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ABSTRACT

A unique type of oscillation modes has recently been identified in γ Doradus variables. These low-frequency modes are called Rossby
modes (or r modes) because they consist of Rossby waves in each spherical layer. These waves are characterised by toroidal motions
that are restored by the latitudinal variation in the Coriolis force. The horizontal oscillations are weakly coupled in the radial direction.
We show that these modes can be used to probe the interior of the stars. The method of the ν −

√
∆ν diagram, which has originally

been developed to analyse another type of modes, Kelvin g-modes (or prograde sectoral g-modes), is extended to take Rossby modes
into account. We first show based on a theoretical model and then on two stars, KIC 3240967 and KIC 12066947, that the method can
be adapted to Rossby modes straightforwardly. In addition, we demonstrate that simultaneous analysis of Kelvin and Rossby modes
results in (1) smaller uncertainties in the internal rotation rate and the characteristic period of gravity modes, and (2) a substantial
reduction of the correlation between the estimates of the two parameters.
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1. Introduction

Recent space missions for exoplanet study, such as CoRoT1

(Baglin et al. 2006), Kepler (Borucki et al. 2010), and TESS2

(Ricker et al. 2014), have brought (and still bring) dramatic
changes in asteroseismology, the study of the interior of stars
based on their oscillation. The change can be considered to be
twofold from an observational point of view. On the one hand,
high-precision photometric data have unambiguously revealed
oscillations with tiny amplitudes. Typical examples include
solar-like oscillations in a large number of main-sequence and
evolved stars (e.g. Chaplin & Miglio 2013). On the other hand,
long-term continuous observations have clearly resolved com-
plicated spectra of oscillation frequencies. One of the most
successful cases is found in γ Doradus (γ Dor) stars (e.g.
Van Reeth et al. 2015). This is a class of intermediate-mass
main-sequence oscillators. They benefit from continuous obser-
vations from space because they have many oscillation periods
of the order of one day, which show serious aliasing problems
when they are observed from ground.

1 CoRoT is an abbreviation of Convection, Rotation and planetary
Transits.
2 TESS stands for the Transiting Exoplanet Survey Satellite.

The observations from space have also strongly affected the-
oretical studies. Before the space age, when the data quality
was poor, studies of stellar oscillations were often motivated
by theoretical interest. Some oscillation modes of special phys-
ical characters have been discussed without regard to whether
they are detected in real stars. Two examples can be listed here:
mixed modes in evolved stars (Osaki 1975), and Rossby modes
(or r-modes) in rotating stars (Papaloizou & Pringle 1978).
The space missions did indeed detect both of these modes
(Bedding et al. 2010; Beck et al. 2011; Van Reeth et al. 2016;
Saio et al. 2018), which stimulates fresh theoretical interests to
establish asteroseismology. Mixed modes have a dual character
of acoustic and gravity modes because they consist of internal
gravity waves in the dense central core and acoustic waves in
the extended envelope. They play a major role in red giant seis-
mology (e.g. Bedding et al. 2011; Mosser et al. 2011; Beck et al.
2012). Rossby modes can be regarded as global counterparts
of Rossby waves, which are known from meteorology (Rossby
1939; Gill 1982). The phase of these waves propagates in the
opposite direction to the rotation in the co-rotating frame, show-
ing toroidal motions in each spherical layer of stars. The hori-
zontal propagation can be understood based on the conservation
of the potential vorticity. The latitudinal variation in the Cori-
olis force serves as the restoring force. These modes are the
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second most common modes in γ Dor stars after Kelvin g-modes
(or prograde sectoral g-modes), which are global manifestations
of equatorial Kelvin waves (Thomson 1880; Gill 1982). The
two types of modes can explain most of the detected modes
(e.g. Li et al. 2020). The dominance of these modes, particu-
larly in rapid rotators, can probably be understood by the smaller
geometrical cancellation of photometric signals over the visible
hemisphere than the other types of modes, but the weaker radia-
tive damping caused by the longer horizontal wavelengths could
also contribute. It has been claimed that Rossby modes are also
found in other types of stars (Saio 2018).

The oscillation periods of γ Dor stars are much longer than
the dynamical timescale at the surface of about an hour, while
their rotation has periods of the same order as the oscillation.
Because oscillations like this are thought to be strongly affected
by rotation, they provide us with an ideal opportunity to study the
internal rotation and structure of these stars. Takata et al. (2020)
(hereafter, Paper I) developed a method for extracting the fol-
lowing two parameters from the frequencies of Kelvin g-modes:
the (average) rotation frequency νrot and the characteristic period
P0 of gravity-mode oscillations. We note that P0 can be regarded
as a measure of the evolutionary stage because it monotonically
decreases with stellar evolution. The main purpose of the paper
is to revise the method so that Rossby modes are included.

Helioseismology has shown that it is important to consider
multiple types of modes to infer the stellar structure accurately
(e.g. Gough 1985) because different types of modes represent
different aspects of the structure. It is essential to use acous-
tic modes in a wide range of spherical degrees that have dif-
ferent inner turning points to constrain the profile of the sound
speed from the near-surface layers to the deep interior of the
Sun. The detection of only a few gravity modes in addition to
a large number of acoustic modes is expected to significantly
improve the inversion results of the rotation and the sound speed
near the centre. Similarly, the rotation rates of the core and enve-
lope of evolved stars have been estimated from mixed modes
with various degrees of mixture of acoustic and gravity modes
(e.g. Deheuvels et al. 2012, 2014). In the case of (slowly rotat-
ing) main-sequence hybrid pulsators of δ Sct and γ Dor type,
the rotation rates have been determined independently in the
envelope and the core from acoustic and gravity modes, respec-
tively (Kurtz et al. 2014; Saio et al. 2015; Schmid et al. 2015).
The inferred contrasts in the rotation rates between the core and
the envelope give valuable information about the problem of
angular momentum transport inside stars. We discuss whether
a similar improvement can be observed in the seismic infer-
ences of γ Dor stars by combining Rossby modes with Kelvin
g-modes.

The structure of the paper is as follows: we extend in Sect. 2
the method of the ν −

√
∆ν diagram to take not only Kelvin

g-modes into account, but Rossby modes as well. The extended
method is validated based on a theoretical model in Sect. 3. The
method is applied to real stars in Sect. 4. Section 5 is devoted to
the discussion and conclusion.

