by jointly
learning an approximation of the state-value function and
the state-action value function. They have proven to signif-
icantly outperform popular algorithms such as DQN (Mnih
et al. 2015) and DDQN (Hasselt, Guez, and Silver 2016) in
SARL. Specifically, this paper has three main contributions:

1. We generalise the DQV family of algorithms to coopera-
tive MARL problems and test their performance in an FD



training setting.

2. Based on their overall performance, we identify their fun-
damental limitations and introduce two novel MARL al-
gorithms, called QVMix and QVMix-Max. Both algo-
rithms combine the original benefits of the DQV algo-
rithms with CTDE, resulting in a better performance than
state-of-the-art techniques.

3. We link the performance of the best-performing algo-
rithm, QVMix, to the overestimation bias of the Q func-
tion that characterises model-free RL algorithms. Our ex-
periments suggest that QVMix suffers less from this phe-
nomenon than other algorithms.

The rest of this paper is structured as follows: we first
provide further details about the cooperative MARL set-up
considered in this paper and briefly present some of the al-
gorithms that have been introduced over the years. We then
present our novel algorithm. Then, we define the experimen-
tal setup and describe our results. The paper ends with a crit-
ical discussion and highlights possible directions for future
work.

Background
This section presents some preliminary knowledge that will
be used throughout this paper. We start by formally intro-
ducing Dec-POMDPs, since all the experiments that will be
reported fall into this specific MARL setting. We then in-
troduce some of the methods that have been introduced over
the years for dealing with cooperative MARL and which will
serve us as a baseline when investigating the performance of
the novel algorithms presented in this paper.

Dec-POMDPs
In MARL, we can consider Markov Games (Littman 1994),
a framework that is characterised by the fact that each agent
has its own reward function. However, when agents coop-
erate to achieve a common goal and share the reward func-
tion, another possible framework is Dec-POMDP (Oliehoek,
Amato et al. 2016). In this paper we formally define a Dec-
POMDP by a tuple [n,S, O,Z,U , R, P, γ], where n agents
cooperate by choosing an action at every timestep t. An
agent is denoted by a ∈ {1, ..., n}. The agent action space
is defined by Ua such that U = U1 × .. × Un is the com-
bined set of n action spaces, one per agent. The state of the
environment at timestep t is st ∈ S while oat ∈ Z is the
observation of this state perceived by the agent a coming
from the observation function O : S × {1, ..., n} → Z . At
each timestep t, each agent simultaneously executes an ac-
tion uat ∈ Ua such that the state st transits to a new state
st+1 with a probability defined by the transition function
P (st+1|st,ut) : S2×U → R+ where ut =

⋃
a∈{1,..,n} u

a
t .

After all agents’ actions are performed, a common team re-
ward rt = R(st+1, st,ut) : S2 × U → R is assigned to
the agents. Agent a chooses its action based on its current
observation oat ∈ Z and its history hat ∈ (Z × Ua)t−1. Its
policy is the function πa(uat |hat , oat ) : (Z × Ua)t → R+

that maps, from its history and the current observation at
timestep t, the probability of taking action uat at timestep t.

During an episode, the cumulative discounted reward that is
obtained from timestep t over the next T timesteps is defined
by Rt =

∑T−1
i=0 γirt+i, where γ ∈ [0, 1) is the discount

factor. In this paper, the goal of each agent is to maximise
its expected R0 over a number of timesteps T defined by
the episode time limit. R0 depends on the team’s policy de-
fined from the individual agents policies: π = π1, ..., πn.
The optimal team’s policy π∗ maximises the expected cu-
mulative discounted reward: π∗ = argmaxπ R0. To eval-
uate the team’s policy, we consider the state-value func-
tion V π(s) = E[Rt|st = s, π] also called the V function.
Because rewards are shared among agents, the V function
has the same value for all agents: V π(s) = V π

1

(s) =
V π

n

(s). We also define the state-joint-actions value func-
tion Qπ(s,u) = E[Rt|st = s,ut = u, π], also called
Q function, which characterises the expected return of the
team when playing action u at timestep t and following pol-
icy π afterwards. The corresponding individual state-action
value function of an agent policy is defined by Qπ

a

(s, u) =
E[Rt|st = s, uat = u, π] = Qπ(s,u), and denoted later as
Qa for the sake of conciseness.

