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Graphical abstract: 

An original way to synthesize nanostructured materials is the use of new structuring 
agents constituted of induced and reversible micelles of Double Hydrophilic Block 
Copolymers (DHBC). The present paper aims at showing that induced micelles can be 
obtained by complexation between a PAA-b-PAMPEO (DHBC) polymer containing a  
comb-type  neutral block and a polyamine, that the micellization process is reversible as a 
function of the pH and finally, that the obtained polyion complex micelles can be successfully 
used in the preparation of well organized mesostructured silica materials.  
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Abstract  

An original way to synthesize nanostructured materials is to use new structuring 

agents constituted of Double Hydrophilic Block Copolymers (DHBC). The originality of 

these structuring agents is multiple: in water, the hydrosoluble DHBC copolymers can 

become amphiphilic and form micelles in specific conditions, i.e. after addition of other 

molecules or after a change of a physicochemical parameter (pH), which selectively makes 

one of the blocks insoluble in water. The addition of a silica precursor to a micelle suspension 

can lead to the formation of hybrid mesostructured materials, precursors for mesoporous 

silica. The micellization process may be reversible and the micelles can then be removed from 
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the silica materials in aqueous solution at room temperature after application of a dissociation 

stimulus, leading to the mesoporous materials. A new original DHBC is used here for silica 

structuring: instead of a classical linear diblock copolymer, it is a diblock copolymer with a 

linear polyacid block (PAA) and a polyethylenoxide based neutral block (PAMPEO) with a 

comb-type architecture. It is synthesized by controlled radical polymerization (RAFT method) 

which permits a control of the block lengths. It is shown here that these new DHBC polymers 

can form polyion complex micelles by complexation with a natural polyamine and that the 

micellization is reversible as a function of the pH. It is also shown that the new pH sensitive 

micelles can act as structuring agents in the preparation of mesoporous silica materials.  

 

Keywords: block copolymers, micelles, silica and mesoporous materials  

 

1. Introduction 

The chemistry of nanostructured materials strongly developed since the discovery in 

1992 by Mobil of materials with organized porosity (MPO)[1]. The interest in those materials 

is due to their remarkable properties (high surface area, regular pore size and organization of 

the porosity) useful in catalysis, sensing and drug delivery applications[2]. Contrary to 

microporous materials synthesized around isolated molecules, the MPO are elaborated around 

supramolecular assemblies of autoassociative molecules. The first structures of MPO, of 

MCM-41 type, were obtained by using micelles of surfactants made up of an alkyl chain and a 

cationic polar head[3]. Those materials have a limited thickness of the walls, pore sizes lower 

than 10 nm and have a low thermal stability. Since 1995, the use of another type of 

autoassociative molecules, the neutral surfactants, made it possible to increase the thickness 

of the walls and to improve the stability of the porous materials [4-6]. In 1998, a significant 

development took place with the use of amphiphilic block copolymers of  
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poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) PEO-PPO-PEO type [7, 8] 

and materials whose pore sizes were increased to approximately 30 nm could be prepared.  

Today, a large set of functional mesoporous materials shaped as monoliths, thin films 

or powders have been synthesized. However, many of them remain within the academic field 

because some of their limitations effectively close the door to the real market, among  

them: cost, unsustainable solvents, energy-consuming process for template calcination, 

toxicity of some structuring agents and their non-recyclability. Some interesting procedures, 

using physical methods have been proposed for template removing but without a real impact 

on the market [9-11]. It appears essential to seek alternative solutions making it possible to 

avoid the combustion of the organic matter and to work out these materials under conditions 

as soft as possible.  

Our recent studies (Figure 1) showed that it is possible to prepare MPO in soft 

conditions and to recover and recycle the structuring agent [12]. The new strategy consists in 

replacing the classical amphiphilic template by an induced and reversible assembly of water-

soluble block copolymers (WSBC) [13-15], which allows to recover the template in aqueous 

solution. The micellization [16-18] process results from electrostatic interactions between two 

oppositely charged polymers in aqueous solution, a hydrophilic polyelectrolyte-neutral 

diblock copolymer and a homopolyelectrolyte. Electrostatic complexation leads to an 

associative phase separation, known as complex coacervation[19], provided certain 

requirements meet; such as proximity to charge neutrality. The presence of the neutral block 

ensures that the insoluble electrostatic complex is sterically stabilized in solution as a micellar 

assembly. A great advantage of such polyion complex (PIC) systems is that the phenomenon 

of phase separation is tunable in water with parameters influencing the electrostatic 

interaction between the two macromolecules such as the ionic strength, the temperature, the 

mixing fraction and the pH in the case where weak acids and bases are used.  
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The first results that we reported [12] showed that this new green strategy has yet to be 

improved since the template recovering is not complete: about 40% of the diblock copolymer 