2. Method

The fundamental formula of our analysis is the asymptotic
expression of the oscillation frequencies in the traditional
approximation of rotation (Eckart 1960). This is generally known
to be a good approximation for low-frequency oscillations in
rotating stars, which consist of waves with short wavelengths
in the radial direction (e.g. Ballot et al. 2012; Ouazzani et al.
2017). The details are described in Paper I, therefore we only

give a concise description of the framework here. The period in
the co-rotating frame is provided by

ν−1
co =

(|n| + α) P0
√
λ

, (1)

in which the meanings of the symbols are given as follows: νco is
the oscillation frequency in the co-rotating frame, n is the radial
order of oscillation modes (n < 0 and |n| � 1), α is the phase
changes introduced at the inner and outer boundaries of the
propagation region, P0 is the characteristic period of the gravity
modes, and λ is the eigenvalue of the Laplace tidal equation. If
the rotation frequency νrot is not constant but weakly dependent
on the distance from the centre, r, the co-rotating frame should
be interpreted as the frame that rotates with the weighted average
over the propagation region (G),

〈νrot〉 =

∫
G

N(r)
r νrot (r) dr∫
G

N(r)
r dr

, (2)

where N is the Brunt–Väisälä frequency. We do not consider the
case of strong differential rotation in this paper. The definition of
P0 is given by

P0 = 2π2
(∫

G

N (r)
r

dr
)−1

. (3)

In the limit of no rotation, the frequencies of high-order
g-modes with spherical degree ` are evenly spaced in period
with P0/

√
` (` + 1). We adopt the conventions that νrot, νco , and

the oscillation frequency in the inertial frame, ν, are all positive,
and that the azimuthal order m is positive (negative) for prograde
(retrograde) modes. These quantities are related to each other by

ν = |νco + mνrot| . (4)

We developed in Paper I the method of the ν−
√

∆ν diagram,
in which ∆ν means the difference between the two adjacent fre-
quencies, to estimate νrot and P0 from the observed frequencies
of Kelvin g-modes. Its main point is to reduce the problem of
non-linear fitting to that of iterative linear fitting, which is eas-
ier to understand and far easier to solve. This reduction is made
possible because λ of Kelvin g-modes with a given m is nearly
independent of the spin parameter, which is defined by

s =
2νrot

νco
. (5)

We observe in Fig. 1 that
√
λ ≈ |m| as s→ ∞ for Kelvin g-modes. (6)

Rossby modes share a similar property because

√
λ ≈

|m|
2 |k| − 1

as s→ ∞ for Rossby modes with k ≤ −2 (7)

(cf. Townsend 2003). We note that the index k is related to the
structure of the corresponding eigenfunction (Hough function)
of the Laplace tidal equation (cf. Lee & Saio 1997) such that for
retrograde modes with k ≤ −1, the number of nodes is equal
to |k| and |k + 2| for odd and even |k|, respectively. In particular,
the Hough function associated with an even (odd) value of |k| is
symmetric (anti-symmetric) with respect to the equator.
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Fig. 1. Profiles of
√
λ of Kelvin g-modes with m = 1, 2 and Rossby

modes with m = −1, −2. The asymptotic values as 2νrot/νco → ∞ are
indicated by the horizontal dotted lines.

We may therefore construct the ν −
√

∆ν diagram for these
Rossby modes in just the same way as Kelvin g-modes in
Paper I. If a list of frequency {νi} with the same m and k is given
in ascending order, we can derive the approximate relation,

−
1

√
2 |k| − 1

√
∆iν

|m|∆in
≈

√
P0

(νi+ 1
2

|m|
− νrot

)
, (8)

for |n| � 1 or s � 1. Here we have introduced ∆iν = νi+1 − νi,
∆in = |ni+1 − ni| , and νi+ 1

2
= (νi + νi+1) /2, in which ni stands for

the radial order of the mode with the i-th frequency. Equation (8)
means that there is a linear relation between νi+ 1

2
and
√

∆iν/∆in.
This is different from the corresponding relation for Kelvin
g-modes (Eq. (10) of Paper I) only in the first factor on the
left-hand side, −1/

√
2 |k| − 1, which is missing in the latter. The

negative sign on the left-hand side arises because the frequency
difference of two adjacent Rossby modes is smaller for higher
frequencies, which is opposite to the case of Kelvin g-modes.
The right-hand side is accordingly negative. This is because of
νco < νrot for Rossby modes (e.g. Saio et al. 2018) and Eq. (4),
which is reduced to

ν − |m| νrot = −νco < 0. (9)

While the linear relation given by Eq. (8) is valid only for Rossby
modes in the limit of s � 1, we choose to use the more general
non-linear relation in this analysis (cf. Eq. (10)).

As in the case of Kelvin g-modes in Paper I, we may gener-
alise Eq. (8) to take the Kelvin and Rossby modes into account
as

yi =
√

P0 (xi − νrot) , (10)

in which xi and yi are defined by

xi =
νi+ 1

2

|m|
(11)

and

yi = fi (νrot)

√
∆iν

|m|∆in
, (12)

respectively. We have introduced fi in Eq. (12), which is given
by

fi (νrot) =

 −1
|m|∆iν

∆i

 √λ
νco

 1
2 (
νi+ 1

2
− |m| νrot

)
, (13)

to consider the deviations from the asymptotic expressions of
√
λ (Eqs. (6) and (7)) and those from the linearisation relation,

∆iν
−1 ≈ −ν−2∆iν. Because fi depends on νrot and the frequency

of each mode, Eq. (10) is a non-linear equation. As νrot → ∞,
fi (νrot) is asymptotically equal to

fi (νrot) ≈ f0 =

1 for Kelvin g-modes,
− 1
√

2|k|−1
for Rossby modes with k ≤ −2. (14)

When we correctly identify m, k, and ∆in, we can develop the
procedure of iterative linear fitting to estimate νrot and P0 from
the frequency list {νi} based on Eq. (10) (cf. Paper I). The ini-
tial values of fi can be set to f0 independent of i (and hence
frequency). We stress, however, that fi (νrot) is updated with a
new value of νrot after each iteration based on Eq. (13), which
depends on νi and νi+1. The uncertainties in the estimated param-
eters can be evaluated with the method described in Appendix A
of Paper I. We note that these uncertainties should be considered
as formal because the systematic errors in Eq. (10) are not taken
into account.

Figure 1 shows that the case of k = −1 is exceptional because
√
λ does not tend to any constant, but
√
λ ≈ s − |m| as s→ ∞ for Rossby modes with k = −1. (15)

These were called retrograde Yanai modes by Townsend (2003),
and are composed of more gravity waves than Rossby waves
when the rotation is rapid (s � 1). Because these modes
are rarely detected and resolved even in the Kepler data (cf.
Saio et al. 2018; Li et al. 2020), we do not consider them to esti-
mate νrot and P0.