Value-Based Methods
While several techniques have been introduced over the
years, ranging from value-based RL algorithms (Son et al.
2019; Yang et al. 2020; Wang et al. 2020), to policy gradient
methods (Foerster et al. 2018; Du et al. 2019), in this paper
we mostly restrict our analysis to the first family of meth-
ods, while keeping a more thorough potential comparison to
policy gradient methods as future work.

In value-based RL, the main goal consists of learning
value functions that indicate how good or bad it is for an
agent to select a certain action in a particular state. Formally,
this corresponds to learning the optimal Q function which,
in a single-agent setting, realises the optimal expected re-
turn Qπ

∗
(s, u) = max

π
Qπ(s, u) for all s ∈ S and u ∈ U .

Once the optimal Q function has been learned, it becomes a
straightforward task to derive an optimal policy by greedy-
selection u∗ = argmaxuQ(st, u). It is well-known that
when the complexity of the environment increases, it is not
possible to learn Qπ

∗
(s, u) with tabular RL techniques such

as Q-Learning (Watkins and Dayan 1992). To overcome this
problem, a function approximator, such as a convolutional
neural network parametrised by θ, can be used for modeling
Q(s, u; θ) ≈ Qπ

∗
(s, u). As first introduced by Mnih et al.

(2015) DQN’s algorithm, the network can be trained with an
objective function that resembles Q-Learning coming in the
following form:

L(θ) = E〈.〉∼B

[(
rt + γmax

u∈U
Q(st+1, u; θ

′)

−Q(st, ut; θ)
)2] (1)

where B is the experience replay memory buffer used for
storing and uniformly sampling RL trajectories 〈.〉 in the
form of 〈st, at, rt, st+1〉, and θ′ are the parameters of the
target-network. While Mnih et al. (2015) consider θ to be



the parameters of a convolutional neural network, when
partially observable environments are considered θ usually
parametrises a recurrent neural network (RNN) such as
an LSTM (Hochreiter and Schmidhuber 1997) or a GRU
(Chung et al. 2014) as in (Hausknecht and Stone 2015).
Since the agent does not perceive the state st, the input of
such network is the observation ot. Although Q-Learning
(Watkins and Dayan 1992) has inspired the Mnih et al.
(2015) DQN algorithm, in what follows we consider its
MARL extension instead: Independent Q-Learning (IQL)
Tan (1993).

IQL
IQL consists of a fully decentralised algorithm where each
agent learns its respective Q function independently. This
is done in a SARL-like fashion with all agents ignoring
any type of information other than the one that is provided
through their own observations. Since agents deal with par-
tial observability, it is a common practice to approximate
each individual Q function with RNNs.

The problem with IQL is that agents must select ac-
tions that maximise Q(st,ut) and not their own Q func-
tion. As they cannot know which actions are taken by oth-
ers, it is usually not possible to approximate this function
in a decentralised way. However, it is possible to approxi-
mate Q(st,ut) as a function of individual Q functions such
that the taken actions maximise both the joint and the in-
dividual Q functions. If individual Q functions satisfy the
Individual-Global-Max condition (IGM) (Son et al. 2019):
argmaxut

Q(st,ut) =
⋃
a argmaxua

t
Qa(st, u

a
t ), it is pos-

sible to factorise Q(st,ut) with these individual Q func-
tions. This is the core idea defining centralised training in
value based methods.

QMIX
QMIX (Rashid et al. 2018) is a CTDE method where
the factorisation of the state-joint-actions value func-
tion, denoted as Qmix(st,ut), is performed as a mono-
tonic function of the individual Q functions Qmix =
Mixer (Qa1(st, u

a1
t ), .., Qan(st, u

an
t ), st) where Mixer is

a function that ensures IGM through the monotonic
∂Qmix(st,ut)
∂Qa(st,ua

t )
≥ 0 ∀a ∈ {a1, .., an}. This is satisfied by

using a hypernetwork (Ha, Dai, and Le 2016) defined by
a parameter network hp(.) : S → R|φ|+ which takes
the state st as input and predicts the strictly positive pa-
rameters1 φ of the main network ho(.) : Rn × φ →
R, called the mixer network, therefore, Qmix(st,ut) =
ho (Qa1(), .., Qan(), hp(st)). The monotonicity of Qmix
w.r.t the individual Q functions is satisfied because a neu-
ral network made of monotonic functions and strictly pos-
itive weights is monotonic w.r.t to its inputs. In addition,
the outputs of the Q-Mixer depend on the state thanks to
the hypernetwork. The optimisation procedure follows the
same principles used by the DQN algorithm but applied to
Qmix(st,ut).