(PEO-b-PAA, poly(ethylene oxide)-b-poly(acrylic acid) or PEO-b-PMAA poly(ethylene 

oxide)-b-poly(methacrylic acid)) remain in the structure, while the oppositely charged 

polymer (the oligochitosane polyamine) is totally removed from the material. A part of the 

PEO block is then probably trapped in the silica walls and prevents the PEO based block 

copolymer to get out of the inorganic network[20].  

One of the solutions for improving the template removal could be brought by changing 

the interaction between the neutral PEO block and the silica structure, and one of the ideas is 

then to change the usual linear neutral PEO block for a block with a comb-like architecture, a 

poly(acrylate methoxy poly(ethyleneoxide)) PAMPEO. It is constituted of a polyacrylate 

backbone with PEO chains along the backbone. For a same molecular weight as that of the 

neutral linear part, the comb block (expected to interact with silica) is shorter and denser than 

the linear homologue and so, this modification should influence the organic/inorganic 

interactions (Figure 2). Moreover, the PAA-b-PAMPEO copolymer is here synthesized 

quickly by using only one polymerization technique, the RAFT (Reversible Addition 

Fragmentation chain Transfer) polymerization for the two polymeric blocks and it is easy to 

control the size of the two blocks separately [21]. In comparison, the synthesis of PAA-b-PEO 

block copolymers was reported in the literature by either anionic polymerization [22-24] or 

atom transfer radical polymerization (ATRP) [25, 26]. The anionic pathway is time 

consuming, because AA cannot be polymerized without protection. Poly (tert-butylacrylate) 

synthesis is the usual first step, and an additional step is needed to convert the  

poly(tert-butylacrylate) chains into PAA by hydrolysis. Moreover, the major drawback of 

ATRP is that it uses an organometallic catalysis, which may be the source of unacceptable 

contamination (transition metal) for green applications. It appeared then that the synthesis of 
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double hydrophilic block copolymers with a comb PEO based block, using only RAFT 

polymerization technique, may be simpler and advantageous, compared to linear block 

copolymers in the preparation of polyion complex micelles for the obtention of mesoporous 

materials. The present paper aims at showing that induced micelles can be obtained by 

complexation between a comb-type PAA-b-PAMPEO polymer and a polyamine, that the 

micelle formation is reversible as a function of pH, and finally that the present micelles can be 

successfully used in the preparation of well organized mesostructured silica materials. The 

effectiveness of the template removal step in soft conditions at room temperature will be 

studied in a forthcoming paper.  

 

2. Experimental part 

2.1 Materials 

Acrylic acid (AA), α-acrylate ω-methoxy poly(ethylene oxide) (AMPEO),  

Mn = 454 gmol-1 dimethylformamide (DMF), azo-bis-isobutyronitrile (AIBN), polyamine, 

oligochitosan lactate (OCL) with Mn< 5000 g mol-1, and silica precursor, tetraethoxysilane 

(TEOS) were purchased from Aldrich and used as received. The transfer agent, 2-

dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP) was synthesized 

according to Lai et al[27].  

2.2 Analysis 

Polymer molecular weight and polydispersity index (Mw/Mn) were determined by 

size exclusion chromatography (SEC), using a 25 mM solution of LiBr in DMF as the eluent 

at 50 °C. 

The columns were calibrated with polystyrene standards. The 1H NMR spectra were 

recorded with a 400 MHz Bruker spectrometer.  
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Dynamic light scattering measurements were carried out at 25°C using an Autosizer 

4800 instrument (Malvern, U.K.) with a 50 mW laser source operating at 532 nm. Scattered 

light intensities were collected together with hydrodynamic diameters and polydispersity 

indexes (PDI) of the micellar colloids. Hydrodynamic diameters were obtained from 

measured diffusion coefficients using the Stokes–Einstein equation.  

The materials were characterized by Transmission Electron Microscopy (TEM), 

Scanning Electron Microscopy (SEM) and nitrogen adsorption/desorption experiments. TEM 

images were collected on a JEOL 1200 EX II (80-100 kV) microscope on microtomed 

samples. SEM micrographs were obtained on a Hitachi 4800S microscope.  