3. Tests based on an evolutionary model

We applied the method of the ν −
√

∆ν diagram to a typical the-
oretical model of γ Dor stars. The model is the same as Model A
of Christophe et al. (2018) and Paper I, which has a mass of
1.86 M� and νrot = 7 µHz. We first used the frequencies of Rossby
modes alone, and then used those of both Kelvin and Rossby
modes.

3.1. Analysis based on Rossby modes alone

The frequencies of Rossby modes were computed with the
ACOR oscillation code (Ouazzani et al. 2012, 2015) for m = −1,
k = −2 and the radial order from n = −21 to −99. The corre-
sponding range of the spin parameter is roughly between s = 7
and 20. The ν −

√
∆ν diagram is shown in Fig. 2, and the esti-

mates for νrot and P0 are given in rows 4 and 5 of Table 1.
Figure 2 shows that the open blue circles are not aligned on

a straight line, but rather on a concave curve. This is because
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Table 1. Estimates of νrot and P0 for the evolutionary model of a γ Dor star (Model A of Christophe et al. 2018).

νrot [µHz] νrot [d−1] P0 [103 s] a fi/ f0
Kelvin Rossby

Rossby modes with m = −1 and k = −2
It. 1 7.66 0.662 1.57
It. 15 7.032(2) 0.6076(2) 4.47(1) −0.99 1.01–1.47
Kelvin g-modes with m = 1
It. 1 6.64 0.574 4.03
It. 5 6.944(8) 0.6000(7) 4.49(1) 0.99 1.002–1.036
Kelvin and Rossby modes
It. 1 6.91 0.597 4.31
It. 6 7.015(2) 0.6061(1) 4.565(3) 0.27 1.002–1.035 1.01–1.46
True value 7 0.605 4.579

Notes. The numbers in the parentheses indicate the formal uncertainties in the last digit of each estimate, which correspond to the 99% confidence
intervals. Correlation coefficients a between the estimates of νrot and P0 are given in the fifth column. The range of fi/ f0 is given for the converged
value of νrot in the sixth and seventh column for Kelvin and Rossby modes, respectively. The results of Paper I are reproduced in the seventh and
eighth row.
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/

( |m
|∆ i
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2
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Fig. 2. Diagram of ν vs.
√

∆ν based on Rossby modes of Model A with
νrot = 7 µHz. Each mode corresponds to an open blue circle, and the
dashed and solid lines indicate the fitted lines of the first and fifteenth
iteration, respectively. The open square at the abscissa intercept rep-
resents the converged value of νrot. Small open orange circles indicate
the corrected values yi = fi

√
∆iν/ (|m|∆in) that are calculated for the

converged value of νrot.

the asymptotic relations of Eqs. (7) and (8) for m = −1 and
k = −2 are inaccurate particularly for s . 10, as Fig. 1 shows.
As a result, the fitted line of iteration 1 (the dashed blue line)
gives νrot = 7.66 µHz and P0 = 1.57 × 103 s, which are different
from the true values by 9% and −66%, respectively. Although
the first iteration provides such poor results, the procedure con-
verges after 15 iterations when the relative differences in the
estimated νrot and P0 between two successive iterations become
less than 10−4. We note that s is smaller for lower frequency
modes in Fig. 2, and the deviation of fi (νrot) from f0 is accord-
ingly larger. For the converged estimate of νrot, the correction
factor fi/ f0 is equal to 1.47 for the lowest frequency pair, and it
monotonically decreases until it reaches 1.01 for the highest fre-
quency pair. The corrected values yi for the converged estimate
of νrot are shown in Fig. 2 as small open orange circles, which
are almost perfectly aligned with the fitted (solid) line. We thus

obtain νrot = 7.032 ± 0.002 µHz and P0 = (4.47 ± 0.01) × 103 s,
which agree with the true values within 0.5% and 2%, respec-
tively. We note that these differences from the true values are
larger than the estimated formal uncertainties, which are 0.03%
and 0.3% for νrot and P0, respectively. The correlation coefficient
a (cf. Eq. (A.29) of Paper I) between the estimates of νrot and P0
is nearly equal to −1. This high anti-correlation can be under-
stood from Fig. 2. All of the open circles are distributed in the
lower left side of the abscissa intercept (open square) of the best-
fit line (solid line). When the intercept (νrot) is slightly moved to
the right side and the fitting process is repeated under this condi-
tion, the fitted line should have a shallower slope (

√
P0) because

the line must roughly go through the centre of distribution of the
open circles. Thus, the increase in νrot must result in the decrease
in P0.

In order to determine how robust the iterative procedure is,
we performed experiments by discarding high-frequency com-
ponents in the list step by step. When we used only frequen-
cies below 5.9 µHz, which corresponds to s < 12.5, the
procedure still converged after 78 iterations. The converged val-
ues of νrot and P0 are 7.020±0.002 µHz (0.6066±0.0002 d−1) and
(4.52± 0.01)× 103 s, respectively. These are marginally closer to
the true values in the last row of Table 1 than the values in row 5
of Table 1, which were obtained by taking all the frequencies
into account. The reason for these differences is that the accu-
racy of Eq. (1) depends on the frequency range. In other words,
treatment beyond the traditional approximation of rotation in
the asymptotic regime is necessary to discuss this problem fur-
ther (cf. Sect. 5). On the other hand, the procedure fails to con-
verge even after 100 iterations when the upper limit is set at
5.8 µHz, which implies s < 11.5. It is thus essential to include
high frequencies in the analysis when Rossby modes alone are
used. We confirmed that the procedure without Rossby modes
above 5.8 µHz converges successfully again when we take Kelvin
g-modes into account (cf. Sect. 3.2).

We reproduce the results of Paper I based on Kelvin g-modes
in rows 7 and 8 of Table 1. Comparing these with the case of
Rossby modes, we find the following: (a) the number of itera-
tion required for convergence is much larger for Rossby modes
(15) than Kelvin modes (5), (b) the converged value of νrot is
higher (lower) by less than 1% than the true value for Rossby
(Kelvin) modes, (c) those of P0 are shorter by 2% than the true
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value for both types of modes, and (d) the estimates of νrot and
P0 are highly anti-correlated (correlated) with each other for
Rossby (Kelvin) modes. Point (a) is because the deviation from
the asymptotic relation of

√
λ (cf. Eqs. (6) and (7)) for low val-

ues of the spin parameter is more significant for Rossby modes
than for Kelvin modes, as shown in Fig. 1. The range of fi/ f0 is
1.002–1.036 for Kelvin g-modes, and it is 1.01–1.47 for Rossby
modes.

