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Abstract

China’s manufacturing industry has registered phenomenal development

in the past 40 years, which has become the most remarkable aspect of

China’s economic miracle. Yet researchers give different explanations to

China’s rapid growth. In this paper, we employ a tripartite decomposition

to study the driving force of productivity growth in China’s manufactur-

ing industry during 1998–2007. A detailed firm-level dataset enables us to

construct accurate measures of inputs and output at the sectoral level. We

highlight the importance of technology heterogeneity in reconciling differ-

ent decomposition results and making interpretations. Our results show

strong labor productivity growth in China’s manufacturing industry. When

we control technology heterogeneity, we find that most of the productivity

growth (125.60%) was driven by capital deepening (give % here), technol-

ogy progress contributed another 62.47%, and a small fraction (11.23%)

was due to efficiency improvement. China’s manufacturing industry ex-

hibits strong productivity convergence. We demonstrate that this conver-

gence was driven by technology change and capital deepening effects, but

not efficiency change. These results suggest that China’s overall industry

development benefited from market mechanism in resource allocation and

technology diffusion. We point out that China’s industry can still benefit

from capital accumulation in the near future but long-term productivity

growth must be based on technology progress.

Keywords: technology gap; technical efficiency; manufacturing industry; China; metafrontier.

∗International Business School Suzhou, Xi’an Jiaotong-Liverpool University, China. email:
ming.he@xjtlu.edu.cn.
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1 Introduction

China has achieved phenomenal growth in its industrial sector since the 1980s.

From 1980 to 2017, total industrial value added increased from 603.9 billion to

26.7 trillion RMB, or 43.2 times.1 Nowadays, China accounts for 20.9% of the

world’s industrial value added, and China is the top producer of 220 industrial

products.2 The strong industry explains why China is often called the factory of

the world.

Against the backdrop of China’s great leap in industrial development was vi-

brant productivity growth. From 1980 to 2017, the labor productivity in China’s

industry increased 22 times and reached $21,567 per worker, which was far greater

than that of middle-income countries ($16,905 per worker) but slightly lower than

that of upper-middle-income countries ($23,427 per worker).3 Although a huge

productivity gap still exists between China and developed economies, data show

that China is catching up rapidly.4 Clearly, labor productivity growth is the key

to understand China’s industrial development.

Empirical studies on China often address two research questions. First, what

are the driving forces of China’s productivity growth? Second, has there been

convergence or divergence during China’s high-speed growth? Depending on the

methodology being used and the subject of study. researchers give different an-

swers to these questions. Growth decomposition has been widely applied to inves-

tigate China’s regional economic growth, but not China’s industry (Badunenko &

Tochkov, 2010; Henderson, Tochkov, & Badunenko, 2007; Unel & Zebregs, 2009).5

These studies usually identify resource accumulation as the predominant source of

labor productivity growth. They also report divergence among Chinese regions.

Recently, there has been a burgeoning volume of studies on China’s manufactur-

ing industry. Regressional analyses often show a greater role of total factor pro-

ductivity (TFP) than factor accumulation in explaining industrial output growth

(Brandt, Van Biesebroeck, & Zhang, 2012; S. Chen, Jefferson, & Zhang, 2011) re-

move S.. These studies also show convergence of TFP among ownership types or

across regions (Berkowitz, Ma, & Nishioka, 2017; Deng & Jefferson, 2011; Jefferson,

1Source: National Bureau of Statistics. Industrial value added is in 2015 constant price.
2Source: World Bank Open Data and http://finance.people.com.cn/n1/2019/0920/c1004-

31365026.html.
3Source: National Bureau of Statistics and World Bank Open Data.
4Over the 1997–2017 period, the growth rate of labor productivity was 8.1% per annum in

China, compared with 1.9% in the European Union, 2.2% in Japan, and 1.7% in the United
States. Data source: World Bank Open Data and author’s own calculations.

5Walheer (2019b) is an exception, but this study is restricted to a limited number of industrial
parks.
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Rawski, & Zhang, 2008; Lemoine, Poncet, & Ünal, 2015). Given the differences

in research method, a growth decomposition analysis for China’s manufacturing

industry is a missing link in this literature.

In this article, we investigate the driving forces of China’s industrial labor

productivity using a rich firm-level dataset for 1998–2007. For the first time, the

dataset allows us to develop accurate measures for inputs and output for detailed

industrial sectors. Methodologically, we follow Kumar and Russell (2002) and de-

compose labor productivity growth into efficiency change, technology change, and

input change (capital deepening) effects. We employ data envelopment analysis

(DEA) to estimate the potential outputs of a given technology. DEA, first pre-

sented by Charnes, Cooper, and Rhodes (1978) and Banker, Charnes, and Cooper

(1984), is an attractive modeling technique because it does not assume a priori

any functional form for the technology, as parametric methods do. These as-

sumptions are usually restrictive and not always innocuous.6 As another desirable

feature, DEA allows us to easily decompose TFP growth into efficiency change

and technology change (Bos, Economidou, & Koetter, 2010). Such a treatment

is critical for the various growth decompositions seen in the literature, including

Färe, Grosskopf, Norris, and Zhang (1994), Kumar and Russell (2002), Henderson

and Russell (2005), Badunenko and Romero-Ávila (2013), Walheer (2018c), and

Walheer (2019b).

A distinguishing feature of our study is to incorporate technology heterogeneity

into the analysis. Theories postulate that economic units choose technologies

that match their factor combinations, resulting in technology clubs (Atkinson &

Stiglitz, 1969; Basu & Weil, 1998). Empirically, it has been shown that technology

heterogeneity exists across sectors (Bos, Economidou, & Koetter, 2010; Molinos-

Senante, Maziotis, & Sala-Garrido, 2017; Walheer, 2016b, 2018a, 2018b, 2019c),

regions (Bos, Economidou, Koetter, & Kolari, 2010; Filippetti & Peyrache, 2015;

Walheer, 2016b, 2018c, 2019a), and ownership types (Badunenko & Kumbhakar,

2017; Elyasiani & Rezvanian, 2002). In the Chinese context, S. Chen et al. (2011)

remove S. and Ding, Guariglia, and Harris (2016) highlight sectoral difference in

China’s industry, whereas M. Chen and Guariglia (2013) remove M. and Guariglia,

Liu, and Song (2011) emphasize differences across ownership types.

Based on these considerations, we employ the concept of metafrontier devel-

oped by Battese and Rao (2002) and model two levels of heterogeneity in technol-

6See, for example, discussions in Hsieh and Klenow (2009) about the impact of the Cobb-
Douglas assumption on their results.
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ogy: that between technology groups and that between ownership types.7 Such a

treatment is similar to those of He and Walheer (in press) and Walheer and He (in

press). In the growth decomposition, the introduction of the metafrontier implies

a further decomposition of each component into a group effect and a heterogeneity

component. The application of metafrontier techniques in growth decomposition

has received increasing attention in recent years. Examples include Fei and Lin

(2016), Filippetti and Peyrache (2015), Molinos-Senante et al. (2017), Walheer

(2019a), and N. Zhang and Choi (2013) remove N.. However, none of these appli-

cations considers more than one level of heterogeneity. Thus, we also contribute

to the literature of growth decomposition.

Our analyses reveal strong labor productivity growth in China’s manufacturing

industry during 1998–2007. When we control for technology heterogeneity, we find

that most of the productivity growth (125.60%) was explained by capital deepen-

ing give percentage, followed by technology progress (62.47%). The contribution

of efficiency change was small (11.23%) because the room for efficiency improve-

ment was already small in 1998. We find strong convergence of labor productivity

across ownership types and among the medium- and high-tech groups. We show

that convergence was driven by technology change and capital deepening. We

demonstrate the importance of heterogeneity components in explaining variations

in the decomposition when using different reference technologies. We then link

our study to the recent literature on China’s productivity growth and synthesize

these findings. Finally, we discuss policy implications of our results.

The rest of this article is organized as follows. Section 2 introduces the method-

ology. In Section 3, we present our empirical findings, make interpretations, and

discuss their implications. Finally, Section 4 concludes the study.