1To be exact, the offset defined by hp() is not constrained to be
positive.

MAVEN
Mahajan et al. (2019) demonstrated that in certain circum-
stances, the exploration capabilities of QMIX are limited. To
tackle this problem, they added a latent space to influence
the behaviour of the agents. It does so by being the input of
a parameter network that computes parameters of the fully
connected layer linking recurrent cells to the output in the in-
dividual Q network. This latent variable z is generated once
an episode begins by a hierarchical policy network, taking as
input the initial state of the environment together with a ran-
dom variable which is typically discrete and sampled from a
uniform distribution. The objective that is used for training
MAVEN’s networks is composed of three parts. First, once
the latent variable network is fixed the two hypernetworks
(the mixer and the latent space parameter network) and the
recurrent networks are trained using the same loss that is
also used by QMIX. Second, when these three networks are
fixed, the latent variable network can be trained using any
policy optimisation such as the policy gradient method (Sut-
ton et al. 1999), computed with the total sum of rewards per
episode. Finally, the influence of the latent variable on the
agents behaviour is enforced via a mutual information loss
between the latent variable and consecutive transitions. For
more details on how MAVEN works we refer the reader to
(Mahajan et al. 2019).

Generalising the DQV family of algorithms to
MARL

Our contributions build on top of the work revolving around
the Deep Quality-Value (DQV) family of DRL algorithms
(Sabatelli et al. 2018, 2020). The core idea of these SARL
techniques is to learn an approximation of the state-value
function V π(s) = E[

∑∞
k=0 γ

krt+k|st = s, π] alongside an
approximation of the state-action value functionQπ(s, u) =
E[
∑∞
k=0 γ

krt+k|st = s, ut = u, π]. The DQV algorithms
generalise the tabular RL algorithms presented in (Wier-
ing 2005) and (Wiering and Van Hasselt 2009) and use
deep neural networks serving as value function approxima-
tors. Learning a joint approximation of the V function and
the Q function can be done in two different ways, both of
them requiring two different neural networks for learning
Q(s, u; θ) ≈ Qπ∗

(s, u) and V (s;φ) ≈ V π∗
(s).

• DQV-Learning learns an approximation of the state-
value function by minimising the following objective

L(φ) = E〈.〉∼B

[(
rt + γV (st+1;φ

′)

−V (st;φ)
)2]

,

(2)

while the following loss is minimised for learning the Q
function:

L(θ) = E〈.〉∼B

[(
rt + γV (st+1;φ

′)

−Q(st, ut; θ)
)2]

.

(3)



(a) 3s5z (b) so many baneling

Figure 1: Two pictures of different SMAC scenarios:3s5z
at the top and so many baneling at the bottom.

• DQV-Max Learning uses the same equation presented in
Eq. (3) for learning the Q function and the following loss
for learning the V function:

L(φ) = E〈.〉∼B

[(
rt + γ max

u∈U
Q(st+1, u; θ

′)

−V (st;φ)
)2]

.

(4)

We test the update rules of DQV and DQV-Max in a FD
training setting and in a CTDE setting. In the first case DQV
and DQV-Max follow the same principles as the ones of In-
dependent Q-Learning and we therefore refer to these algo-
rithms as IQV and IQV-Max. In the second case, both al-
gorithms are used in combination with hypernetworks in a
QMIX like fashion. We refer to these algorithms as QVMix
and QVMix-Max.

Experimental setup
We test a total of seven algorithms: the four DQV exten-
sions introduced in the previous section are compared to
the three algorithms introduced in the background section:
IQL, QMIX and MAVEN. As a test-bed, we use the popular
SMAC (Samvelyan et al. 2019) environment and evaluate
the methods on eight different scenarios (also called maps):
3m, 8m, so many baneling, 2m vs 1z, MMM, 2s3z,
3s5z and 3s vs 3z. We refer the reader to Samvelyan
et al. (2019) for a more in-depth explanation of the differ-
ences between map configurations. It is worth noting that the
maps chosen for our experiments differ in terms of complex-
ity. Two examples of different scenarios are visually repre-
sented in Fig. 1. No matter which map is used, the SMAC
environment provides the different agents with the following
information: agents can observe their health, type, last action
performed and a list of possible directions they can move to.
If other agents are within their sight range, they can also ob-
serve which unit type these agents are part of, how distant
they are, and their health. More importantly, if other agents
are an agent’s ally, their last performed action is visible, if
not, the only information provided corresponds to whether
such an agent is within an attack range. All this information
is encoded as a Boolean or a value ∈ [0, 1]. Among the dif-
ferent possible actions, agents can decide whether to move in
one of the four cardinal directions, not to perform any action
at all, or attack an opponent if the latter one is within their
attack range. Each attack has the effect of removing a certain
amount of health from the opponent. At each time step, the
agent receives a zero or positive reward, shared among the