3.2. Analysis based on both Kelvin and Rossby modes

In rows 10 and 11 of Table 1 we provide the results based on both
Kelvin and Rossby modes. The corresponding ν−

√
∆ν diagram

is depicted in Fig. 3. The points we find can be summarised as
follows:

1. The differences in the converged values of νrot and P0 from
the true values are reduced to 0.2% and 0.3%, respectively.

2. The number of iterations required for convergence (6) is
much smaller than in the case of Rossby modes (15), and it is
similar to the case of Kelvin modes (5).

3. The formal uncertainty of 0.3% in the estimate of νrot is
similar to the case of Rossby modes, and smaller by several fac-
tors than in the case of Kelvin modes. The uncertainty of 0.07%
for P0 is smaller by a few factors than in the separate analyses of
Rossby and Kelvin modes.

4. Even the outputs of the first iteration (νrot = 6.91 µHz and
P0 = 4.31 × 103 s) give reasonably good estimates of the true
values (νrot = 7 µHz and P0 = 4.579 × 103 s). This can be under-
stood as (partial) cancellation. When Rossby (or Kelvin) modes
alone are analysed separately, the first iteration gives larger (or
smaller) νrot and smaller (or larger) P0 than the true vales. These
opposite differences come from the behaviour of

√
λ: it increas-

ingly (decreasingly) approaches the asymptotic value given by
Eq. (7) (Eq. (6)) for Rossby (Kelvin) modes, as shown in Fig. 1.

5. The low correlation coefficient of 0.27 between the esti-
mates of νrot and P0 indicates the significant improvement from
the cases that use Rossby or Kelvin modes alone. While the esti-
mates are highly anti-correlated for Rossby modes (cf. Sect. 3.1),
they are highly correlated for Kelvin modes because Kelvin
modes are distributed in the upper right side of the abscissa
intercept, as discussed in Paper I. The simultaneous analysis of
Rossby and Kelvin modes demonstrates that it is essential to
have points on either side of the abscissa intercept in the ν−

√
∆ν

diagram to decrease the (anti-) correlation between the estimates
of νrot and P0.

4. Application to real stars

4.1. KIC 3240967

We first studied a γ Dor star, KIC 3240967, which shows a clear
series of Rossby modes as well as Kelvin g-modes (cf. Li et al.
2019). The amplitude spectrum (Lomb-Scargle periodogram) of
the star computed from the Kepler light curve is shown in Fig. 4.

This figure shows five frequency groups (A–E) that are
located around 1, 8, 12, 20, and 40 µHz. We used the Aarhus
University extraction of coherent oscillations (ECHO) pipeline
(Antoci et al. 2019) to extract the frequencies of these groups.
The list of frequencies is given in Table A.1.

Because of the highest amplitude, we may identify group D
as Kelvin g-modes with m = 1 (cf. Paper I). The ν−

√
∆ν diagram

given in Fig. 5 demonstrates that the open red circles constructed
from the frequencies in group D are generally aligned on a

5.0 7.5 10.0 12.5 15.0 17.5 20.0
νi+ 1

2
/|m| [µHz]

0.0

0.2

0.4

0.6

0.8

f 0
√ ∆

iν
/

( |m
|∆ i

n)
[(
µ

H
z)

1 2
]

Kelvin: m = 1
Rossby: (m, k) = (−1,−2)
yi

it. 1
it. 6

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

f 0
√ ∆

iν
/

( |m
|∆ i

n)
[d
−1 2

]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
νi+ 1

2
/|m| [d−1]

Fig. 3. Same as Fig. 2, but based on both Kelvin and Rossby modes,
which are denoted by open red and blue circles, respectively. Small open
orange circles represent yi = fi

√
∆iν/ (|m|∆in) that are calculated for the

converged value of νrot.

straight line. However, we also note that these points show small
wiggles around the line, which might be interpreted as a signa-
ture of the sharp gradient in the chemical composition profiles
just outside the convective core (cf. Paper I; Miglio et al. 2008;
Kurtz et al. 2014; Saio et al. 2015). Li et al. (2019) pointed out
that the same effect is likely to cause the dip in the P–∆P dia-
gram of Rossby modes of this star (see their Fig. 2). We note
that most of the frequencies in group D do not have consecutive
radial orders, and that ∆in has to be fixed based on the diagram,
as explained in Paper I and indicated by the cyan arrows in the
diagram.

We next identify group C with the second highest amplitude
as Rossby modes with m = −1 and k = −2. This is confirmed by
the fact that the open blue circles in Fig. 5, which are computed
from the frequencies in group C, are roughly found on the same
straight line as the open red circles (Kelvin g-modes).

While group B in Fig. 4 cannot be identified based on the
ν−
√

∆ν diagram, its frequency range relative to group C appears
to be consistent with that of Rossby modes with m = −1 and
k = −1 (Saio et al. 2018). In addition, this group contains some
second-order combination frequencies between those in groups
C and D (cf. Table A.1). A more detailed analysis is needed to
identify modes of these frequencies. We note that even when
a detected frequency can be expressed as a linear combination
of other frequencies, it can still be an eigenfrequency. This is
because it is possible that an eigenmode at the frequency is reso-
nantly excited by the non-linear interaction to have a detectable
amplitude. If this is the case, the combination frequency should
be treated as a mode frequency in the asteroseismic analysis.

Three of the five frequencies in group E can be explained by
the second-order combination frequencies. Their amplitudes of
∼ 0.1 mmag are larger by one order of magnitude than the prod-
ucts of the amplitudes of the parent frequencies with amplitudes
of a few to several mmag. Although it is difficult to identify the
remaining two frequencies, they are located at the expected posi-
tion for Kelvin g-modes with m = 2 in the amplitude spectrum.

Many of the low-frequency peaks in group A might not be
astrophysical because they are affected by the data analysis of
the Kepler long-cadence data (e.g. Kurtz et al. 2014). Finally,
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√
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√
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circles correspond to Kelvin and Rossby modes, respectively, and small
open orange circles describe yi = fi

√
∆iν/ (|m|∆in) that are calculated

for the converged value of νrot.

non-significant peaks around 28 µHz, which are indicated by X
in Fig. 4, might be those of Rossby modes with m = − 2 and
k = − 2 (cf. Saio et al. 2018), or combination frequencies.