2 Methodology

Our aim is to suggest a new decomposition of labor productivity growth when tech-

nology heterogeneity between entities (e.g., firms, regions, sectors) is taken into

consideration. We start by defining the groups and the technologies and introduce

our concepts of technical efficiency and technology gap. Next, we explain how to

decompose labor productivity into several parts when entities belong to different

technologies. Finally, we show how our different indicators can be computed by

7The concept of metafrontier is based on the notion of meta-production set by Hayami and
Ruttan (1970). We refer the reader to Battese, Rao, and O’Donnell (2004) and O’Donnell, Rao,
and Battese (2008) for more details of the metafrontier methodology.
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means of linear programs.

2.1 Groups and technologies

We assume that we observe decision making units (DMUs) from I groups where

each group is composed of Ki types, for i = 1, . . . , I during T time periods.8

Also, we consider that DMUs use P production factors, captured by xt ∈ RP
+, to

produce one output, captured by yt ∈ R+, at time t = 1, . . . , T .

We define the technology in terms of output requirement sets. Given our

setting, we distinguish between three levels: each type in every group; each group;

and when considering all groups. The output requirement sets are given as follows:

P t
ik(x) = {y | x can produce y in type k of group i at time t}. (1)

P t
i (x) = {y | x can produce y in group i at time t} (2)

P t(x) = {y | x can produce y at time t} (3)

We label P t
ik(x) the group-type output requirement set, P t

i (x) the group-specific

output requirement set, and P t(x) the overall output requirement set. These sets

contain the output quantities that can be produced by the inputs x at time t at

different levels. They are related as follows:

P t
i (x) = P t

i1(x) ∪ · · · ∪ P t
iKi

(x), for i = 1, . . . , I, (4)

P t(x) = P t
1(x) ∪ · · · ∪ P t

I (x). (5)

A first implication is the following: P t
ik(x) ⊆ P t

i (x) ⊆ P t(x), for all i, k,

and t. Next, P t
i (x) can be viewed as the envelopment of P t

ik(x), and P t(x) as the

envelopment of P t
i (x). At this point, we remark that the envelopment is, generally,

non-convex (give references; my paper in EJOR + there are 2 others papers in

EJOR (Kristiaan Kerstens, Christopher O’Donnell, Ignace Van de Woestyne AND

Mohsen Afsharian, Victor V. Podinovski and 1 paper in JORS about hotels.).

This will directly impact the computation (see Section 2.5). This also implies the

following:

P t
i (x) =

{
P t
11(x) ∪ · · · ∪ P t

1K1
(x)
}
∪ · · · ∪

{
P t
I1(x) ∪ · · · ∪ P t

IKI
(x)
}
. (6)

8In our empirical study, a DMU comprises all firms of a certain ownership type within an
industrial sector. These DMUs are first categorized into three technology groups, and then
divided into three ownership types.
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Thus, P t(x) represents the meta technology set, i.e., when considering all groups

(and thus all types) at time t.

2.2 Inefficiency and technology gap

We define inefficiency as the ability of DMUs to increase their output when keeping

their inputs constant. To formally define (in)efficiency, we introduce the concept

of potential outputs. Intuitively, potential outputs refer to the maximal output

expansion with respect to the frontier of the chosen output requirement set. Given

our technology heterogeneity context, we have three different potential outputs:

ytik(x) = max
{
y | y ∈ P t

ik(x)
}
. (7)

yti(x) = max
{
y | y ∈ P t

i (x)
}
. (8)

yt(x) = max
{
y | y ∈ P t(x)

}
. (9)

Intuitively, actual output cannot exceed the potential values, implying that

ytik (xt) ≥ yt, yti (xt) ≥ yt, and yt (xt) ≥ yt for any DMU of type k in group i whose

input-output mix is (xt, yt) at time t. If they coincide, it reveals that the output

is at its optimal value (with respect to the reference technology). Moreover, we

have, by construction, that yt(x) ≥ yti(x) ≥ ytik(x) for any x. In words, potential

output with respect to the group-type technology cannot exceed the potential

output with respect to the group-specific technology, which cannot exceed the

potential output with respect to the overall technology. Intuitively, this reflects

that the group-type technology sets are included in the group-specific technology

sets, which are themselves included in the overall technology set.

A well-established indicator to capture the extent to which output can be raised

is the Debreu–Farrell give the reference ? that is include the year here technical

efficiency ratio. For any DMU of type k in group i whose input-output mix is

(xt, yt)better to define for (x, y) at time t, we define:

etik
(
xt, yt

)
=

yt

ytik (xt)
. (10)

eti
(
xt, yt

)
=

yt

yti (xt)
. (11)

et
(
xt, yt

)
=

yt

yt (xt)
. (12)

Depending on the reference technology, these three ratios provide three different

levels of technical efficiency: etik (xt, yt) is the group-type technical efficiency, which
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measures the gap between the actual output yt and the potential output of the

technology that is available to type k in group i; eti (xt, yt) is the group-specific

technical efficiency, which is relative to the potential output of the group-specific

technology; and et (xt, yt) is the overall technical efficiency, which is with reference

to the potential output of the overall technology. As discussed previously, the

actual output cannot exceed potential outputs, so the technical efficiency ratios

are no greater than unity. When the ratio equals one, the output is at its maximal

value with respect to the reference technology set. When the ratio is smaller

than one, output can, in principle, be increased without increasing the production

factors. Moreover, given the ranking between the potential outputs discussed

previously, we also have etik (xt, yt) ≥ eti (xt, yt) ≥ et (xt, yt).

Next, we construct two measurements for the technology difference between

the hierarchy levels. For any input mix x, we define:

gtik(x) =
ytik(x)

yti(x)
. (13)

gti(x) =
yti(x)

yt(x)
. (14)

gtik(x) is the group-type technology gap and gti(x) is the group-specific technology

gap at time t. That is, gtik(x) captures the technology gap between the technology

that is specific to type k and the technology that is available to group i, whereas

gti(x) captures the technology gap between the technology that is specific to group

i and the overall technology. Both ratios are smaller than one, which can be seen

from the relationship between the potential outputs, i.e., yt(x) ≥ yti(x) ≥ ytik(x).

A value of one reveals no technology gap, while a smaller value implies more gaps.

Using our two gap indicators, we can obtain an useful decomposition of poten-

tial output with respect to the group-type technology as follows:

ytik(x) = gtik(x)× gti(x)× yt(x). (15)

Intuitively, there are two gaps between the potential output of the group-type

technology ytik(x) and that of the overall technology yt(x): the group-type and the

group-specific technology gaps. This is a direct implication of the three hierarchy

levels.

Finally, we remark that the previous equation can be rewritten in terms of

efficiency measurements. It suffices to evaluate (15) at xt, then divide both sides
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by the actual output yt: better to define for (x, y)

et
(
xt, yt

)
= gtik

(
xt
)
× gti

(
xt
)
× etik

(
xt, yt

)
. (16)

That is, for any observed DMU, the overall technical efficiency is generally lower

than the group-type technical efficiency, because of the two technology gaps be-

tween the hierarchy levels.

2.3 Productivity growth decomposition

Kumar and Russell (2002) suggest a useful decomposition for productivity growth

that assumes a unified technology. To start with, suppose that the input-output

mix of a DMU is
(
xb, yb

)
at time b and (xc, yc) at time c. The ratio of the actual

outputs can be expressed as the product of two ratios: that of technical efficiency

ratios and that of potential outputs. That is, we have:9

yc

yb
=
ec (xc, yc)

eb (xb, yb)

yc (xc)

yb (xb)
. (17)

The next step is to introduce the counterfactual potential output yc
(
xb
)
, which

is the maximum output for the input mix xb given the technology of time c.

Multiplying the right hand side of (17) by
yc(xb)
yc(xb)

, we get

yc

yb
=
ec (xc, yc)

eb (xb, yb)

yc
(
xb
)

yb (xb)

yc (xc)

yc (xb)

=EFF× TECHb ×KACCc.

(18)

Of the three terms on the right hand side, EFF is the efficiency change when the

DMU changes its input-output mix from
(
xb, yb

)
to (xc, yc). TECHb measures the

extent to which the production frontier shifts outward or inward when evaluated

at xb. It captures technology change: TECHb > 1 means technology progression

and TECHb < 1 means technology regression. KACCc measures the change of

the potential output due to the change of the input mix if the technology is fixed

at time c. If x is capital per worker and y is output per worker, as in our case,

KACCc captures the effect of capital deepening. Obviously, both TECHb and

KACCc depend on the chosen reference counterfactual yc
(
xb
)
. If we use the other

9The subscripts i and k disappear because we assume a unified technology for the moment.
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counterfactual yb (xc), the decomposition becomes

yc

yb
=
ec (xc, yc)

eb (xb, yb)

yc (xc)

yb (xc)

yb (xcn)

yb (xb)

=EFF× TECHc ×KACCb,

(18′)

where TECHc is the technology change effect evaluated at xc and KACCb is the

input change effect if the technology is fixed at time b.