Samples are calcined in an oven in air with a ramp of 2°C/min up to 500°C. N2 

adsorption/desorption experiments were performed on a Micromeritics TriStar instrument, for 

analysis of the specific surface area and porosity. Before adsorption measurements, the 

samples were outgassed under vacuum for 6h at 250°C.  

 

2.3 Synthesis of PAA-b-PAMPEO block copolymer 

The PAA-b-PAMPEO polymer with the Mn(PAA)=3000gmol-1, 

Mn(PAMPEO)=13000gmol-1 targeted molecular weights is synthesized as follows : 

a) Synthesis of PAA first block:  0.012 g azo-bis-isobutyronitrile (7,31×10-5 mol),  

1.09 g DMP (3×10-3mol), 15 mL of AA (1.98×10-1 mol) and 15 mL of DMF were mixed 

together in a 250mL Schlenk flask. The mixture was degassed for 30 minutes under Argon. 

This reaction mixture was heated in an oil bath at 70ºC for 3 h. The polymer was precipitated 

by addition of the solution to ether, and dried under vacuum at 50°C during 48h. The 

molecular weight was determined by 1H NMR in DMSO-d6 (Mn=3xI2.44/I0.8), where I0.8 and 

I2.44 are the intensities of the proton resonances at 0.8 ppm (terminal RAFT agent: CH3-
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C11H22, t) and 2.44 ppm (CH-COOH, m), respectively. Polydispersity was measured by SEC 

in DMF.  

b) Synthesis of PAA-b-PAMPEO: a mixture of 3 g trithiocarbonate-capped PAA 

(1x10-3 mol; Mn (NMR)=3000gmol-1 and Mw/Mn =1.15), 20 g AMPEO (4,4x10-2 mol), 

8,2×10-3 g AIBN (5x10-5 mol) and 50 mL DMF was degassed for 30 minutes under Argon 

and heated in an oil bath at 75ºC for 2 h. The copolymer was precipitated into ether and dried 

under vacuum at 50°C during 48h. The copolymer is slightly yellow. The molecular weight of 

the second block was determined by 1H NMR in DMSO (Mn=3I4.1/2I0.8), where I0.8 and I4.1 

are the intensities of the proton resonances at 0.83 ppm (CH3-C11H22, t) and 4.1ppm 

(CHCOOCH2, m) respectively. Polydispersity was determined by SEC in DMF. 

 

2.4 Preparation of mesoporous materials 

Typically, 204 mg of an oligochitosane salt, OCL (powder with an oligochitosan 

lactate unit C12H24O9N2, C3H5O3) is mixed with 300 mg of PAA3000-b-PAMPEO13000 in 20 g 

of deionised water at room temperature. Equilibrium pH is about 4.25 and it is immediately 

reached. 0.969 ml of TEOS is then added to the stirred solution. An emulsion forms and the 

solution pH is lowered to about 2 for TEOS hydrolysis. The pH is kept at 2, under vigorous 

stirring, until the emulsion disappears and the sample looks monophasic, this is done in about 

20 minutes. Then, the solution pH is brought up to 5.5. A macroscopic precipitation is 

observed immediately when the pH is increased, the solution is left under stirring for 24 hours 

at 30°C. The synthesized sample is then filtered and placed in an oven at T= 40°C overnight. 

A white powder is obtained. 

 

3. Result and discussion  
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First, the DBHC (double-hydrophilic block copolymer) consisting of PAMPEO 

(MnNMR=13000gmol-1) and  PAA (MnNMR=3000gmol-1)  was synthesized by the sequential 

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization of AA and 

AMPEO (Figure 3), according to the procedure of Aqil et al [21]. The polymer polydispersity 

was determined to be 1.31. This technique of controlled radical polymerization (CRP) 

permitted a control of each block length. The apparent pKa of the block copolymer was 

determined by titration, it was found at 6.1. 

3.1 Behaviour in aqueous solution of the PAA-b-PAMPEO/OCL pH responsive system  

The micellization process of the present polyelectrolyte/neutral DHBCs (PAA-b-

PAMPEO) was induced by electrostatic complexation of an oppositely charged polyion. 

Herein, the weak polyacid/neutral double-hydrophilic block copolymer is studied in the 

presence of a weak polybase OCL, an oligochitosane lactate (pKa=6.5). An electrostatic 

complex between the two oppositely charged polyions is expected to form, it should lead to 

the formation of core–corona micelles with a water-insoluble complex core (PAA-OCL) and a 

water-soluble corona (PAMPEO).  