The results of the iterative linear least-squares fitting based
on the frequencies in group D (Kelvin g-modes with m = 1)
and/or group C (Rossby modes with m = − 1 and k = − 2) are
provided in Table 2. We note that the points with the filled red
circles in Fig. 5 were discarded in the fitting because they do not
follow the expected behaviour of the Kelvin g-modes under the
traditional approximation of rotation in the asymptotic regime.
As discussed in Paper I, they might be affected by the avoided
crossings or contamination of other types of modes. We can
make qualitatively the same comments as in the case of the evo-
lutionary model in Sect. 3: the analysis based on the Rossby
modes alone requires as many as 11 iterations before conver-
gence; this is because the spin parameter of the lowest-frequency
mode is about 9, for which fi given by Eq. (13) deviates from its
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Fig. 6. Lomb-Scargle periodogram of KIC 3240967 around frequencies
of group C. The vertical dotted lines indicate the extracted frequencies
given in Table A.1.

asymptotic value f0 (cf. Eq. (14)) by 18%; the converged val-
ues of νrot and P0 based on the Rossby modes alone and those
on the Kelvin g-modes alone more or less agree with each
other, although they are not strictly consistent within the given
uncertainties; the simultaneous analysis of Kelvin g- and Rossby
modes results in significant reduction of the uncertainties in and
the correlation between νrot and P0. Our converged value of νrot
based on both Kelvin g- and Rossby modes is completely consis-
tent with Li et al. (2019), while that of P0 (4.25× 103 s) is larger
than their estimate of 4.18 × 103 s by 2%. Although we find two
peaks in the amplitude spectrum that have consistent frequencies
with the estimated νrot and 2νrot within the uncertainties, they are
not statistically significant.

We note the amplitude structure of group C. Figure 6 shows
the amplitude spectrum of group C, in which we observe two
subgroups, C-I and C-II. Group C-I consists of modes below
12.5 µHz with consecutive radial orders. In this subgroup, the
amplitude of the modes first increases as the frequency is higher.
It becomes maximum at 12.3 µHz and decreases rapidly beyond
this frequency. Group C-II is composed of four frequencies
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Table 2. Same as Table 1, but for KIC 3240967.

νrot [µHz] νrot [d−1] P0 [103 s] a fi/ f0
Kelvin Rossby

Rossby modes with m = −1 and k = −2 (group C)
It. 1 15.6(2) 1.35(2) 2.2(3)
It. 11 14.86(6) 1.284(5) 4.3(2) −0.995 1.02–1.18
Kelvin g-modes with m = 1 (group D)
It. 1 14.96(6) 1.292(5) 4.35(9)
It. 3 14.96(6) 1.293(5) 4.37(9) 0.971 0.999–1.001
Kelvin and Rossby modes (group C and D)
It. 1 14.76(3) 1.275(3) 4.04(7)
It. 5 14.887(8) 1.2862(7) 4.25(2) −0.048 1.000–1.001 1.02–1.18
L19 14.902(9) 1.2857(8) 4.18(2)

Reference. L19: Li et al. (2019).

above 12.5 µHz, which have non-consecutive radial orders.
Group C-II shows an isolated high peak of about 1 mmag at
12.85 µHz, which is indicated by an arrow in Fig. 6, while the
peaks at the other frequencies are only about 0.2 mmag high.
It might appear that the two subgroups originate from different
types of modes because the amplitude distribution is clearly dif-
ferent between them. With the assumption of m = −1 and the
rotation frequency of 14.9 µHz (cf. Table 2), we may estimate
the spin parameters of the frequencies in group C-II to be 12.9
and above, which is consistent with those of Rossby modes with
k = −3 (cf. Fig. 1). However, we reject this mode identifica-
tion of group C-II because we fail to construct the ν −

√
∆ν dia-

gram with k = −3 that shows clear alignment of points on a
straight line (or a smooth curve), in sharp contrast to Fig. 5. We
thus regard all of the frequencies in group C as those of Rossby
modes with m = −1 and k = −2. Still, we do not understand
why the amplitude structure of these modes changes suddenly
around 12.5 µHz. If the amplitude is determined by the mode vis-
ibility alone, the envelope of the amplitude in group C-I should
extend as far as about the rotation frequency of 14.9 µHz (cf.
Saio et al. 2018). The reason for the isolated peak at 12.85 µHz
also needs to be explained. While we assume that the amplitude
is controlled by the physical mechanism of mode excitation and
damping, the problem needs to be discussed in more detail in a
separate study. We finally note that the similar amplitude distri-
bution of Rossby modes can also be found in other stars, includ-
ing KIC 3448365 and KIC 9480469, the spectra of which are
shown in Fig. A2 of Saio et al. (2018).

4.2. KIC 12066947

We analysed another γ Dor star, KIC 12066947, based on the
ν −
√

∆ν diagram. The amplitude spectrum of the star is shown
in Fig. 7, and the extracted frequencies are listed in Table A.2.
These frequencies were obtained by the method described in
Antoci et al. (2019), and are found in five groups, which we
refer to as groups U-0, U-1, A, B, and C in the order of fre-
quency. Group B between 26 and 38 µHz consists of Kelvin
g-modes with m = 1, and has been analysed in Christophe et al.
(2018) and Paper I. On the other hand, group A between 19 and
25 µHz can be identified as Rossby modes with m = −1 and
k = −2, as in Van Reeth et al. (2016). We note that in contrast
to Christophe et al. (2018), we find the peaks between 56 and
69 µHz (group C) to be statistically significant. This is because

after more detailed analyses, we discovered that using only data
from the quarters Q10–Q17, hence removing Q0 and Q1 due to
poorer quality, increases the number of extracted frequencies.
We identify the frequencies in group C as Kelvin g-modes with
m = 2. We also observe in Fig. 7 two more groups around 2
and 10 µHz, which are indicated by labels U-0 and U-1, respec-
tively. The former could come from a combination frequencies
or artefacts of data analysis, while the latter might originate from
Rossby modes with m = −1 and k = −1. Figure 8 shows the
ν −

√
∆ν diagram, and Table 3 provides the estimates of νrot

and P0.
We confirm the mode identification of group A based on

the ν −
√

∆ν diagram. The main difficulty comes from the non-
consecutive radial orders: ∆in > 1 for most cases. The prob-
lem can be solved using the results of Paper I based on Kelvin
g-modes. By extending the best-fit line (of Paper I) on the dia-
gram to the lower left side of the abscissa intercept, and drawing
other lines with the common intercept and the slopes multiplied
by
√

2,
√

3, . . . , we can verify whether each mode of group A is
found on one of these lines. We can verify this when we assume
m = −1 and k = −2, and obtain ∆in for each point on the dia-
gram, as indicated in Fig. 8. We can similarly verify the iden-
tification of group C as Kelvin g-modes with m = 2. We note
that there are a few exceptional points with filled blue, red, and
grey circles in Fig. 8. Because these points have too large ∆in
to be identified reliably or do not align on the straight line that
the other points do, we excluded them from the fitting process to
estimate νrot and P0.