To avoid arbitrary selection of the counterfactual, Kumar and Russell (2002)

adopt the “Fisher ideal index,” which is the geometric mean of (18) and (18′).

That is,

yc

yb
= EFF×

√
TECHb × TECHc ×

√
KACCb ×KACCc

= EFF× TECH×KACC.

(19)

2.4 Heterogeneity components

In light of the technology heterogeneity between groups and types, the conven-

tional growth decomposition (19) is incomplete. In general, the efficiency change,

or technology change, or input change effect will be different when they are evalu-

ated using the group-type concepts. The discrepancy arises because the technology

gaps in (15) and (16) will also change following the change of the production sets

and the change of the input-output mix. Consequently, each of these effects can

be further decomposed into a group-type counterpart and two heterogeneity com-

ponents that capture the change of technology gaps (Filippetti & Peyrache, 2015;

Walheer, 2019a).

Suppose we observe a DMU of type k in group i. Let’s denote its input-output

mix by (xt, yt), where t ∈ {b, c}. Using (16), we can decompose EFF in (18) as

follows:

EFF =
ecik (xc, yc)

ebik (xb, yb)

gcik (xc)

gbik (xb)

gci (xc)

gbi (xb)

= EFFik ×GEFFik ×GEFFi.

(20)

The first term, EFFik, is the true efficiency change that is based on the group-

type technical efficiency. The second term, GEFFik, is the measured change of

the technology gap between the group-type frontier and the group-specific fron-

tier, whereas GEFFi is the measured change of the technology gap between the

group-specific frontier and the metafrontier. what is the point of this Footnote
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? seems confusing10 The latter two terms summarize the change of the overall

efficiency due to varying technology gaps between the hierarchy levels. We call

them heterogeneity components.

Next, we disentangle the overall technology change, represented by TECHb in

(18), into the group-type technology change and heterogeneity components. Using

(15), we have

TECHb =
ycik
(
xb
)

ybik (xb)

gbik
(
xb
)

gcik (xb)

gbi
(
xb
)

gci (xb)

= TECHb
ik ×GTECHb

ik ×GTECHb
i .

(21)

The first term, TECHb
ik, is the change of the group-type technology evaluated at

the input mix observed at time b. The next two terms measure the changes of

the technology gaps between the hierarchy levels: GTECHb
ik for the gap between

the group-type frontier and the group-specific frontier whereas GTECHb
i for the

gap between the group-specific frontier and the metafrontier, both evaluated at

xb. Note that in order to achieve overall technology progress, either the group-

type technology experiences progression, or the technology progress is faster at

the upper-levels of the hierarchy, resulting in lower technology gap ratios at time

c.

In a similar manner, the overall input change effect KACCb in (18′) can be

decomposed into the input change effect of the group-type technology and two

heterogeneity components. That is,

KACCb =
ybik (xc)

ybik (xb)

gbik
(
xb
)

gbik (xc)

gbi
(
xb
)

gbi (xc)

= KACCb
ik ×GKACCb

ik ×GKACCb
i .

(22)

The first term, KACCb
ik, is the input change effect evaluated with the group-type

technology at time b. The next two terms capture the changes of the technol-

ogy gaps between the hierarchy levels due to the change of the input mix, when

the technologies are all fixed at time b. Conceptually, if input change (e.g., cap-

ital deepening) increases the overall potential output (KACCb > 1), this can be

10Note that each of these two terms can be further decomposed into an effect due to relative
technology change and another effect due to input change. Taking GEFFik for example, it can be

written as GEFFik =
gc
ik(x

c)

gb
ik(x

b)
=

gc
ik(xb)
gb
ik(x

b)

gc
ik(x

c)
gc
ik(x

b)
. The first term captures the change of the gap be-

tween two production frontiers, holding the input mix fixed at xb, whereas the second term mea-
sures the change of the gap due to the change of the input mix, when both production frontiers
are positioned at time c. Using notations to be introduced shortly, GEFFik = 1

GTECHb
ik

1
GKACCc

ik
.
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achieved via two separate channels. First, the potential output is increased at the

group-type level (KACCb
ik > 1). Second, even if the group-type potential output

remains unchanged, as far as the technology gaps are larger (smaller value) when

evaluated at the new input mix (xc), the overall potential output increases. There

are two technology gaps in our three-level hierarchy setting, contributing to the

two heterogeneity components.

If we evaluate (21) at xc instead of xb, we end up with the decomposition of

TECHc. Similarly, if we use the technologies at time c to evaluate the potential

outputs and technology gaps in (22), we obtain the decomposition of KACCc.

They are

TECHc = TECHc
ik ×GTECHc

ik ×GTECHc
i , (21′)

KACCc = KACCc
ik ×GKACCc

ik ×GKACCc
i . (22′)

With (20–22′), we obtain the following new decomposition:

yc

yb
= (EFFik ×GEFFik ×GEFFi)× (TECHik ×GTECHik ×GTECHi)

× (KACCik ×GKACCik ×GKACCi) .

(23)

2.5 Estimation

Assume that for two time periods b and c, we observe Nik DMUs of type k in

group i, where k = 1, . . . , Ki and i = 1, . . . , I. For these data, it suffices to

estimate the following potential output values to define all our technical efficiency

and technology gap ratios: yt2ik (xt1), yt2i (xt1), and yt2 (xt1), where t1, t2 ∈ {b, c}
and xt1 is the input mix of one of the Nik DMUs at time t1. Different methods

could be used at this stage. We prefer, given our context, to make use of a

nonparametric estimation method. Indeed, there is no guideline to define the

technology (captured by output requirement sets) in the multi-group and multi-

type context. Moreover, assuming a specific technology structure could bias the

results of our study.

As such, we estimate the potential outputs using a Data Envelopment Anal-

ysis (DEA)-based methodology. DEA, introduced by Charnes et al. (1978), does

not assume any functional form for the technology, but rather reconstructs the

technology using the data. Nevertheless, to avoid a trivial reconstruction and to

comply with the common practice, we impose some regularity conditions on the
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technology.11 Clearly, stochastic methods could be used as an alternative at this

stage, when a parametric form is specified (Amsler, O’Donnell, & Schmidt, 2017).

With DEA, the three potential outputs can be obtained by means of linear

programs. Let’s start with the group-type potential output. For each firm n of

type k in group i, let’s denote its input-ouput mix at time t by (xtikn, y
t
ikn). For

any input mix x, the group-type potential output ytik(x) is obtained using the

following linear program:

ytik(x) = max
λ1,...,λNik

y

(C-1) y ≤
Nik∑
n=1

λny
t
ikn,

(C-2) x ≥
Nik∑
n=1

λnx
t
ikn,

(C-3)

Nik∑
n=1

λn = 1,

(C-4) ∀n = 1, . . . , Nik : λn ≥ 0,

(C-5) y ≥ 0.

(24)

The other two potential outputs are iteratively estimated as

yti(x) = max
k∈{1,...,Ki}

ytik(x),

yt(x) = max
i∈{1,...,I}

yti(x).

may add a remark here that it is non-convex, see Mohsen Afsharian, Victor V.

Podinovski EJOR These estimators have to be interpreted as their theoretical

counterparts.

As a final remark, we point out that, in general, linear programs are very

sensitive to the presence of outliers. Indeed, all the peers are used when computing

potential outputs. Fortunately, it is possible to make the linear programs robust to

this issue. Well-established methods, discussed, for example, in Daraio and Simar

(2007), are the order-m (where m can be viewed as a trimming parameter), and

the order-α (analogous to traditional quantile functions) procedures. In words,

11In particular, we assume that the output-requirement sets satisfy free disposal of outputs,
and are compact (Färe & Primont, 1995). Also, refer to O’Donnell et al. (2008) and Huang, Ting,
Lin, and Lin (2013) for more detail about the estimation of technology gap ratios. Finally, we
point out that imposing regularity conditions is weaker than relying on a parametric specification
for the technology/production function.
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these procedures use sub-samples of the observations to compute the potential

outputs in the linear programs. As a result, the estimates are less sensitive to

potential issues, i.e., more robust.