It is important to characterize the structuring agent in details first in solution, and to 

determine the pH domain of micelle formation before adding the silica precursor. The 

dynamic light scattering technique allows monitoring the formation of micellar objects 

between OCL and the water-soluble block copolymer as a function of the pH. The 

measurements of the scattered light intensity of the DHBC/OCL mixture (Figure 4) indicate 

that micelles form between pH 4 and 7: A sharp increase of the scattered light intensity 

corresponds to aggregation of both polymers and then, to micelle formation, while a strong 

decrease of the intensity reveals that micelles dissociate, below pH 4 and above pH 7. At pH 

5, the micelles have a hydrodynamic diameter of 42 nm, and the polydispersity index equals 

0.31.  
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It is then shown that the micelle formation can be driven by the pH, this is possible 

since the charges of the polyacid and polybase blocks are pH-dependent. Micellization of 

DHBCs, and more specifically formation of polyion complex (PIC) micelles [22, 28-35], has 

been extensively studied in the literature. The present DHBCs/polybase complex system only 

involves weak electrostatic interactions; the energy demand for disassembly is then quite low 

in comparison with breaking covalent bonds and so micellization presents here the 

considerable advantage of a switchable assembly/disassembly process. This advantage will be 

used later for generation of the material porosity at room temperature in water.  

Finally, the light scattering results suggest that the material structuring step can be 

performed at pH 5.5, within the pH range of PIC micelle stability. 

 

3.2 Obtention of polymeric/ inorganic hybrid materials and  characterization of the 

materials 

The synthesis of the hybrid materials using the structuring complex systems occurs in 

two steps [36, 37]. First the PAA-b-PAMPEO and the OCL are dissolved in an aqueous 

solution; TEOS is then added, leading to a diphasic system and the pH is adjusted at a value 

of 2 for TEOS hydrolysis. The pH is kept at 2 until the system becomes monophasic, ie. after 

about 20 minutes. Secondly the hybrid material is synthesized at room temperature by 

increasing the pH value of the mixture to 5.5, a pH value at which micelles are formed. This is 

done by adding small amounts of a NaOH solution. After 24 h, a precipitate is recovered and 

dried at 40°C overnight. The possibility of structuring silica with PAA-b-PAMPEO/OCL PIC 

micelles is revealed by the TEM pictures (Figure 5). They show that, like in the case of the 

linear diblock copolymer-based systems (PEO-b-PMAA/OCL and PEO-b-PAA/OCL)[12], 

hybrid mesostructured materials can be obtained with the present original diblock copolymer 

with a comb-like architecture. The TEM micrographs of the hybrid material synthesized at pH 
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5.5 reveals ordered mesostructures viewed with different orientations, and presenting a 

wormlike arrangement of the micelles. This result suggests that the comb PAMPEO block is 

able to interact with silica precursors in a similar way as linear PEO blocks, leading to 

precipitation of hybrid micelle-silica mesophases. The N2 adsorption/desorption isotherms 

(Figure 6) of the hybrid material calcined at 500°C (with a ramp of 2°C/min) exhibit a 

hysteresis loop in the range 0.6<P/P0<0.9. They are type IV isotherms in the IUPAC 

classification, characteristic of mesoporous materials. The triangular hysteresis loop is a H2 

type hysteresis according to the IUPAC classification, it shows a desorption branch which is 

significantly steeper than the adsorption branch, which is attributed to a pore-blocking or 

percolation effect. Then, the pore size distribution was calculated by using the adsorption 

branch, it is found to be centered at 6.8 nm. The specific surface area amounts to 505 m²/g. 

The average pore size is smaller than the hydrodynamic diameter Dh of the micelle (42 nm), 

which is expected, since Dh values include the core size (PAA/OCL complex) and the size of 

the large and hydrated polymer corona in a good solvent (water). Furthermore, the N2 

adsorption analysis is performed on the calcined material; during the calcination step up to 

500°C, the silanol groups in the walls continue to condense, which leads to decreasing of the 

pore diameter and also to the structure reinforcement.  