When we have found ∆in, we can analyse groups A, B, and
C separately. The results based on group A alone (Rossby modes
with m = −1 and k = −2), group B (Kelvin g-modes with m = 1),
and group C (Kelvin g-modes with m = 2) are given in rows 3–5,
6–8, and 9–11 of Table 3, respectively. The converged values of
the parameters νrot and P0 are consistent within the formal uncer-
tainties in the three cases. Comparing the results for groups A
and B, we find that the uncertainties in νrot are similar (∼ 0.3%),
and that the error in P0 is larger for group A (6%) than for group
B (2%). On the other hand, the uncertainties in νrot and P0 for
group C are larger by about an order of magnitude than those for
group B.

The three types of modes can be used simultaneously to
obtain the results in rows 12–14 of Table 3. The uncertainties
in the two parameters are smaller by a few factors than in the
separate analysis of group B. These estimates are completely
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√
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Fig. 5.

consistent with those of Li et al. (2019), who considered only
the two types, Rossby modes (with m = −1 and k = −2) and
Kelvin g-modes with m = 1. As in the case of Sect. 3.2, the cor-
relation coefficient between the estimated νrot and P0 is signifi-
cantly reduced to 0.56 because different types of modes are used.
In addition, the outputs of the first iteration, νrot = 24.88 µHz
and P0 = 4.07 × 103 s, are different from the converged values
of νrot = 24.98 ± 0.02 µHz and P0 = (4.20 ± 0.03) × 103 s, by
only 0.4% and 3%, respectively. We note that there is a non-
significant peak in the Lomb-Scargle periodogram at the fre-
quency consistent with νrot = 24.98 ± 0.02 µHz.

5. Discussion and conclusion

We have extended the method of the ν −
√

∆ν diagram to take
not only Kelvin g-modes, but also Rossby modes with k ≤ −2
into account in order to diagnose the internal structure of γ Dor
stars from their oscillations. Kelvin and Rossby modes are the
most and second most frequently detected modes in γ Dor stars,
respectively. The majority of the observed modes are identified

as either one or the other of these modes (e.g. Li et al. 2020). The
(average) rotation frequency νrot and the characteristic period
of gravity-mode oscillations P0 can be estimated by the iter-
ative linear fitting based on the diagram. The extension was
made straightforwardly by noting that as in the case of Kelvin
g-modes, the frequencies of Rossby modes with k ≤ −2 tend
to be independent of νrot in the co-rotating frame for large νrot.
Rossby modes are located in the region of negative ordinates
and lower frequencies than Kelvin g-modes in the diagram. The
rotation frequency νrot is found between the frequency distribu-
tions of the two modes. The estimates of νrot and P0 are sig-
nificantly improved when Kelvin and Rossby modes are used
simultaneously in the following two points: (1) reduction of
the uncertainties and (2) a lower (anti-)correlation between the
estimates. These were confirmed first with a theoretical model
in Sect. 3 and then based on two Kepler stars, KIC 3240967
and KIC 12066947, in Sect. 4. According to Fig. 13 of Li et al.
(2020), the estimated rotation frequency of 14.887 ± 0.008 µHz
(1.2862 ± 0.0007 d−1) of the former is typical for γ Dor stars,
while that of the latter of 24.98± 0.02 µHz (2.158± 0.002 d−1) is
close to the upper end of the distribution.

Eigenmodes of low-frequency oscillations in rotating stars
can generally be classified in the traditional approximation of
rotation. Each type of modes corresponds to a sequence of eigen-
values of the Laplace tidal equation, λ, which is a function of the
spin parameter s (cf. Fig. 1). The behaviour of Kelvin g-modes
and Rossby modes with k ≤ −2 is different from the other types
of modes because only these two types have finite λ as s becomes
large, while λ of the other types diverges quadratically (λ ∝ s2)
(e.g. Townsend 2003). Because large λ means short horizontal
wavelengths, which lead to significant geometrical cancellation,
these types of modes are quite difficult to detect in rapid rota-
tors. The convergence of λ to finite values is a key point for
the method of the ν −

√
∆ν diagram because the (quasi-)linear

relation of Eq. (10) is derived from this property. It is just fortu-
nate that the problem can be reduced to a linear one only for the
modes that are easy to observe.

Although Kelvin and Rossby modes are different in their
physical characters and in the observed frequency ranges, they
provide almost the same information (particularly about the two
structural parameters νrot and P0) in so far as the degree of dif-
ferential rotation is weak. This is because their frequencies can
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Table 3. Same as Table 1, but for KIC 12066947.

νrot [µHz] νrot [d−1] P0 [103 s] a fi/ f0
Kelvin Rossby

Rossby modes with m = −1 and k = −2 (group A)
It. 1 25.5 2.20 2.9
It. 11 24.96(9) 2.157(8) 4.3(2) −0.99 1.01–1.15
Kelvin g-modes with m = 1 (group B)
It. 1 24.94 2.155 4.13
It. 3 24.96(8) 2.156(7) 4.16(9) 0.98 1.000–1.003
Kelvin g-modes with m = 2 (group C)
It. 1 24.8 2.14 4.0
It. 3 24.8(7) 2.14(6) 4.0(9) 0.99 1.000–1.003
Kelvin and Rossby modes (group A–C)
It. 1 24.88 2.149 4.07
It. 5 24.98(2) 2.158(2) 4.20(3) 0.56 1.000–1.004 1.01–1.13
L19 24.99(2) 2.159(2) 4.17(3)

Reference. L19: Li et al. (2019).

both be quite accurately explained by Eq. (1) in the traditional
approximation of rotation. They differ only in the value of λ.
The inner turning points of their propagation cavity are essen-
tially fixed by the outer edge of the convective core, while the
outer turning points can weakly depend on the frequency. How-
ever, the effect on the integrals in Eqs. (2) and (3) is limited
because the dominant contribution comes from the layers just
outside the convective core where the Brunt–Väisälä frequency
has a high peak. Because the two types of modes give almost the
same average of the rotation profile, the possibility of weak dif-
ferential rotation (in the radial direction) cannot be rejected even
though the estimates of νrot between them in Sect. 4 are consis-
tent with each other. The latitudinal differential rotation can also
be studied using the fact that Kelvin and Rossby modes have
large amplitudes near the equator and in the mid-latitude region,
respectively. More detailed analyses are clearly needed.