3 Application

We investigate the sources of labor productivity growth in China’s manufacturing

industry, while distinguishing between different technology groups and ownership

types. We start by presenting the data, and contextualizing our study by show-

ing some key descriptive statistics. Next, we provide our results for the growth

decomposition. Finally, we link our results to the findings in the literature and

discuss policy implications.

3.1 Data and descriptive statistics

Our study uses the China Industry Survey (CIS) dataset, which is a firm-level

dataset prepared by the National Bureau of Statistics of China. It comprises more

than 555,000 distinct firms and spans the years 1998–2007, providing over two

million observations. The CIS dataset provides rich information about each firm,

including industrial classification, ownership structure, and inputs and outputs.

Because of its comprehensiveness and wide coverage, the CIS dataset is highly

visible among recent studies on China’s industry (Brandt et al., 2012; M. Chen &

Guariglia, 2013; Hsieh & Klenow, 2009; Yu, 2015) remove M..

Considering technology heterogeneity, we divide the sample into industrial sec-

tors and then by ownership types. In compliance with the national standard of

economic classification (GB/T 4754), each firm in the CIS dataset receives a four-

digit industry classification code, with which we define 30 sectors. Based on the

classification of technology intensities made by the Organization for Economic

Cooperation and Development (OECD), we re-group the sectors into three tech-

nology groups: low-tech, medium-tech, and high-tech.12 The industrial sectors

and their technology classification are presented in Table S1 of the supplementary

material. The CIS dataset defines 29 registration types based on ownership and

organization structure. To focus on the ownership structure, we summarize them

12The OECD classification can be found at http://www.oecd.org/sti/ind/48350231.pdf. We
remove art ware and other manufacturing (code range 4211–4290) from the sample because the
technology intensity of this sector is undefined. We also remove tobacco manufacturing (code
range 1610–1690) because this sector is dominated by state-owned firms. Both sectors are small
compared to others.
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into three types: state-owned, private-owned, and foreign-owned.13 Because the

registration information is often ambiguous about control rights and sometimes

misleading (Hsieh & Song, 2015), we adopt a two-step procedure to determine a

firm’s ownership type. In step one, a firm is defined as state- (private-, or foreign-)

owned if the majority of the registered capital is owned by the state and collective

organization (private persons, or foreigners). If step one is indeterminate, the reg-

istration type is used to determine the ownership type as far as it is unambiguous

about control rights.14

We consider a very simple setting with two production factors: capital and

labor. The corresponding output variable is industrial value added. This simple

setting, which dates to Solow (1956), is highly visible in empirical studies (Brandt

et al., 2012; M. Chen & Guariglia, 2013; Kumar & Russell, 2002) remove M..

Although the CIS dataset provides information on labor input, capital input and

value add are reported in nominal values. We follow the procedure of Brandt et

al. (2012) to convert capital stock from original purchasing prices to real values.

We also use their sector-specific output deflator to convert value added into real

terms.15

After removing incomplete firm-level observations, we end up with 496,642

distinct firms and a total of 1,862,703 observations. In Table 1, we present the

summary statistics of the three ownership types and the three technology groups

for years 1998, 2003, and 2007.

The total firm numbers are 79.2–85.3% of those reported by the China Sta-

tistical Yearbook, whereas the aggregate employment numbers are 73.9–80.8%

of the yearbook values. These indicate good coverage of our dataset despite

that we dropped two sectors. Judging by employment, the share of state-owned

firms declined rapidly from 68.8% to 20.1%, whereas that of private firms and

foreign-owned firms increased sharply. This dramatic change can be explained

by China’s FDI-friendly industrial policy after 1992 and the massive enterprise

13Many studies also define a fourth ownership type: collective ownership. Firms are collective-
owned if they are under control of collective organizations, such as government bureaus and com-
munes. Therefore, collective ownership is conceptually similar to state ownership. Empirically,
collective- and state-owned firms are found to be similar in many aspects (M. Chen & Guariglia,
2013; Guariglia et al., 2011; Walheer & He, in press). To simplify our hierarchy structure, we
merge collective ownership into state ownership.

14Firms registered as state-owned enterprises, state-owned partnerships, state-owned limited
liability companies, collective enterprises, and collective partnerships are defined as state-owned;
firms registered as sole proprietorships, private partnerships, private limited liability companies,
and private joint-stock companies are defined as private-owned; firms registered as (wholly)
foreign-owned are defined as foreign-owned.

15We refer the reader to Brandt, Van Biesebroeck, and Zhang (2014) for more detail.
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Table 1: Descriptive statistics by ownership type and technology
intensity

Year State Private Foreign
Low Medium High

Aggregate
tech tech tech

Firm number (percentages for sub categories)
1998 58.42 27.57 14.01 38.54 55.08 6.37 130668
2003 26.30 55.24 18.46 37.51 55.74 6.75 167461
2007 10.20 70.69 19.12 36.06 57.17 6.77 287312

Employment (percentages for sub categories)
1998 68.81 18.53 12.66 32.82 60.03 7.15 45789757
2003 38.72 37.54 23.74 35.70 54.85 9.46 45708566
2007 20.07 47.96 31.97 35.20 52.47 12.33 63599564

Capital per worker
1998 80.75 46.77 107.90 55.42 90.07 78.76 77.89
2003 132.96 63.00 108.31 65.18 122.97 107.14 100.84
2007 202.91 86.39 123.09 76.78 152.85 115.86 121.51

Value added per worker
1998 25.96 32.05 56.64 27.66 30.08 53.65 30.97
2003 64.04 60.04 92.41 48.94 74.53 115.57 69.27
2007 136.52 111.09 127.16 86.23 135.46 161.43 121.33

Units: persons for total employment and 1,000 RMB per person for capital per
worker and value added per worker. We report sample means for capital per worker
and value added per worker.

reform launched in 1997 (Hsieh & Song, 2015; K. H. Zhang & Song, 2001) remove

K. H.. Although the majority of the firms are found in the low-tech and medium-

tech sectors, there has been a dramatic increase in the employment share of the

high-tech group.

Overall, we observe substantial capital deepening in China’s manufacturing

industry. The average capital-labor ratio increased from 77,890 RMB per person

to 121,510 RMB per person, or a 56% increase, yet this is not comparable to the

increase in labor productivity, which is 292%. Capital intensity and labor pro-

ductivity are markedly different between ownership types and technology groups.

Foreign ownership, which was the most capital intensive in 1998, was overtaken by

state ownership in 2007. Similarly the productivity advantage of foreign ownership

vanished in 2007. Capital deepening was strong among medium- and high-tech

firms, but to a much less extent for low-tech firms. The productivity gap was re-

duced between low- and high-tech firms but increased for low-tech firms. Thus, we

observe productivity convergence across ownership types but mixed result between

technology groups.

Our formal analysis is based on aggregate data at the sector-ownership level.

That is, all firms belonging to an ownership type in a two-digit sector is aggregated

into a single DMU better to not refer to DMU in this Section; industry firms etc...

This aggregation strategy is based on two considerations. First, DEA is sensitive

to outliers and extreme values. Because we observe very large and very small firms

at the same time, a firm-level analysis will impair the reliability of the entire set

15



of estimates. Second, growth decomposition investigates the performance change

of DMUs over time, which requires a balanced panel. However, the CIS dataset is

highly unbalanced, with unusually high entry/exit rates in certain years (Brandt

et al., 2014). Therefore, aggregation is a necessary strategy to overcome this data

problem. Because we have 27 two-digit sectors and three ownership types, in total

we end up with 81 sector-ownership combinations (DMUs).

3.2 Results

short intro here ?