team’s agents. The goal is to maximise the reward, achieved
by reducing each opponent team unit’s health to zero, which
is then called a win.

Each algorithm is trained on every map ten times, where
each neural network is trained from scratch. We train the
network for either 5m or 10m timesteps depending on the
considered map and the time that is required to achieve con-
vergence. Every 20000 timesteps, the parameters of the net-
works are saved and we perform 24 testing episodes.

To keep the comparison among the different tested algo-
rithms as fair as possible, we ensure that each algorithm uses
the same type of hyper-parameters ranging. Specifically, we
referred to the authors of QMIX, MAVEN and IQL to de-
termine the set of hyper-parameters and have simply kept
the same values for QVMix, QVMix-Max, IQV and IQV-
Max. For a more thorough presentation of all used hyper-
parameters we refer the reader to the open-sourced code2.
As is common practice within the literature, to improve the
learning speed of the algorithms, the parameters of the indi-
vidual networks are shared among agents.

Results
We report the results of our experiments in two different
ways. We start by first analysing the win-rate of each tested
method and then also investigate the quality of the value
functions that are learned by all algorithms.

Overall performance
In Table 1, we present for each map and algorithm the re-
spective win-rate by reporting the means that are measured
at the end of training. If the algorithms perform equally
in terms of overall performance, meaning that the average
win-rate is the same, we consider the one which signifi-
cantly converges the fastest to be the best performing algo-
rithm. Please note that reporting the win-rate of an episode
is a good indicator of the quality of an agent’s learned pol-
icy, since as introduced in the previous section, a win di-
rectly corresponds to the best achievable sum of rewards
an agent can receive. We start by observing the differences
in terms of performance between the FD methods (IQL,
IQV and IQV-Max) and their respective CTDE extensions
(QMIX, QVMix and QVMix-Max) and MAVEN. As one
might expect, we can see from the results reported in Fig. 2
that FD methods converge more slowly when compared to
their CTDE counterparts on the considered 2 vs 1z map.
This is particularly interesting since it already shows that
the DQV family of algorithms can be successfully adapted
when it comes to MARL, both in an FD training set-up and
in a CTDE one. However, these results are challenged once
the number of agents in the maps increases: examples of
such maps are so many baneling, MMM or 3s5z. As is
clearly reported both in Table 1 and in the plots represented
in Fig. 3 the performance of FD methods starts to drop, high-
lighting that CTDE methods are required once the complex-
ity of the training scenario increases.

Therefore, we direct our attention to CTDE methods
only and we can then start to see that both QVMix and

2https://github.com/PaLeroy/QVMix

https://github.com/PaLeroy/QVMix


Training steps Map QMIX MAVEN QVMix QVMix-Max IQL IQV IQV-Max

5m

3m 100 98.7 100 100 93.3 93.3 96.6
8m 96.6 98.3 100 96.6 83.3 93.3 90

so many baneling 100 97 100 100 50 40 40
2m vs 1z 100 100 100 96.6 100 100 100

10m

MMM 100 97.0 93.3 96.6 61.6 83.3 50
2s3z 96.6 97.5 96.6 100 59.9 56.6 40
3s5z 40 40.8 86.6 43.3 16.6 13.3 0

3s vs 3z 100 97.9 100 100 83.3 76.6 63.3

Table 1: Means of win-rates achieved at the end of training by QMIX, MAVEN, QVMix, QVMix-Max, IQL, IQV, and IQVMax
in eight scenarios. In the first four scenarios, 3m, 8m, so many baneling and 2m vs 1z, it is measured after 5 millions
training timesteps. In the last four, MMM, 2s3z, 3s5z and 3s vs 3z it is measured after 10 millions training timesteps. In the
green and yellow cells, we report the best and second-best means respectively. When results are equivalent, the cells report the
fastest and second-fastest method that reaches a win-rate of 100% as it can be seen in Figure 3.
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Figure 2: Mean of win-rates achieved in the 2m vs 1z sce-
nario by QVMix, QVMix-Max, QMIX, MAVEN, IQV, IQV-
Max and IQL. The error band is proportional to the variance
of the measure. We can observe that all methods, although
CTDE methods result in faster training than FD methods.
We can also see that all four of the novel algorithms based
on the DQV family of algorithms can be successfully used
in cooperative MARL.