While the frequencies of γ Dor stars can mostly be inter-
preted in the traditional approximation of rotation, the uncertain-
ties in the observed data taken by Kepler are so small that in the
next step, we need to correct the approximation to fully under-
stand the fine structure of the frequency spectrum (cf. Sect. 3).
Another direction of future study is to apply the method to
rapidly rotating hybrid pulsators of γ Dor and δ Sct type (e.g.
Grigahcène et al. 2010). Estimates of νrot and P0 from the low-
frequency modes will be helpful to understand the spectrum of
the high-frequency modes, which is known to be very compli-
cated (e.g. Dziembowski 1990).
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Appendix A: Additional tables

Table A.1. Frequency list of KIC 3240967.

Index Frequency Amplitude Group Combination

[µHz] [d−1] [mmag]

1 20.08769(2) 1.735576(1) 6.40(3) D
2 20.20353(3) 1.745585(3) 3.56(3) D
3 19.97140(4) 1.725529(3) 2.93(3) D 2ν1 − ν2
4 12.32498(2) 1.064878(2) 2.36(1) C
5 19.86490(5) 1.716327(5) 2.27(3) D
6 20.88416(5) 1.804391(4) 2.23(2) D 3ν2 − 2ν5
7 12.24898(3) 1.058312(2) 1.89(1) C
8 12.16990(4) 1.051479(3) 1.43(1) C −ν4 + 2ν7
9 19.3866(1) 1.675002(9) 1.38(3) D
10 12.85456(8) 1.110634(7) 1.02(2) C
11 12.00333(5) 1.037088(4) 1.00(1) C
12 12.08778(5) 1.044385(5) 0.95(1) C 2ν1 − 2ν2 + ν4
13 7.7625(1) 0.67068(1) 0.78(2) B ν1 − ν4
14 11.91622(7) 1.029561(6) 0.69(1) C −ν2 + ν5 + ν7
15 11.82688(8) 1.021843(6) 0.65(1) C
16 7.8386(2) 0.67726(1) 0.58(2) B ν1 − ν7
17 0.7971(3) 0.06887(3) 0.54(4) A −ν1 + 3ν2 − 2ν5
18 7.9179(2) 0.68410(2) 0.48(2) B ν1 + ν4 − 2ν7
19 0.6792(4) 0.05868(3) 0.45(4) A 2ν2 − 2ν5
20 11.7349(1) 1.013898(9) 0.44(1) C
21 7.8787(2) 0.68072(2) 0.43(2) B ν2 − ν4
22 18.2827(4) 1.57963(4) 0.42(4) D
23 18.3277(4) 1.58352(3) 0.42(4) D
24 18.5108(4) 1.59934(4) 0.41(4) D
25 19.0690(4) 1.64756(3) 0.41(3) D ν1 − 3ν2 + 3ν5
26 11.6402(1) 1.00571(1) 0.41(1) C −2ν2 + 2ν5 + ν4
27 18.3920(4) 1.58907(4) 0.41(4) D
28 0.1119(5) 0.00966(4) 0.38(4) A −ν1 + ν2
29 17.8907(5) 1.54575(4) 0.38(4) D
30 0.9118(5) 0.07878(4) 0.38(4) A
31 7.9547(2) 0.68728(2) 0.37(2) B ν2 − ν7
32 19.6598(3) 1.69861(3) 0.36(3) D
33 12.3963(2) 1.07104(1) 0.36(1) C 2ν4 − ν7
34 7.6468(3) 0.66068(2) 0.35(2) B 2ν1 − ν2 − ν4
35 0.2383(6) 0.02059(5) 0.32(4) A −2ν1 + 2ν2
36 8.0846(3) 0.69851(3) 0.31(2) B
37 7.2334(3) 0.62497(3) 0.31(2) B
38 18.1803(5) 1.57078(5) 0.31(4) D
39 8.5600(3) 0.73959(2) 0.31(2) B 3ν2 − 2ν5 − ν4
40 11.5433(1) 0.99734(1) 0.30(1) C 3ν2 − ν4 − 3ν7
41 7.9995(3) 0.69116(3) 0.30(2) B −ν1 + 2ν2 − ν4
42 39.9524(2) 3.45189(1) 0.29(1) E ν1 + ν5
43 7.0109(4) 0.60574(3) 0.27(2) B
44 40.2913(2) 3.48117(1) 0.261(9) E ν1 + ν2
45 18.9526(6) 1.63751(5) 0.26(3) D
46 7.7220(4) 0.66718(3) 0.26(2) B 2ν1 − ν2 − ν7
47 7.5398(4) 0.65144(3) 0.25(2) B ν5 − ν4
48 12.5859(3) 1.08742(2) 0.25(2) C ν2 − ν5 + ν7
49 7.6161(4) 0.65803(3) 0.25(2) B ν5 − ν7

Notes. Frequencies are given in the descending order of the amplitude (in Col. 4). In Cols. 2–4, single digits in parentheses represent the errors in
the last digits of the preceding numbers. Groups in Col. 5 correspond to those in Fig. 4. In Col. 6, νk indicates the frequency of index k (in Col. 1).
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Table A.1. continued.

Index Frequency Amplitude Group Combination

[µHz] [d−1] [mmag]