Productivity convergence To take a first look at the growth pattern, we

report the average labor productivity in 1998 and 2007 as well as the average

labor productivity growth rate in Table 2.16

Table 2: Labor productivity growth per ownership and tech-
nology group

Technology

Intensity
Ownership

Labor Labor Labor
productivity productivity productivity

1998 2007 growth

low

state 25.41 104.48 309.69
private 31.32 93.96 197.93
foreign 52.87 106.91 91.43

all 36.53 101.78 199.68

medium

state 29.34 134.81 387.67
private 35.37 127.13 270.50
foreign 66.39 190.30 179.22

all 43.70 150.75 279.13

high

state 34.03 124.13 326.86
private 49.74 153.02 236.81
foreign 80.78 184.99 126.06

all 54.85 154.05 229.91

all

state 28.26 121.27 349.14
private 35.32 116.49 237.19
foreign 62.48 155.74 137.55

all 42.02 131.17 241.29

Units: 1,000 RMB per person for labor productivity and percent for produc-
tivity growth. We report the cumulative growth rates over 1998–2007, i.e.,(
y2007/y1998 − 1

)
× 100%. We average over all DMUs (sector-ownership combi-

nations) in the corresponding category to obtain these values.

Judging by the overall average, the labor productivity of China’s manufac-

turing industry grew 241.29% over the 1998–2007 period. We observe a clear

pattern of labor productivity catching up between ownership types. Within each

technology group and on average, foreign ownership had the absolute advantage

in labor productivity in 1998, whereas state ownership was the least productive.

16The values for all 81 sector-ownership combinations are reported in Table S2 of the supple-
mentary material.
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Although all three ownership types experienced phenomenal productivity growth,

state ownership was the clear winner in terms of speed, followed by private owner-

ship. Eventually, the productivity gap almost vanished within the low-tech group,

and substantially reduced for the other two technology groups. Remarkably, with

the exception of the high-tech group, state ownership outperformed private own-

ership on all grounds in 2007. Foreign ownership was still the leader in 2007, but

the productivity advantage had been substantially reduced.

According to the average numbers, the high-tech group was the most produc-

tive and the low-tech group the least in 1998. During 1998–2007, labor productiv-

ity growth was much higher for the medium-tech group than the high-tech group.

As a result, the productivity gap between the medium- and high-tech groups vir-

tually disappeared in 2007, although the latter maintained its leading position.

The productivity growth of the low-tech group, however, was the lowest among

the three technology groups.

The above discussions reveal convergence of labor productivity between own-

ership types. They also suggest convergence between the medium- and high-tech

groups, but divergence between the low-tech group and the rest of the industry. It

remains to establish the overall growth pattern when we pool the data together.

Following Kumar and Russell (2002), Henderson and Russell (2005), and Walheer

(2018c), we plot the cumulative growth rate of labor productivity against labor

productivity in 1998 along with the GLS regression line in Figure 1. The t-value

for the slope coefficient is also displayed.
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Figure 1: Labor productivity growth versus labor productivity in 1998

Figure 1 clearly indicates convergence of labor productivity in China’s manu-

facturing industry. That is, in addition to convergence among ownership types,

we demonstrate that convergence also holds when the industry is further divided
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into sectors within ownership types, i.e., when heterogeneity in the sectoral dimen-

sion is considered. The latter result has never been documented by the literature.

In light of the sluggish productivity growth in the low-tech group, our result also

shows that the converging force between ownership types dominated the divergent

force of the low-tech group.

Efficiency change Our next step is to identify the driving force of the con-

vergence pattern. In Table 3, we present the efficiency change effect in reference

to different technology concepts: the meta technology (EFF), which assumes the

same technology for all DMUs; the group-specific technologies (EFFi), which as-

sumes heterogeneity across technology groups but not over ownership types; and

the group-type technologies (EFFik), which assumes full heterogeneity. We also

present the heterogeneity components in (20), which are GEFFi and GEFFik.
17

Next, in Figure 2 we plot the three efficiency change effects against labor produc-

tivity in 1998 and report the GLS t-values for the slope coefficients.

Table 3: Growth decomposition: the efficiency change effect

Technology
Ownership y1998 EFF EFFi EFFik GEFFi GEFFikintensity

low

state 25.41 36.48 26.01 -3.89 8.09 32.64
private 31.32 42.53 21.57 13.73 16.83 7.58
foreign 52.87 12.51 11.51 7.54 2.48 4.88

all 36.53 30.51 19.69 5.79 9.13 15.03

medium

state 29.34 15.27 9.13 0.84 4.45 8.08
private 35.37 53.83 21.56 10.28 28.41 13.01
foreign 66.39 33.45 31.52 30.41 2.57 1.44

all 43.70 34.18 20.73 13.84 11.81 7.51

high

state 34.03 77.01 55.62 39.61 9.13 17.58
private 49.74 26.54 20.00 20.00 4.96 0.00
foreign 80.78 10.92 9.61 0.00 1.01 9.61

all 54.85 38.15 28.41 19.87 5.03 9.06

all

state 28.26 30.77 21.17 3.22 6.45 19.14
private 35.32 46.19 21.39 12.76 21.09 9.35
foreign 62.48 22.42 20.93 17.72 2.36 3.75

all 42.02 33.13 21.16 11.23 9.97 10.75

y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). EFF and
related variables are evaluated over the 1998–2007 period and converted into cumulative

growth rates (unit: percent). That is, EFF =

(
e2007(x2007,y2007)
e1998(x1998,y1998)

− 1

)
× 100%, and

similarly for the others. We average over all DMUs (sector-ownership combinations) in
the corresponding category to obtain these values.

Judging by EFFik, the overall efficiency change is quite small (11.23%), in-

dicating sluggish efficiency improvement when DMUs are benchmarked against

the group-type frontiers. private firms improved their technical efficiency in all

three technology groups. Foreign-owned firms improved their efficiency strongly

17The full results for all 81 sector-ownership combinations are reported in Table S3 of the
supplementary material.

18



t = -4.68

-5
0

0
50

10
0

15
0

20
0

C
ha

ng
e 

in
 e

ffi
ci

en
cy

20 40 60 80 100 120
Output per worker in 1998

(a) EFF versus y1998
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(b) EFFi versus y1998
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(c) EFFik versus y1998

Figure 2: Efficiency change versus labor productivity in 1998

in the medium-tech group but to a less extent in the low-tech group. Overall, the

efficiency improvement by these two ownership types were moderate. For state

ownership, efficiency improvement is only seen in the high-tech group and very

weak in average.

At this stage, we want to investigate why efficiency change was in general weak,

and especially weak for state ownership. We offer two explanations. First, if the

efficiency levels were already high in 1998, then we cannot expect any strong im-

provement afterwards. Second, poor initial efficiency level could coexist with weak

efficiency change. To find out which argument is true, we present the efficiency

levels in Table 4.

The numbers clearly support the first explanation. In almost all categories,

EFFik is large in Table 3 only if e1998ik is relatively low in Table 4. Note that

the average efficiency level for state ownership was already 0.912 in 1998, which

leaves little room for further improvement. This explains why efficiency change was

particularly low for state ownership. It is also clear that the efficiency levels of most

categories were quite close to unity in 2007. Thus, future efficiency improvement is

even more difficult. The second explanation only works for state ownership in the

low-tech group, for which the efficiency level was low in 1998, and the subsequent

efficiency change was negative.

The three measures of efficiency change are linked by the heterogeneity compo-
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Table 4: Technical efficiency in 1998
and 2007

Technology
Ownership e1998ik e2007ikintensity

low

state 0.893 0.861
private 0.839 0.942
foreign 0.874 0.923

all 0.869 0.909

medium

state 0.950 0.951
private 0.914 0.991
foreign 0.764 0.942

all 0.876 0.961

high

state 0.818 0.997
private 0.827 0.975
foreign 1.000 1.000

all 0.882 0.991

all

state 0.912 0.919
private 0.874 0.969
foreign 0.835 0.940

all 0.874 0.943

We average over all DMUs (sector-ownership
combinations) in the corresponding category
to obtain these values.

nents GEFFik and GEFFi through (20). As we explained there, GEFFik measures

by how much the observed technology gap between the production frontiers of the

ownership (lower level) and the technology group (upper level) has closed up,

whereas GEFFi measures the gap-closing rate between the group frontier (low

level) and the meta frontier (upper level). Stronger technology progress at the

lower level or favorable input change is needed to reduce these gaps.

The positive numbers of the heterogeneity components indicate industry wide

gap-closing between the production frontiers at different hierarchy levels. Con-

sequently, the efficiency change effect becomes much stronger when DMUs are

benchmarked against the group frontier (EFFi) or the meta frontier (EFF). If

measured by EFF, the average efficiency change (33.13%) is three times as large

as the average EFFik. We point out that the difference between these estimates

should not be interpreted as a bias. Instead, it reflects a difference in interpreta-

tion: If we use the meta frontier as the reference, then technology gaps become

part of the efficiency measure.