QVMix-Max in most of the eight maps perform as well
as QMIX and MAVEN. We again report the evolution of
the win-rate of each algorithm on every tested map in Fig.
3. When we consider the MMM, 3m, 2m vs 1z and the
so many baneling maps we can observe that there is no
significant difference between the performance that is ob-
tained by our algorithms and that of QMIX and MAVEN.
All methods converge towards the best possible winning-
rate and in terms of convergence speed perform closely.

However, when considering the 2s3z, 3s5z and 8m
maps we can now observe that the performance of QVMix
results in even faster learning. Of even greater interest, when
looking at the results obtained on the 3s5z map, QVMix is
the only algorithm which approaches the best possible win-
rate. It is also worth noting that the performance of QVMix-
Max is always competitive with the one obtained by QVMix,
QMIX and MAVEN. These results do not come as a surprise
since similar performance has been observed when DQV-
Max was tested in an SARL set-up (Sabatelli et al. 2020).

Overestimation bias
To understand the reasons behind why QVMix is the
best performing algorithm overall, we analyse how well
each method estimates the state-joint-action value function
Q(st, ut). Since, in most maps, FD methods do not perform
as well as CTDE methods, we restrict our analysis to CTDE
algorithms only where their respective mixer networks give
the estimated Q(st,ut). Since the state space of the maps
provided by the SMAC environment is not finite, it is unfor-
tunately not possible to compute the real Q(st,ut) of each
state. To overcome this problem, we instead compute the dis-
counted sum of rewards obtained with the current policy in
each visited state during an episode and compare the results
with the value function inferred from theQ values estimated
by the mixer network for these states. The closer the esti-
mates are to the real Q(st, argmaxu(Q(st,u))), the more
accurate the learned value function is.

For this experiment, we selected two different maps: the
2m vs 1z map, which corresponds to the map on which the
best results have been achieved by all methods at the same
time, and the 3s5zmap, which on the other hand, is the map
on which QVMix performed less well. We report in Fig. 4
the averaged estimated Q values, represented by the solid
lines, and the actual discounted sum of rewards, represented
by the dash-dotted lines. All are computed for each visited
state at testing time. In both scenarios, we can observe that
the Q values that are estimated by QMIX and MAVEN suf-
fer from the overestimation bias of theQ function, while this
is not the case for QVMix and QVMix-Max. We, therefore,
justify the better quality of QVMix and QVMix-Max poli-
cies by a better approximation of the Q functions, although
further work will be required to understand this phenomenon
more in detail.

Discussion and Conclusion
We introduced four new value-based methods that can be
used to train a team of agents in a cooperative MARL frame-
work. Two of our methods are designed for a fully de-
centralised execution training scheme (IQV and IQVMax)
while two are dedicated to centralised-training with decen-
tralised execution (QVMix and QVMix-Max). We com-
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Figure 3: Means of win-rates achieved by QVMix, QVMix-Max, QMIX, MAVEN, IQV, IQVMax and IQL in eight scenarios.
Top to bottom, left to right, the scenarios are 3m, 8m, so many baneling, 2m vs 1z, MMM, 2s3z, 3s5z and 3s vs 3z.
The error band is proportional to the variance of win-rates.
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pared our algorithms with three methods taken from the
literature and used the StarCraft Multi-Agent Challenge as
benchmark. We have shown that QVMix and QVMix-Max
achieve the same results as popular state-of-the-art tech-
niques (QMIX and MAVEN) and that on some of the maps,
QVMix can result in faster and better learning. We suggest
that this better performance can be related to the fact that
QVMix seems to suffer less from the overestimation bias
of the Q function. As future work, it would be interesting
to analyze each agent’s behaviour and study the impact of
the value function in the optimisation procedure. Further-
more we also aim at finding the best possible set of hyper-
parameters of each algorithm so that their performance can
be exploited even further and more fairly.
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