50 8.1716(4) 0.70602(3) 0.24(2) B
51 18.0371(7) 1.55840(6) 0.24(4) D
52 40.1758(2) 3.47119(2) 0.23(1) E 2ν1
53 17.6140(7) 1.52185(6) 0.23(4) D
54 13.1903(4) 1.13964(4) 0.22(2) C
55 40.9717(2) 3.53996(1) 0.224(8) E ν1 + 3ν2 − 2ν5
56 17.3621(6) 1.50009(6) 0.22(3) D
57 17.7114(7) 1.53026(6) 0.22(4) D
58 8.6363(4) 0.74617(3) 0.22(2) B 3ν2 − 2ν5 − ν7
59 40.0591(2) 3.46111(2) 0.22(1) E 3ν1 − ν2
60 12.9509(4) 1.11896(4) 0.21(2) C
61 8.2611(4) 0.71376(4) 0.20(2) B
62 1.0208(8) 0.08820(7) 0.20(4) A 3ν2 − 3ν5
63 22.4201(3) 1.93710(3) 0.20(2) D
64 8.0364(5) 0.69435(4) 0.20(2) B ν2 + ν4 − 2ν7
65 0.2634(9) 0.02276(8) 0.20(4) A
66 8.7148(4) 0.75296(3) 0.19(2) B
67 18.4816(9) 1.59681(8) 0.19(4) D
68 17.4744(8) 1.50979(7) 0.19(4) D
69 1.6536(8) 0.14287(7) 0.19(4) A
70 18.5662(9) 1.60412(8) 0.19(4) D
71 17.7428(9) 1.53298(8) 0.18(4) D
72 1.3610(9) 0.11759(8) 0.18(4) A
73 1.4975(9) 0.12938(8) 0.18(4) A
74 0.361(1) 0.03122(9) 0.18(4) A
75 7.0627(5) 0.61022(5) 0.18(2) B
76 1.6962(9) 0.14656(8) 0.18(4) A
77 8.1164(6) 0.70126(5) 0.16(2) B −2ν1 + 3ν2 − ν4
78 19.5042(8) 1.68516(7) 0.16(3) D
79 1.574(1) 0.13596(9) 0.16(4) A
80 18.699(1) 1.61563(9) 0.16(4) D
81 8.1994(6) 0.70843(5) 0.16(2) B
82 0.647(1) 0.0559(1) 0.15(4) A
83 1.814(1) 0.15670(9) 0.15(4) A
84 1.888(1) 0.16309(9) 0.15(3) A
85 1.804(1) 0.15588(9) 0.15(4) A −3ν5 + 2ν4 + 3ν7
86 18.098(1) 1.5637(1) 0.15(4) D
87 21.5768(6) 1.86424(5) 0.15(2) D
88 19.475(1) 1.68263(8) 0.14(3) D
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Table A.2. Frequency list of KIC 12066947.

Index Frequency Amplitude Group Combination

[µHz] [d−1] [mmag]

1 31.52523(4) 2.723780(3) 2.57(1) B
2 22.42210(3) 1.937270(3) 2.543(9) A
3 32.34838(3) 2.794900(3) 2.382(9) B
4 23.20935(5) 2.005288(5) 1.73(1) A
5 34.37169(4) 2.969714(4) 1.579(7) B
6 31.71175(6) 2.739895(5) 1.43(1) B
7 22.83400(8) 1.972858(7) 1.13(1) A
8 29.8904(1) 2.58253(1) 1.10(1) B
9 34.02411(7) 2.939683(6) 0.986(7) B
10 34.74867(7) 3.002285(6) 0.875(7) B 2ν1 − 3ν3 + 2ν5
11 30.6102(1) 2.64472(1) 0.79(1) B −3ν1 + ν3 + 4ν4
12 21.8456(1) 1.887458(9) 0.638(7) A
13 23.5559(2) 2.03523(1) 0.59(1) A
14 33.1085(1) 2.86058(1) 0.587(8) B
15 21.1275(1) 1.82542(1) 0.478(6) A
16 29.0494(3) 2.50987(3) 0.47(2) B 4ν1 − 3ν3
17 30.2228(3) 2.61125(2) 0.46(1) B
18 29.1235(4) 2.51627(3) 0.40(2) B −ν1 + 4ν3 − 2ν5
19 27.8576(4) 2.40690(3) 0.40(1) B 3ν1 − ν3 − ν5
20 29.6013(3) 2.55755(3) 0.40(1) B
21 20.9484(1) 1.80994(1) 0.391(6) A 4ν2 − 2ν5
22 21.2936(2) 1.83977(2) 0.236(6) A
23 20.5530(2) 1.77578(2) 0.223(6) A
24 30.3352(6) 2.62096(5) 0.22(1) B
25 28.4983(7) 2.46226(6) 0.22(2) B ν2 − 3ν3 + 3ν5
26 57.5803(3) 4.97494(3) 0.189(7) C ν4 + ν5
27 30.4919(6) 2.63450(5) 0.19(1) B
28 21.7233(4) 1.87689(3) 0.175(7) A
29 64.2208(3) 5.54868(3) 0.158(5) C
30 0.639(1) 0.0552(1) 0.15(2) U-0
31 36.6750(4) 3.16872(3) 0.142(6) B
32 56.7933(5) 4.90694(4) 0.141(7) C ν2 + ν5
33 28.456(1) 2.4586(1) 0.14(2) B
34 0.033(1) 0.0029(1) 0.14(2) U-0
35 66.7198(3) 5.76459(3) 0.132(5) C ν3 + ν5
36 63.0506(4) 5.44757(4) 0.116(5) C 2ν1
37 64.6977(5) 5.58988(4) 0.115(6) C 2ν3
38 63.8741(4) 5.51872(4) 0.112(5) C ν1 + ν3
39 2.850(1) 0.2462(1) 0.11(2) U-0 −ν1 + ν5
40 23.5283(9) 2.03285(8) 0.11(1) A
41 9.1033(8) 0.78653(7) 0.105(9) U-1 ν1 − ν2
42 2.026(2) 0.1750(1) 0.10(2) U-0 −ν3 + ν5
43 61.7496(5) 5.33516(4) 0.101(6) C
44 8.3154(9) 0.71845(8) 0.096(9) U-1 ν1 − ν4
45 9.1398(9) 0.78968(8) 0.089(9) U-1 ν3 − ν4
46 60.2057(6) 5.20177(5) 0.086(6) C 3ν1 − ν5
47 29.194(2) 2.5224(2) 0.09(2) B 4ν2 + ν3 − 4ν4
48 59.3816(7) 5.13057(6) 0.084(6) C 4ν1 − ν3 − ν5
49 1.139(2) 0.0984(2) 0.08(2) U-0 −ν3 − 3ν4 + 3ν5
50 23.452(1) 2.0263(1) 0.07(1) A
51 9.289(1) 0.8026(1) 0.070(8) U-1
52 62.6720(8) 5.41486(7) 0.065(5) C 3ν3 − ν5
53 19.8642(7) 1.71627(6) 0.065(5) A
54 62.0381(8) 5.36009(7) 0.062(6) C
55 37.6512(7) 3.25306(6) 0.061(5) B

Notes. Frequencies are given in the descending order of the amplitude (in Col. 4). In Cols. 2–4, single digits in parentheses represent the errors in
the last digits of the preceding numbers. Groups in Col. 5 correspond to those in Fig. 7. In Col. 6, νk indicates the frequency of index k (in Col. 1).
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