The result for GEFFik shows that state-ownership was able to substantially

close up their technology gaps with respect to the low- and high-tech group fron-

tiers (large GEFFik). Thus, they receive much higher scores in EFFi than EFFik

in these groups and in general. The same is true for private ownership of the

medium-tech group. Next, when we consider GEFFi, we find that private owner-

ship successfully reduced the gap between the group frontier and the meta frontier

in low- and medium-tech groups. Consequently they score much higher in EFF
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than EFFi. The same is true for state ownership in the high-tech group. Remark-

ably, the heterogeneity components are almost always the smallest for foreign

ownership.

When we contrast EFFik with y1998, a negative correlation is only seen in the

high-tech group but not the others. Actually, they show a positive correlation

when the numbers are averaged at the group level or by ownership. These ob-

servations explain Figure 2c: Efficiency change measured by EFFik does not con-

tribute to labor productivity convergence at all. The previous discussion shows

that categories with lower labor productivity in 1998 (i.e., state-low-tech, state-

high-tech, private-low-tech, and private-medium-tech) receive higher scores in the

heterogeneity components, which boosts up their efficiency change when the lat-

ter is measure by EFFi or EFF. Thus, the heterogeneity components generate a

permutation effect on EFFi and EFF: In almost all cases, private ownership beats

foreign ownership in efficiency change, and in three cases, state ownership also

beats private ownership. These explain why we observe significant convergence of

efficiency change in Figures 2a and 2b. Clearly, the reduced technology gaps of

the low-productivity categories contribute to these convergence patterns.

In conclusion, when benchmarked against the group-type production frontiers,

the efficiency change was quite small in magnitude and it barely contributed to

labor productivity convergence. This happened because the efficiency levels were

already high in 1998. In reference to group frontiers or the meta frontier, effi-

ciency change becomes much larger and exhibits convergence. These are due to

the shrinking technology gaps between the hierarchy levels, which prevailed all

categories but were unbalanced.

Technology change Next, we inquire the role played by technology change.

Similar to what we did earlier, we first present in Table 5 our three measures

of the technology change effect (TECH, TECHi, and TECHik) along with the

heterogeneity components (GTECHi and GTECHik).
18 To assess the impact of

technology change on labor productivity convergence, in Figure 3 we generate the

scatter plots for the technology change measures versus labor productivity in 1998.

GLS regression lines and t-values are shown therein.

The numbers reported for TECHik indicate strong technology progress in all

technology groups and for all ownership types. According to the average in the last

row, labor productivity grew 62.47% as a result of pure technology progress that

18The full results for all 81 sector-ownership combinations are presented in Table S4 of the
supplementary metarial.
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Table 5: Growth decomposition: the technology change effect

Technology
Ownership y1998 TECH TECHi TECHik GTECHi GTECHikintensity

low

state 25.41 82.53 92.94 130.94 -3.36 -9.70
private 31.32 46.14 45.73 52.09 -0.24 -3.99
foreign 52.87 76.17 67.64 42.75 8.87 18.94

all 36.53 68.28 68.77 75.26 1.76 1.75

medium

state 29.34 61.23 45.18 66.91 8.56 -0.80
private 35.37 41.66 35.65 38.41 5.11 -0.24
foreign 66.39 89.25 77.93 66.11 5.73 7.42

all 43.70 64.05 52.92 57.14 6.46 2.13

high

state 34.03 51.82 57.39 48.70 -4.27 8.34
private 49.74 41.08 44.13 36.22 -2.05 6.24
foreign 80.78 30.41 30.77 30.88 -0.23 -0.09

all 54.85 41.10 44.10 38.60 -2.18 4.83

all

state 28.26 68.86 65.99 90.97 2.28 -3.41
private 35.32 43.42 40.70 43.74 2.13 -1.05
foreign 62.48 77.38 68.50 52.68 6.35 11.28

all 42.02 63.22 58.40 62.47 3.59 2.27

y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). TECH and related
variables are evaluated over the 1998–2007 period and converted into cumulative growth rates (unit:

percent). That is, TECH =

(√
y2007(x1998)
y1998(x1998)

y2007(x2007)
y1998(x2007)

− 1

)
× 100%, and similarly for the others.

We average over all DMUs (sector-ownership combinations) in the corresponding category to obtain
these values.
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(a) TECH versus y1998
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(b) TECHi versus y1998
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(c) TECHik versus y1998

Figure 3: Technology change versus labor productivity in 1998
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originated from the “bottom” of the technology hierarchy. Note that this effect

is 4.5 times stronger than that of efficiency change identified in Table 3, when

both concepts are defined in reference to the group-type production frontiers.

When we distinguish between ownerships, we find that technology progress was

much stronger for state ownership, which is true within technology groups and on

average. Private ownership outperformed foreign ownership in the low- and high-

tech groups. According to the group averages, technology progress was strongest

in the low-tech group and weakest in the high-tech group. In conjugation with the

rankings of y1998, the observations made here suggest convergence in technology

progress, i.e., less productive categories in 1998 achieved higher rates of technology

growth afterwards. This conjecture is readily justified by Figure 3c. Thus, when

the group-type technologies are considered, technology progress contributed to

labor productivity growth and the convergence of labor productivity at the same

time.

The two heterogeneity components GTECHik and GTECHi capture gap clos-

ing/widening between production frontiers at different hierarchy levels. These

effects are generated by the movement of the production frontiers, whereas the

impact of input change has been purged out. A positive value indicates expan-

sion of the technology gap with respect to the upper-level production frontier and

a negative value represents closing up of the gap. Judging by the average val-

ues, which are 2.27% for GTECHik and 3.59% for GTECHi, the technology gaps

enlarged only slightly. That is, on average, the group-type frontiers, the group

frontiers, and the meta frontier shifted out almost uniformly. This explains why

the three measures of the technology change effect are highly similar.

According to the values of GTECHik and GTECHi, state ownership closed (ex-

panded) their technology gaps with respect to the upper-level production frontier

more (less) than private ownership, and private ownership closed (expanded) their

technology gaps more (less) than foreign ownership. These relationships are true

in most cases. Thus, GTECHik and GTECHi tend to drive down (raise) TECHi

and TECH more (less) for state ownership than for private ownership. The same

is true when we compare private ownership and foreign ownership. Thus, the het-

erogeneity components generate a permutation effect on TECHi and TECH: They

often reduce the technology change effect for categories that were less productive

in 1998. Consequently, in Figures 3a and 3b, the negative relationship between

the technology change effect and labor productivity in 1998 virtually disappears.

To summarize, we observe unbalanced change in the technology gaps between

the hierarchical technology frontiers. State ownership reduced their technology
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gaps with respect to the group frontiers and the meta frontier, but the opposite

is true for foreign ownership. Although the average technology change effect is

insensitive to the choice of the reference technology, the latter does affect the

convergence pattern of the former.

Capital deepening Finally, we present the results for the capital deepening

effect. As before, we present the three measures of the capital deepening effect

(KACC, KACCi, and KACCik) along with the two heterogeneity components

(GKACCi and GKACCik) in Table 6.19 Next, we investigate the convergence of

capital deepening in Figure 4.

Table 6: Growth decomposition: the capital deepening effect

Technology
Ownership y1998 KACC KACCi KACCik GKACCi GKACCikintensity

low

state 25.41 102.26 106.97 132.92 -0.84 -10.12
private 31.32 50.96 72.05 74.83 -9.93 -1.84
foreign 52.87 4.66 10.55 36.79 -3.78 -16.90

all 36.53 52.63 63.19 81.51 -4.85 -9.62

medium

state 29.34 264.85 280.54 310.66 -7.86 0.83
private 35.37 79.10 132.05 147.94 -20.78 -6.75
foreign 66.39 26.64 33.61 46.05 -6.63 -7.41

all 43.70 123.53 148.73 168.22 -11.76 -4.44

high

state 34.03 87.93 79.69 130.96 0.94 -17.53
private 49.74 86.34 91.49 102.01 -2.42 -5.56
foreign 80.78 63.48 64.54 74.86 -0.76 -7.29

all 54.85 79.25 78.57 102.61 -0.75 -10.13

all

state 28.26 178.95 187.51 218.28 -4.02 -5.67
private 35.32 68.44 103.10 113.05 -14.32 -4.62
foreign 62.48 21.78 27.65 45.48 -4.82 -11.26

all 42.02 89.72 106.09 125.60 -7.72 -7.18

y1998 represents output per worker in 1998 (unit: 1,000 RMB per person). KACC and related variables
are evaluated over the 1998–2007 period and converted into cumulative growth rates (unit: percent).