Figure 7 shows SEM images of the hybrid mesostructured silica materials synthesized 

through the two-step pathway at a final pH of 5.5. The morphology of the sample is not well 

defined; the sample presents agglomerated particles of varying shapes, with some tendency to 

form spheres. The observation of a distribution of morphologies from spheres to ill-defined 

shapes may be explained by the rate of phase separation as described in the colloidal phase 

separation mechanism [38]. In the present synthesis pathway, the pH of the synthesis medium 

is adjusted at 5.5 when the formation of the hybrid material occurs by precipitation. It is 

relatively high and then, it is known that it is not so favourable to the formation of spherical 
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particles. Moreover, we should consider the fact that the increase in the pH from the first to 

the second step of the synthesis (variation from pH = 2 to pH = 5.5) is not instantaneous, it is 

done by successive additions of minor amounts of a NaOH solution (0.5M). Then, it is 

probable that a part of the material is not formed at pH = 5.5 but at a lower pH (which is more 

favourable to the spherical morphology). A lower pH value (between 2 and 5.5) results in a 

lower condensation rate of silica, and then to a slower rate of phase separation. The surface 

free energy determines the material morphology; the spherical morphology with a high 

curvature is generated in order to minimize the surface energy. As a result, the spherical 

morphology is obtained only in the case where silica syntheses are performed in acidic 

medium, where condensation is as slow as possible. In conclusion, the ill-defined morphology 

observed here, which contains some spherical parts, is the result of a precipitation 

phenomenon occurring on a range of pHs from pH 2 to pH 5.5. 

 

4. Conclusion  

We showed here that the PAA-b-PAMPEO block copolymer with a comb-like 

architecture behaves, in a first approximation, like the linear PEO-b-PAA diblock in what 

concerns the micellization process and the material structuring process: (i) the micellar 

behaviour is the same, revealing the formation of well defined polyion complex micelles 

between pH 4 and 7 and the polymer disassembly outside of this pH domain. (ii) 

mesostructured silica materials can be prepared with the present comb-type diblock polymer, 

in the same way as with the homologue PAA-b-PEO polymer. It was also possible to prepare 

mesoporous silica when the hybrid material was calcined. Finally, the success of the 

nanostructuring step will permit to investigate the impact of the neutral block architecture on 

the washing step for template removing in aqueous solution at a well chosen pH. It is 

envisaged to study the influence of the copolymer architecture on the template recycling 
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procedure. The influence of other parameters, on the template removal step, like the synthesis 

temperature will also be tested: indeed, an increase of the temperature affects the PEO 

behaviour in water, it makes it less hydrophilic, which should decrease the interaction 

between the organic and the inorganic networks. 
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Figure 1: General strategy for structuring silica using induced and reversible  
micelles of water-soluble block copolymers. Porosity is created at room 
temperature, while the structuring agent is recycled in aqueous solution. 
TEOS=tetraethoxysilane. 
 
 

Figure 2: Variation of the characteristics of the neutral block from a linear to a comb 
architecture. 

 
 

Figure 3 : General strategy for the synthesis of PAA-b-PAMPEO copolymers. 

 
 

Figure 4 : Variation of the scattered light intensity of the PAA3000-b-PAMPEO13000/ 
OCL suspension as a function of the pH value, revealing the formation of 
micellar aggregates between pH 4 and 7 and the polymer disassembly outside of 
this pH domain. 

 
 

Figure 5 : TEM micrographs at different magnifying ratios of the hybrid silica-
polymer materials synthesized through the two-step route at a final pH of 5.5. 
The sample is embedded in a polyacrylic resin and ultramicrotomed. 

 
 

Figure 6 : N2 adsorption/desorption isotherms of ordered mesoporous materials with  

the PAA3000-b-PAMPEO13000/OCL system, after calcination at 500°C  

(ramp=2°C/min). 

 
 

Figure 7 : SEM micrographs of the hybrid silica-polymer materials synthesized 
through the two-step route at a final pH of 5.5. 
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Figure 4: Variation of the scattered light intensity of the PAA3000-b-PAMPEO13000/ OCL 

suspension as a function of the pH value, revealing the formation of micellar 
aggregates between pH 4 and 7 and the polymer disassembly outside of this pH 

domain. 
 
 
 
 

 

Figure 5: TEM micrographs at different magnifying ratios of the hybrid silica-polymer 
materials synthesized through the two-step route at a final pH of 5.5. The 

sample is embedded in a polyacrylic resin and ultramicrotomed. 
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Figure 6: N2 adsorption/desorption isotherms of ordered mesoporous materials with the 
PAA3000-b-PAMPEO13000/OCL system, after calcination at 500°C 

(ramp=2°C/min). 

 
 
 
 

 
Figure 7: SEM micrographs of the hybrid silica-polymer materials synthesized through the 

two-step route at a final pH of 5.5. 
 
 