That is, KACC =

(√
y1998(x2007)
y1998(x1998)

y2007(x2007)
y2007(x1998)

− 1

)
×100%, and similarly for the others. We average

over all DMUs (sector-ownership combinations) in the corresponding category to obtain these values.

As before, we start our analysis with KACCik, the measure for the capital

deepening effect based on the group-type technology. Judging by the overall aver-

age, which is 125.60%, this effect is twice as large as the efficiency change effect.

According to this number, China’s manufacturing would be able to increase its la-

bor productivity by 125.60% times through capital deepening alone, even if there

had been zilch efficiency or technology improvement. Clearly, it was the main

driver for productivity growth. The magnitude of this effect is quite large for

state ownership, usually twice as large as that of private ownership, and almost

four time larger than that of foreign ownership. This pattern remind us of Table 1.

19The full results for all 81 sector-ownership combinations are presented in Table S5 of the
supplementary material.
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Figure 4: Capital deepening versus labor productivity in 1998

There we find much more rapid growth in the capital-labor ratio among domestic

firms, which explains the stronger effects observed here.

Because the capital deepening effect is always the strongest for state owner-

ship and the weakest for foreign ownership, if we relate this to the productivity

rankings, a negative correlation between KACCik and y1998 emerges. Thus, we

do observe convergence of the capital deepening effect across ownership types. At

the group level, however, the low-tech group had not only the lowest labor pro-

ductivity in 1998, but also the smallest KACCik value, which suggests divergence.

This pattern looks highly similar to what we have seen in Table 2. It turns out

that the converging force is stronger than the divergence force when pooling all

DMUs together: Figure 4c depicts a negative relationship between KACCik and

y1998 that is highly significant.

The heterogeneity components GKACCik and GKACCi capture the change

in technology gaps when the upper- and lower-level production frontiers are held

constant but the input mix is allowed to change. A positive value means a widening

gap in reference to the upper-level production frontier, whereas a negative value

implies that the gap has narrowed. Table 6 shows that the technology gaps between

the hierarchy levels have been closing up for almost all categories. Judging by the

average values, which are -7.18% for GKACCik and -7.72% for GKACCi, the

average technology gap between the hierarchy levels were narrowed as a result of
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capital deepening. This explains why the capital deepening effect becomes smaller

when the group or meta technology is used as the benchmark. We point out that

the heterogeneity components are not negligible in the current case. The average

capital deepening effect along the meta frontier (KACC) is almost 30% smaller

than that along the group-type frontiers (125.60% versus 89.72%).

Between technology groups or ownership types, the heterogeneity components

GKACCik and GKACCi do not display any particular pattern that is similar to

what we have observed in Tables 3 and 5. Consequently, the permutation effect

on KACCi and KACC is generally missing.20 This explains why the convergence

pattern portrayed by Figure 4c is barely altered when we switch to KACCi and

KACC (Figures 4a and 4b).

To conclude, the capital deepening effect played the dominant role in labor

productivity growth. It also strongly contribute to labor productivity convergence.

Capital deepening resulted in smaller technology gaps between the hierarchy levels

for almost all categories. Although the heterogeneity components are moderately

large, they do not alter the qualitative results.

3.3 Summary and discussion

We summarize our findings as follows:

First, China’s manufacturing industry experienced vigorous labor productiv-

ity growth over the 1998–2007 period. On average, the growth rate was 241.29%.

Productivity growth was highly unbalanced across technology groups or owner-

ship types. It exhibited a strong convergence pattern between ownership types

and between the medium- and high-tech groups. However, the productivity gap

between the low-tech group and the rest of the industry enlarged. Overall, we ob-

serve strong convergence in labor productivity in China’s manufacturing industry

between sectors and ownership types.

Second, depending on the reference production frontier, productivity growth

due to efficiency change was 11.23–33.13%. The measured effect is stronger when

benchmarked against the group frontiers or the meat frontier because the observed

technology gaps between the hierarchical levels shrank over time. In reference to

the group-type technologies, there was little efficiency change among state-owned

firms and in the low-tech group, but less productive categories usually benefited

more from the gap-closing effects. Efficiency change contributed to productivity

20We point out that GKACCik is quite large in size for state ownership in the high-tech group
and foreign ownership in the low-tech group, which reduces KACCi substantively for these
categories. The same is true for GKACCi on private ownership in the medium-tech group.
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convergence only if it is measured by the group technologies or the meta technol-

ogy.

Third, the measured technology change effect, which ranges 58.40–63.22%, is

less sensitive to the choice of the reference technology. On average, the technology

gaps between the hierarchy levels expanded very little (2.27% and 3.59%). At the

group-type level, the technology change effect was stronger among less productive

categories (e.g., 90.97% for state ownership and 75.26% for the low-tech group).

At higher levels, however, the more productive categories often benefited more

from the expansion of technology gaps. The technology change effect exhibits

convergence only at the group-type level.

Fourth, capital deepening was the major driver of productivity growth and

convergence. In reference to the group-type technologies, productivity growth due

to capital deepening was 125.60%. Because capital deepening also narrowed down

the technology gaps between the hierarchy levels, it is smaller when measured

by the group technologies (106.09%) or the meta technology (89.72%). Capital

deepening narrowed down technology gaps on almost all fronts and this effect

outweighs the gap expansion effect brought by technology change. Convergence is

seen in all three measures of the capital deepening effect.

At this stage, we want to contrast our results with the relevant findings in

the literature. First, our DEA-based tripartite decomposition highlights capital

deepening as the most important single factor for labor productivity growth. This

finding is consistent with Henderson et al. (2007) and Badunenko and Tochkov

(2010), although they study Chinese regions. However, regressional analysis of

China’s industry emphasize the importance of TFP in explaining output growth

(Brandt et al., 2012; S. Chen et al., 2011). remove S. We think the difference

can be reconciled on the following grounds. One, the growth mode of the overall

economy may differ from that of the manufacturing sector. In fact, our decom-

position assigns far more importance to efficiency change and technology change

than studies on regional economies.21 Second, if we interpret TFP change as the

composite effect of efficiency change and technology change (Bos, Economidou, &

Koetter, 2010; Henderson & Russell, 2005), our estimates suggest a TFP growth

rate similar to what has been estimated for China’s industry using regressional

methods.22 Third, following the previous interpretation, our results do show that

21If we ignore technology heterogeneity, as most studies do, then our efficiency change, tech-
nology progress, and capital deepening effects are 33.13%, 63.22%, and 89.72%, respectively.
These numbers are 17.2%, 6.0%, and 101.5% in Henderson et al. (2007) and -8.18%, 6.82%, and
55.56% in Badunenko and Tochkov (2010).

22Ignoring technology heterogeneity again, our estimates suggest that cumulative TFP growth
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TFP contributed more than capital accumulation to labor productivity growth.23

Second, our analyses reveal strong convergence of labor productivity, which is

quite clear across ownership types. Similarly, Berkowitz et al. (2017), Hsieh and

Song (2015), and Jefferson et al. (2008) all find TFP convergence across ownership

types. In a broader sense, our finding is also consistent with those of Deng and

Jefferson (2011) and Lemoine et al. (2015), who show convergence of industrial la-

bor productivity across regions. These findings, however, are at odds with studies

of China’s regional economic development. Badunenko and Tochkov (2010) and

Henderson et al. (2007) study per capita GDP growth among Chinese provinces

using decomposition methods that are very similar to ours. Their results show

divergence over 1998–2003 and 1990–2000, which was mainly driven by efficiency

change and technology change.24 In a similar study, K.-H. Chen et al. (2009)

remove K. H. study TFP growth among Chinese provinces. Their decomposition

also demonstrates a divergence pattern driven by efficiency change and technol-

ogy change. This seemingly conflict is reconciled by Rodrik (2013), who argues

that the manufacturing industry should exhibit unconditional convergence because

this industry produces tradable goods and faces fierce competition domestically

and abroad. Consequently, firms are under constant pressure to upgrade their

operations and remain competitive. It follows that resource reallocation and tech-

nology transfer are easier to take place, resulting in productivity convergence. In

contrast, the rest of the economy (agriculture and service) is locked to the local

market, which means the mechanisms for convergence do not function properly.

This explains why the economy as a whole usually fails to exhibit convergence.

These findings have rich policy implications. First, the convergence patterns

identified in this article suggest that the market forces were functioning prop-

erly in China’s manufacturing industry. That is, capital intensity increased in

low-productivity sectors, where the marginal return was higher (Figure 4c), and

was 117.29% during 1998–2007, or 9.00% per annum. In comparison, Brandt et al. (2012)
estimate that the annual TFP growth rate was 7.96% during the same period, whereas Jefferson
et al.’s (2008) estimate is 9.39%. These numbers are much higher than the TFP growth rates
estimated for Chinese regions (Brandt & Zhu, 2010; K.-H. Chen, Huang, & Yang, 2009), which
provides further evidence that the growth mode of the overall economy differs from that of the
manufacturing sector.

23That is, cumulative TFP growth was 117.29% whereas the capital deepening effect was
89.72% when we ignore technology heterogeneity. In comparison, Brandt et al. (2012) estimate
that TFP growth contributed to 57% of the output growth in China’s manufacturing industry,
and the remaining 43% was due to factor accumulation. Nevertheless, we remark that our
decomposition is not directly comparable to theirs.

24Unel and Zebregs (2009) perform a similar analysis using much earlier data (1978–1998),
their analysis produces a convergence pattern only after the much stronger growth in coastal
provinces and the effect of foreign direct investment have been controlled.
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technology spillover took place between high-tech and low-tech categories (Figure

3c). Regarding resource reallocation, both Brandt et al. (2012) and Ding et al.

(2016) emphasize firm turnover, which is especially true for state ownership (Jef-

ferson et al., 2008). In addition, Hsieh and Song (2015) point out that state-owned

firms successfully reduced redundant labor. For channels of technology spillover,

Xu and Sheng (2012) highlight the role of foreign-owned firms, whereas He and

Walheer (in press) identify additional sources: high-tech sectors, private owner-

ship, and exporting firms. Overall, China’s marketization reforms has successfully

boosted labor productivity and reduced disparity in the manufacturing industry.

Second, the main driver of productivity growth in China’s manufacturing in-

dustry is capital deepening. This is similar to the growth pattern of the Asian

Tigers, but very different from that of the OECD countries, where technology

change is often found to play an equally important role (Badunenko & Romero-

Ávila, 2013; Henderson & Russell, 2005; Kumar & Russell, 2002; Walheer, 2016a,

2016b). Badunenko and Tochkov (2010) and Henderson et al. (2007) question

the sustainability of this growth mode. We point out that although the capital

intensity of China’s manufacturing industry was almost quadrupled during 1998–

2007 (Table 1), it was still far less than that of the developed economies, which

was 210,566 USD per person in the United States, 22 million Yen per person in

Japan, and 106,779 Euro per person in EU12.25 Based on these numbers, China’s

manufacturing industry can maintain another 15 years’ high growth by means of

capital deepening alone.

At the same time, the three ownership types follow different growth paths.

Domestic firms were far more reliant on capital accumulation than foreign-owned

firms, whereas state-owned firms were far more capital-thirsty than indigenous

private firms (Table 6). The fast capital accumulation among private firms is

justifiable, because their capital intensity has been the lowest (Table 1). However,

capital accumulation among state-owned firms seems to contradict the principle of

optimal resource allocation, because they were already the most capital intensity

in 2003, and they further increased their advantage in 2007. Resource allocation

could be improved if more capital were allocated to indigenous private firms.

Third, technology change played a far more important role in productivity

growth than efficiency change.26 However, it does not mean China’s manufacturing

25Source: OECD Stan Dataset and authors’ own calculations. Values reflect real capital stock
(in 2010 currency values) per worker in the manufacturing industry in 2007. EU12 does not
include Spain and Portugal because of missing data in capital stock.

26This conclusion is based on comparing EFFik in Table 3 to TECHik in Table 5. According to
our previous discussions, they are appropriate measure for pure efficiency change and technology
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did a poor job in improving technical efficiency or efficiency change could be a

potential source of future labor productivity growth. Overall, efficiency growth

was weak simply because there was little room for improvement, which was even

less in 2007. Our result suggests that the ultimate source of labor productivity

growth in China’s manufacturing industry must be technology progress, if not

capital accumulation. The only exception seems to be state ownership in the low-

tech group, for which efficiency change could play a more important role than in

other categories.

Finally, we express our concerns about the low-tech group. Initial labor pro-

ductivity and subsequent productivity growth were both the lowest among this

group, suggesting divergence (Table 2). According to the tripartite decomposition,

low productivity growth of the low-tech group were caused by sluggish efficiency

growth and capital accumulation (Tables 3 and 6). The weak efficiency growth

is largely due to the efficiency regression of state ownership, but the low level of

capital accumulation is seen among all three ownership types. Remarkably, the

low-tech group also features the lowest capital intensity throughout the study pe-

riod (Table 1). In the language of Bos, Economidou, and Koetter (2010), these

observations suggest that the low-tech group may belong to a different technol-

ogy club. Measures to improve technical efficiency, especially among state-owned

firms, and policies that encourage capital accumulation may help the low-tech

group to achieve higher labor productivity growth and narrow the gap with the

rest of the manufacturing industry.

4 Conclusion

In this article, we employ DEA to analyze labor productivity growth in China’s

manufacturing industry during 1998–2007. Methodologically, we employ the con-

cept of metafrontier to control for technology heterogeneity across technology

groups and ownership types when we perform the tripartite decomposition. We

highlight the importance of controlling for heterogeneity when making interpreta-

tions and explain how different decomposition results can be linked by the hetero-

geneity components. Empirically, our tripartite decomposition identifies capital

deepening as the most important single factor for labor productivity growth, fol-

progress, because each DMU is contrasted with the potential output of the technology group
it belongs to. In comparison, EFFi and EFF contains the technology progress of the lower-
level technology relative to the upper-level technology, whereas TECHi and TECH reflect the
technology progress of the upper-level frontiers.
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lowed by technology progress, but the contribution from efficiency change was

moderate. We find strong unconditional convergence of labor productivity during

the study period, driven by capital deepening and technology change. However,

we also observe increasing disparity between the low-tech group and the rest of

the industry.

With these results we are able to reconcile two strands of literature. Specif-

ically, we point out that the dispute over the relative importance of technology

progress and factor accumulation in explaining China’s productivity growth may

arise because researchers use different data and measure technology differently.

We also emphasize that the intrinsic difference between the manufacturing in-

dustry and the aggregate economy is the key to understand the convergence and

divergence patterns found in the literature.

We think China’s industrial reforms successfully created a healthy market en-

vironment in which resource reallocation and technology transfer contributed to

labor productivity convergence, but we also express our concerns over state own-

ership and the low-tech sectors. The former received too much capital whereas the

latter were given too little. We are cautiously optimistic about China’s capital-

driven industrial growth, yet we point out that the source of long-term productivity

growth must be technology progress.

Before concluding, we would like to point out a few limitations of the study.

First, due to data limitation, our decomposition does not consider human cap-

ital, which has been found to be an important source of productivity growth

(Badunenko & Romero-Ávila, 2013; Henderson & Russell, 2005; Walheer, 2016a).

Thus, our estimates could be biased.27 Second, our categorization of technology

groups is based on an exogenous criterion which is time-invariant. Endogenously

determined dynamic regimes, as modeled by Bos, Economidou, and Koetter (2010)

and Bos, Economidou, Koetter, and Kolari (2010), may more accurately model

the technology differences between industrial sectors and bring new insights to the

analysis. Finally, we must acknowledge that the Kumar-Russell style decomposi-

tion has its own limitations. That is, it cannot separate the effect of entry and

exit from aggregate productivity growth, or study the effect of resource realloca-

tion within sectors. Regressional methods are advantageous in answering these

questions (Brandt et al., 2012; Ding et al., 2016).

27Nevertheless, Walheer (2019b) shows that the bias might be small in the Chinese context.
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